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Abstract

We present a proof of the Britto-Cachazo-Feng-Witten tree-level recur
sion relation for gluon amplitudes in QCD, based on a direct equivalence be
tween BCFW decompositions and Feynman diagrams. We demonstrate that 
this equivalence can be made explicit when working in a convenient gauge.
We exhibit that gauge invariance and the particular structure of Yang-Mills 
vertices guarantees the validity of the BCFW construction.

1 Introduction
During the last year much progress has been made in the understanding of 
analytical calculations of dual amplitudes in perturbative Yang-Mills theo
ries. Led by an observation of Witten [1], Britto, Cachazo and Feng (BCFW) 
have proposed a new recursion relation for tree amplitudes of gluons [2] 
that naturally arrives at the simplest known expressions for some of those 
amplitudes in terms of Weyl - Van der Waerden spinor products. Explicit 
calculations have been performed using this technique [3],[4], extensions 
to amplitudes involving particles from the electroweak sector [5] have been 
pursued and a new approach to one loop amplitudes has been proposed [6] 
employing MHV vertices and unitarity arguments.
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The BCFW recursion relation features some remarkable characteristics, 
among which the on-shell analytic continuation of selected off-shell prop
agators, the analytic continuation of two selected external momenta in the 
complex plane and a decomposition of a color helicity amplitude into smaller 
helicity amplitudes with complex external momenta that doesn’t appear to 
be in direct connection with the decomposition in Feynman diagrams. More
over, the BCFW relation leads to the use of only three-point (modified) ver
tices as building blocks of the theory, thus raising questions about the fun
damental nature of the Yang-Mills four point vertex.

A proof of the BCFW relation was given by Britto, Chachazo, Feng and 
Witten [7] which, though it made the connection between the analyticity 
properties of the color amplitude and the BCFW decomposition obvious, 
shed little light towards the way the latter relates to the usual Feynman dia
gram approach.

The simplicity of the final result for tree level gluonic amplitudes im
plies the existence of major cancellations between Feynman graphs. Since 
the BCFW formalism avoids those cancellations altogether it is advanta
geous to find a diagrammatic proof of the BCFW decomposition in order to 
understand these cancellations in the level of Feynman diagrams. A number 
of questions immediately arise. Is a diagrammatic proof gauge dependent? 
If so, are there preferable gauges where simplifications take place? Which 
gauges are those? Is this decomposition exclusively working for pure YM 
theories, and if so, what is the key feature of the YM vertices that makes it 
work? Can we find a BCFW type recursion relation for scalar theories?

We intend to address these questions in the present paper as well as giv
ing a generic diagrammatic proof of the BCFW decomposition. The paper 
is organized as follows: after clarifying some notation issues in section 2 , 
we present, in section 3 an analysis based on diagram enumeration that hints 
towards a connection between BCFW decompositions and Feynman graphs. 
In section 4 we prove some important kinematical identities that will support 
the main parts of the diagrammatic proof (sections 6 and 7), whereas section 
5 describes the gauge in which we are working and the consequences of that 
choice. We conclude with some remarks on the generality of the proof and 
the role of gauge invariance in this analysis in section 8.
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2 Notation
All amplitudes mentioned in this paper are the color-ordered amplitudes that 
result after the usual trace-based color decomposition [8]. We will conve
niently omit all coupling constants and factors of i  as well as the color an
tenna of all color-ordered amplitudes in what follows.

In non-vanishing tree-level color-ordered amplitudes, one can, without 
loss of generality, pick out a pair of adjacent legs with opposite helicity and 
label the positive helicity one by 1 and the negative helicity one by n. Unless 
otherwise specified we will use this labeling throughout this paper.

The Dirac four-spinors used in this paper are the usual u±(p), u±(p) 
with the important note that the relation between u(p) and u(p) is not one 
of complex conjugation.

