
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a preprint version which may differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/36092

 

 

 

Please be advised that this information was generated on 2018-07-07 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16123223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/36092


arX
iv:

hep
-ex

/06
050

21v
1 

8 M
ay 

200
6

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
CERN-PH-EP/2005-058 
December 12, 2005

Analysis of the n+ n  n + n  and n + n 0n n 0 Final States 
in Quasi-Real Two-Photon Collisions at LEP

The L3 Collaboration

Abstract

The reactions 7 7  ^  n + n- n+ n -  and 7 7  ^  n+n0n - n 0 are studied with the 
L3 detector at LEP in a data sample collected at centre-of-mass energies from 
161 GeV to 209 GeV with a to tal integrated luminosity of 698 pb-1. A spin-parity- 
helicity analysis of the p0p0 and p+p-  systems for two-photon centre-of-mass energies 
between 1 GeV and 3 GeV shows the dominance of the spin-parity state 2 + with 
helicity 2. The contribution of 0+ and 0-  spin-parity states is also observed, whereas 
contributions of 2 -  states and of a state with spin-parity 2 + and zero helicity are 
found to be negligible.
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1 Introduction
Several experiments have observed a large cross section near threshold for the reaction 7 7  ^  
p0p0 [1-3]. In contrast, the corresponding cross section for the isospin-related reaction 7 7  ^  
p+p-  was shown to be small [4,5]. The first spin-parity-helicity analysis of the reaction 7 7  ^  
n+ n- n+ n-  was carried out by the TASSO Collaboration [2 ] by studying angular correlations. 
The data sample consisted of 1722 events for two-photon centre-of-mass energies 1.2 GeV < 
W YY < 2.0 GeV. A spin-parity-helicity analysis with higher statistics was performed by the 
ARGUS Collaboration [3] with 5181 events in the region 1.1 GeV < W77 <  2.3 GeV. Both 
collaborations used similar models and observed the dominance of p0p0 states with spin-parity 
J P =  2+ and 0+. The contribution of negative-parity states was found to be negligible.

A number of theoretical models [6 ] were proposed to interpret these experimental results. 
In a t-channel factorization approach [7], the 7 7  ^  p0p0 cross section is related to photo­
production and hadronic cross sections at low energies. This model leads to the interpretation 
of the broad enhancement in the 7 7  ^  p0p0 cross section around 1.6 GeV as a threshold 
behaviour due to Regge exchange. Other models suggest an s-channel p0p0 resonance [8,9], 
either a normal qq state or a four-quark qqqq bound state. In four-quark models, isoscalar and 
isotensor resonances interfere destructively to suppress the 7 7  ^  p+p-  signal and constructively 
to describe the 7 7  ^  p0p0 cross section. The proposed models differ substantially in the 
predicted cross section for the production of other vector mesons such as 7 7  ^  p°w and 
7 7  ^  0 0 .

This Letter presents the results of a spin-parity-helicity analysis of the reactions 7 7  ^  
n+ n- n+ n-  and 7 7  ^  n+n 0n - n 0 in data collected by the L3 detector [10] at LEP, using the 
same technique as TASSO and ARGUS. The data samples consist of 7.5 x 104 events for the 
e+e-  ^  e+e- n+ n- n+ n-  channel and 7.5 x 103 events for the e+e-  ^  e+e- n+n 0n - n 0 channel. 
These data are selected in the region of quasi-real photons with a maximum virtuality of 
Q2 ~  0.02 GeV2. The 7 7  ^  p0p0 and 7 7  ^  p+p-  cross sections obtained in this analysis are 
compared to the high-virtuality [11,12] and mid-virtuality [13,14] data obtained with the same 
detector.

2 D ata and M onte Carlo Samples
The two-photon production of a p-pair, 7 7  ^  p0p0 or 7 7  ^  p+p- , is observed via the reactions 
e+e-  ^  e+e- n+ n- n+ n-  or e+e-  ^  e+e- n+n0n - n 0, respectively. Detection of the scattered 
leptons is not required. The data were collected with the L3 detector at e+e-  centre-of-mass 
energies i/s  =  161 — 209 GeV, with a to tal integrated luminosity Ce+e-  =  697.7 pb - 1  and an 
average centre-of-mass energy of 196 GeV. The analysis described in this paper is mainly based 
on the central tracking system and the electromagnetic calorimeter.

Four-pion Monte Carlo events are generated with the EGPC [15] program. The four- 
momentum of the two-photon system is distributed according to the transverse two-photon 
luminosity function [16]. The pion four-momentum vectors are generated using four-particle 
phase space. The events are then passed through the L3 detector simulation, which uses the 
GEANT [17] and GEISHA [18] programs, and are reconstructed following the same procedure 
as used for the data.
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3 Event Selection
The events are collected by two charged-track triggers. The first trigger [19] requires a t least 
two wide-angle tracks, back-to-back w ithin ±41° in the  plane transverse to  the  beam . The 
second trigger [20] is based on a neural network which was tra ined  to  select low-multiplicity 
events while rejecting beam -gas and beam -wall background.

