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A b stract
Loopy and generalized belief propagation are popular algorithms for approximate in

ference in Markov random fields and Bayesian networks. Fixed points of these algorithms 
have been shown to correspond to extrema of the Bethe and Kikuchi free energy, both of 
which are approximations of the exact Helmholtz free energy. However, belief propaga
tion does not always converge, which motivates approaches that explicitly minimize the 
Kikuchi/Bethe free energy, such as CCCP and UPS.

Here we describe a class of algorithms that solves this typically non-convex  constrained 
minimization problem through a sequence of convex  constrained minimizations of upper 
bounds on the Kikuchi free energy. Intuitively one would expect tighter bounds to lead to 
faster algorithms, which is indeed convincingly demonstrated in our simulations. Several 
ideas are applied to obtain tight convex bounds that yield dramatic speed-ups over CCCP.

1. Introdu ction

Pearl’s belief propagation (Pearl, 1988) is a popular algorithm for inference in Bayesian 
networks. It is known to be exact in special cases, e.g., for tree-structured (singly connected) 
networks with just Gaussian or just discrete nodes. But also on networks containing cycles, 
so-called loopy belief propagation empirically often leads to good performance (approximate 
marginals close to exact marginals) (Murphy, Weiss, & Jordan, 1999; McEliece, MacKay,
& Cheng, 1998). The notion that fixed points of loopy belief propagation correspond to 
extrema of the so-called Bethe free energy (Yedidia, Freeman, & Weiss, 2001) is an important 
step in the theoretical understanding of this success.

The Kikuchi free energy (Kikuchi, 1951) is a generalization of the Bethe free energy that 
can lead to better approximations of the exact Helmholtz free energy. Just like fixed points 
of loopy belief propagation correspond to extrema of the Bethe free energy, fixed points 
of an algorithm called generalized belief propagation (Yedidia et al., 2001) correspond to 
extrema of the Kikuchi free energy.

A problem with loopy and generalized belief propagation is that they do not always 
converge to a stable fixed point. New algorithms (Yuille, 2002; Teh & Welling, 2002) have 
been derived that therefore explicitly minimize the Bethe and Kikuchi free energy. As we will 
describe in Section 2 , minimization of the Kikuchi free energy corresponds to a usually non
convex constrained minimization problem. Non-convex constrained minimization problems 
are known to be rather difficult to solve, so in Section 3 we will first derive sufficient 
conditions for the Kikuchi free energy to be convex (over the set of constraints). In Section 4 
we will then derive a class of converging double-loop algorithms, in which each inner loop 
corresponds to constrained minimization of a convex bound on the Kikuchi free energy,
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and each outer-loop step to a recalculation of this bound. Based on the intuition that the 
tightest bound yields the fastest algorithm, we come up with several ideas to construct 
tight bounds. We will see that Yuille’s (2002) CCCP algorithm corresponds to a special 
case of a rather loose bound and discuss the relationship with the U PS algorithm by Teh 
and Welling (2002) in Section 4.5. The simulations in Section 5 illustrate the use of tight 
convex bounds on several inference problems. Implications and other issues are discussed 
in Section 6 . Technical details are treated in the appendices.

2. T he K ikuchi A pproxim ation

Exact inference in graphical models is often intractable. In this section we will introduce 
the Kikuchi approximation as a particular example of a variational approach towards ap
proximate inference.

2.1 G raph ica l M odels

An undirected graph G = (V, E )  consists of set of nodes or vertices V  = {1 ,... , N } that 
are joined by a set of edges E . We place at each node i a variable x  which takes values in 
a finite discrete alphabet. The vector containing all variables is denoted x = (x1, ... ,xn). 
Let y be a subset of V ; we call 7  a region. A clique is any fully connected subset of V ; C is 
a set of cliques. The potential, also referred to as compatibility or kernel function, ^a (xa) 
is a strictly positive function that only depends on the variables that are part of the clique
a. We define the probability distribution or probability mass function

Pexact(x) = ^a(xa) , (1)
a€C

where Z  is the normalizing constant, often called partition function. The Hammersley- 
Clifford theorem (Besag, 1974) guarantees us that the underlying probability process is 
Markov with respect to the graph and, vice versa, that the distribution of any Markov ran
dom field over G that is strictly positive can be expressed in this form. Through the process 
of moralization, any directed graphical model (Bayesian network) can be transformed into a 
corresponding undirected model. Consequently, the probability distribution corresponding 
to a Bayesian network can also be written in the form (1) (Lauritzen, 1996).

Computing the partition function Z , as well as computing marginals on subsets of vari
ables, in principle requires summation over an exponential number of states. To circumvent 
this exponential summation there are two kinds of approaches: sampling techniques and 
variational methods. W ith  sampling, one draws samples from the exact probability dis
tribution. The variational methods try to find an approximation to the exact probability 
distribution.

2.2 V aria tiona l M ethods

Variational methods are often derived from an approximation of the so-called free energy 

F  (p) = -  E E  P (xa) log ̂ a (xa) + ^  P (x) log P (x) = E (P) -  S (P) • (2)
a£C Xq x
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The first term, E (p ), is referred to as the energy, the second term S(p) as the entropy. 
Functional minimization of F (p ) with respect to functions p(x) under the constraint that 
p(x) is properly normalized yields pexact(x). Furthermore, the partition function Z  then 
follows from

-  log Z  = F  (pexact) .

When we stick to the exact free energy (2), we do not really gain anything: the entropy 
part S(p) still consists of a sum over exponentially many terms. Variational methods are 
based on a tractable approximation of the free energy. They can be roughly divided into two 
classes, the “mean-field” and the “Kikuchi” approximations. In the mean-field approach one 
confines the minimization of the free energy to a restricted class T  of (tractable) probability 
distributions instead of considering the class P  of all probability distributions:

-  log Z  = F(pexact) = min F (p ) < min F (p ) .p£V p£T

The crux is to choose the class T  such that the entropy S(p) becomes tractable for all p € T . 
Note however that this restriction typically also affects the energy term E (p ) (Jordan, 
Ghahramani, Jaakkola, & Saul, 1998; Jaakkola & Jordan, 1999).

The Kikuchi approximation of the free energy (2) leaves the energy term as is and 
approximates the entropy S(p) through a combination of marginal entropies:

-S(p ) = ^  p(x) log p(x) «  -  ^  c7S7 (p)
x y€R

= Cy Y1  p(xY) log p(xY) . (3)
Y€R x7

Here R  denotes a collection of so-called regions; the parameters cY are called Moebius or 
overcounting numbers.

2.2.1 P a r t ia lly  Or d er ed  S et s

Following Pakzad and Anantharam (2002, 2005), we will use the language of partially ordered 
sets or posets. Specifically, the collection R  of regions can be viewed as such a poset where 
the ordering is defined with respect to the inclusion operator c . A region 7  includes a 
region 7 ', written 7  D 7 ', if all variables in 7 ' are also part of 7 . We use 7  D 7 ' to denote 
strict inclusion, i.e., 7  D 7 ' and 7 ' D 7. We say that 7  covers 7 '' in R , written 7  >- 7 '', if
7  D 7 '' and there exists no 7 ' € R  such that 7  D 7 ' D 7 '. We can visualize a poset with a 
so-called Hasse diagram or region graph (see the examples below). Given a particular poset 
R , its Hasse diagram G R is a directed acyclic graph, whose vertices are the elements of R , 
and whose edges corresponds to the cover relationships. That is, there is an edge from 7  to 
7 ' iff 7 >- 7 '.

2.3 The C luster V aria tion  M ethod

In Kikuchi’s (1951) original cluster variation method (CVM ), the collections of regions and 
overcounting numbers are constructed as follows. We start by defining a collection O of 
outer regions. The minimal choice is the original set of cliques C, but we can also choose to
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combine cliques and construct larger ones, similar to the process of triangulation (Lauritzen, 
1996). For convenience, we redefine the potentials correspondingly, i.e., such that there is 
precisely one potential ^a (xa) per outer region a  (see the example below).

Given these outer regions, we construct new regions by taking the intersections of these 
outer regions, the intersections of intersections, and so on, until no more intersections can 
be made. We will refer to the regions constructed in this way as inner regions, combined 
in the collection I . The collection of all regions R  in (3) is now the union of the outer and 
inner regions: R  = O U I .

The overcounting or Moebius numbers in the original CVM  follow from the Moebius 
formula

Cy = 1 -  cY • (4)
y'^y

By  definition we have ca = 1 for all outer regions a  € O.
The Bethe free energy can be considered a special case of the Kikuchi free energy. In the 

Bethe free energy there are no intersections of intersections, i.e., there is only one level of 
inner regions with c« = 1 -  n« where n« = ^  aeo-ao,0 1 equals the number of outer regions 
covering inner region ^.

2.3.1 A lt er n a t iv es

Several alternatives to the original CVM , with weaker constraints and/or other constraints 
on the choice of regions and overcounting numbers, have been proposed recently. Yedidia, 
Freeman, and Weiss (2005) present an overview. The particular choice of inner regions 
subsets and overcounting numbers in junction graphs (A ji & McEliece, 2001) and join 
graphs (Dechter, Kask, & Mateescu, 2002) leads to an entropy approximation in which 
all overcounting numbers for the inner regions are negative. The resulting algorithms are 
very similar to the junction tree algorithm, but then applied to a graph with loops. The 
entropy approximation that follows from the original cluster variation method takes into 
account all entropy contributions up to the level of the outer regions in a consistent manner 
and, on theoretical grounds, there seems to be no reason to deviate from that (Pakzad 
& Anantharam, 2005). In this paper, we therefore focus on the original cluster variation 
method, but our analysis holds much more generally for any poset or region graph.