The relation with Weyl - Van der Waerden spinors, when using the Weyl 
representation of y-matrices, is

u+(p) =  ( O ^ p l e 13“) ü+(p) =  (Ab(p)eba,0) (1)
u_(p) =  (Aa(p),0) îX_(p) =  (0,Aq(p)) (2)

Four-momenta can be written in terms of Weyl spinors as

Pu =  ^ ü _ (p )y Hu_(p) =  ^Â à(p)â“aAa(p) (3)

and products of four-vectors can be performed using the identity

â ^ - àaâ bb =  2 e àbe ab (4)

where (f^ =  (1, —a), and similar identities for the cfs.
Note that, since

^ ’aV b b  =  2 5 X  (5)
we can write

(P ■ 0-)aà =  P ^ a à  =  Aa(p)Àd(p) (6)
Moreover, the usual conventions for spinor products5 will be adopted:

(ij> =  u + tp iju - tp j)  =  Aa(pi)Ab(Pj)eab (7)

[ij] =  -ü - tp à ju + tp j)  =  ÀatpiJÀbtp^e“ 13 (8) 

This results to
2 p q  =  <pq)[pq] (9)

A fairly general definition of the external gluons’ polarization vectors6

5Note the minus sign in the [ij] definition with respect to the definition in [9].
6that corresponds to the light-like axial gauge
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is (see [9],[10] for similar definitions.)

£ n,  , =  u + t p l y ^ u + t p )  =  A a t p j a ^ A g t p )

+ \/2u+(p)u_(p) \/2(pp) 
ix, , U-tplY^U-tp) Ad(p)o:M-’ia Aa(p) 

e J p l  =  v 5 u _ ( p ) u + (p )  = -------------T f i i S “  <10)

where p is an auxiliary, null four-vector that can be chosen at will for every 
gluon as long as it is not parallel to p itself.

Note that one could write

C a a(P ) =  £ u t P ) g aa =  (1 1 )

— C l  _ — r I. M- _ / ^ A a ( p ) A à ( p )  /1 0 \
e a à (P ) =  e |a (P )a aà — — v 2 ------- — -------  (1 2 )

and perform vector products using

paa qbb e abe a b =  <pq)[pq] =  2p ■ q (13)

It should be noted that nothing of what follows depends on the precise con
ventions we adopt for the Van der Waerden or Dirac spinors. In fact the 
present analysis, that deals with pure gluonic amplitudes, could be per
formed exclusively on the level of four-vectors.

The hat symbol over a function of momenta f(q) will denote the func
tion f (q; z) where the argument of f is analytically continued (shifted) by a 
general four-vector z e H, with

=  ^ ü -(P i )YiaU_(pn ) =  ^Àà(pi )â “aAa(pn) (14)

This has the effect
q ^  ^ =  q +  ze (15)

We will omit the explicit reference to the z-dependence of f(p) since this 
is signified by the hat symbol.

3 Counting contributions
The BCFW recursive relation for pure gluon color ordered amplitudes is 
given by

4



a i p î 1 , . . . , p n n ) =  (16) 
n—1 -,

L  .................................................................P i")
AX =±1 k=1 Pl...k

where p and A represent momentum and polarization. In this section we 
would like to study the diagrammatic content of the BCFW equation. The 
most appropriate way to do so, is of course to neglect any reference to po
larization and also drop the propagator factor, while keeping the ordering of 
the momenta. In that case of course we count planar graphs (see [12]) and 
it is obvious that the equation is not self-consistent. In fact the form of the 
equation is given by

A — (17)

or in a more mathematical form

A 1—m — A 1̂ k +1 A 1̂ n —k+1 (18)
n—1

1̂ n  =  A 1̂ k 
k=1

The equation ABCF 1_>n — A ^ n cannot be true because of the follow
ing reasons:

• Firstly, contributions where no propagator line exists between the 1 st 
and the nth particle, are not included in the BCFW equation

• • •A 0 — — 1—  +  -----^ ----- (19)

These contributions are given by

A 1̂ n  =  A 1̂ n —1 +  A 1̂ n 1 A 1̂ n 2 (20)
n1 +n2 =n—1

Secondly, BCFW is multiple-counting contributions of the form 

•  •

1 2 M
5



or

................................................................... ............................
1 2 M

In fact we suggest that this over counting is exactly equal to the multi
plicity of propagator lines connecting particles 1 and n.

