
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is an author's version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/36061

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

http://hdl.handle.net/2066/36061

A utom atic Testing of H igher Order Functions

P ieter K oopm an and Rinus Plasm eijer

Nijmegen Institute for Computer and Information Science, The Netherlands
{ p ie te r ,r in u s } S c s .ru .n l

A b s tr a c t . This paper tackles a problem often overlooked in functional
programming community: that of testing. Fully automatic test tools like
Quickcheck and GVST can test first order functions successfully. Higher
order functions, HOFs, are an essential and distinguishing part of func
tional languages. Testing HOFs automatically is still troublesome since
it requires the generation of functions as test argument for the HOF to
be tested. Also the functions that are the result of the higher order func
tion needs to be identified. If a counter example is found, the generated
and resulting functions should be printed, but that is impossible in most
functional programming languages. Yet, bugs in HOFs do occur and are
usually more subtle due to the high abstraction level.
In this paper we present an effective and efficient technique to test higher
order functions by using intermediate data types. Such a data type mim
ics and controls the structure of the function to be generated. A simple
additional function transforms this data structure to the function needed.
We use a continuation based parser library as main example of the tests.
Our automatic testing method for HOFs reveals errors in the library that
was used for a couple of years without problems.

1 In trodu ction

A utom atic test tools for functional languages are able to generate test cases,
execute the associated tests en derive a verdict from the test results. Basically
a predicate of the form Vx G X : P (x) is replaced by a function P :: X ^ Bool.
The predicate is tested by evaluating the function P for a large num ber of ele
m ents of type X. In Quickcheck these elements are generated in pseudo random
order by a user defined instance of a class. GVST has a generic algorithm th a t
is able to generate elements of any type in a system atic way [7]. The user can
specify any o ther algorithm if desired.

The advantages of th is autom atic testing is th a t it is cheap and fast. More
over, the real code is tested . A inherent lim itation of te ting is th a t a proof by
exhaustive testing is only possible for finite types (due to generation algorithm
used, Quickcheck is not able to determ ine when all elem ents are tested and never
detects th a t a p roperty is proven by exhaustive testing). A formal proof of a
p roperty gives more confidence, bu t usually works on a model of the program
instead of the program itself and requires (much) user guidance. Hence, bo th
formal proofs and testing have their own value. I t is a t least useful to do a quick
autom atic test of some property before investing much effort in a formal proof.

The generation of elem ents of a type works very well for (first order) d a ta
structures. Testing properties of H OFs requires functions as test argum ent and
hence the generation of functions by the test system . The possibilities to generate
functions are ra th e r lim ited. In Quickcheck functions of type A ^ B are gener
ated by transform ing elem ents of type A to an integer by a user defined instance
of the class coarb itra ry . This integer is used to select an elem ent of type B. A
m ulti-argum ent function of type A ^ B ^ c is transform ed to a function B ^ C
by providing a pseudo random ly generated element of type A. In this way all
inform ation of all argum ents is encoded in a single integer. This approach is not
powerful enough for more complex functions, and has as drawback th a t it is im
possible to p rin t these functions in a descent way. GVST used the same approach
w ith the difference th a t functions can be derived using a generic algorithm .

In th is paper we show how functions of the desired form can be generated
system atically. The key step is to represent such a function by its abstrac t syntax
tree, AST. This AST is represented as algebraic d a ta type, which therefor can be
generated autom atically by GVST in the usual way. The AST is transform ed to
the desired function by a very simple transform ation. An additional advantage
of using a d a ta type as AST is th a t th is can be prin ted in a generic way as well,
while printing functions is impossible in functional languages like Haskell and
Clean.

We illustra te th is technique w ith a full fleshed parser com binator library. In
[5] we in troduced a library of efficient parser com binators. Using this lib rary it is
possible to w rite concise, efficient, recursive descent parsers. The parsers can be
ambiguous if th a t is desired. Basically there are two ingredients th a t makes the
constructed parsers efficient. F irst, the user can lim it the am ount of backtracking
by a special version of the choice com binator th a t only yields a single result.
Second, the im plem entation of the com binators uses continuations instead of
interm ediate d a ta structures. Especially when parsed objects are processed in
a num ber of steps before a final parse result is produced, continuation based
parser are faster th an a stra igh t forward im plem entation of parsers.

The price to be paid for using continuations instead of in term ediate d a ta
structures, is th a t the im plem entation of the com binator becomes more com
plicated. Each parser has three continuations, and some of these continuations
have the ir own continuation argum ents. The parser com binators m anipulates
these continuations in a ra th e r tricky way. However, the use of the com binators
is independent of their im plem entation, and is not different for a library w ith
a simple im plem entation using in term ediate d a ta types. The published combi-
nators are tested m anually by the authors and checked by m any users of the
library. Much to our surprise last year some errors in the library were found.

After improving the com binators we w anted to ob tain more confidence in the
correctness of the library. M anual testing by a num ber of typical examples was
clearly insufficient. Using the techniques described here it was possible to test
this lib rary autom atically. During these test an additional error was found.