2.4 Constrained M in im ization

The Kikuchi approximation of the free energy only depends on the marginals p(xY) for 
all y  € R . We now replace the minimization of the exact free energy over the complete 
distribution p(x) by minimization of the Kikuchi free energy

F Kikuchi(q) = E E  qa(xa)log ̂ a(xa) + E cy E  9y (xy  )log 9y (xy ) (5)
a€O Xa y^R x7
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E f f i c i e n t  m i n i m i z a t i o n  o f  t h e  K i k u c h i  f r e e  e n e r g y

over all pseudo-marginals q = ; 7  € R }  under the consistency and normalization con
straints

q7 (x7) > 0 V7€rVx7 (positive) (6a)

y ,  (xY ) = 1 V7eR (normalized) (6b)
x7

^  q7/(x7/) = (xY) V7;7/eR;7/37 (consistent) (6c)
x7'\ 7

Referring to the class of pseudo-marginals satisfying these constraints as Q, we have the 
approximation

-  log Z  w min FKikuchi(q) •qeS
Furthermore, the hope is that the pseudo-marginals (xY) corresponding to this mini
mum are accurate approximations of the exact marginals pexact(xY). The Kikuchi free 
energy and corresponding marginals are exact if the Hasse diagram turns out to be singly- 
connected (Pakzad & Anantharam, 2005).

2.5 Illu stra tio n

For illustration of the main concepts, we consider a probability model with 4 variables 
( “nodes” ) and pairwise interactions between each of the nodes as visualized in Figure 1(a). 
In obvious shorthand notation, the exact distribution is of the form

Pexact(x) = ^ \ \  A j (X i,X j) = -1  ̂ 12^13^14^23^24^34 •
{ i j }

Note here that potentials originally defined on single nodes can always be incorporated in 
the definition of the two-node potentials. The region graph corresponding to the minimal 
choice of outer regions, i.e., equivalent to the potential subsets, is given in Figure 1(b). 
W ith  the outer regions all pairs of nodes, the inner regions subsets are all single nodes. In 
fact, in this case the region graph is equivalent to a so-called factor graph (Kschischang, 
Frey, & Loeliger, 2001) and the Kikuchi approximation of the free energy boils down to a 
Bethe approximation:

F Kikuchi(q) = q ij(x i,x j) log^ ij(x i,x j)
{i,j} Xi,Xj

+ E E  q ij(x i,x j) log q ij(x i,x j) + E (1 -  ni) E  qi(xi) log qi(xi) ,
{i,j} xi,xj i xi

where ni = 3 is the number of outer regions containing the inner region i.
The cluster variation method allows us to choose larger outer regions, for example, 

consisting of all triples {i, j, k }. We redefine the factorization of the potentials such that

Pexact(x) = ^  I I  ^ ijfc(X i, Xj,Xfc) = 1̂23̂ 124̂ 134̂ 234 ,
{i,j,fc}
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1 1 1 1 1 1

(a) Markov random field.
(b) Hasse diagram for the Bethe approximation.

1 1 1 1

(c) Region graph for the Kikuchi approximation.

Figure 1: Region graphs for the Bethe and Kikuchi approximations. Lines between nodes 
in the Markov random field (a) indicate edges. In the region graphs (b) and (c), 
the outer regions are drawn at the highest level. Lines indicate the “covering” 
relationship, where lower regions are covered by the higher regions. The oblique 
numbers are the overcounting numbers that follow from the Moebius formula. 
The Bethe approximation (b) corresponds to the minimal approximation with 
the outer regions equivalent to the cliques in the graph; here all pairs of nodes. 
The particular Kikuchi approximation (c) follows by taking for the outer regions 
all node triples.
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for example through (distribute symmetrically)

0123 = [012013023]2

0124 = [012014024] 2 
0134 = [013014034] 2 
0234 = [023024034] 2 ,

or through (assign to the first outer region)

0123 = 012013023
0124 = 014024 
"0134 = 034 
0234 = 1 •

The corresponding region graph is given in Figure 1(c). Now the first-level inner regions 
are all pairs of nodes and the second-level inner regions are all single nodes, with overcount
ing numbers -1 and 1, respectively. The Kikuchi approximation of the entropy boils down 
to

S Kikuchi(q) = S ijfc — Sij + E -  S i •
{i,j,fc} {i,j} i

The intuitive reasoning behind this approximation is as follows. The sum over all three- 
node entropies overcounts the two-node interactions (each combination {i, j } appears twice 
rather than once), which therefore have to be discounted once. But now the single-node 
interactions are too much discounted (overcounting number -1 times 3 appearances, com
pared with the 3 appearances with overcounting number 1 in the three-node entropies), 
yielding the overcounting number 1 — 3 x (1) — 3 x (-1) = 1.

2.6 Generalized and Loopy B e lie f Propagation

To summarize, finding the Kikuchi approximation of the partition function boils down 
to minimization of the Kikuchi free energy with respect to a set of pseudo-marginals under 
linear constraints between them. Introducing Lagrange multipliers for these constraints, it 
can be shown that fixed points of a popular algorithm called loopy belief propagation corre
spond to extrema of the Bethe free energy and, more generally, fixed points of generalized 
belief propagation to extrema of the Kikuchi free energy (Yedidia et al., 2001). However, 
these algorithms are not guaranteed to converge to a minimum and in practice do get stuck 
in for example limit cycles. This explains the search for convergent alternatives that directly 
minimize the Kikuchi free energy, which will be the topic of the rest of this paper.

3. C onvexity  o f th e  K ikuchi Free E nergy

In this section we will derive sufficient conditions for the Kikuchi free energy to be convex 
over the set of consistency constraints (6). This is relevant because if the Kikuchi free 
energy is indeed convex over the constraint set, it must have a unique minimum and the 
minimization problem is relatively straightforward. Furthermore, the argument that we will
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use in deriving these conditions will play an important role in the construction of efficient 
minimization algorithms later on.

3.1 Sufficient Conditions

We have to consider the Kikuchi free energy (5) as a function of the pseudo-marginals q. 
In reasoning about convexity, we can disregard the energy term being linear in q. The 
entropy terms give either a convex or a concave contribution, depending on whether the 
corresponding overcounting numbers are positive or negative, respectively. Ignoring the 
constraints (6), the free energy (5) is convex if and only if all concave contributions vanish,
i.e., cg = 0 for all ft € R _ .

However, we really only care about the subspace induced by the constraints (6). There
fore we introduce the notion of convexity over the set of constraints. We call the free energy 
convex over the set of constraints (6) if

Note that, since the constraints are all linear, if q i and q2 satisfy the constraints (6), then 
so does Aq1 + (1 — A)q2. In the following, when we talk about convexity of the Kikuchi free 
energy, the conditioning on the constraint set is implicitly assumed.

One way to proceed is to make use of the (consistency) constraints to express the Kikuchi 
free energy in terms of the outer region pseudo-marginals only and then study its convexity. 
Our approach is along these lines. In particular, we will replace inner region pseudo
marginals that correspond to concave contributions by outer region pseudo-marginals. The 
pseudo-marginals corresponding to convex contributions are of no concern. In fact, we may 
be able to use these convex contributions as well to compensate for some of the concave 
contributions.

To make this reasoning more precise, we define positive regions (or perhaps better, 
nonnegative) y € R+, with R+ = {7 € R ; cY > 0} = O U I+  and negative regions ft € R - , 
with R - = {y  € R ; cY < 0} = I - . The idea, formulated in the following theorem, is then 
that the Kikuchi free energy is convex if we can compensate the concave contributions of 
the negative regions R - by the convex contributions of the positive regions R+.

Theorem  3.1. The Kikuchi free energy is convex over the set of constraints (6) if there 
exists an “allocation matrix” between positive regions 7  € R+ and negative regions 
ft € R - satisfying

F (Aqi + (1 — A)q2) < A F (q i) + (1 — A )F(qa) Vo<A<iVqi)q2eS .

(Y can be used to compensate ft) 

(positivity)

(7a)

(7b)

(sufficient amount of resources) (7c)

(sufficient compensation) (7d)
7 ^ ^
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P ro o f First of all, we note that we do not have to worry about the energy terms that are 
linear in q. In other words, to prove the theorem we can restrict ourselves to showing that 
minus the entropy

- S (q ) = - c7 (q7) -  |c« |S« (q«)
y€R+ «eR-

is convex over the set of constraints.
As an intermediate step, let us consider the combination of a convex entropy contribution 

of a positive region 7  € R+ with the concave entropy contribution of a negative inner region 
ft € R _ , where ft is a subset of 7 :

A y3(q) = - [S y(q) -  S 3 (q)] = ^  «Y(x7) log «Y(x7) -  E  «3(x3) log «3(x3)
x7 xp

= E  «Y (xY ) log «Y (xY) -  E  «Y (xY ) log «Y (x3)

E ^ y (x« )
xl3

E  ŷ (x a « |x« )lo g qY (x y\ |x« )
Xy\/3

where we used the standard definitions

«7(x3) s  E  «Y(xY) and «Y(xy\3|x3) S  qJ M  ■
«»<x3>

In the first step, we applied the constraint «3 (x^) = «Y(x^) and extended the summation 
over x^ in the second term to a summation over xY. In the second step we basically turned 
the difference between two entropies into (a weighted sum of) conditional entropies. The 
difference A Y3 , which now only depends on «Y, is, from Lemma A .1 in Appendix A, convex 
in «Y. In other words, the concave contribution from £3  is fully compensated by the convex 
contribution SY, yielding an overall convex term in the relevant set of constraints.