To make our arguments more quantitative we start with the Berends- 
Giele [11] (or Dyson-Schwinger for ordered graphs [13],[14]) recursive equa
tion for a generic theory with 3— and 4—vertices.

n  +n2 =n n-i +n2 +n3 =n
(22)

and we write the following equation

=  A BCF1 -  D (23)

where A ^ n are the classes of diagrams in eq.19 and the substracted 
term D accounts for the overcounting of diagrams. Since the overcounting 
relates to diagrams with 2 ,3 , . . .  propagators on the line between the first 
and the last leg, it can be seen that

n—1 M / M \
D =  J j M  -  2 ) ^  DM+k (24)

M=3 k=0 V )

where M — 1 is the number of propagators of the particular overcounted 
class of diagrams and

D M =  ^  A 1̂ n 1 ••• A 1̂ n M (25)
ni +...+um =n

counts the number of diagrams within that class. As an example for n  =  5 
(6-leg gluon amplitude), the number of Feynman graphs is A =  38, the
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number of BCFW graphs is A BCF =  29, the number of graphs without any 
propagator between the first and the last leg is A 0 =  17 so overcounting 
should give D =  8. The following graphs are overcounted

(2 )

(26)

with the first diagram doubly overcounted (it contains 3 propagators). That 
diagram corresponds to the M =  4 while the other graphs come from the 
M =  3 term of eq.24.

In the table below we give the results for up to n  =  11 particles.

1 —> n A A BC> a bc> + a ° - a V
3 3 1 2 0 0
4 10 6 5 1 1
5 38 29 17 8 8
6 154 136 64 46 46
7 654 636 259 241 241
8 2871 2992 1098 1219 1219
9 12925 14190 4815 6080 6080
10 59345 67860 21659 30174 30174
11 276835 327080 99385 149630 149630

This analysis hints strongly towards the idea that a connection between 
Feynman diagrams and the BCFW decomposition might be achieved by 
grouping together BCFW (hatted) diagrams with the same chain structure 
along the main line (the same number of propagators hence the same multi
plicity) but differently placed cuts: The multiplicity of each group is equal 
to the number of propagators along the main line which in turns equals the 
number of possible cuts (one for each propagator along the main line).

4 Kinematical identities
For any function f(p; z) of z that has only simple poles in z and vanishes at 
z —> oo, we can perform an expansion over its poles. In particular we have

f(p;z) =  Y  [f(p;z)(z —Zj)l — —  (27)
z—  L -I z=zj z  — Zj

7



where the sum is over all the simple poles z, of f(p; z). This very general 
identity allows us to analytically continue the function f (p) to the complex 
plane, make use of the pole expansion and take the limit z —> 0 to return to 
the real axis, thus obtaining a relation between f( p) and the pole expansion
of f(p; z).

Applying this to a momentum antenna we get

1

p ip i  ■■■pk =  Z
j=l..k

1

,p ip 2 j+1 k

with Zj such that

pj(zj) =  (pj +  zje) =  pj +  2zjPj ■ e =  0 (29)

where p i .. .p k are arbitrary off-shell four-momenta. In the next sections 
we will use the above identity with p^ being sums of on-shell momenta of 
the form p ik =  pi +  p 2 +  . . .  +  pk.

Taking the limit z 0 at both sides we have

1

p |p 22 • • p 2k L
j = l..k

1

f^ 2 • • • 1)2- i p2+! • • • p k_ Z=Zj
~2 (3°) 
p 2

Further more,

z p

p 2p 2 ■■■Pk =
j=l..k p |p 2 •••p 2- i p  2+i •••p kJ

which gives the very useful set of identities, valid for every p <  k

L
j=i.. k p  |p 2 •••p2-ip j+ i •••pk. ^  =  o

z=zjp2
(32)

Finally, if z =  k, the function in the left hand side of eq.31 is no longer 
vanishing at z . Subtracting its limit at infinity, however, we have a 
new function that does, so

-  lim
p lp  2 •••p k p ip  2 ■■■p k =

j=l..k p |p  2 •••p 2-ip j+ i ••pk

1

(j33)
and taking the limit z 0 we get

z=

pz

z=

pz

k k kz z z

z=
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— limZ—5* OCp 2p 2 - p 2
=

or
—1

k j=1..k

=

_p 1p 2 . . .  p 2~i"pj + i . . .  p k. z = z p 2

nk=i 2 e-pj j=i"k Lp2p 2 . . . p 2_ip)j+i . . . p k
~ 2  (3 5 )

z=zjp2

kkz z

kz

5 Choosing a gauge
We have seen in section 3 that classes of Feynman diagrams should some
how correspond to particular BCFW decompositions. Using a particular 
gauge for the external gluons one can eliminate whole classes of Feynman 
diagrams.

A consistent definition of the external gluons’ polarization vectors was 
given in eq. 10 where p is an auxiliary, null four-vector that can be chosen at 
will for every gluon as long as it is not parallel to p itself.