It tu rn s out th a t a sim ilar representation of functions by d a ta types is used
at different places in the literature. The technique is called defunctionalisation,

and the function transform ing the d a ta type is usually called apply. This tech
nique was in troduced by Reynolds [11], and repopularized by D anvy [4]. Using
defunctionalisation for generating functions and testing is new.

In section 2 we will shortly review the continuation based parser com binators.
In the next section we show how functions as result can be tested for equivalence
by applying them to appropriate argum ents. The generation of functions as
argum ent is trea ted in section 4. In section 5 we show th a t the effectiveness
of tests can be improved by generating tailor m ade inputs for the parsers. In
section 6 we will show how to test the entire lib rary by defining one property
for parsers, instead of by properties for individual com binators. By testing a
property of the famous fold -function we dem onstrate th a t our approach works
also in o ther situations. Finally there is a conclusion.

2 Background: C ontinuation B ased Parser C om binators

In order to make th is paper self contained we repeat the m ost im portan t parser
com binators from [5]. In the continuation parser library [5] each continuation
parser has four argum ents:

1. The success continuation which determ ines w hat will be done if the current
parser succeeds. This function gets the result of the current parser, the other
continuations and the rem aining inpu t as its argum ents.

2. The X O R-continuation is a function th a t tells w hat has to be done if only a
single result of the parser is needed.

3. The O R -continuation determ ines the behavior when all possible results of
the parser are needed.

4. The list of symbols to be parsed. In th is paper these symbols will be char
acters, bu t also lists of more complex tokens can be parsed.

The result of a parser is a list of tuples containing the rem aining inpu t and the
results of parsing the inpu t until th is point. This is reflected in the types:

:: Parser s r :== [s] — ParsR esult s r
:: ParsR esult s r :== [([s] , r)]

:: CParser s r t:= (S ucC on t s r t) (XorCont s t) (AltCont s t) —Parser s t
: : SucCont s r t : = r (XorCont s t) (AltCont s t) — P arser s t
:: XorCont s t :==(AltCont s t) — ParsR esult s t
:: AltCont s t :==ParsResult s t

As an example the type of the continuation parser p = symbol ’* ’ , th a t succeeds
if the first character in the input is *, is CParser Char Char a. Expanding this
type to basic types yields:

p :: ((Char—([([Char] ,a)]—[([Char] , a)])—[([Char] , a)]—[Char]—[([Char] , a)])
— ([([Char] , a)]—[([Char] , a)]) — [([Char] , a)] — [Char] — [([Char] , a)])

This com plicated type indicates th a t testing for first order properties is inade
quate. The definition of the parser com binator symbol is:

symbol :: s ^ CParser s s t | == s
symbol s = psymbol
where psymbol sc xc ac [x :s s] | x == s = sc s xc ac ss

psymbol sc xc ac _ = xc ac

The function begin tu rns a continuation parser into a s tandard parser by pro
viding appropriate initial continuations. The parser takes a list of tokens as
argum ents and produces a list of successes. Each success is a tuple containing
the rem aining inpu t tokens and the parse result.

begin : : (CParser s t t) ^ Parser s t
begin p = p (Ax xc ac ss . [(s s ,x) :xc ac]) id []

The result of applying begin p to the inpu t [’*abc’] will be [([’abc’] ,)],
while applying it to the inpu t [’abc’] yields the em pty list of results.

The concatenation of two parsers, p <&> q, requires th a t the parser q is ap
plied to the rest of the inpu t left by the parser p. This is done by inserting q in
the success continuation of p. The result of p is given as the first argum ent to q.

(<&>) in f ix r 6 : : (CParser s u t) (u ^ CParser s v t) ^ CParser s v t
(<&>) p q = Asc . p (At . q t sc)

There are several variants of the operator <&>: the operator <& yields only the
result of p, &> yields only the result of q, <:&> construct a list w ith the result of
p as head and the result of q as tail, <++> appends the results of p and q, <!&>
removes the X O R -alternatives if p succeeds.

The construct p <|> q indicates th a t we want all results of p and all results
of q. This is achieved by pu ttin g q in the alternative continuation ac of p.

(<|>) in f ix r 4 : : (CParser s r t) (CParser s r t) ^ CParser s r t
(< | >) p q
= A sc xc ac ss .p (Ax xc1.sc x id) id (q (Ax xc1.sc x id) xc ac ss) ss

The operator <!> yields only the result of q if p has no results. This is done by
pu ttin g q in the X O R -continuation xc of p. The success continuation of p takes
care of removing q if p succeeds.

(<!>) in f ix r 4 : : (CParser s r t) (CParser s r t) ^ CParser s r t
(<!>) p q = A sc xc ac ss

.p (Ax xc2.sc x id) (A_.q (Ax xc3.sc x id) xc ac ss) ac ss

The com binator <@ applies the function f to the item s recognized by parser p.