Events are selected by requiring:

•  four charged tracks for the  e+e-  ^  e+e- n + n - n + n -  reaction and two charged tracks for 
the  e+e-  ^  e+e- n + n 0n - n 0 reaction, w ith a net charge of zero in each case. A track 
is required to  have: more th a n  12 hits, w ith  a t least 60% of possible hits, a transverse 
m om entum , p t , g reater th a n  100 MeV and a distance of closest approach to  the  in teraction 
vertex in the  transverse plane less th a n  2 mm.

•  no photons for the  77  ^  n + n - n + n -  reaction and four isolated clusters in the  electro­
m agnetic calorim eter for the  77  ^  n + n 0n - n 0 reaction. A photon  is defined as an isolated 
shower in the  electrom agnetic calorim eter consisting of a t least two adjacent crystals w ith 
an  energy g reater th a n  100 MeV and w ith  no charged track  w ithin 200 m rad.

•  an  energy loss d E /d x  in the  tracking cham ber corresponding to  the  hypothesis th a t all 
the  charged particles are pions, w ith  a confidence level g reater th a n  6%.

•  two pairs of photons each w ith a good fit to  the  n 0 decay hypothesis for the  n + n 0n - n 0 
final state.

To suppress th e  background from  non-exclusive events, the  overall transverse m om entum  
of the  event, |£ p t |2, m ust be less th a n  0.02 GeV2, as shown in Figures 1a and 1b. The 
resulting samples consist of 74859 and 7535 events for the  e+e-  ^  e+e- n + n - n + n -  and 
e+e-  ^  e+e- n + n 0n - n 0 reactions, respectively.

The d istributions of the  four-pion mass, equal to  WYY for exclusive events, are shown in 
Figures 1c and  1d. The mass resolution is estim ated  to  be 48 MeV for the  n + n - n + n -  and 
63 MeV for the  n + n 0n - n 0 final states. More th a n  90% of the  events lie in the  region 1.0 GeV <  
WYY <  3.0 GeV, where th e  spin-parity-helicity analysis is performed.

The background is dom inated by higher-m ultiplicity final sta tes produced in tw o-photon 
interactions which are only partially  reconstructed. The expected contribution from annihi­
la tion events is negligible. As presented in Figures 1a and  1b, the  d istribu tion  of |£ p t |2 for 
non-exclusive final sta tes has an exponential form, which is estim ated  from the  d a ta  in the 
high |£ p t |2 region, 0.2 GeV2 <  |£ p t |2 <  0.8 GeV2. E x trapo lating  th is exponential to  the  signal 
region, |£ p t |2 <  0.02 GeV2, the  backgrounds for the  n + n - n + n -  and  n + n 0n - n 0 final sta tes are 
estim ated  to  be 2.5% and 4%, respectively.

Figures 2a , 2c and 2e show the  two-dim ensional d istributions of the  masses of n + n -  combi­
nations for the  selected n + n - n + n -  events in different WYY regions. There are two entries per 
event, displayed by ordering the  two masses of each entry. Figures 2b , 2d and  2f show the  n + n 0 
and n - n 0 mass com binations for the  n + n 0n - n 0 channel w ith  two entries per event.

The two-pion mass resolution is estim ated  from  M onte Carlo sim ulation to  be 25 MeV for 
b o th  the  n + n -  and n ± n 0 cases. The n + n -  and  n 0 com binations shown in Figure 2 present 
clear evidence of pp production. For WYY <  1.6 GeV, the  p signal is d istorted  by threshold 
effects. As WYY increases, th e  p signal shifts to  its nom inal mass value, shown by the  do tted  
lines in th e  figure.
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4 Spin-Parity-H elicity Analysis
Following the  m odel proposed by the  TASSO C ollaboration [2], we consider pp production  in 
different spin-parity  and  helicity sta tes ( J P , J z ), together w ith an isotropic production  of four 
pions, denoted as “4n” . All sta tes are assum ed to  be produced incoherently, and therefore no 
interference effects between the  final sta tes are taken  into account. However, since states of 
different spin-parity  and  helicity are orthogonal, all interference term s vanish on in tegrating 
over the  angular phase space. Isotropic p nn  production, included in previous analyses [3,5], 
corresponds to  an  unphysical s ta te  since C -parity  requires the  angular m om entum  between the 
two pions to  be odd. We have verified th a t this s ta te  is not essential to  reproduce the  data. 
The pnn  events, if neglected, are absorbed by the  4n background.

The analysis is perform ed in WYY intervals of 100 MeV for 77  ^  n + n - n + n -  and 200 MeV 
for 77  ^  n + n 0n - n 0. As pions are bosons, the  am plitudes which describe the  process m ust be 
sym m etric under interchange of two pions w ith  the  same charge and  are:

g jp  Jz =  B p (mpi)Bp(mp2) J  jzl s (p i,p 2) +  perm utations,

and  g4n =  1,

where m p indicates the  mass of the  two-pion system  and B p(m p) is the  relativistic Breit-W igner 
am plitude for the  p meson [21]. The angular te rm  ^ J pJzLS(p1 ,p 2) describes th e  ro ta tional 
properties of the  pp s ta te  w ith  spin-parity  J P and helicity J z. It is constructed  by combining 
the  spins of the  two p mesons, S  =  s 1 +  s2, w ith z projection M s =  m 1 +  m 2 and  then  adding 
th is to  the  pp o rb ita l angular m om entum , L , w ith  z projection M , to  ob ta in  the  s ta te  w ith 
to ta l angular m om entum  J  and  z projection J z =  M s +  M :