We choose to use p! =  p n and p n =  pi

n _  u + n Y ^ u + i  _  A a f p i J a ^ A J p n )

6+1 ^ u + n u _ ,  V 2 ( n l )  1 ;

n  _  U _1 Y ^ U —n  _  A a t P l J a ^ A J P n )

e- n \ /2u _ nu+i \ f l  [nl ] 1 }

A number of simplifications follow immediately The product of ei with 
en or e (defined in eq. 14) vanishes

ei ■ en =  0 =  e ■ ei =  e ■ eT (38)

Moreover
e+i-pn. =  0 =  e_n-pi.  (39)

As a consequence, any diagram in which the first and the last leg meet in a 
three-vertex vanishes.

i / ' \ „ n =  0 (40)

where the blob denotes any Feynman diagram with the particular off-shell 
leg.
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These simplifications are in the correct direction in view of the fact that 
there are no BCFW graphs with the first and the last leg in the same vertex. 
We still have to deal with the case when 1 and n  are attached in a four-vertex 
whose two other lines are off-shell (another situation that doesn’t occur in a 
BCFW decomposition). We will see in the next section how to accommodate 
these diagrams.

Finally, we should note that the polarization vectors e+i and e - n actu
ally differ by a complex phase.They also differ by a complex factor from the 
shifting vector e (see 14). Note that in any expression where all these three 
vectors appear in scalar products, one is allowed to freely interchange them, 
without altering the result. In a very real sense there is actually only one 
polarization vector in this gauge.

Finally, the polarization vectors are now invariant under the shifting op
eration:

Pi ^  P 1 +  ze Pn ^  Pn -  ze (41)

If we write

-> (42)

and 1 1 1
Pn =  ^U-nY^U-n -> ^Ü-nY^U-n +  -ZÜ_1 Y^U-n (43) 

we see that the shifting operator effectively sends

u—i —} u_ l +  zu -n
Ü _ n  — > U  n  -  Z U  ] (44)

or, in terms of Weyl - Van der Waerden spinors

Aa(Pl) ^  Aa(Pl) +  zAa(Pn)
Aa(Pn) ^  Aa(Pn) -  zAa(Pi ) (45)

As a result, the denominators of e+i and e_n become

(n1 ) ^  (n1 ) +  z(nn) =  (n1 ) (46)

and
[n1] ^  [n1] — z[11] =  [n1] (47)

The only restriction that we impose on the polarization vectors of the 
other gluons is that they remain invariant under the shifting operator. In case
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their assisting vectors p | involve pi or p n this should be arranged in a way 
that preserves this invariance.

This gauge choice explicitly eliminates any z-dependence from the po
larization vectors. The shifting operation affects amplitudes only through 
the shift at the momenta four-vectors pi and p n, and the induced shift to 
the momenta of intermediate propagators. Polarization vectors and vertices 
that do not carry pi and p n are left unchanged. Therefore, a diagram after 
shifting will be a complex function with poles coming from three-vertices 
or propagators.

This is in contrast with a general gauge, where the polarization vectors 
e+i and e—n get an extra factor involving z in their denominator. A pole 
expansion, in that case, would need to take into account (gauge dependent) 
poles coming from the gluon polarization vectors.

Counting powers of z in the general gauge shows (see the concluding 
discussion in [7]) that any diagram vanishes at the limit z —> oo. This is not 
in general true in the gauge we are working. The z limit of a diagram 
is used as a guide to group diagrams in classes where these limits cancel.

6 Review of the BCFW decomposition
According to the simplest version of the BCFW decomposition, the color 
amplitude A (pi; hi), where h i is the helicity of the i ’th gluon, is equal to

n—1

Aivi',... ,pS" i = Y_ L  Aiei'. ■ ■ ■ .pi’. -P i.ji^A i^VH ,' •■■■■? 
j=2 h i ...j

(48)
The sum over j extends over all partitions of the n  — 2 gluons in two groups.
The amplitude is recovered from the sum of n  — 2 decompositions in lower 
level amplitudes evaluated at a particular z =  z, such that ^i...j(zj)2 =  0 .

Let us call ‘hatted’ diagrams graphs of the form

A*  „ •  C *

/ 1 ^  (49)

denoting the corresponding Feynman graph where we have multiplied by 
pfA: we have performed the momenta shift, evaluated it at some z =  zi and
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divided back by p 2A. The value zi is defined by the demand that the ‘cut’ 
propagator, carrying momentum p i A, vanishes: p fA =  0 .