(<@) in f ix l 5 : : (CParser s r t) (r ^ u) ^ CParser s u t
(<@) p f = A sc . p (sc o f)

The operator <*> mimics the Kleene star: it repeats parser p as often as possible.
The results of all applications of p are collected in a list. I t behaves like:

<*> : : (CParser s r t) ^ CParser s [r] t
<*> p = (p <&> Ar . <*> p <@ Ars . [r : r s]) <!> y ie ld []

3 Functions as result o f higher order functions

Testing higher order functions th a t yield functions as result is relatively easy.
The test system has to verify w hether the correct function is produced. In most
functional program m ing languages it is impossible to look inside functions (LISP
is an exception). Hence it is impossible to decide if th is function is the desired
one by inspecting the function directly.

More im portantly, for functions we are usually not interested in the exact
definition of the function, b u t in its behavior. Any definition will do, if it produces
the right function result to the given param eters. This implies th a t even if it
would be possible to look inside a function directly, th is would not help us.
We are in terested in the in p u t/o u tp u t behavior of the function instead of the
algorithm it uses.

Chancing the function to be tested in such a way th a t it delivers a d a ta
struc tu re instead of a function is an u nattrac tive option: we want to test the
software as it is and th is does not solve the problem of testing the behavior
instead of the actual definition.

Testing functions for equal inpu t ou tp u t relations is relative easy. As example
we consider the function isAlpha and the function isUpperOrLower defined as

isUpperOrLower :: Char ^ Bool
isUpperOrLower c = isUpper c | | isLower c

Using GVST the equivalence of the functions isAlpha and isUpperOrLower can be
tested by sta ting a p roperty sta ting th a t Vc. isAlpha c = isUpperOrLower c. In
Clean this p roperty reads:

propEq :: Char ^ Bool
propEq c = isAlpha c == isUpperOrLower c

Testing this in GVST is done by executing S ta r t = t e s t propEq. GVST proves th is
p roperty by exhaustive testing: the function propEq is evaluated for all possible
characters. Since the num ber of characters is finite (and small), GVST is able to
test it for all possible argum ents and to yield Proof ra th e r th an Pass (the la tte r
indicates a successful test for all argum ents used).

In the next section we show how th is approach is used to com pare parsers
by applying them to various inputs and com paring the results.

3.1 T estin g b asic com b in a to rs

The parser com binator library contains a num ber of basic com binators for tasks
like recognizing symbols in the input and yielding specific values. As an example
we consider the parser com binator symbol :: s ^ CParser s s t | == s th a t
should recognize the given symbol s in the input. A desirable property of symbol
is th a t it yields a single success when the inpu t list s ta rts w ith the given symbol.
For characters as input tokens, th is can be specified in GVST as:

propSymbol :: Char [Char] ^ Bool
propSymbol c l = begin (symbol c) [c : l] == [(l , c)]

Using begin (symbol c) instead of symbol c in the test makes it possible to com
pare parse results (lists of tuples), instead of com paring higher order functions.

The property propSymbol can be tested directly by GVST by applying the
function t e s t to the property in the S tart-function . The result of the test is th a t
it passes any num ber of tests. W hen we restric t the inpu t to, for instance, lists
of two characters such a property can even be proven. The property for inputs
of exactly two character reads:

propSymbol2 :: Char Char ^ Bool
propSymbol2 c d = begin (symbol c) [c , d] == [([d] , c)]

W ithin a split second GVST proves th is p roperty by executing all possible tests.
All m easurem ents in th is paper are done on a fairly m oderate PC running the
la test windows XP, Clean 2.1.1 and GVST 0.5.1.

A lthough this kind of properties sta tes clearly the intended sem antics of
the basic parser com binators and the associated tests are useful, th is does not
capture the signaled problem s w ith the com binator library.

4 Functions as argum ent o f higher order functions

Testing properties over higher order functions th a t have functions as argum ent
is a harder problem . In these properties there is a universal quantification over
functions. This implies th a t the test system m ust supply appropriate functions
as argum ent.

A typical example of a property over higher order functions is:

V f, g : (x ^ y) . Vl : [x] . map f (map g l) = m ap (f o g) l.

For any test we need to chose concrete types for x and y. Choosing small finite
types like Bool or Char usually give good test results. The Clean version of this
p roperty where all types are Char is:

propMap : : (Char^Char) (Char^Char) [Char] ^ Bool
propMap f g l = map f (map g l) == map (f o g) l

Former versions of GVST where able to generate functions. The generated func
tion of type X^Y converts the argum ent x to an index in a list of values ys of
type Y: Ax . ys !! (tolndex x rem length y s) . For simple functions (like f and
g in propMap) th is is adequate, b u t not for more complex functions (like continu
ation parsers). Moreover, in the generic framework the generation of values and
the index function needs to be coupled. This slows down the generation of or
dinary values considerable. For these reasons the existing generation of function
algorithm was removed from GVST.

A nother serious problem is th a t the code of a given function cannot be shown.
This implies th a t if an counterexam ple would be found by GVST, it can only print
the argum ent f and g as <function>.