The resulting operation is now a matter of resource allocation. For each concave contri
bution |c3 IS3 we have to find convex contributions SY to compensate for it. Let AY3 denote 
the “amount of resources” that we take from positive region 7  € R+ to compensate for 
negative region ft € R _ . Obviously, a positive region can only compensate negative regions 
that it contains, so AY3 = 0 when ft is not a subset of 7 , which explains condition (7a). 
Now, in shorthand notation and with a little bit of rewriting

- S  (q) = - y .  cys y e  |c« |S«
YeR+ «eR-

E  I CY -  E  AY« + E  AY« I SY -  E  I -  E  A Y« + E  A Y« -  |c« 1 ) S « 
YeR+ V «cy «cy ì  «eR- V y^« y^«

E
YeR+

Cy — y .  AY« I SY -  E  E  AY« [SY -  S«] -  E  
«cy )  YeR+ «cy «eR-

y  Ay« -  |c« 1
Y^«

161



H e s k e s

Convexity of the first term is guaranteed if cY — ^ > 0 (7c), of the second term if 
A 73 > 0 (7b), and of the third term if ^ Y AY3 — |c«| > 0 (7d). □

3.2 Checking the Conditions

Checking the conditions of Theorem 3.1 can be cast in the form of a linear programming 
problem, for example as follows. We define an auxiliary variable 0 replacing condition (7c) 
by

^  A 73 = 0 |cg| V3eR_ (variable compensation) (8)
7^3

Then we solve the linear programming problem that attempts to maximize the single vari
able 0 under all constraints implied by the four conditions. The interpretation is that we 
try to use the available resources to compensate for as much of the concave contributions 
as we can. If we find a solution 0* > 1 all conditions are satisfied: the Kikuchi free energy 
is convex over the set of constraints and has a unique minimum. If the optimal 0* turns 
out to be smaller than 1, there is no matrix A satisfying all constraints and convexity of 
the Kikuchi free energy is not guaranteed by Theorem 3.1.

Instead of solving the linear program, we can often get away with simpler checks. For 
example, we can guess a particular A and check whether the conditions (7) hold. An obvious 
choice is

A Y3 = —— with —— = ^  1
cT: with nY
^Y 3€R-,3cy

which satisfies condition (7c) and when substituted into (7d) yields the condition

y€R+,t33 ^Y

Similarly, the choice

a y3 = n r  with = E  1
'*3 t€R+,t33

satisfies condition (7d) and yields the condition

E  + cy — 0 Vy€r+ (10)
3€R-,3cy ^ 3

when substituted into (7c). If (9) or (10) holds, Theorem 3.1 guarantees convexity of the 
Kikuchi free energy.

The above two conditions are sufficient, but not necessary for Theorem 3.1 to apply. A 
necessary condition is

E  c3 + E  cY — 0 (11)
3eR- y€R+

which is easily derived by summing condition (7d) over all ft € R _  and substituting con
dition (7c). If condition (11) fails, we cannot use Theorem 3.1 to prove convexity of the 
Kikuchi free energy.

162



E f f i c i e n t  m i n i m i z a t i o n  o f  t h e  K i k u c h i  f r e e  e n e r g y

We would like to conjecture that the conditions in Theorem 3.1 are not only sufficient, 
but also necessary for convexity of the Kikuchi free energy. We will not pursue this any 
further here, because it is irrelevant for our current purposes. Furthermore, it may not 
be that relevant in practice either, since convexity by itself is a sufficient but not neces
sary condition for a unique minimum. Tatikonda and Jordan (2002), Heskes (2004), Ihler, 
Fisher, and W illsky (2005) give conditions for convergence of loopy belief propagation and 
uniqueness of the minimum of the corresponding Bethe free energy. These conditions do not 
only depend on the graphical structure, but also on the (strength of the) kernels 0 a (xa).

3.3 Re lated  W ork

Chiang and Forney (2001) present similar ideas, about convex entropy terms compensating 
concave terms in the set of constraints, and derive conditions for convexity of the Bethe 
free energy with pairwise potentials. The resulting conditions are formulated in terms of 
single-node marginals, which may be difficult both to validate in practice and to generalize 
to the Kikuchi case.

Closely related to our Theorem 3.1 is the following theorem of Pakzad and Anantharam 
(2002, 2005).

Theorem  3.2. (Pakzad & Anantharam, 2002, 2005) The Kikuchi free energy (5) is convex 
over the set of consistency constraints imposed by a collection of regions R  (and hence the 
constrained minimization problem has a unique solution) if the overcounting numbers cY 
and cy satisfy:

VS c  R , E c t  + E  CY > 0 • (12)
7/GR\S:

3yGS ,yCy'
In  words, for any subset S  of R , the sum of overcounting numbers of elements of S  and all 
their ancestors in R  must be nonnegative.

In fact, using H all’s (1935) matching theorem, it can be shown that the conditions (7) 
in our Theorem 3.1 are equivalent to the conditions (12) in Theorem 3.2. The latter are 
more direct and do not require the solution of a linear program.

Both Theorem 3.1 and Theorem 3.2 can be used to show that the Bethe free energy for 
graphs with a single loop is convex over the set of constraints (Heskes, 2004; McEliece & 
Yildirim , 2003; Pakzad & Anantharam, 2002, 2005).

3.4 M in im ization  of the Convex K iku ch i Free Energy

If the Kikuchi free energy is convex, it is not only guaranteed to have a unique minimum, 
but this minimum is also relatively easy to find with a message-passing algorithm similar 
to standard (loopy) belief propagation.

The basic idea is as follows. We here focus on the case in which all overcounting numbers 
are positive. The case with negative overcounting numbers is more involved and worked 
out in Appendix B. Furthermore, here and in the rest of this paper we ignore the positivity 
constraints (6a). It is easy to check that these are satisfied at the solutions we obtain. We 
introduce Lagrange multipliers Ay Y(xY) for the consistency constraints as well as AY for the
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normalization constraints and construct the Lagrangian

L (q  A) — F Kikuchi(q) + E E  Ay7 (x7) lq7 (x7) -  Y  (x7' )
y' Y xY 7Cy'

+ y  ̂ 7 1 - y  qY (xy ) (13)
7

Minimization of the Kikuchi free energy under the appropriate consistency and normaliza
tion constraints is, in terms of this Lagrangian, equivalent to

where the minimization over q is now unconstrained. Standard results from constrained 
optimization (e.g., Luenberger, 1984) tell us that

with equality for convex problems under linear equality constraints. That is, for convex 
problems we are allowed to interchange the maximum over A and the minimum over q. 
Furthermore, the optimal q*(A) corresponding to the minimum of the Lagrangian (13) as 
a function of A is unique, since L(q , A) is convex in q for all A. Substitution of the solution 
then yields the so-called dual

This dual is concave in A and has a unique maximum.
Many algorithms can be used to find the maximum of the dual (14). A particular 

one, derived in Appendix B , is given in Algorithm 1. It slightly differs from those presented 
by Yedidia et al. (2005) and Yuille (2002) by sending messages (messages are directly related 
to Lagrange multipliers) only between inner regions and outer regions, i.e., never between 
inner regions subsets and other inner regions. The price one has to pay is that the update in 
line 7 depends on the overcounting number c«. For the Bethe free energy, with c« = 1 — n«, 
we obtain the standard (loopy) belief propagation update rules. The particular ordering 
in Algorithm 1, running over inner regions and updating the messages between an inner 
region and all its neighboring outer regions, guarantees that the dual (14) increases at each 
iteration1. The local partition functions Za and Z« in lines 10 and 7 are chosen such as 
to normalize the pseudo-marginals qa (xa) and q«(x«). This normalization is not strictly 
necessary, but helps to prevent numerical instability. Algorithm 1 can be initialized by 
setting all messages (x«) = 1 and skipping lines 3 to 6 at the first iteration.

1. For positive overcounting numbers cp. The argumentation with negative overcounting numbers is more 
complicated and may require damping of the updates to achieve convergence. See Appendix B for details.

min FKikuchi(q) — min max L(q , A) ,

min max L(q , A) > max min L(q , A) ,q A A q

L*(A ) = min L(q , A) — L(q*(A ), A) . (14)
q
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A lgorithm  1 Message-passing algorithm for constrained minimization of a Kikuchi free 
energy.