^ J  P Jz LS C LM SMs Cs1m1s2m2 YLM (£1)Ysimi (£2)Ys2m2 (£3)
M,mi

where C JM  l2m2 are the  C lebsch-G ordan coefficients, Ylm(£^ are the  spherical harm onics and 
£1 =  ($p,<£p), £2 =  ($n+ , ^ n+ ) and £3 =  (ÿn+ , ^ n+ ), w ith  ÿp and  ^p being the  polar and 
azim uthal angles of a p meson in the  tw o-photon helicity system. The z axis is chosen parallel 
to  the  beam  direction, which to  a good approxim ation is parallel to  the  77  helicity axis. The 
angles ÿ n+ and are the  polar and  azim uthal angles of the  positive pions in the  centre-of- 
mass of the  first p0 meson, w ith  the  z axis parallel to  the  beam  axis, the  angles ÿ n+ and 
correspond to  the  second p0 meson; for a p -  meson, £3 =  (ÿn- , ). The indices from  1 to
4 refer to  the  four pions using the  convention: n + n - n + n -  or n + S i n c e  the  analysis 
is perform ed close to  threshold, the  orb ital angular m om enta are restric ted  to  L =  0, 1. The 
allowed spin-parity-helicity final sta tes of the  pp system  in quasi-real tw o-photon reactions are 
then: ( J P , J z) =  0+, 0- , (2+, 0), (2+, ± 2 ) and  (2- , 0), w ith  the  to ta l spin of the  pp meson 
system  S  =  1 or S  = 2. S tates w ith helicity one are forbidden by helicity conservation and 
spin-one states by the  Landau-Yang theorem  [22].

A maximum -likelihood fit to  the  d a ta  is used in each WYY bin to  determ ine the  contributions 
of the  four am plitudes: 4n, 0+, 0-  and (2+, 2). The rem aining spin-parity  sta tes are not 
considered as they  have a negligible contribution if included in the  fit.

5 Cross Section
The cross section for the  process k, w ith  fraction \ k determ ined from  the  fit, averaged over the 
WYY bin w ith  N  events, is
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= ______________N X k ______________

0 l l ^ k £ e+e- efc(W/77) e t ^ W ^ )  ƒ  d C j j  ’

where ƒ  d L 77 is the  tw o-photon lum inosity function in tegrated  over the  WYY bin, e k is the  
selection efficiency and  etrg is th e  trigger efficiency. The selection efficiencies depend on WYY as 
well as on the  particu la r wave. They are com puted by M onte Carlo sim ulation, re-weighting 
the  events w ith the  am plitudes |gk|2. The efficiencies for the  4n process are listed in Tables 1 
and  2. Similar efficiencies are found for the  o ther processes. The trigger efficiency is studied by 
com paring the  response of the  two charged-track triggers. The higher-level trigger efficiencies 
are determ ined using prescaled events. The to ta l trigger efficiency is given in Tables 1 and  2. 
The overall efficiencies for the  n + n - n + n -  and  n + n 0n - n 0 final sta tes are shown in Figures 3a 
and  3b.

The cross sections derived from  the  fit are presented in Tables 1 and 2. Figures 3c- f  com pare 
the  to ta l cross sections and the  contributions of the  individual waves to  the  77  ^  p0p0 and 
77  ^  p+p-  processes as a function of the  four-pion mass. The 4n background, which in this 
analysis represents all sta tes which do not correspond to  the  pp production  hypothesis, is similar 
in b o th  channels. It grows from threshold  to  a value of 20 — 30 nb around 2 GeV and decreases 
tow ard 3 GeV. In the  n + n - n + n -  channel, the  p0p0 p roduction  has a high cross section, w ith 
a m axim um  of about 50 nb a t 1.6 GeV. It is dom inated by the  (2+, 2) s ta te , which has a 
cross section peak-value of abou t 35 nb. The n + n 0n - n 0 channel, exhibits also a significant 
(2+, 2) contribution, bu t only for 1.6 <  WYY <  2.2 GeV. Above 1.9 GeV the  77  ^  p0p0 and 
77  ^  p+p-  cross sections are equal w ithin the  experim ental uncertain ties and  fall rapidily w ith 
increasing WYY. In the  0+ wave, a clear peak is observed in the  p0p0 channel a t WYY ~  1.4 GeV, 
perhaps indicative of an s-channel resonance effect, it is absent in the  p+p-  channel. The 
77  ^  p+p-  cross section peaks near 2 GeV in b o th  0+ and  (2+, 2) waves, while a similar peak 
is seen for the  p0p0 in the  0+ wave only. The same qualitative features were observed by the 
ARGUS C ollaboration [3,4], which however found a higher peak cross section of ~  50 nb for the 
(2+, 2) wave in p0p0. Taking into account the  larger experim ental uncertainties on the  ARGUS 
data , a peak is also seen in the  0+ wave a t WYY ~  1.4 GeV. However, a t higher mass values, 
WYY >  2 GeV, only the  much higher sta tistics of the  present experim ent are able to  provide 
cross section m easurem ents, so no com parison is possible.