As a solution for the problem of generating functions and printing them we
propose to use a tailor m ade d a ta struc tu re th a t exactly determ ines the functions

th a t are needed in a particu lar test context. Instances of th is d a ta struc tu re can
be generated by the default generic algorithm used in GVST. Since the d a ta
type determ ines the needed functions exactly, the conversion from a generated
instance of the d a ta type to the corresponding function is very easy.

As exam ple we will show how the property for the map function can be tested.
A part from the library functions toUpper and toLower we will use the functions
ro t and s h i f t in the tests. The function ro t ro ta tes characters in the alphabet
n places in the alphabet and does not change o ther characters, s h i f t shift any
character n places in the ascii table. These functions are defined as:

ro t :: In t Char ^ Char
ro t n c

| isUpper c = ’A’ + toChar ((fromChar (c - ’A’) + (abs n)) rem 26)
| isLower c = ’a ’ + toChar ((fromChar (c - ’a ’) + (abs n)) rem 26)

= c

s h i f t :: In t Char ^ Char
s h i f t n c = toChar (abs (fromChar c + n) rem 256)

A d a ta type representing all functions th a t we want to be generated as test
argum ent and the corresponding conversion function are defined as:

:: Fun = Rot In t | S h if t In t | ToUpper | ToLower

c la ss apply s t :: apply s ^ t
instance apply Fun (Char ^ Char)
where

apply (Rot n) = ro t n
apply (S h ift n) = s h i f t n
apply ToUpper = toUpper
apply ToLower = toLower

We will use the class apply for any transform ation of a d a ta type to the corre
sponding function in th is paper.

Now we are able to test the property for the map function. Instances of the
type Fun are generated by deriving the generic generation by derive ggen Fun.
Instances of th is d a ta type are converted to functions by applying apply to them .
In propMap2 we reuse propMap, the needed functions are obtained from the type
Fun. Finally, there is a S tart-function in itiating the testing.

propMap2 :: Fun Fun [Char] ^ Bool
propMap2 f g l = propMap (apply f) (apply g) l

S ta r t = t e s t propMap2

This p roperty passes any num ber of tests. In the next section we will show how
this principle can be applied to continuation parsers. In order to obtain more
complex parsers, the d a ta type to represent functions will be recursive.

4 .1 T estin g p arser com b in a to rs

Also for the parser com binators th a t compose continuation parsers, one can
specify properties in the way ju s t explained. For example the result of applying
p <|> q to some input is equal to the concatenation of results from p to the same
input and applying q to th a t input. S ta ted as p roperty for GVST th is is:

propOR p q input = begin (p <|> q) input == begin p input ++ begin q input

The generation of continuation parsers needed as argum ents p and q is again
done w ith a d a ta type and a corresponding instance of apply. The type P is a
recursive d a ta type th a t represents parsers th a t consumes lists of characters and
yield a character as result.

:: P = F a il / / basic operator: fails fo r any input
Yield Sym / / basic operator: yields the specified symbol fo r any input
Symbol Sym / / basic operator: recognize the specified symbol, see above
Or P P / / concatenation o f the successes o f both parsers
XOr P P / / successes o f second parser i f first parser fails
ANDR P P / / results o f 2nd parser i f parsers can be applied in given order
ANDL P P / / results o f 1st parser if parsers can be applied in given order

: : Sym = Char Char / / Symbols are ju st constructor Char and a character

The generation of instances of these d a ta types is straightforw ard. The default
generic generation algorithm ggen of GVST is used for the d a ta type P representing
the structu re of the parser. For the type Sym we use only the characters ’a ’ and
’b ’ in order to lim it the num ber of characters used in the tests. This increases
the num ber of more com plicated parses used in a finite num ber of tests.

derive ggen P
ggen {| Sym } n r = [Char ’a ’ , Char ’b ’]

Via a direct m apping instances of the d a ta type P can be transform ed to the
corresponding continuation parsers.

instance apply P (CParser Char Char Char)
where

apply F a il = f a i l
apply (Yield (Char c)) = y ie ld c
apply (Symbol (Char c)) = symbol c
apply (Or p q) = apply p <|> apply q
apply (XOr p q) = apply p <!> apply q
apply (ANDR p q) = apply p &> apply q
apply (ANDL p q) = apply p <& apply q

The property to test the parser com binator <|> using the type P becomes:

propOR :: P P [Char] ^ Bool
propOR x y chars = begin (p <|> q) chars == begin p chars ++ begin q chars
where p = apply x ; q = apply y

Since the continuation parsers x and y are now represented by instances of the
d a ta type P, printing them by the generic m echanism of GVST reveals the struc
tu re of the com binator parsers used in the actual test clearly. If desired we can
make a tailored instance of genShow {|P|} th a t prin ts the d a ta type exactly as the
functions generated by apply, instead of deriving the default behavior.

Testing such a property in GVST is quick. Testing th is p roperty for the first
1000 com binations of argum ents takes only 0.6.