1: w hile -converged do
2: for a ll ft € Z  do
3: for a ll a  € O, a  D ft do
4: q«(x^) = Y  9« (x« )

xa\p
^  q«(x3)5: -a^3(x3) = - (x )

—3^« (x3 )
6: end for

7: (x 3 ) = ^  n  -«^3(x3 r p+cp
Z3 aeO,

aDp
8: for a ll a  € O, a  D ft do

/ x 93(x3)9: -3^« (x3) = ---- (—r
—a^3 (x3 )

10: qa (xa) — 0 a (xa) H  —3^«(x3)
Z« pel,PCa

11: end for 
12: end for 
13: end w hile

4. D ouble-L oop A lgorithm s for G uaranteed  C onvergence

Even when the Kikuchi free energy is not convex, we can still run Algorithm 1 in the 
hope that it converges to a fixed point. This fixed point then must correspond to an 
extremum of the Kikuchi free energy under the appropriate constraints (Yedidia et al., 
2001). Even better, empirically for the general Kikuchi free energy and provably for the 
Bethe free energy (Heskes, 2003), this extremum is in fact a minimum. However, in practice 
this single-loop2 algorithm does not always converge and we have to resort to double-loop 
algorithms to guarantee convergence to a minimum of the Kikuchi free energy.

4.1 The G eneral Procedure

We introduce a class of such double-loop algorithms based on the following theorem.

2. Note that “single loop” here refers to the message-passing algorithm and has nothing to do with the 
notion of a single loop in the graphical model.
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Theorem  4.1. Given a function F con.

F convex(q; q ) ^ F Kikuchi(q) 

F convex (q; q) — F Kikuchi(q) and

{(q; q') with properties 

Vq,q'€Q

c(q; qO
d q q'=q

dFKikuchi(q)
dq V,qeS

Fconvex(q; q') is convex in q e Q  

the algorithm

V

qn+1 — argmin F a 
qeS

q'eS

c(q; qn) ,

(bound)

(touching)

(convex)

(15a)

(15b)

(15c)

(16)

with qn the pseudo-marginals at iteration n, is guaranteed to converge to a local minimum 
of the Kikuchi free energy F Kikuchi(q) under the appropriate constraints.

P ro o f It is immediate that the Kikuchi free energy decreases with each iteration:

F Kikuchi(qn+1) < F convex(qn+1; qn) < F convex(qn; qn) — F Kikuchi(qn) j

where the first inequality follows from condition (15a) (upper bound) and the second from 
the definition of the algorithm. The gradient property (15b) ensures that the algorithm is 
only stationary in points where the gradient of F Kikuchi is zero. B y  construction qn e Q for 
all n. □

See Figure 2 for an illustration of the algorithm and the proof. In fact, the convexity 
of F convex has not been used to establish the proof. But, as argued in Section 3.4, from an 
algorithmic point of view constrained minimization of a convex functional is much simpler 
than constrained minimization of a non-convex functional. This general idea, replacing 
the minimization of a complex functional by the consecutive minimization of an easier 
to handle upper bound of this functional, forms the basis of popular algorithms such as 
the EM  algorithm (Dempster, Laird, & Rubin, 1977; Neal & Hinton, 1998) and iterative 
scaling/iterative proportional fitting (Darroch & Ratcliff, 1972; Jirousek & Preucil, 1995). 
Intuitively, the tighter the bound, the faster the algorithm.

4.2 Bounding the Concave Term s

As a first step, to lay out the main ideas, we build a convex bound by removing all concave 
entropy contributions for ft e I _ .  To do so, we will make use of the linear bound

-  Y  (x^) log (x^) -  _  £  q (̂x^) log q (̂x^) (1 7 )

which directly follows from

0 < K L (q ,̂ q )̂ — Y  q (̂x3) log q̂  (x3) 
q̂  (x3)

166



E f f i c i e n t  m i n i m i z a t i o n  o f  t h e  K i k u c h i  f r e e  e n e r g y

Figure 2: Illustration of the proposed algorithm and corresponding convergence proof. At 
iteration n, F convex(q; qn) (dashed line) is a convex bound of the non-convex 
Fkikuchi(q) (solid line). They touch at q„, point (1), where FConvex(qra; qn) = 
FKikuchi(qn)- At the minimum, point (2), we have FConvex(qn+i; qn) < 
F convex(qn; qn). The corresponding Kikuchi free energy, point (3), obeys 
Fkikuchi(qn+i) < Fconvex(qn+i; qn) because of the bounding property.

with K L  the Kullback-Leibler divergence. Our choice F convex then reads

qa (xa)
F convex(q ; q ) q«(xa):

0 «(x«) + £  qß (xß )lo g qß (xß)
ßex+ xß

Y  icß ^  qß(xß)lo gqß(xß)+  E  icßi
ßei- xß ßei-

1 “ E  qß (xß) . (18)

It is easy to check that this functional has properties (15a) and (15c). The last term has 
been added to fulfill property (15b). Next we make the crucial observation that, using the 
constraints (6) and for fixed q ', we can rewrite F ic[i)vex in the “normal form” (5):

F convex(q; q ) q«(x«)
q«(xa)

_0 a (xa).
+ E  qß (xß) log qß (xß) + C  (q) , (19)

where C (q ) evaluates to zero for all q e Q and where 0, which implicitly depends on q ', 
and c are defined through

log 0 a (xa) = log 0 a (xa) + ^  ^  log qß (xß) and Cß = |
APT , nß IßpT-,ßCc

cß Vße!+
(2o)

That is, we can always to incorporate the terms now linear in q̂  in the energy term by 
redefinition of the potentials. Here we have chosen to distribute each of these terms equally 
over the n^ neighboring outer regions, but other choices are possible as well.
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The term C (q ) in (19) evaluates to zero for all q € Q and is thus irrelevant to the 
optimization in the inner loop. It consists of terms such as the last one in (18) that only 
serve to make the bound F c(0nvex satisfy (15b). In the construction of other bounds below, 
we will ignore such terms: they do not affect the algorithm in any way3.

Now that we have F c(cmvex both convex and in normal form, we can use Algorithm 1 to 
solve the constrained problem (16). The resulting double-loop algorithm can be described 
in two lines.

O uter loop: recompute 0 from (20) with q' = qn.

In n e r loop: run Algorithm 1 with 0 for 0 and c for c, yielding qn+i.

In each inner loop, we can initialize the messages to the converged values of the previous 
inner loop.

4.3 Bounding the Convex Term s

In this section we will show that in many cases we can make the algorithm both better 
and simpler. The idea is to bound not only the concave, but also the convex entropy 
contributions from inner regions. That is, we enforce = 0 Vft € I  and set

F convex(q ; q ) = EE q«(xa)log
qa (xa) 

.■^(Xa).
(21)

with now
log ■a(Xa) = log ■a(Xa) -  ^  ~  log ̂ (x,3) .

3Ca
(22)

Let us first explain why the algorithm based on F convex is simpler than the one based on 
F c(0nvex. In (21), all reference to inner regions has disappeared. In fact, the only constraints 
that we have to care about are that the outer regions pseudo-marginals should agree on 
their intersections. Consequently, in the inner loop (Algorithm 1), we only have to run over 
those inner regions ft that are direct intersections of the outer regions, that is, those ft for 
which there exist outer regions a  and a ' such that x^ = xa n xa/. Similar arguments can be 
used for the algorithm based on (19) as well, neglecting all negative inner regions ft € I - 
that do not correspond to direct intersections of outer regions. In practice, however, most 
negative inner regions are direct intersections of the outer regions, whereas many positive 
inner regions arise at the next level, from intersections of intersections. See for instance the 
example of Figure 1, where all six negative inner regions are direct intersections of outer 
regions, in contrast with all four positive inner regions.

(2) /From (17), but now applied to the positive inner regions, it is clear that F Co„vex(q; q ') <
F c(0nvex(q; q '): when it is a bound, F c(0nvex is a tighter bound than F c(0nvex and we can expect

(2) to perform better. It remains to be shown under which 
(q; q ). This is where the following theorem comes in.

the algorithm based on F convex
A2)convexconditions FKikuchi(q) < FC

3. Alternatively, we could relax condition (15b) to the statement that the gradients of Fconvex and Fkikuchi 
only have to be equal in the subspace orthogonal to the constraints. With this milder condition, C (q) 
as well as the last term (18) are no longer needed.
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Theorem  4.2. The functional F convex in (21) is a convex bound of the Kikuchi free en
ergy (5) if there exists an “allocation matrix” between negative inner regions y € I - 
and positive inner regions ft € I+  satisfying

A 3 = 0 only if  y D ft

Ay3 > 0

Ay3 < 1CY1 ^Y^I—
3cy

(y  can be used to compensate ft)  (23a) 

(positivity) (23b)

(sufficient amount of resources) (23c)

Y  Ay3 > c3 v3ei+ 
y^3

(sufficient compensation) (23d)

P ro o f Not surprisingly, the proof follows the same line of reasoning as the proof of Theo
rem 3.1. First we consider the combination of a concave entropy contribution from y  € Z _ 
as in (17) with a convex entropy contribution from ft € I+ ,ft C Y:

-  (x y ) log 9y (x y ) + q3 (x3) log q3 (x3) <
x7 Xp

— Y1  (xy ) log (xy ) + q3 (x3) log q3 (x3) > (24)

which follows from

0 < q3 (x3 M  qY (xy\3 |x3)
qY(xy\3 |x3) 

_qj (xy\3 |x3 ) _

qY (x y ) q7 (x3) 
.qY (x3) q̂  (x y ) _

where we recognize the term between braces as a Kullback-Leibler divergence between two 
probability distributions.