To evaluate the  quality of the  fit and of the  detector modeling we com pare several d istribu­
tions of the  d a ta  w ith  a M onte Carlo sim ulation norm alized to  the  fit results. Figure 4 shows 
the  d istributions of pt and of the  cosine of the  polar angle of the  charged or neu tra l pion closest 
to  the  beam  line. The two-pion mass com binations, n + n -  and n ± n 0, and the  production angles 
of the  pions in the  two-pion centre-of-mass system  w ith  respect to  the  beam  direction (Adair 
angle) are p lo tted  in Figure 5. Four entries per event are considered and  the  d a ta  are p lo tted  
before acceptance corrections. The agreem ent w ith  the  M onte Carlo sim ulation is adequate, 
considering the  simplicity of the  m odel and  the  high statistics of the  d a ta  sample. The angu­
lar d istributions in Figures 5c and 5d are of the  general form sin2 0, indicating a dom inantly 
transverse polarisation for the  produced p.

6 Background E stim ation and System atics
The fraction of non-exclusive background in the  pp sample is derived by perform ing a spin- 
parity-helicity analysis of the  background d a ta  sample, defined as the  region 0.2 GeV2 <
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| £ j t |2 <  0.8 GeV2. We find th a t less th a n  30% of these events are classified as pp. The 
background contribution in the  pp sample is then  of the  order of 1%.

System atic uncertain ties on the  pp cross sections are due to  selection criteria, fitting  pro­
cedures and  trigger efficiencies. U ncertainties from the  selection procedure are estim ated  by 
varying the  cuts on the  quality of the  event and on the  track  definition. They vary between 
3% and 10% for the  p0p0 channel and between 10% and 24% for the  p+p-  channel, depending 
on WYY. U ncertainties on the  model and the  fitting procedure are estim ated  by neglecting in 
tu rn  the  0+ and  0-  waves and including the  (2+, 0) and (2- , 0) waves in the  fit. Small effects 
from  the  inclusion of additional spin-parity  sta tes are also considered. In the  high mass region, 
WYY >  2 GeV, the  contribution of o ther channels and higher-angular m om entum  states may 
become im portan t. It was found th a t such effects could be m odelled by including a contribution 
from  the  isotropic p nn  production. In to ta l, these uncertain ties for the  p0p0 and p+p-  channels 
am ount to  a m axim um  of 10% and 19%, respectively, for WYY <  2 GeV and  to  a m axim um  of 
60% in the  region 2 GeV <  WYY <  3 GeV. U ncertainties on the  determ ination  of the  trigger 
efficiencies are of a s ta tistical na tu re  and affect m ainly the  n + n 0n - n 0 channel, where they  vary 
between 2% and 6%. They are below 1% for the  n + n - n + n -  channel. U ncertainties on the 
background level are below 1% for b o th  channels.

7 D iscussion
A spin-parity-helicity analysis of four-pion final sta tes produced in quasi-real tw o-photon colli­
sions a t LEP benefits from  d a ta  statistics an  order of m agnitude higher th a n  previous analyses. 
Several characteristics of the  77  ^  p0p0 and  77  ^  p+p-  processes, which were previously 
observed [3,5], are confirmed:

•  In b o th  channels, the  (2+, 2) wave is dom inant. Small bu t significant 0+ and  0-  waves 
are also observed.

•  The 77  ^  p0p0 process has a high cross section extending from threshold  to  about 2 GeV, 
while the  cross section of the  77  ^  p+p-  process is low in th is range. In Figure 6 the  mass 
spectra  of the  present results are com pared to  those we obtained  a t higher Q 2 [11-14].
I h \  1 o

R  =  £  p - ) / £  A M * 0),

where A a ee =  A L 77a tot (77  ^  pp) and  the  sum  is for the  region 1.1 GeV <  WYY <  
2.1 GeV, is found to  be

R  =  0.42 ±  0.05 ±  0.09 for Q 2 <  0.02 GeV2.

The first uncertain ty  is sta tistica l and the  second system atic, calculated assum ing the 
system atic uncertainties for the  two processes to  be fully uncorrelated. This ra tio  increases 
w ith  the  photon  virtuality. At higher Q 2 we previously obtained:

R  =  0.62 ±  0.10 ±  0.09 for 0.2 GeV2 <  Q 2 <  0.85 GeV2 [14],
R  =  1.81 ±  0.47 ±  0.22 for 1.2 GeV2 <  Q 2 <  8.5 GeV2 [14],
R  =  2.2 ±  1.1 ±  0.6 for 8.8 GeV2 <  Q 2 <  30 GeV2 [12].

These m easurem ents are consistent w ith  the  presence of an  s-channel enhancem ent a t low 
p0p0 mass values which decreases rapidly w ith Q 2. If in terpreted  as an  effect of s-channel

6



resonances, the  observed ra tio  between 77  ^  p+p-  and 77  ^  p0p0 p roduction implies 
the  possible existence of an  isospin-2 s ta te  [8,9]. Such an in terp re ta tion  of our d a ta  was 
recently presented in Reference 23.

•  At higher masses, WYY >  2 GeV, the  77  ^  p+p-  and  77  ^  p0p0 cross sections are equal, 
w ithin the  experim ental uncertainties. In b o th  cases, the  cross section decreases rapidly 
for W77 -  3 GeV.