In the same spirit we can test the o ther com binators in the original combina-
to r library. For instance the xor-com binator, <!>, only applies the second parser
if the first one fails. This is expressed by the property propXOR:

propXOR :: P P [Char] ^ Bool
propXOR x y chars

| isEmpty (begin p chars)
= begin (p <!> q) chars == begin q chars
= begin (p <!> q) chars == begin p chars

where p = apply x ; q = apply y

Testing th is p roperty reveals the problem s w ith the original parser com binator
library. One of the counterexam ples found is for (Or (Yield (Char ’b ’)) F a il) as
the value of x, (Yield (Char ’a ’)) for y, and the em pty inpu t []. The problem is
th a t begin ((y ie ld ’b ’ <|> f a i l) <!> y ie ld ’a ’) [] produces the result [’b a ’]
instead of the desired result [’b ’] . This is equivalent to the reported error th a t
in itiates th is research. Since th is is a unusual com bination of parser com binators
its in not strange th a t th is issue was not discovered during m anual tests and
ordinary use of the library.

R e p e t it io n o f p arsers The parsers generated and tested above do not contain
the repetition operators <*>. A lthough it is very easy to add the desired con
structors to the type P and the function apply, certain instances of the generated
parsers can cause serious problems. For example, the parser <*> (y ie ld ’a ’) will
produce an infinite list of ’a ’s w ithout consum ing input.

We do want to incorporate parsers containing proper applications of the op
erator <*> in our tests. This implies th a t we either have to prevent th a t parsers
causing problem s as illustra ted above are generated (by designing a more sophis
tica ted d a ta type), or we have to prevent th a t they are actually used in the tests
(by a precondition in the property). B oth solutions are feasible. The selection of
parsers th a t behave well is som ewhat sim pler and will be used here. Selection of
well behaving parsers is done by inspection of the corresponding d a ta struc tu re
and the operator = ^ from GVST.

F irst we add appropriate clauses to the type P and the function apply. Since
we have now a repetition it is more convenient to generate a parser th a t yields
the list of all generated and recognized characters, th an a parser yielding a single
characters as we used above.

:: P = F a il | Y ield Sym | Symbol Sym | Or P P | XOr P P | AND P P | S tar P

instance apply P (CParser Char [Char] [Char])

w h e re
apply F a il
apply (Yield (Char c))

f a i l
y ie ld [c]

apply (Symbol (Char c)) = symbol c <@ (Ac=[c])
aPPl y (Or p q)
apply (XOr p q)

apply p <|> apply q
apply p <!> apply q
apply p <++> apply qapply (AND p q)

apply (S tar p) (<*> (apply p)) <@ f la t te n

G enerated parsers will not cause problem s if they are finite. A parser is finite if
it does not contain the parser com binators <*>:

f in i t e :: P ^ Bool
f in i t e (Or p q) = f in i t e p && f in i t e q
f in i t e (XOr p q) = f in i t e p && f in i t e q
f in i t e (AND p q) = f in i t e p && f in i t e q
f in i t e (S tar p) = False
f in i t e o ther = True

Parsers th a t need to consume inpu t in order to produce a result are also safe.

consuming :: P ^ Bool
consuming F a il = False
consuming (Yield p) = False
consuming (Symbol c) = True
consuming (Or p q) = consuming p && consuming q
consuming (XOr p q) = consuming p && consuming q
consuming (AND p q) = consuming p && consuming q
consuming (S tar p) = consuming p

These predicates allow us to define a class of parsers th a t will not produce an
infinite results w ithout consum ing inpu t as:

notInfiniteNonConsuming :: P ^ Bool
notInfiniteNonConsuming (S tar p) = consuming p
notInfiniteNonConsuming p = consuming p | | f in i t e p

Experim ents show th a t a little less th an 8% of the generated parsers will be
rejected by th is predicate. Using th is predicate the property for the parser com-
b inator <!> can be reform ulated for parsers w ith repetition as:

propXOR2 :: P P [Char] ^ Property
propXOR2 x y chars
= notInfiniteNonConsuming x && notInfiniteNonConsuming y

= ^ case begin p chars of
[] = begin (p <!> q) chars == begin q chars
_ = begin (p <!> q) chars == begin p chars

where p = apply x; q = apply y

Despite the fact th a t there are more different parsers generated, th is property
produces a counterexam ple indicating an error as test case 202 (the actual num
ber depends on the pseudo random stream s used in the test d a ta generation).

5 Input G eneration

A part from controlling the functions used in the properties over HOFs, it is
possible to control the generation of ordinary types used in properties over HOFs.
In our running exam ple of parser com binators we used the type [Char] as input
for the parsers. GVST will generate list of characters containing all 98 printable
characters from the em pty list to longer and longer lists. A lthough the test
introduced above appear to be effective they can be improved. The parsers are
generated in such a way th a t only the characters ’a ’ and ’b ’ will be accepted
(by the definition of ggen {|Sym|}). This implies th a t about 98% of the input
symbols will be rejected by each instance of the parser com binator symbol. This
can be improved by generating lists of characters w ith a lim ited num ber of
characters. W ithou t changing the instance for ggen { Char} in the lib rary this
can be achieved by the introduction of an additional d a ta type and a user defined
instance of ggen.