In terms of ‘hatted’ graphs, the BCFW decomposition consists in two 
blobs, one containing the first and one the last leg, the amplitude is hatted 
and a cut is taken on the propagator that connects the two blobs. A sum over 
all partitions of n  in two integers is employed. Evidently, every particular 
BCFW decomposition over some propagator Pi is equivalent to the sum of 
all hatted diagrams with that particular propagator cut.

Thus the sum of all possible decompositions is equivalent to the sum of 
all hatted diagrams with all possible cuts along the line of propagators that 
connects the first and the last leg of the original color amplitude.

In what follows we will prove that the sum of all possible hatted dia
grams is equivalent to the sum of Feynman diagrams involved in the com
putation of the particular amplitude.

7 The correspondence of hatted graphs to 
Feynman diagrams
The special treatment of the two selected external legs 1 and n  implies a 
special classification of the various Feynman diagrams involved in the given 
amplitude. There are classes of diagrams with zero, one,two,... propagators 
on the line between the first and the last leg. Every class consists of sub
classes defined by the particular partition of the other n  — 2 external legs in 
which they are connected to the main line.

A particular diagram with n  =  20 would be, for example,

and would correspond to the class

(50)

(51)
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and more precicely to its subclass with 3,1,2 ,1 ,5,3,3  on-shell legs in the 
corresponding blobs7. Let m i , m 2, . . . ,  m k+i be a particular partition of 
n  — 2, such that Y_ m i =  n  — 2. The blobs denote the full set of all possible 
color-ordered diagrams with one off-shell and m i on-shell legs.

Let us call this subclass of Feynman diagrams by F (mi , . . . ,  fn.j, iUj+i, . . . ,  m k+ i ) 
where the tildes on top of two consecutive m ’s mark the presence of a four- 
vertex attaching the corresponding blobs to the line.

mi rh.j m m n

F(mi , . . . , fa^ m j+i , . . . , m k+i) =  — ^  ^
1 n  (52)

The particular subclass of diagrams in eq. 51 would then be called F(3,1,2,1 ,5,3,3) 
and eq.50 would be one of the actual Feynman diagrams contained in that 
subclass.

In the gauge we are working, the hatting operator would leave the contri
bution of the blobs, in such a diagram, invariant since the momentum flowing 
into the blob doesn’t contain p i or p n . It would only affect the propagators 
and vertices along the main line. After the shifting of the momenta a cut can 
be placed on any of the propagators on the line, thus fixing the value of z at 
which the residue should be evaluated. We shall denote such a graph with a 
cut on the j ’th propagator by

H(m1, . . . , m k+1;j) =  \  (53)L jJ Z=Zi p 2

Here and in what follows p i Ai denotes the sum of external momenta

p 1 Ai =  p 1 +  pAi +  pA2 +  . . .  +  pAi (54)

with mi
pAi = Y _  pk (55)

k=1

A closer look at the ”hatted” diagram will reveal that hatting affects, 
through the momenta p i and p n , only the three-vertices along the main 
line. The four-vertices, not carrying any momentum, remain unchanged.
The effect on the three-vertices is included in the ”hatted” YM three-gluon

7A blob with mi on-shell legs and one off-shell denotes the corresponding sum of color- 
ordered diagrams with one off-shell leg and mi on-shell legs.
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vertices, which we denote with a crossed white blob in the figures. Each of 
these can be decomposed in two pieces:

— VMvp — 9 |jv(p i P 2)p +  9vp(P2 p 3)|j. +  9p|J.(p 3 p i ^ 
=  9|Mv(p 1 — p 2)p +  9vp(p2 — p 3)^ +  9pM(p3 — p 1 )v

ze (2 gp.p9va 9 ^ffgvp 9 M.vgap)
=  V|Mvp ze (29 M-P9 va 9 Ma9vp 9 |MV9 ap]

(56)

where
i ;

ie
— —zV,Mvpa (57)

with VMvpa the QCD four-vertex.
Let us concentrate for the moment on the class of diagrams with the 

smallest number of propagators along the line between the first and the last 
leg: diagrams with no propagators along the line can have a three or a four- 
vertex joining these two legs. The whole class of diagrams with a three- 
vertex joining the first and the last leg vanishes identically in the gauge we 
are using. The remaning class with one four-vertex will be dealt with soon.