The Q 2-dependence of the  tw o-photon cross section is presented in Figure 7 for the  full mass- 
region 1.1 GeV <  WYY <  3. GeV. The p0p0 cross section exceeds the  p+p-  one a t low Q 2 while 
a cross-over is observed in the  vicinity of Q 2 ~  1 GeV2. A Generalised Vector Dom inance fit, 
GVDM [24], which reproduces well all the  m id-virtuality  and  h igh-virtuality  d a ta  [14] for the 
77  ^  p0p0 cross section, lies below the  cross section value obtained  a t (Q2) =  0.001 GeV2. A 
p-pole fit, also presented in the  Figure, b e tte r  describes the  low-Q2 region.
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II

W ,n  [ GeV] N / d £ 77[10- 3] £trg [%] e[%] 47T [nb] 0+ [nb] 0 [nb] (2+ 2) [nb] ^tot(77 ->■ P°P°) N

1.00- 1.10 376 4.06 94.2 1.8 3.8 ±  0.7 ± 0 .1 0.6 ±  0.4 ±  0.1 ---- 1.4 ± 0 .5  ± 0 .1 2.1 ±  0.7 ± 0 .1
1.10- 1.20 1099 3.58 94.2 2.7 3.7 ±  0.7 ± 0 .1 0 .7 ±  0.4 ±  0.2 ---- 6.2 ± 0.6 ± 0.2 6.9 ± 0 .7  ± 0 .2
1.20-1.30 4513 3.20 95.3 3.5 5.3 ±  1.0 ± 0 .4 5.1 ±  1.1 ±  0.4 0.8 ± 0.6 ± 0.1 23.2 ±  1.4 ±  1.8 29.1 ±  1.9 ± 2 .2
1.30-1.40 7717 2.87 95.3 4.2 16.3 ±  1.3 ±  1.0 7.7 ±  1.3 ±  0.5 1 .4 ±  0 .7 ±  0.1 30.5 ±  1.6 ±  1.9 39.6 ± 2 .2  ± 2 .5
1.40-1.50 9084 2.60 95.3 4.8 18.2 ±  1.2 ±  1.0 13.7 ±  1.5 ±  0.8 1.8 ±  0.7 ± 0 .1 31.7 ±  1.7 ±  1.8 47.1 ±  2.4 ±  2.7
1.50-1.60 8397 2.37 95.8 5.4 19.8 ±  1.2 ±  2.2 9.8 ±  1.5 ±  1.1 4.3 ± 0 .9  ± 0 .5 34.5 ± 2 .0  ± 3 .8 48.6 ±  2.6 ± 5 .3
1.60-1.70 7910 2.17 95.8 5.9 19.3 ±  1.2 ±  2.1 5.9 ±  1.3 ± 0 .7 2.1 ±  0.7 ±  0.2 35.6 ±  1.8 ±  3.9 43.7 ±  2.4 ± 4 .8
1.70-1.80 6671 2.00 96.2 6.3 19.0 ±  1.2 ±  1.0 7.7 ±  1.3 ±  0.4 4.8 ±  0.8 ±  0.2 26.4 ±  1.6 ±  1.3 39.0 ± 2 .2  ± 2 .0
1.80-1.90 5643 1.85 96.2 6.7 20.7 ±  1.3 ±  1.7 4.9 ±  1.1 ±  0.4 7.4 ± 0 .9  ± 0 .6 23.6 ±  1.5 ±  1.9 35.9 ±  2.1 ±  2.9
1.90-2.00 4965 1.72 96.2 7.1 27.8 ±  1.6 ±  3.3 7.3 ±  1.2 ±  0.9 4.8 ± 0 .8  ± 0 .6 15.0 ±  1.3 ±  1.8 27.1 ±  1.9 ± 3 .2
2 .00- 2.10 4004 1.60 96.4 7.4 26.2 ±  1.6 ± 6.0 9.5 ±  1.3 ±  2.2 4.0 ± 0 .7  ± 0 .9 7.9 ±  1.1 ±  1.8 21.3 ±  1.8 ± 4 .9
2 .10- 2.20 3118 1.49 96.4 7.7 24.4 ±  1.5 ± 8 .9 4.8 ±  1.0 ±  1.8 2.0 ± 0 .5  ± 0 .7 7.2 ±  1.0 ±  2.6 13.9 ±  1.5 ± 5 .1
2.20-2.30 2366 1.40 96.2 7.9 21.0 ±  1.4 ± 8 .5 2.2 ±  0 .7 ±  0.9 1.8 ± 0 .5  ± 0 .7 5.2 ±  0.9 ±  2.1 9.2 ±  1.3 ± 3 .7
2.30-2.40 1763 1.31 96.2 8.1 17.3 ±  1.3 ± 9 .7 1.6 ±  0.6 ±  0.9 2.6 ±  0.6 ±  1.5 2.6 ±  0.7 ±  1.4 6.8 ±  1.1 ± 3 .8
2.40-2.50 1450 1.24 96.2 8.4 15.0 ± 1 .1  ± 8 .9 2.0 ±  0.6 ±  1.2 1 .7 ± 0 .5 ±  1.0 1.4 ± 0 .7  ± 0 .8 5.1 ±  1.0 ± 3 .0
2.50-2.60 1137 1.17 95.8 8.6 12.1 ±  1.1 ±  7.3 2.0 ±  0.7 ±  1.2 1.0 ±  0.4 ±  0.6 2.1 ± 0.8 ±  1.2 5.1 ±  1.1 ±  3.1
2.60-2.70 878 1.10 95.8 8 .8 10.7 ±  1.0 ± 6.8 1.4 ±  0.5 ±  0.9 1.5 ±  0.4 ±  1.0 — 2.9 ±  0.6 ±  1.9
2.70-2.80 672 1.05 96.5 8.9 8.5 ±  0.9 ±  2.3 1.1 ±  0.3 ±  0.3 --- 1.1 ± 0 .3  ± 0 .3 2.2 ± 0 .5  ± 0 .6
2.80-2.90 545 0.99 96.5 9.1 7.3 ±  0.8 ±  1.1 0 .7 ±  0.2 ±  0.1 --- 1.4 ± 0 .3  ± 0 .2 2.1 ± 0 .4  ± 0 .3
2.90-3.00 467 0.94 96.5 9.3 6.4 ± 0 .8  ± 0 .1 1.5 ± 0 .5  ± 0 .1 --- — 1.7 ±  0.6 ± 0 .1