:: Inpu tL ist = Input [Char]

ggen {| Inpu tL ist } n r = map Input l
where l = [[] : [[c : t] \ \ (c , t) ^ diag2 [’a ’ . . ’ c ’] l]]

The character ’c ’ is included to ensure th a t there are inpu t symbols th a t need to
be reject by any consum ing parser. In each use we have to remove the constructor
Input from the generated input. For example:

propXORInput :: P P Inpu tL ist ^ Property
propXORInput x y (Input chars)
= notInfiniteNonConsuming x && notInfiniteNonConsuming y

= ^ case begin p chars of
[] = begin (p <!> q) chars == begin q chars
_ = begin (p <!> q) chars == begin p chars

where p = apply x; q = apply y

This test appears indeed to be more effective. For th is p roperty GVST founds 319
counterexam ples in the first 104 tests. Using propXOR ’only’ 136 counterexam ples
are found in th is num ber of tests. For this p roperty th is does not m a tte r much,
one counterexam ple is enough to invalidate a property. In general this indicates
th a t th is algorithm yields more effective tests.

5.1 G en era tin g in p u ts th a t sh o u ld b e a c c e p te d

In order to test w hether a parser accepts the inputs it should accept, it is suffi
cient to use only inputs th a t should be accepted by the tested parser. Since we
have the parsers available as d a ta structure , it is not difficult to generate such
inputs. The function PtoInput produces a list of inputs to be accepted by the
parser corresponding to the given d a ta struc tu re of type P.

PtoInput :: P ^ [[Char]]
PtoInput F a il = []

PtoInput (Yield (Char c))
PtoInput (Symbol (Char c))

[[]]
[[c]]

PtoInput (Or p q)
PtoInput (XOr p q)

removeDup (PtoInput p ++ PtoInput q)
removeDup (PtoInput p ++ PtoInput q)
[i++j \ \ i ̂ P to In p u t p , j ̂ P to In p u t q]
take maxIter l

PtoInput (AND p q)
PtoInput (S tar p)

where l = [[] : [i++t \ \ (i ,t) ^ diag2 (PtoInput p) l]]

m axIter = 10

The only point of in terest are the repetition constructors S tar. Here the inputs
are lim ited to maxIter repetitions of the input corresponding to the argum ent of
the repetition operator. There are two reasons for this.

F irst, if the parser handles inputs up to maxIter repetitions correctly for some
descent value of maxIter, it is highly likely th a t all higher num ber of repetitions
will be handled correctly. Test corresponding to more repetitions of the same
input will not be very effective. In fact, also a much smaller value of maxIter,
like 2 or 3, can be used.

Second, strange parsers and long inputs can produce enormous am ounts of
results. This is tim e and space consuming, bu t not a very effective test. As
example we consider the parser <+> (symbol ’a ’ <|> symbol ’a ’). Each symbol
’a ’ will be recognized in two different ways. If this parser is applied to a list of
n characters ’a ’ , the result will be a list of 2n identical parse results. In order to
keep testing effective we either have to remove these kind of parsers, or prevent
very large inputs for such a parser. Since we do want to exclude th is kind of
parsers, we have chosen to lim it the size of the associated inputs.

As exam ple of the use of the generation of inputs th a t have to be accepted
we use again the property for <!> com binator:

propXOR3 :: P P ^ Property
propXOR3 x y = propXOR2 x y For PtoInput (XOr x y)

For the first 104 test cases we find now 916 counterexam ples. This indicates th a t
testing w ith inputs th a t should be accepted is even more effective as testing with
pseudo random inpu t constructed by the type InputL ist.

6 D irect te stin g o f com p lete parsers

Above we have shown how individual parser com binators are tested effectively.
This requires th a t a t least one property is s ta ted for each parser com binator. In
this section we will show th a t we can also test a large set of parser com binators
in one go. The idea is to construct a very simple direct parser. Given an instance
of the type P and an input, th is parser should produce all desired results.

Given a gram m ar and an input, it is easy to determ ine w hat the result of the
parser described in section 4.1 should be:

re s u l ts : : P [Char] —— [([Char] ,[Char])]
r e s u l ts F a il chars = []

r e s u l ts (Yield (Char c)) chars = [(c h a rs , [c])]
r e s u l ts (Symbol (Char c)) [d : r] | c == d = [(r , [c])]
r e s u l ts (Symbol (Char c)) chars = []
r e s u l ts (Or p q) chars = r e s u lts p chars ++ r e s u lts q chars
re s u l ts (XOr p q) chars = case r e s u lts p chars of

[] = r e s u lts q chars
r = r

r e s u l ts (AND p q) chars
= [(c3 ,r1++r2) \ \ (c2 ,r i) ^ r e s u l t s p chars , (c3 ,r 2) ^ r e s u l t s q c2]

r e s u l ts (S tar p) chars = repeatP p [(chars ,[])]

repeatP p re s
= case [(c2 ,ri++r2) \ \ (c i ,r i) ^ re s , (c2 ,r2) ^ r e s u lts p c i] of

[] = res
r = repeatP p r

This simple parser is less efficient th a t the parser com binator library and less
flexible, bu t for the set of constructors defined by the type P it yields the list of
all recognized tokens.