(2)To show that the difference between Fconvex and F Kikuchi is nonnegative, we should be 
able to compensate each of the concave contributions C3 for all ft € I+  with convex con
tributions from y € with y D ft, without exceeding the available amount of “resources” 
|cY |. In shorthand notation, with

K 3 = q3 (x3 )lo g
q3 (x3)
q3 (x3)

we have the decomposition

F coiivex F Kikuchi E C3 K 3 = E |cy |Ky — E C3 K 3 
3 ̂ I y ̂ I— 3 ̂ I+

= Y  ( |cy 1 — Y  Ay3 ] K y + Y  Y  A y3(k y — K 3) + Y  ( Y  Ay3 — c3 ) k 3 > 0 
Yei— V 3cy / Yei— 3cy 3ei+ \y33
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(a) Outer regions.
2

-1
5

-1
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(b) Region graph.

Figure 3: Smallest example showing that the conditions for Theorem 4.2 need not always 
hold for a region graph and overcounting numbers constructed with the cluster 
variation method. (a) Visualization of the outer regions: black means that the 
variable (1 to 7) is part of the outer region (1 to 6).

(b) Region graph with overcounting numbers in boldface. The positive overcounting num
bers at the third level just outweigh the negative overcounting numbers at the second level.

1 2

where the inequality follows since each of the terms itself is guaranteed to be nonnegative 
when the conditions (23) are satisfied. □

As above, the conditions of Theorem 4.2 can be checked with a linear program. Having 
generated many different sets of overcounting numbers resulting from the Moebius for
mula (4), we started wondering whether the conditions (23) are perhaps automatically sat
isfied. However, exhaustively checking all possible outer region combinations given a fixed 
number of variables, we did come up with a counterexample. The smallest counterexample 
that violates the conditions for Theorem 4.2, is illustrated in Figure 3.

Even if, as in this counterexample, not all positive inner regions can be compensated for 
by negative inner regions, it will pay to get rid of as many as possible. Finding the optimal 
assignment may be a complex problem, but heuristics are easy to find (see Appendix C).

4.4 Pu llin g  O ut a Tree or M ore

In the previous section we tightened the convex bound FColvex of the Kikuchi free energy 
Fkikuchi by bounding convex contributions from positive regions as well. Another way to 
get a tighter bound is to bound only part of the concave contributions from the negative
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inner regions. We will first illustrate this by considering the Bethe free energy, i.e., just 
non-overlapping negative inner regions (nodes) with cp = 1 — np.

The Bethe free energy is convex for singly-connected structures. Inspired by Teh and 
Welling (2002), we choose a set of nodes ft € I bound such that the remaining nodes ft € Xfree 
become singly-connected and take

F cô vex(q; qO = ^ q « (x« )lo g x r H  + (1 — np) £  qp(xp)lo gqp(xp)a xa L^«(x«^  peJfree X(3

+ E  (1 — nP ) E  qp(xp)lo g qp(xp) . (25)
p^bound xp

That is, we bound the entropy terms corresponding to the “bounded” nodes ft € I bound and 
simply keep the entropy terms correspond to the “free” nodes ft € lfree. B y  construction 
F convex satisfies all conditions (15). Furthermore, it can be rewritten in the normal form (5) 
with definitions

log 'Ipa(xa) = log0 « (x« ) — Y  1 n^ p logq^(xP) and cP = {  0 — np v P JlbC>Und .
p62bound’ P P P free

Note that the resulting inner-loop algorithm is not completely equivalent to running stan
dard belief propagation on the tree of all free nodes: we do have to send messages to and 
from the bounded nodes ft € I bound as well to enforce the constraints qa(xp) = qa>(xp) for
a, a! D ft.

Rather than pulling out a single tree, we can also pull out “a convex combination of 
trees” . That is, suppose that we have several bounds, each of them the result of pulling 
out a particular tree and with a corresponding set of overcounting numbers ci . Then any 
convex combination

cp = ^  WiCp with wi > 0 and ^  wi = 1
i i

also corresponds to a convex bound. More generally, we can combine the ideas in this 
and the previous section by choosing cp such that the resulting bound is just convex. A 
procedure for doing so is given in Appendix C. Basically, we first try to shield as much of 
the concave entropy contributions by convex entropy contributions as we can. Next, we 
tighten the bound further by incorporating convex contributions in the linear bounds of the 
concave contributions that we did not manage to shield in the first step. Both steps can be 
cast in the form of an easy to solve linear programming problem.

4.5 Re lated  W ork

The double-loop algorithm described in Section 4.2 and based on F c(c[i)vex is closely related 
to Yuille’s (2002) CCCP (concave-convex procedure) algorithm. Although originally for
mulated in a completely different way, CCCP applied for minimization of the Kikuchi free 
energy can also be understood as a particular case of the general procedure outlined in 
Theorem 4.1. More specifically, it is based on bounding the concave contributions with

—|cp ^  qp(xp) logqp(xp) < qp(xp) logqp(xp) — (|cp1 — 1 )Y1  qp(xp) logqp(xp) > (26)
xp xp xp
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which is to be compared with (17). That is, before bounding the concave entropy contri
butions, part of these concave terms are taken over to the “convex side” . The reason for 
doing so is that the CCCP algorithm requires the functional to be convex, independent of 
the constraints involved4. Our procedure, on the other hand, makes use of the fact that 
the functional only has to be convex over the set of constraints. This allows us to use 
tighter bounds, yielding more efficient and sometimes simpler algorithms. On a less impor
tant note, the inner-loop algorithm and in particular the message-passing scheme applied 
by Yuille (2002) is somewhat different.

The double-loop algorithm based on F cvonvex in (25) is inspired by Teh and Welling’s 
(2002) U PS (unified propagation and scaling) algorithm. The difference is that where we 
bound the entropy contributions from nodes on the tree, in U PS these nodes (and thus 
the entropy contributions) are clamped to the values resulting from the previous inner loop. 
That is, each inner loop in the U PS algorithm corresponds to minimizing

qa (xa)
F convex(q ) q ) qa(xa)log

^a(xa) + E  (1 -  np q p  (xp )log qp (xp)
P€Xfree

(1 -  np) £  qp (xp) log qp (xp) •
P Î clamped xp

under the constraints

qa (xp) = qp (xP) Vpei free)a3p , yet qa (xp) = qp (xp) VPeIclamped,«3P •

This boils down to an iterative scaling algorithm, which is also relatively easy to solve. 
At each outer-loop iteration, a different choice is made for I free and I clamped. The U PS 
algorithm can be understood as coordinate descent and is guaranteed to converge to a 
local minimum of Bethe free energy (under appropriate conditions on the choices made for 
I free and I clamped). The inner loop that results from F cvonvex also allows for changes in the 
marginals qp(xp) for ft e Xbound, i.e., is more flexible and can make larger steps. Loosely 
speaking, F c(0¿!vex is again a tighter bound than F O n ^ . Furthermore, in our approach we 
can but do not have to choose different subdivisions between “bounded” and “free” nodes 
within each inner loop.

Wainwright, Jaakkola, and W illsky (2002b, 2002a) present similar ideas, exploiting the 
convexity of the Bethe free energy on tree structures. Wainwright et al. (2002b) use the 
tree structure to obtain a more efficient implementation of loopy belief propagation, without 
however guaranteeing convergence. Wainwright et al. (2002a) show that particular convex 
combinations of convex Bethe free energies lead to convex bounds on the exact Helmholtz 
free energy (2). In these bounds, the overcounting numbers of the inner regions still follow 
the Moebius relation (4), but the overcounting numbers for the outer regions are smaller 
than or equal to 1. Constrained minimization of such a bound is very similar to constrained

(3)minimization of F cvonvex and the algorithm used by Wainwright, Jaakkola, and W illsky (2003) 
is indeed closely related to Algorithm 1.
4. The procedure described by Yuille (2002) often even moves part of the convex terms to the concave side. 

This makes the (implicit) bound even worse and the corresponding algorithm slower. In the following 
we will stick to the more favorable interpretation of the CCCP algorithm that is based on the implicit 
bound (26).
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5. S im ulations

Intuitively, we would expect the algorithms based on the tightest bound to converge the 
fastest in terms of outer-loop iterations. However, with larger steps in the outer loop, 
we might need more inner-loop iterations to achieve convergence in the inner loop. The 
following simulations are designed to check this.

5.1 G eneral Set-up

In the simulations we compare four different algorithms, each of them based on a different 
bound.

just_convex The tightest bound of the Kikuchi free energy that is just convex. Based on 
the ideas described in Section 4.4 and Appendix C.

negative_to_zero The bound obtained by setting all negative overcounting numbers to 
zero, as explained in Section 4.2.

all_to_zero The bound described in Section 4.3 that follows by setting all overcounting 
numbers, both negative and positive, to zero. In all models considered below, the 
overcounting numbers satisfy the conditions of Theorem 4.2, i.e., setting them to zero 
indeed yields a bound on the Kikuchi free energy. Note further that all_to_zero is 
equivalent to negative_to_zero for the Bethe free energy.

cccp The (rather favorable interpretation of the) bound implicit in Yuille’s (2002) CCCP 
algorithm, as explained in Section 4.5.