Next, we have the class with one propagator along the main line.
If we write JQ for the current coming from the blob Q, we have

H ( m i , m 2; 1) =

— [emJAvtfMvpV A JB ;

; imJav(V Mvp — zeaV aMvp)(VpKA — zeTVTpKA)JBe

ei mJavV MvpVpKAJBen — zei HJweaV ̂ V p J e n  

—z e J V  MvpeTVTpKAJBen

+ z 2 ;1 MJAve aV aMVPe"VTpKAJBe 2
20 p ia

(58)

a

1A
n

1

1

14



The first, z-independent term in the bracket equals the Feynman diagram 
with one propagator. The last term in the bracket vanishes due to eq.38 and 
we get

H ( m i , m 2; 1) =
A B

with

A B

zo =

— [2 (e-pi a)(£i • jA)(e-n'Jb)]^
p 1A

p Ia
2(piAe)

(59)

where we have used momentum conservation and our freedom to inter
change the polarization vectors. So

H ( m i , m 2; 1) =
A B

or
H ( m i , m 2; 1 ) =  F(mi , m 2) +  F(m 1, 1Ù2)

(60)

(61)

In the case that the blobs A and B of the first diagram in eq.60 contain 
exactly one on-shell leg, the BCFW decomposition leads to two hatted QCD 
3-vertices. We have verified that the usual QCD 3-vertex evaluated at the 
hatted kinematics reproduces the formulas

and

A ( i + ,2~, cf+ ) =  \fl

A ( i + ,2+ , cP) =  \fl

[qt] 3

[i2][2q]

[ti]3 
[2 ^ ]  [cf 1 ]

(62)

(63)
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where p q =  —pi — P 2 is the off-shell leg and p q =  —pi — P 2 — ze is its 
on-shell continuation 8. The corresponding formulas involving the last leg 
(which has negative helicity) work similarly but include angle bracket spinor 
products.

Proceeding to graphs that contain two propagators between the first and 
the last leg or graphs that contain one propagator with one four-vertex at
tached to it, we have

The expressions that correspond to the first two hatted graphs on the left 
hand side are quadradic in z and are evaluated in different values of z, zi 
and z2.

1 z z2
H o z r  +  H i ^ r  +  H 2 ^ r

p 1B p 1B p 1B z=zi p Ia
(66)

8The other polarizations (A(1 + , 2+ ,q+),A(1 + ,2 , q )) can be shown to vanish.

1
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with pi b =  P1 +  P a +  P b

H(
P?A

+ H 1 ^  +  H2 
p 1 A P?A Z=Z2 p 1b

(67)
The z-independent term of all four graphs gives the Feynman graphs of 

the right hand side of eq.65, due to the kinematic identity eq.30.
Moreover, the part linear in z of the first two graphs cancels identically 

due to eq.32 with p =  1. The quadratic part of the first two graphs cancels 
exactly the part linear in z of the two last graphs on the left hand side of 
eq.65.

The generalization of the above mechanism goes as follows: Each hatted 
diagram with v3 three-vertices along the main line can be decomposed in a 
sum of sub-diagrams having 0,1, . . . ,  v3 white-blob vertices corresponding 
to 0, 1, . . . ,  v3 powers of z (evaluated at some Z|). If the diagram also has v4 
four-vertices, the number of propagators along the line is v3 +  v4 — 1.

The sum over all possible cuts for the particular diagram can then be 
written as

V3+V4-1 
Y_  H(mi j) =  
j=i

V3 +V4-I

=  z
3=1

1
( H 0 +  z H i  +  z 2H 2 +  . . .  H V3z V3 ) Y \

q=. p 1q. Z=Zj
- 3 ( 6 8 )

Pij

or

V3 +V4 - i V3 +V4 — 1
Y_  H(mi . . . m k;j) =  H 0 Y_
j=i

1
0

j=i
V3+V4—1

+Hi y_
3=1

V3 +V4 —1
+ H 2 x

3=1
+ . . .

n q=j p ?qj

z

Z=Zj p?.

n a=i p 2q=j p1qJ 
z 2

n q=. p 1q_

Z=Zj

z=z.

p 1.

p 1.

21 1z

1

1

1
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V3 +V4-1

+  HV3 Y_
j=1

Zv3

n q=j p f qj Z=Zj pij

Due to the set of identities eq.32, all terms involving zA with 0 <  A < 
v3 +  v4 — 1 vanish identically.