Using this function it is possible to s ta te a property th a t has to hold for any
parser th a t corresponds to an instance of P: the result of transform p to a parser
and applying it to an input i should be identical to r e s u l ts p i . T h a t is:

propPI :: P [Char] ^ Property
propPI p i = notInfiniteNonConsuming p = ^ r e s u lts p i == begin (apply p) i

Also here we can lim it the inputs to the character lists th a t should be accepted
by the parser:

propP :: P ^ Property
propP p = notInfiniteNonConsuming p = ^ (propPI p For PtoInput p)

Also th is very general p roperty finds counterexam ples corresponding to the re
ported problem in the original version of the library quickly. Since th is property
is more general it is not surprising th a t this p roperty needs som ewhat more tests
to find a counterexam ple. After 279 test GVST reports the counterexam ple (XOr
(Or (Yield (Char ’a’)) (Symbol (Char ’a’))) (Yield (Char ’a’))) [].
This is basically the same error as reported above. GVST needs less th an one
second to find th is error.

After repairing this error we tested to library again w ith PropP. To our
surprise an additional counterexam ple was found w ithin 2 seconds. GVST re
ports: Counterexample found after 791 tests: (Star (Or (Symbol (Char
’a’)) (Symbol (Char ’a’)))) [’a’]. The error is caused by an erroneous op ti
m ization in the parser com binator <*>. It appears th a t the parser <*> (symbol ’a ’
<|> symbol ’a ’) yields only one result for the inpu t repeat n ’a ’, instead of the
desired 2n identical results.

After correction of th is error no new issues were found in an additional 30,000
tests. This takes 2.4 seconds. In order to verify the error detecting capacity of
this approach we made, by hand, 25 m utan ts of the lib rary th a t are approved

by the type system . Testing these incorrect libraries revealed counterexam ples
for each of these libraries w ithin 2 seconds.

The final set of parser com binators can be found in the appendix.

7 T esting other H igher Order F unctions

So far we have shown how our technique for testing higher order functions can be
used for continuation based parser com binators. B u t our approach can be used
to test any higher order function. To illustrate this, a p roperty of the famous
fold function will be tested.

The property is based on the universal p roperty of the fold as s ta ted by Mal-
com [8] and is based on the Bird-M eertens theory of lists [1,9]. For any function
f , elem ents v and e, and list I we require th a t fold f v [e : l] = f e (fold f v l).
In order to test several im plem entations of the fold-function we make it an ar
gum ent of the property propFold. We w ant to specify th is argum ent in an actual
test. The other argum ents are intended as universal quantified variables and
need to be generated by GVST.

propFold :: ((a a ^ a) a [a] ^ a) (a a ^ a) a [a] a ^ Bool | == a
propFold fo ld f v l e = fo ld f v [e : l] == f e (fo ld f v l)

In order to test th is w ith GVST we need to choose a concrete d a ta type for a.
We will use integers here, and choose v to be zero.

propFoldInt :: ((In t I n t ^ I n t) In t [I n t] ^ In t) Expr [I n t] In t ^ Bool
propFoldInt fo ld ex l e = propFold fo ld (apply ex) 0 l e

In addition we need to generate suitable functions of type In t In t ^ In t. The
d a ta type Expr is used to represent the functions to be generated:

:: Expr = X | Y | ConstOne | SUM Expr Expr | DIFF Expr Expr

The functions apply converts instances of th is d a ta type to the desired functions:

instance apply Expr (In t In t ^ In t)
where

apply X = Ax y .x
apply Y = Ax y .y
apply ConstOne = Ax y . i
apply (SUM a b) = Ax y.apply a x y + apply b x y
apply (DIFF a b) = Ax y.apply a x y - apply b x y

As we m ight expect the functions fo ld r from the stan d ard lib rary appears to be
a valid fold -function if we test it with:

S ta r t = t e s t (propFoldInt fo ld r)

The function fo ld l however, does not obey th is p roperty for functions like,
f x y = x, f x y = y, and f x y = x+x. GVST spots this w ithin 0.1 seconds. Al
though th is result in itself is not new, it dem onstrates the power of th is approach
to test higher order functions.

8 C onclusion

Test system s like Quickcheck and GVST are very suited to test properties over
first order functions [3, 6]. Testing higher order functions was troublesom e, since
they have functions instead of d a ta types as argum ent and result. The functions
yielded by a higher order function are tested by supplying argum ents until a
d a ta type is obtained. U ntil now test system s were able to generate functions
as test argum ent in a prim itive and unguided way. In this paper we have shown
th a t the functions needed as argum ent can be generated by defining a d a ta
type representing the gram m ar for the desired functions, and a very simple
function th a t transform s th is d a ta type to the corresponding function. This is a
reinvention of ideas sim ilar to Reynolds defunctionalisation from 1972.