Algorithm 1 is applied in the inner loop of all these algorithms: the only difference 
between them is the setting of the overcounting numbers Cp implied by the bound. Each 
inner loop runs until a preset convergence criterion is met. Specifically, we end the inner loop 
when all inner region marginals change less then 10-4. W ith  this criterion all algorithms 
happened to converge, which probably would also have been the case with looser criteria. 
For example, Yuille (2002) reports that two inner-loop iterations were sufficient to obtain 
convergence.

In all simulations we report on the Kullback-Leibler (K L ) divergence between exact and 
approximate marginals, either summed over all nodes or over a subset of nodes. Plots for 
the different error functions all look very much the same. The Kikuchi/Bethe free energy 
itself is somewhat less illustrative: when it is very close to its minimum, the marginals and 
thus K L  divergence can still change considerably. We visualize the K L  divergence both as 
a function of outer-loop iterations and as a function of floating point operations, where we 
count only the necessary operations involved in the inner-loop and outer-loop updates (i.e., 
not those involved in convergence checks, computing the K L  divergence, and so on). In 
comparing the number of inner-loop iterations used by the different algorithms to meet the 
convergence criterion, we scale the outer-loop iterations relative to the outer-loop iterations 
of the just_convex algorithm. That is, for each number of outer-loop iterations used by an 
algorithm to reach a particular level of accuracy, we consider the corresponding number of 
outer-loop iterations used by the just_convex algorithm to reach the same level.
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(a) (b)

outer-loop iterations flops x ,^6

Figure 4: Bethe approximation on a 9 x 9 Boltzmann grid. Kullback-Leibler divergence 
between exact and approximate single-node marginals as a function of the outer- 
loop iterations (a) and floating point operations (b) for three different algorithms.

We have done simulations on quite a number of different problems and problem in
stances, involving both Markov random fields and Bayesian networks. The results shown 
here are exemplary and meant to illustrate the more general findings that we will summarize 
below.

5.2 Bethe  Free Energ y on a Bo ltzm ann G rid

Our first set of simulations concerns the minimization of the Bethe free energy on a Boltz
mann grid of 9 x 9 nodes with pairwise interactions of the form

(xi ,x j) = exp Wij (2xi — 1) (2xj — 1) +— - (2xi — 1) +— j  (2xj — 1)Hi Hi (27)

where ni is the number of neighbors of node i, i.e., 2 for a corner node, 3 for other nodes 
on the boundary, and 4 for nodes in the middle. Weights W j and biases ti are drawn at 
random from a normal distribution with mean zero and standard deviation 0.5. In the 
Bethe approximation the outer regions are all pairs of neighboring nodes.

Figure 4 shows the summed K L  divergence between exact and approximate single-node 
marginals as a function of the number of outer loop iterations (a) and as a function of 
the number of floating point operations (b) for the just_convex, negative_to_zero, and 
cccp algorithms. It can be seen that, as expected, the just_convex algorithms converges 
faster than the negative_to_zero algorithm, which itself converges faster than the cccp al
gorithm. The speed-up in terms of outer-loop iterations translates into an almost equivalent 
speed-up in terms of flops. Indeed, as can be seen in Figure 5(a), the number of inner-loop 
iterations required by the just_convex algorithm is just slightly higher than that of the 
other two algorithms.

The curves in Figure 4(a) can be mapped onto each other with a rough linear scaling 
of the number of outer-loop iterations. This is also suggested by the straight lines in
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Figure 5: Bethe approximation on a 9 x 9 Boltzmann grid. (a) Outer loop iterations of 
the just_convex algorithm versus the corresponding outer-loop iterations of the 
other two algorithms. (b) Number of inner loop iterations needed to meet the 
convergence criterion as a function of the outer-loop iterations, scaled according 
to (a).

Figure 5(a). The slope of these lines relate to each other as 0.34, 1 (by definition), and 1.35 
for just_convex, negative_to_zero and cccp, respectively (see also the convergence rates 
in Table 1). The following argumentation shows that there is a striking correspondence 
between these numbers and the respective bounds. The negative overcounting numbers 
for the Bethe free energy Fkikuchi add up to ^ p^x_ cp = -207. For the respective convex 
bounds F convex, these sums are ^ p ex_ cp = -144, 0, and 81. If we now translate these into 
the fraction of “negative overcounting mass” that is “bounded” , i.e.,

cP — Spex_ cp 
cp

we obtain, respectively 0.30, 1 (by definition), and 1.39. That is, there appears to be an 
almost linear relationship between the tightness of the bound (here expressed in the fraction 
of concave entropy contributions that is bounded linearly) and the speed of convergence. 
We have noticed the same almost linear relationship in all other simulations involving a 
Bethe free energy (no positive overcounting numbers).

5.3 K iku ch i Free En erg y on a Bo ltzm ann G rid

Our second set of simulations is also on a 9 x 9 Boltzmann grid, where now the outer regions 
are chosen to be all squares of four neighboring nodes. Potentials are of the form (27) with 
weights and biases drawn from a normal distribution with standard deviation 4 and 0.5, 
respectively. Note that the size of the weights is much larger than in the previous set of 
simulations, to make the problem still a bit of a challenge for the Kikuchi approximation. 
W ith  these weights, the Bethe approximation does very badly (summed Kullback-Leibler
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Figure 6 : Kikuchi approximation on a 9 x 9 Boltzmann grid. Kullback-Leibler divergence 
between exact and approximate single-node marginals as a function of the outer- 
loop iterations (a) and floating point operations (b) for four different algorithms.

divergence larger than 10). Both for the Bethe and for the Kikuchi algorithm, the single
loop algorithm has convergence problems: for the Bethe approximation it typically gets 
stuck in a limit cycle and for the Kikuchi approximation it tends to diverge. In total there 
are 8 x 8 = 64 outer regions and (8 x 7) x 2 = 122 negative inner regions (all node pairs 
that correspond to intersections of the outer regions) and 7 x 7 = 49 positive inner regions 
(all single nodes that correspond to intersections of the node pairs).

Figure 6 shows the K L  divergence between approximate and exact single-node marginals 
for the four different algorithms in terms of the outer-loop iterations (a) and floating point 
operations (b). It can be seen that the ordering in (a) is again as expected: the tighter the 
bound, the faster the algorithm. In terms of floating point operations, the just_convex and 
all_to_zero algorithm get much closer together.

Part of the explanation is given in Figure 7: the just_convex algorithm requires con
siderably more inner-loop iterations to meet the same convergence criterion. The other 
effect is that the all_to_zero algorithm in its inner loop only runs over the 112 negative 
inner regions instead of all 161 positive and negative inner regions. This makes that each 
inner-loop iteration of all_to_zero requires a factor 1.8 less floating point operations than 
an inner-loop iteration of the other three algorithms.

Here it is more difficult to find a quantitative relationship between the tightness of 
the bounds and the (asymptotic) convergence rates. One of the complications is that not 
only the negative, but also the positive overcounting numbers play a role. In any case, all 
algorithms still seem to converge linearly, with faster convergence rates for tighter bounds. 
These convergence rates, expressed as the time scale of the corresponding exponential decay 
(K L (t) — K L(ro ) rc exp[-t/ r], with t and t  in outer-loop iterations), are summarized in 
Table 1.
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Figure 7: Kikuchi approximation on a 9 x 9 Boltzmann grid. (a) Outer loop iterations of 
the just_convex algorithm versus the corresponding outer-loop iterations of the 
other three algorithms. (b) Number of inner loop iterations needed to meet the 
convergence criterion as a function of the outer-loop iterations, scaled according 
to (a).

Figure 8 : Graphical structure of the QMR-like network.

5.4 A  Q M R  N etw ork

Our third set of simulations concerns a QMR-like (Quick Medical Reference) Bayesian 
network (Heckerman, 1989; Jaakkola & Jordan, 1999): a bipartite graph with a layer of 
disease nodes and a layer of findings. The particular network used in these simulations has 
been generated with the Bayes Net Toolbox (Murphy, 2001). It contains 20 finding nodes, 
of which 18 are observed (positive), and 10 hidden disease nodes; see Figure 8 . The diseases 
have Bernoulli probability distributions with a prior drawn at random between 0 and 0.01. 
The findings have noisy-or conditional probability distributions without leakage. Diseases 
and findings are linked randomly with probability 0.5. The absence of leakage, large amount 
of findings, and strong connectivity make this a relatively difficult inference problem. As 
outer regions we take the subsets implied by the conditional probability distribution, i.e., 
each outer region consists of a disease and all findings linked to it. Figure 9 gives the 
corresponding region graph.
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Figure 9: Region graph resulting from the QMR-like network.
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Figure 10: Kikuchi approximation on a QMR-like network. Kullback-Leibler divergence 
between exact and approximate single-node marginals as a function of the outer- 
loop iterations (a) and floating point operations (b) for four different algorithms.
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Figure 11: Kikuchi approximation on a QMR-like network. (a) Outer loop iterations of the 
just_convex algorithm versus the corresponding outer-loop iterations of the 
other three algorithms. (b) Number of inner loop iterations needed to meet the 
convergence criterion as a function of the outer-loop iterations, scaled according 
to (a).