1.00-3.00 72775 38.72 — — 14.2 ±  1.1 ±  2.7 4.9 ± 0 .9  ± 0 .6 2.0 ± 0 .5  ± 0 .3 15.4 ±  1.1 ±  1.5 22.3 ±  1.6 ± 2 .5

Table 1: Cross section m easurem ents and  fit results for 77  ^  n + n - n + n -  for different W77 intervals. N  is the  num ber of events in 
a bin, ƒ  d L 77 the  tw o-photon lum inosity function, etrg the  trigger efficiency and e the  selection efficiency. The cross sections for the 
background, 4n, and  for the  different spin-helicity waves are given, along w ith the  to ta l 77  ^  p0p0 cross section. A double dash 
indicates th a t no significant contribution to  the  fit is observed. The first uncertainties are statistical, the  second system atic.
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W ,n  [ GeV] N ƒ <±C77[10 3] ^trg [%] e[ %] 47T [nb] 0+ [nb] 0 [nb] (2 + 2 ) [nb] crtot(Tf P+P ) [nt

1.00-1.20 111 7.64 66.4 0.3 7.6 ±  2.2 ±  1.1 0.6 ± 1 .1  ± 0 .1 0.6 ± 0 .8  ± 0 .1 1.0 ±  1.2 ±  0.1 2.2 ±  1.8 ± 0 .3
1.20-1.40 526 6.07 63.5 0.5 20.1 ±  3.3 ±  2.8 3.7 ± 2 .7  ± 0 .5 1.8 ±  1.3 ± 0 .2 7.9 ±  2.7 ±  1.1 13.4 ±  4.0 ±  1.8
1.40-1.60 839 4.97 65.0 0.8 30.7 ± 3 .4  ± 5 .5 1.5 ± 2 .1  ± 0 .3 4.5 ±  1.3 ± 0 .8 5.0 ± 2 .0  ± 0 .9 10.9 ±  3.2 ±  2.0
1.60-1.80 1160 4.17 65.0 1.0 30.8 ± 3 .5  ± 5 .5 4.8 ± 2 .2  ± 0 .9 1.4 ±  1.0 ±  0.3 12.3 ±  2.3 ±  2.2 18.6 ±  3.3 ±  3.3
1.80-2.00 1205 3.56 59.9 1.3 32.2 ±  3.8 ±  8.6 3.8 ±  2.3 ±  1.0 2.9 ± 1.5 ± 0 .8 19.2 ±  3.0 ± 5.1 25.9 ± 4.1 ± 6.9
2.00-2.20 1161 3.09 63.4 1.6 34.0 ± 3 .7  ± 8 .3 8.5 ± 2 .2  ± 2 .1 — 9.1 ±  2.1 ±  2.2 17.7 ±  3.2 ±  4.3
2.20-2.40 823 2.71 64.4 1.8 27.9 ±  3.3 ±  12 2.6 ±  1.4 ±  1.1 2.6 ±  1.2 ±  1.1 3.5 ±  1.6 ±  1.5 8.6 ±  2.5 ±  3.7
2.40-2.60 540 2.41 62.8 2.1 17.2 ±  2.5 ±  7.4 1.7 ±  1.1 ±  0.7 1.0 ±  0.7 ±  0.4 2.7 ±  1.3 ±  1.1 5.4 ±  1.8 ±  2.3
2.60-2.80 336 2.15 62.8 2.3 12.0 ±  2.0 ±  3.8 1.6 ± 0 .9  ± 0 .5 2.4 ±  1.1 ±  0.8 ------------ 4.3 ±  1.8 ±  1.4
2.80-3.00 231 1.94 68.7 2.6 7.2 ±  1.4 ±  1.4 1.3 ± 0 .6  ± 0 .3 — 1.4 ±  0.6 ±  0.3 2.7 ± 0 .8  ± 0 .5

1.00-3.00 6932 38.72 — — 21.7 ±  3.0 ±  5.8 2.9 ±  1.8 ± 0 .7 1.8 ±  1.0 ± 0 .5 6.4 ±  1.9 ±  1.5 11.0 ±  2.8 ±  2.7