By using th is technique for a library of parsers com binators the test system
has found a reported error as well as an until now unknown error. Since the
errors occur for very unusual com binations of parser com binators it is not strange
th a t the errors were not discovered during m anual testing and ordinary use of
the library. Also 25 errors injected deliberately in order investigate the power
of au tom atic testing are found w ithin seconds. This indicates th a t th is way of
autom atic testing is very effective and efficient.

O ur approach is a very general one th a t can also be used in any situation
where higher order functions needs to be tested, or even where system atically
generated functions are needed. In th is paper we have show the application to
simple properties over map (see section 4) and fo ld (see section 7), and the more
advanced parser library, bu t it works for properties over any HOF.

A ck n o w led g em en t

We thank Erik Zuurbier and Arjen van Weelden for indicating problem s with
the parser lib rary in itia ting th is research. Oliver D anvy pointed out the relation
of our in term ediate d a ta types and defunctionalisation.

R eferences

1. Richard Bird. Constructive Fununctional Programming, Proc. MArktoberdorf In
ternational Summerschool on Constructive Methods in Computer Science ,1989.

2. A. Alimarine, R. Plasmeijer. A Generic Programming Extension fo r Clean.
IFL2001, LNCS 2312, pp.168-185, 2001.

3. K. Claessen, J. Hughes. QuickCheck: A lightweight Tool fo r Random Testing of
Haskell Programs. ICFP, ACM, pp 268-279, 2000.

4. Olivier Danvy and Lasse R. Nielsen. Defunctionalization at Work. PPDP ’01 Pro
ceedings, 2001, pp 162-174.

5. Pieter Koopman and Rinus Plasmeijer: Efficient Combinator Parsers In Ham
mond, Davie and Clack: Proc. IFL’98, LNCS 1595, pp. 120-136. 1999

6. Pieter Koopman, Artem Alimarine, Jan Tretmans and Rinus Plasmeijer: Gast:
Generic Automated Software Testing, Pena: IFL’02, LNCS 2670, pp 84-100, 2002.

7. P. Koopman and R. Plasmeijer. Generic Generation of Elements of Types. In Sixth
Symposium on Trends in Functional Programming (TFP2005), Tallin, Estonia, Sep
23-24 2005.

8. Grant Malcom. Algebraic Data Types and Program Transformations, Thesis, 1990.
9. Lambert Meertens. Algorithmics: Towards programming as a mathematical acitvity,

Proc. CWI Symposium 1983.
10. Rinus Plasmeijer and Marko van Eekelen: Concurrent Clean Language Report (ver

sion 2.1.1), 2005. w w w .cs.ru .n l/~ clean .
11. John C. Reynolds. Definitional interpreters fo r higher-order programming lan

guages. Higher-Order and Symbolic Computation, 11(4):363-397, 1998. Reprinted
from the proceedings of the 25th ACM National Conference (1972).

A Im proved parser com binator defin itions

This appendix contains the changed and tested version of the parser com binators.
The types used are unchanged. The m ost im portan t change is th a t the role of
the O R -continuation and the X O R -continuation is swapped in order to get the
behavior b o th or-com binators correctly. The basic operators f a i l , y ie ld and
symbol are basically unchanged. The definitions are slightly changed in order to
reflect the change in role of the continuations xc and ac.

symbol :: s ^ CParser s s t | == s
symbol s = psymbol
where psymbol sc xc ac [x :s s] | x == s = sc s xc [] ss

psymbol sc xc ac _ = xc ac

B oth choice com binators also reflect the change of role of the continuations. The
com binator < | > inserts the second parser in the continuation of p w ith a lterna
tives th a t are always taken. The <!> operator inserts q in the o ther continuation
and changes the the o ther or-com binator such th a t it checks for results.

(<|>) in f ix r 4 : : (CParser s r t) (CParser s r t) ^ CParser s r t
(<l>) p q = Asc xc ac ss = p sc (Aac3 = q sc xc ac3 ss) ac ss

(<!>) in f ix r 4 : : (CParser s r t) (CParser s r t) ^ CParser s r t
(<!>) p q = Asc xc ac ss
= p sc (Aac2 = i f (isEmpty ac2) (xc []) ac2) (q sc xc ac ss) ss

The and-com binator for the com position of parsers is now:

(<&>) in f ix r 6 : : (CParser s u t) (u ^ CParser s v t) ^ CParser s v t
(<&>) p q = Asc xc ac ss ^ p (At xc1 ac1 ^ q t sc xc1 ac) xc ac ss

The definition of all variants of this operator (like <&, &>, and <++>) is not changed.
From the repeat operators <*> and <+> we removed the error by deleting the

erroneous optim ization in C listP .

<*> : : (CParser s r t) ^ CParser s [r] t
<*> p = C listP p []

C listP : : (CParser s r t) [r] ^ CParser s [r] t
C listP p l = (p <!&> Ar ^ C listP p [r : l]) <!> y ie ld (reverse l)

http://www.cs.ru.nl/~clean