Bethe Kikuchi Q M R
- + T - + T - + T

original -207 0 - -112 49 - -54 35 -
just_convex -144 0 3.8 -64 1 11 -34 15 6

negative_to_zero 0 0 11.3 0 49 41 0 35 67
all_to_zero 0 0 11.3 0 0 29 0 0 17

cccp 81 0 15.3 112 49 153 52 35 166

Table 1: Summary of asymptotic convergence (t is the time constant, with time in outer- 
loop iterations, in the exponential decay) and sums of negative and positive over
counting numbers in the original Kikuchi/Bethe free energy and the convex bounds 
used by the different algorithms.

The results can be found in Figure 10 and 11. They are comparable with those for the 
Kikuchi approximation on the Boltzmann grid. Also here the single-loop algorithm fails 
to converge. The just_convex algorithm converges much faster than the other three algo
rithms, but requires more inner-loop iterations and is less efficient than the all_to_zero al
gorithm, which makes the latter preferable in terms of floating point operations. However, 
it is relatively straightforward to speed-up the just_convex algorithm. First, we probably 
do not need that many inner-loop iterations for the outer loop to converge properly. And 
secondly, where we now bound part of each entropy contribution, a more efficient choice 
would have as many zero overcounting numbers as possible.
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5.5 G eneral Findings

Here we summarize some of the points that have been illustrated above and that we have 
encountered in many other simulations as well.

• The tighter the (convex) bound used in the inner loop, the faster the convergence in 
terms of outer-loop iterations.

• The number of outer-loop iterations needed to meet a prespecified convergence crite
rion tends to decrease with a looser bound, but never nearly enough to compensate 
for the slower convergence in the outer loop.

• In fact, we have only observed a strong dependency between this number of inner-loop 
iterations and the tightness of the bound if the bound is just convex and the problem 
is “hard” in the sense that a single-loop algorithm would fail to converge.

• In terms of floating point operations, a looser bound that sets all overcounting numbers 
in the inner loop to zero, can beat a tighter bound with negative overcounting numbers: 
the slower convergence in terms of outer-loop iterations is compensated by a more 
efficient inner loop.

Pelizzola (2005) tests several convergent algorithms on Kikuchi approximations of prob
lems in statistical physics and reports similar findings. Also in this study, the just_convex al
gorithm, described for the first time by Heskes, Albers, and Kappen (2003), clearly outper
forms all competitors.

6. D iscussion

This article is based on the perspective that we are interested in minima of the Kikuchi 
free energy under appropriate constraints. Finding such a minimum then becomes a pos
sibly non-convex constrained minimization problem. Here, as well as in other studies, the 
approach has been to solve this non-convex problem through sequential constrained min
imization of convex bounds on the Kikuchi free energy. On the presumption that tighter 
bounds yield faster algorithms, we have worked out several ideas to construct tight convex 
bounds. The simulation results in this article as well as those obtained by Pelizzola (2005) 
clearly validate this presumption and show that the speed-ups can be very significant. 
Heskes, Zoeter, and Wiegerinck (2004) apply these bounds for (approximate) parameter 
learning in directed graphical models.

The double-loop algorithms considered in this article are all based on convex bounds 
of the Kikuchi free energy. In principle, this is not necessary: our only concern is that 
the inner-loop algorithm converges and this might well be the case for tighter bounds. One 
practical solution is to simply choose a (tight) bound on the Kikuchi free, check whether the 
inner-loop algorithm does converge, and restart with a looser bound if not. Alternatively, 
we can construct tighter bounds making use of conditions for guaranteed convergence of 
belief propagation such as those derived by Tatikonda and Jordan (2002), Heskes (2004), 
Ihler et al. (2005) for the Bethe approximation.

It has been suggested that non-convergence of single-loop generalized/loopy belief prop
agation by itself is an indication that the Kikuchi/Bethe approximation is inaccurate. The
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results in Section 5.3 and 5.4 show that this need not always be the case. Apparently, there 
does exist a “middle range” of problems where the Kikuchi free energy is not easy to min
imize, but does yield decent approximations. It is on these problems that the algorithms 
described in this article are useful.
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A p p en d ix  A: C onvexity  o f th e  D ifference betw een  Tw o E ntropies

This appendix treats two lemmas on the convexity of the difference between two entropies. 
The first one is used in the proof of Theorem 3.1. A similar lemma is used by McEliece and 
Yildirim  (2003).

Lem m a A.1. The difference between two entropies

A JI3(Qy) = qY (XY) log Qy (xY) -  qY (Xp) log Qy (XP)

Y qY (XP ) Qy (xy\PX )  log Qy(xy\P X )
*Y\P

is convex in qY.

P ro o f We take a step backwards and write A Yp out as

A yP (Qy ) = Qy (xy ):
qY (xY )

7\P

When taking derivatives, we best interpret the table qY, specifying the value qY(xY) for each 
possible realization x y , as a vector with x y playing the role of an index. Taking second 
derivatives, we then obtain

d2A lP  (qy)
x7 ,x̂ V HY

1

Oqy (x y )3qy (xY) Qy (xy) Ix
1

Y ’x7 Qy (xP )
I

with I x x/ = 1 if all elements of x  and x ' are equal and zero otherwise.

/ —
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Next we would like to show that this matrix is positive semi-definite, i.e., that for all 
tables q again to be interpreted as vectors with indices xY,

n ^ V "1 ~i \ tj î \~( r \ V "1 q2(x7) q(xY)(?(xy ) r
0 < E q(xY m * ,x (qYm*-,) = E ̂ -  E , , (x , )  ^ X

E E
XP [ X7\P

e (e
Xp I X7\P

92(xy\p » xp) 
(xy\p »xp ) E

X7\p ,Xy\P

(xY\p» xp)(?(xY\p» xp)

E x7\, q 'K\p »x p )92(xy\p » xp) 
q7 (x7\p » xp) E x y\ p 9y (xy\p »xp)

From Cauchy’s inequality,

E ak E b y^afc bk
k

it follows that the term between braces is indeed semi-positive for each realization of xp. 
To see this, we make the substitutions xY\p ^  k, Q(xY\p, xp)/^/qY(xY\p, xp) ^  ak, and

^Qy (xy\p , xp) ^  6fc to find

{ . . . } ^ £  ak -  akb2k ]2 > 0 . □
k S k  bk

The following related lemma is used in Appendix B.

Lem m a A.2. The difference between two entropies

a yp (qY » qp) = Y  q~i (xy ) log ̂ 7 (xy ) -  Y1  qY(xp ) log qp (xp )

is convex in {qY, qp}.

P ro o f The Hessian matrix has components

H X7 ,XY —
d ^ p  (qY ) = 1 

dqY (xy)dqY(xY) qY(xy) 
d 2Ayp (qY )

dqY (x y )dqp (xp) qp (xp)
d2AYP (qY) qY (xp)

,x̂

X3 ,xp

dqp(x p )dqp(xP) qp(x p ) xp,x

2

2
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Convexity requires that for any q = (qY(xY), qp(xp))

0 < ( q7 (x7) qp (xp) )
H x

q2 (xY)
qY (xY) 

qY (xY )

2 E
q7 (x 7 )qp (xp) 

qp (xp) + £

] {  qY (xY)
x/3>xp / V qp (xp) 

q7 (xp )qp (xp )

qY (xY) qp (xp)
_q7 (xY) qp (xp) _

xP

□

qp(x p )
2

A p p en d ix  B: M inim izing a C onvex K ikuchi Free E nergy

In this appendix, we derive Algorithm 1 for minimizing a convex Kikuchi free energy under 
appropriate linear constraints. To simplify notation, we will use the convention that a  runs 
over outer regions, and ft over inner regions.

First, we note that in principle it is not necessary to explicitly take into account all 
constraints (6), since some constraints are implied by others. Obviously, the constraint 
between two inner region marginals,

qp/ (xp) = qp (xp) for some ft' D ft ,

is implied by corresponding constraints between the inner region marginals and an outer 
region subsuming both inner regions,

q«(xp/) = qp/ (xp/) and qa (xp) = qp (xp) for some a  D ft D ft'.