Table 2: Cross section m easurem ent and  fit results for 77  ^  n + n 0n - n 0 for different W77 intervals. N  is the  num ber of events in a 
bin, ƒ  dL 77 the  tw o-photon lum inosity function, etrg the  trigger efficiency and e the  selection efficiency. The cross sections for the 
background, 4n, and  for the  different spin-helicity waves are given together w ith the  to ta l 77  ^  p+p-  cross section. A double dash 
indicates th a t no significant contribution to  the  fit is observed. The first uncertainties are statistical, the  second system atic.



s  
£  104 
Ü  
IT)
©
©
° ’ 3103
¡Z)■M
s
<u 
>  

m

0.2 0.4 0.6 

|X "P tl 2 [Gev2]

M(p+p-p+p-) [GeV]

Ü
ITi
©
©  3 
O 103

¡Z)-M
s
<u
>

m

0.2 0.4 0.6 

|X " P t| 2 [GeV2]

0 0

Figure 1: D istributions of |£ p t |2 for a) e+e-  ^  e+e- n + n - n + n -  and  b) e+e-  ^  e+e- n + n 0n - n 0 
events. The hatched areas represent the  estim ated  non-exclusive backgrounds. The cut values 
are shown by the  arrows. D istributions of the  four-pion mass for c) e+e-  ^  e+e- n + n - n + n -  
and  d) e+e-  ^  e+e- n + n 0n - n 0 events. Only events w ithin the  region indicated by the  arrows 
are fu rther analysed.

13



1.2 GeV < WYY< 1.4 GeV
1.2 r

V -

[G
eV

]
0 8 r

_o 0.6 1
F -

M( 0.4 r

0.2 r

4 -

1.2 r

1 -

e[Ge 0 8 r
ÉJ5 0.6 1

£ -
£ M( 0.4 r

0.2 r

°0L

1.2 r

1 -

e[Ge 0 8 r
ÉJ5 0.6 1

F -
£M( 0.4 r

0.2 r

00L

t—i—i—i—i—i—i—i—i—i—i—i—i—i—r

a )

M p0

I 1 1 1 I

□ □L □ □□□[__
B □ □ □ □ □ □ □ □ □

b □ □ □ □ □ □ non°
□ □ □ □ □ □ □ □ □  D

□ □□□□ □□

■ ■ ■ I ■ ■ ■ I ■ ■ ■ I ■ ■ ■
M p

eGe

+

1.2

1

0.8

0.6

0.4

0.2

0)

i —i—i—i—i—i—i—i—i—i—i—i—i—i—r

b)

Mp+
□□□ □□ □□ □ □ □ □ □---------WVHn □J n n □□□□□□□□□□□ □□□□□□□□nona

□ □□□□□ n a n  i i r í a□ □□□□□ □!_!□□! leja □
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □  i□ □□□□□□□□□□ □ B□ □ □ □ □ □□□□□□□O D dd ■□ □□□□□□□□□□nain  n

□  □ □ □ □ □ □ □  □ □ □ □ ! □  □ D I 
D □ □ □

■ ■ ■ i ■ ■ ■ i ■ ■ ■ i ■ ■ ■
M p

0.2 0.4 0.6 0.8 1 1.2 
M(p-p-) [GeV]

1.4 GeV < Ww < 1.6 GeV
i 1 1 1 1 1 1 1  u

0.2 0.4 0.6 0.8 1 

M (p-p 0) [GeV]

1.2

“i—i—i—j—i—i—i—j—i—i—i—j—i—i—r

c)

Mpo

□  □ •
□  □  D ■
□ □ □ B□ □ □ D

I □ □ □ □ □ □ □ □ B
B B B □ □  □  □  

□ □□□ □□ □□  

B B D D B B B D D  
B D B B B D D B

B D B D B B D D D B

I . . .  I
Mpo

¡J
1.2Ft—i—i—j—i—i—i—j—i—i—i—j—i—i—n  

d)

—i—i—i—i—i—i—i-

eGe

s+
K

1

0.8

0.6

0.4

0.2 -

FM p+

I □ □ 

I □ □ 
I □ □

1 B □  B D 
I ■ ■ B □  D ■ ■

I ■ □□ □□ □□ □□  ■

i □ □ □ □ Dnnnn« s b nBDTjtìfiQga "  ■ 
i □ □ □□□a ~ n  Inn  □
3 □  □  □  □ e
3 □ □  □ □  □  □ □ □ □ □ □ □ c
□ □ □ □ □ □ □ □ □ □ □ □ E 
□ □ □ □ □ □ □ □ □ □ □ □ E

□ □ □ □ □ □ □ □ □ □ □ □ c
□ ■ □ □ □ □ □ □ □ D D D e□ □ □□□□  □ □ □ qdB C 
□ □ □ □ □ □ □ □ □ □ □ □ •
□ □ □ □ □ □ □ □ □ Q B D C
□ BBDDDDBD B|D □ c

Mp

0 0.2 0.4 0.6 0.8 1 1.2
M(p+p-) [GeV] 

h i g h

0.2 0.4 0.6 0.8 
M (p-p 0) [GeV]

1 1.2

1.6 GeV < Wgg< 3.0 GeV
e )

Mpo
D □  B B 

B □  □  □ B 
□  □ □ □ □ □  jn a □□□□i_j n oBC] 