Moreover it is easy to see that the z-independent term involving Ho will 
give the corresponding Feynman diagram with the help of the identity eq.30.

Let us further distinguish among three cases: diagrams with no four- 
vertex on the line (v3 =  k + 1), with one four-vertex (v3 =  k) and with more 
than one four-vertex (v3 <  k). In the third case the right hand side of eq.69 
reduces to the z-independent term corresponding to the Feynman diagram. 
All terms involving z vanish. In other words the sum over all possible cuts 
of the hatted diagrams with two or more four-vertices on the line, is equal to 
the corresponding Feynman diagrams.

In the first two cases the sum of all hatted diagrams over all possible cuts 
gives the corresponding Feynman diagrams plus a number of terms. We will 
now show that these terms cancel exactly each other due to the structure of 
the YM vertices.

Diagrams with no four vertex on the line have v3 =  k +1 three-vertices. 
They are of the form mi mj mj+i m n

j r i r  ±
1 n

H ( m i , . . . , mj, mj+i , . . .  , m k+i; j) =
(70)

The highest order term involves Hk+i that vanishes identically: it corre
sponds to diagrams with only crossed white blobs on the line, hence it con
sists of contractions of e with itself or e i , en . The next to leading order 
term, Hk is a sum of terms with one QCD vertex and k crossed white-blob 
vertices.

We have

k
H(mi . . .mk+i ;  j) =  F(mi . . .mk+i)  +

j=i
k

+ H k X
j=i L-*- i q J z=zjr i q =  p iq

\  (71) 
Pij
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and using the kinematical identity eq.35 we get

k 1
) " H (mi . . . m k+1;j) =  F(m! . . . m k+1) -  Hk -------  (72)
p r  n f= i 2 e-pij

Let us denote Hk r the term where the QCD vertex is coming from the 
r ’th hatted vertex.

Hkr is the numerator of a diagram containing blobs connected with the 
main line by white-blob vertices ecM.M.-vpc everywhere except the QCD r ’th 
vertex. A generic piece on the line will contribute by

Ai

P . . .  — M (Ai)|j.p — J a ,e (2 9cv9|jp 9c^9vp 9cp9m-v)
=  —(2(JAi ■ e)9 M-p — JAi,^ep — JAi,pe iJ (73)

where JA, is the current (subamplitude) coming from the i ’th blob. The 
first such white-blob vertex, when contracted with e^, gives

!e

A 1

• — e ^M(A l ) M,p ——(e 1'JAr )ep (74)
e

It is easy to see that a chain of consecutive white-blob vertices gives

-P — (—1)p(ei-jAi )(e-jA2) ••• (ejAs)ep (75)
e e e

Since Hkr has k such vertices we get

Hk,r — (—1)k n ( e ■ J A j ) e j - e n  x 
j=T

x (9 M.v(Pl ,r- 1 Pr) p +  9vp(Pr +  Pl,r) ̂  +  9 p|J.( Pi ,r Pi ,r- 1 )v )

— (—1)k n ( e ■ JAq ) ( e n J at)((Pi,r-i +  Pi,r)• ei) (76)
q=r

where repeated use was made of our ability to interchange e i , en and e. 
Note that for the boundary terms, r  — 1 and r  — k +  1 the above formula 
must be understood with the definitions Pi ,o — Pi ,k+2 — 0 .

1
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Summing over r  we regain Hk, and

H(mi . . . m k+1; j) =  F(mi . . . m k+1) +
j=i

1
+  ( —1 )k+! _ _ _ _ _ — ' Jaì ) • • • (en ' jAn ) [(Pi ,r-1 +  P 1 ,r) •£]

_______ 2pi,T-e_________

r i , 2e ■ pij
=  F(mi . . .  m k) +

+  ( —1 )k+1 (e 1 ■ JA ) • • • (en/ JAn )
r

=  F(mi . . .  mk) +

(—1 )k+1 (e-| • J a  ) • • • (en -JAn )

(2 e-pii )(2 e-pi2) . . .  (2 e-pik) 

1

n q=r(2 e 'P lq)
(77)

Let us consider now a diagram that could occur from the ones above by 
contracting a propagator, thereby merging two of the three-vertices, say the 
r ’th and the r  +  1 ’th in one four-vertex. Such a diagram has one four-vertex 
on the line and one propagator less, that is it has k vertices of which k — 1 
three-vertices and one four-vertex, as well as k — 1 propagators.