That is, we do not have to take into account constraints between inner regions and other 
inner regions. Similarly, normalization constraints on outer region pseudo-marginals follow 
from normalization constraints on the inner region pseudo-marginals. So, a sufficient set of 
constraints is

q«(xp) = qp (xp) with q«(xp) = ^  qa (xa)

Y  qp (xp) = 1 vp •

V,«Dp
AP

Introducing Lagrange multipliers Aap(xp) and Ap for the corresponding constraints, we 
obtain the Lagrangian

a ) = ^ q « (x«)

+ E A«p (x p )
p aop xp

qa (xa) 
0 a(x«) + £  cp £  qp (xp) log qp (xp) 

p xp

1 qp (xp) • (B-1)
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Convex Independent of the Constraints

Let us first consider the case that all overcounting numbers cp are strictly positive (cp >
0). Then, the Lagrangian is not just convex over the set of constraints, but convex in 
q independent of the constraints. Minimization of the Lagrangian with respect to these 
pseudo-marginals follows by setting its derivatives to zero, yielding

qa (x „) = 0a (x „)e  1 eA“p(xp) V„ (B-2)
pCa

q*(xp) = eAp/cp-1] J  e-A“ (̂x9)/c  ̂ Vp , (B-3)
aOP

where here and in the following it should be noted that q,* and q* are functions of the 
Lagrange multipliers A. Substituting this solution back into the Lagrangian, we obtain the 
dual

l * (a ) = ¿ ( q * ^  a ) = y  ap -  q«(x« ) -  cp Y1  qp (xp) • (B-4)
p a Xa P x,

Now, consider optimizing L*(A ) with respect to the subset of the components corresponding 
to the inner region ft, collected in Ap = (Ap, Aap(xp) Va3 p,x )̂, keeping all other Ap/ for 
ft' = ft fixed. Because of the concavity of the dual ¿* (A ), we can find the maximum in the 
direction Ap by setting the corresponding derivatives to zero. This yields

dL*(A)
dA„p (xp) 

dL*(A)
dAp

= q^w(xp) -  q£ew (xp) = 0 Vx, ̂ p
A=Anew

A=A„w  = 1 - £  q.new(xp) = 0 , (B -5)

where qnew refers to the solution (B-2) and (B-3) with Aap(xp) replaced by A-w(xp) and 
Ap by Apew. Since from (B-2)

e^n,w(x,)
qaew (xp) = q« (xp) ,

the solution for A0,pw(xp) must obey

C pw(x p ) = -  log q«(xp) + a«p (x p ) + log qpew(xp),

where we still have to solve for qpew(xp). Summing this expression over all a  D ft, substi
tuting (B-3), and solving for qpew(xp) we get

log qpew(xp) = n + c ^  [log q«(xp) -  A«p(xp)] + n + c (Apew -  cp) •
np + cp O^p np + Cp

Now, we obtain exactly the updates in Algorithm 1 if we define

^p——a (xp) = eA“p(xp) and ^ „—p(xp) = q«(xp)e-A“p(xp) ,
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and properly normalize (xp), as in line 7. The normalization of qa (xa) in line 10 is then 
in fact unnecessary, since by construction the updates ensure that qa (xp) = (xp) with
Za = 1-

The bottom line is that with the particular ordering in Algorithm 1 the joint update of 
all messages for a particular subset ft can be interpreted as doing coordinate-wise gradient 
ascent in the dual L*(A ), updating the Lagrange multipliers Ap and AaP(xp) for a particular 
ft and all a  D ft at the same time. Therefore Algorithm 1 is guaranteed to converge to the 
unique maximum in the case of all positive overcounting numbers cp.

Convex over the Set of Constraints

Next, let us consider the more general case in which (some of) the overcounting numbers are 
negative, but such that the Kikuchi free energy is still convex over the set of constraints. 
We consider the case in which all inner region overcounting numbers are negative5. We 
will show that, with sufficient damping of the updates, Algorithm 1 is still guaranteed to 
converge to the unique minimum of the Kikuchi free energy over the set of constraints.

Note that direct application of the above argumentation fails, because the solution (B-3) 
for (xp) with negative cp corresponds to a maximum rather than a minimum. Conse
quently, the dual L* (A) in (B-4) need not be concave. The updates in Algorithm 1 that 
follow by setting derivatives to zero can be interpreted as fixed-point iterations, not as coor
dinate ascent in L*(A ). Still, in practice they do seem to work just fine and indeed without 
always increasing L*(A ). In the following we will explain why: we will argue that the up
dates of Algorithm 1 do not correspond to coordinate ascent, but rather to something like 
coordinate descent-ascent on a convex-concave saddle function. W ith  sufficient damping, 
such an algorithm will converge to the unique saddle point, which then corresponds to the 
minimum of the Kikuchi free energy over the set of constraints.

Convexity over the set of constraints implies, according to Theorem 3.1, that there exists 
a matrix Aap such that a Aap = |cp| and p Aap < 1. Using (xp) = qa(xp), we replace 
the Lagrangian (B-1) by

L (q, a ) = E E  q«(x« ) :
qa (xa)

(xa )_ EE AaP E q«(xp) log qp (xp)
P aOP x,3

+ E E  E a«p (xP)
P OOP

1
np E  qa (xp) -  E  q«(x«) + E ap

p
1 -  E  qp (xp )

a'DP xa\̂

Now since, from Lemma A .2 in Appendix A,

; q«(xa) log q«(xa) -  Y  q«(xp) log qp(xp)

(B-6)

E'
Xa

is convex in {qa (xa), (xp)}, the Lagrangian (B-6) is indeed convex in q independent of the 
constraints. Thus we could apply the same argumentation as above: find the minimum of

5. Our argumentation does not hold if some of the negative inner region entropy contributions have to be 
compensated by positive inner region subset entropy contributions to prove convexity of the Kikuchi free 
energy. In that case, we might need a slightly different algorithm to guarantee convergence.
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the convex Lagrangian with respect to q, substitute the corresponding solution q*(A) back 
into the Lagrangian to obtain the concave dual L*(A ), and maximize this dual with respect 
to A. The problem is that we do not have a closed-form expression for the optimal q*(A) 
and thus also no closed-form expression for the dual L*(A ), which makes this procedure 
rather awkward.

Instead, we distinguish between the outer region marginals, collected in qO, and the 
inner region marginals, collected in q i. Having rewritten the consistency constraint in terms 
of outer region marginals alone, we only replace the constrained minimization with respect 
to qo by unconstrained maximization with respect to corresponding Lagrange multipliers 
Ao , leaving the minimization with respect to q i under the normalization constraint as 
is. This gives us a saddle-point problem of the type minqi max^O. Even without explicitly 
writing out the equations, we can tell that maximization with respect to Aap for a particular 
ft and all a  D ft corresponds to finding Aap such that

C w(xp) = qaew(xp) V a ,a ^  .

Then, minimization with respect to qp given fixed qaew(xp) immediately yields

) a  E  Aa^ e w(x,j) ,
aDP

properly normalized to sum to 1. This is exactly what the updates for a particular inner 
region ft in Algorithm 1 amount to: they yield the unique maximum with respect to Aap 
and minimum with respect to qp, while keeping all other Aa/p/ and qp/ for ft' = ft fixed.

Such a “coordinate descent-ascent procedure” works fine if the saddle function is con
vex in the minimizing parameter and concave in the maximizing parameter (e.g., Seung, 
Richardson, Lagarias, & Hopfield, 1998). The concavity in A is immediate, the convexity 
in q i follows from the convexity of the Lagrangian (B-6) in q = (q o , q i): minimizing 
an overall convex function over some of its parameters, here qo , yields a convex function 
over its remaining parameters, q i. Technically, convergence to the unique solution of the 
saddle-point problem can be proven through the construction of a Lyapunov function that 
decreases under infinitesimal updates of the parameters in the descent and ascent direction 
to zero at the unique saddle point (Seung et al., 1998). Convergence can be guaranteed for 
sufficiently damped updates, not the “full” ones in Algorithm 1. Empirically the full up
dates, that correspond to full maximization and minimization for one inner region ft before 
moving on the next one, work fine in most cases, but occasionally indeed require a little 
damping. Wainwright et al. (2003) successfully apply damping to a very similar algorithm 
in an attempt to minimize a convexified Bethe free energy.

A p p en d ix  C: C on stru ctin g  a T ight C onvex B ound

In this appendix, we describe a procedure for constructing a tight convex bound F convex 
of the Kikuchi free energy Fkikuchi. It combines ideas from Section 4.3 and 4.4. That is, 
we first convexify the Kikuchi free energy, bounding as little concave contributions from 
negative inner regions as possible. Next, in the terms that we have to bound anyways, we 
try to incorporate as many convex contributions as we can. This leads to the following 
procedure.
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Consider minus the entropy

-  S  = -  < cp Sp + C7 S7
[aeo  peX- Yex+

and choose cp > cp for ft e I _  such that the first term in

- S  = — I  E  Sa + E  CPSP + E  CYSY | — I  E  (cp -  ^P)S p f 1
[ a pel- 7e i+ J [pel- J

is (just) convex.

W ith  A the corresponding allocation matrix of Theorem 3.1, define the “used re
sources”

C'y = ^ AYp l̂ p1 — CY I 
peX-

and rewrite

—S  = — i  Sa + Cp Sp + C7 S7
[ a pel- 7eX+

-  <• E  (Cp -  Cp)S p + E  (CY -  CY)S Y 
 ̂pel- 7ex+

By  construction, the first term is still convex.

To guarantee convexity, we have to bound the entropy contributions Sp in the second 
term for each ft G I_ .  To make this bound tighter, we include as many of the convex 
contributions SY as we can, while still satisfying the conditions in Theorem 4.2. Call 
the corresponding overcounting numbers cY — cy — cY — cy and put the remaining 
cy — cy back into the first term:

—S  = — i  Sa + cp Sp + cy Sy
[ a pel- YeX+

(cp — Cp)S p + y  ' (cY — CY)S Y 
 ̂peX- Yex+

• Choose F convex to be the first term plus a linear bound of the second term.

To find Cp in the first step and similarly cy in the third, we can use a linear program 
similar to the one described in Section 3.2 for checking the conditions of Theorem 3.1. We 
introduce slack variables 0p and replace condition (7d) by

^  AYp = 0p VpeX- (variable compensation) ,
Y^p
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similar in spirit to (8). Furthermore, we add the inequality constraints 0p < |cp | VpeI-
(no need to compensate for more than |cp |) and search for the maximum of 0 = pei - 0P
(compensate as much as possible). In terms of the corresponding solution , we set cp =
cp -  6̂ .
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