□n  F in n a n  □ □□□□□□□□□□ 
B □  □  □ □  □ □ □ □ □ □

□ □ [ 
I□ □ ( 

□ □ (
I □  □  □  □  
I B □  □  □  
I B □  □  □

■ ■ ■ I ■ ■ ■ I ■ ■ ■ I ■ ■ ■

□ a □ □ □ □ □ i 
□ □ □ □ □ □ □ i □□□□□□□i
□  B B B B B D I
□ □ B B B D D I

Mpo

eGe

S
t

1.2

1

0.8

0.6

0.4

0.2

f)

Mp+

I 1 b J b| i ■ d ' d  H  b ' *  d yr

i □ □
] B □
] □  □

] □ □ 
1 □  □
I □ □
1 □  B
I □  □
] B □
1 □  B

1 B □ D □ B □  □  □ □ B B B □
1 □  B B B □  B □  □  □  B B □ B
1 □ □ □ B □  □  □  □  □ □ □ □ B
I B □  B D □  □  □  | J n  □  □  □  □  □  B>□□□□□□□ ÖD □□□□□□]□□□□□□□ÖD□□□B □D □ 
] □  B □  □  □  □ □ □ □ □ □  □  □  □ □  □
3 □ □  □ □  □ □ □ □ □ □ □ □ □ □ □ □  3 □ □ □ □□□! M I □ □ □ □iaTiTJaullil r n gpft-b-H-D
3□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □  
> □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □  
] □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □  
] □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □  
! □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □  
] □ □  b □ □ □ □ a n □ □ □ □ □ □  □ 
] □ □ □ □ □ □ □ □ ! □ □ □ □ □ □ □ □  
! □ □ □ □ □ □ □ Q D □ □ □ □ □ □ o
I d D D D B D D  Q  B B D D d D D d 
] □ □ □ □ □ □ □  D|  □ □ □ □ D ■ ■ B 
I D B b B B D B D i

M p'p'
ni I I I I I I I I I I I I I I I I I I I I I I I I I
0  0.2 0.4 0.6 0.8 1 1.2 

M (p-p 0) [GeV]M(p+p-) [GeV] 
h i g h

Figure 2: Tw o-dim ensional d istributions of two-pion masses in th ree different W77 regions. For 
a), c) and e) the  n + n -  com binations from  the  n + n - n + n -  final-state are shown as low-mass vs. 
high-m ass, w ith  two entries per event. In b), d) and  f) the  n + n 0 vs. n - n 0 com binations from 
the  n + n 0n - n 0 final-state are shown, w ith  two entries per event. The do tted  lines indicate the 
nom inal mass value of the  p meson.
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Figure 3: Selection efficiencies for the  different contributions to  the  a) n + n - n + n -  and  b) 
n + n 0n - n 0 final states. M easured cross sections for the  e+e-  ^  e+e- n + n - n + n -  and  e+e-  ^  
e+e- n + n 0n - n 0 processes: c) the  to ta l 77  ^  p0p0 and  77  ^  p+p-  cross sections, d) (2+, 2), e) 
0+, f) 0-  contributions. The error bars show the  sta tistica l uncertainties.
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Figure 4: Com parison of the  M onte Carlo sim ulation norm alised to  the  fit results to  the  data: 
a) and b) transverse m om entum  of the  charged or neu tra l pion closest to  the  beam  line, re- 
specively; c) and  d) cosine of the  polar angle of the  charged or neu tra l pion closest to  the  beam  
line, respectively. The sta tistica l uncertain ty  on the  M onte Carlo d istributions -not shown- is 
com parable to  th a t of the  data.
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Figure 5: Com parison of the  M onte Carlo sim ulation norm alised to  the  fit results to  the  data: 
a) two-pion opposite-sign mass com binations for 77  ^  n + n - n + n -  (four entries per event) b) 
two-pion charged mass com binations for 77  ^  n + n 0n - n 0 (four entries per event) c) cos 6n+ , 
where 6n+ is the  production  angle w ith  respect to  the  beam  axis in the  unlike-sign two-pion 
centre-of-mass system  for 77  ^  n + n - n + n -  (four entries per event) and d) cos 6n± , where 6n± 
corresponds to  the  6n+ angle for the  n + n 0n - n 0 system  (four entries per event). The error bars 
show the  sta tistica l uncertainties.
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Figure 6: The 77  ^  p0p0 and 77  ^  p+p cross sections as a function of the  four-pion mass 
a) as obtained  in the  present analysis a t Q 2 <  0.02 GeV2 com pared to  previous L3 results 
obtained  a t b) 0.20 GeV2 <  Q 2 <  0.85 GeV2 [13,14], c) 1.2 GeV2 <  Q 2 <  8.5 GeV2 [11, 12] and 
d) 8.8 GeV2 <  Q 2 <  30 GeV2 [11,12]. The error bars show the  s tatistical uncertainties.
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Figure 7: a) The 77  ^  p0p0 and  77  ^  p+p-  cross sections as a function of Q 2. b) Com parison 
of the  77  ^  p0p0 cross section as a function of Q 2 to  a GVDM and a simple p-pole form ­
factor dependence, b o th  fitted  to  previous L3 d a ta  a t higher Q 2 [14]. The error bars show the 
sta tistica l uncertainties.
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