mi m r m r+i m n

_ 1 . 5 ?  ±
1 n (78)

The sum over all cuts of such hatted diagrams is

^ H r ( m i , . . .  , m r , m r ). . .  , m k  j) =
j=i
j=r

+ Hk,r
j=1
j=r

„k-1

Oq=j,r P 1 q_

1

P i i
(79)

where r  denotes the position of the four-vertex. As before, all contributions 
involving zA for 0 <  À <  k — 1 vanish due to eq.32. Using the identity eq.35

r

z=
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we can perform the j sum over cuts and get

k
Y  Hr(mi , . . . , m r , m r , . . . , m k ;  j) =
j=i
j=r

=  F ( m i , . . . ,  m T, m T, . . . ,  m k ) -  H k _ !  T— ------- \ -----------  (8 0 )
’ n q=r 2 e 'Plq

Here Hk -i r stands for the vertex contribution of a diagram with one four 
vertex and k — 1 white-blob three-vertices. It is not difficult to see that this 
is equal to

Hk-I,r =  (—1 )k-i (ei - J a  )(£-Ja2 ) . . .  (en-jAk) (81)

Summing up over all possible positions of the four vertex we get

k k
Y  Y  Hr (mi . . .  m k  j) =  F(mi , . . .  , m r ,m T). . .  ,m k)+
r=1 j = 1 

j=r

+ ( —1 )k(ei • Jai ) • • • (en-Jau ) Y_ ï=f----- t-------- (82)
r I I q = r2 e 'pi q

which exactly cancels the last term of equation eq.77, thus completing the 
proof that the sum over all cuts of all possible hatted diagrams is equal to 
the sum of Feynman diagrams.

8 Remarks on generality
We have seen in the previous sections how the BCFW decomposition is 
related to Feynman diagrams. In fact, when working in the particular gauge 
that we have chosen, every Feynman diagram is broken in pieces (‘hatted’ 
graphs) each of which contains a cut in one of the propagators along the line 
connecting the two ‘special’ legs. Then, hatted graphs with the same cut are 
regrouped together in one decomposition, and the sum of decompositions 
gives back the whole color amplitude.

In the process of breaking up the Feynman graphs in hatted graphs, some 
extra terms are produced: those correspond to the z —> oo limit of the hatted 
graph. Thanks to the particular structure of the YM vertices, demonstrated in 
eq.56, these extra terms cancel exactly among graphs with no four-vertices
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and graphs with one four-vertex and one propagator less. In the lowest case 
of one propagator along the line, the diagram with two three vertices gives 
an extra term that is exactly equal to the diagram with no propagator and one 
four-vertex. The latter is a diagram which, having no propagator along the 
line, didn’t fit in an obvious way in any BCFW decomposition.

The absence of a Yang-Mills structure in a scalar theory is what makes 
a decomposition along the terms of BCFW cumbersome. There one would 
have to accommodate the diagram in eq.40 by adding an ad hoc term in the 
recurrence relation which would therefore be less elegant.

The gauge in which we are working explicitly eliminates the z-dependence 
from the polarization vectors. In other gauges the polarization vectors e+ 
and e -  would be affected by the shift. This would complicate significantly 
the algebra, as further poles related to vanishing denominators of these po
larization vectors will come to play.

If the identity eq.40 doesn’t hold, for example, contributions from the 
class of diagrams in the left hand side of eq.40 would have to be cancelled 
by contributions from other classes. The appealing cancellations within sub
classes of diagrams with a particular partitioning of the external legs would 
be lost. Keeping track of the terms in fragmenting and regrouping Feyn
man diagrams into BCFW decompositions would be much harder. Still one 
could prove the BCFW decomposition by performing the pole expansion 
on any Feynman diagram minus its z limit but the algebra would be 
particularly cumbersome.

It is becoming increasingly clear that the BCFW decomposition is a re
arrangement of terms of Feynman diagrams within a color ordered gluonic 
amplitude. A similar impression will presumably occur from an approach 
of amplitudes with fermionic lines. Under the light of the diagrammatic 
proof presented here it is seen that the mechanism behind any apparent can
celations in the BCFW recursion formula does not (unfortunately) divulge a 
deeper principle or even a contingent effect in gluonic amplitudes, but results 
directly from the structure of the Yang-Mills vertices and the cancellations 
induced by gauge invariance.
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