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Abstract

In this paper we study the term structure of forward interest rates in dis-
crete time settings. We introduce a generalisation of the classical Heath-Jarrow-
Morton type models. The forward rates corresponding to different time to ma-
turity values will be equipped with different driving processes. In this way we
use a discrete time random field to drive the forward rates instead of a single
process. Since we are interested only in arbitrage free markets, we derive several
no-arbitrage formulas and we also give examples for the structure of the driv-
ing field. We give sufficient conditions for the uniqueness of the no-arbitrage
measure and finally present some examples.

Keywords. Forward interest rate, HIM model, no-arbitrage, equivalent
martingale measure, martingale, random field, AR sheet, discrete time processes

1 Introduction

In this paper we study interest rate and bond pricing structures. In the literature one
can find several approaches to the formulation of interest rate structures and based
on them one can derive prices of bonds and other interest rate dependent financial
assets. An overview on this subject is given e.g. in [7].

Our approach is based on an idea of Heath, Jarrow and Morton [4]. They con-
structed a continuous time model for the so-called forward rate structures and derived
the bond prices from this structure as follows.

1 This research has been supported by the Hungarian Foundation for Scientific Research under
Grant No. OTKA-T032361/2000
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Let f (t, x) denote the instantaneous forward rate at time t with time to maturity

X, where x,t G R+, where R+ denotes the set of the nonnegative real numbers. In

the Heath-Jarrow-Morton (HJM) model the forward rates are assumed to follow the
dynamics

df (t, x) = a(t, x) dt + <r(t, x) dW (t), 1)

where {W (t)}i£R+ is a standard Wiener process. In an integral form, we have

f(t,x) = f(0,x) + /O a(u,x)odu + <r(u, x) dW (u). )

Having defined the forward rate dynamics, they proposed the following definition for
the bond price. Denoting the price of a zero coupon bond at time t with maturity
date s by P(t, s), they defined the bond price by

P(ts)=expl—J f(t,u)dul , 0<t<s. 3)

One should emphasise that for any value x > 0 in (1), the forward rate process
{f(t, x)}IiER+ is driven by the same Wiener process. Considering, for instance, the
case where <r(u,x) is deterministic, this means that the same ‘shocks’ have effect to
all of the forward rates, which seems not to be very realistic. Therefore it is natural to
generalise the model by introducing a random driving field instead of a single driving
process. In this way forward rates with different time to maturity can be driven by
different processes.

Such generalisation of the continuous time model has been proposed by Kennedy
[6]. Later, Goldstein [2] and Santa-Clara and Sornette [9] studied such models. We
can formulate the main idea as follows. Let {Z(t, s)}i sER+ be a random field and
suppose that for each fixed x GR+, the forward rate dynamics is given by

df (t, x) = a(t, x) dt + a(t, x) Z(dt, x), 4)

where {Z(t, s)}ieR+ is a martingale for any s > 0. Writing (4) in an integral form,
we have t t

f(t,x)= f(0,x)+ /0 a(u,x)odu + <r(u, x) Z (du, x). (5)

We shall call a model like (1) classical in contrast to model (4).

The HIM model (see [4]) as well as the models studied in [6], [2] and [9] are
continuous time models. It is natural to investigate also the discrete time analogue
of such a model. One can find several papers on the discrete versions of the classical
HJM models. Here we mention [3], [5] and [8].

In this paper, our main aim is to construct a discrete time forward interest rate
model, where the forward rates corresponding to different time to maturity values
are driven by different discrete time processes, that is, the forward rates are driven



by a random field with discrete parameters. We emphasise that this generalisation
is not simply leading to the K-factor models in a discrete setting. In the first part
of the paper, in Section 2 and 3, we study classical discrete time HIJM models. For
calculational convenience, we mostly use a continuously compounding convention for
the formulation of the bond price processes and for the discount factor process (see
Model A in the forthcoming sections). We have to note here that results similar to
that of Section 3 can be found in the literature, e.g. in [3]. However, we find it
important to derive and present them in our way (which is slightly different) in order
to get a comparable picture to our new model, which is introduced in Section 4.

Our second aim is to characterise no-arbitrage in the classical (Section 3) and
in the new setup (Section 5), which has its consequences for the pricing problem.
We will also investigate the uniqueness of the equivalent martingale measure. We
give examples for random field models (Section 6) and study the consequences of
no-arbitrage for them.

Based on the present study, we will be able to make a limiting transition in order
to arrive at a continuous time model as suggested by [6], [2], [9] and to characterize
no-arbitrage in that model. In this way we will also find the precise stochastic tools
(e.g. stochastic integrals) needed for the continuous time limit models. Results in this
direction together with results on parameter estimation and pricing problems will be
published in our forthcoming papers (see e.g. [1]).

2 Classical HJM -type models

First we shall describe the type of financial market which is the subject of our study in
this paper. The main purpose is to give and study a model for the zero coupon bonds
with different maturity times. Like in the Heath-Jarrow-Morton type models, for
this purpose one should introduce first the forward interest rate processes. Moreover,
we need to construct models for the discount factor process of the market. This is
needed for any pricing question in such a market and it is also important to emphasise
that the no-arbitrage criterion can only be written by taking the discount factor into
account.

Having given the definition of the forward rates, we show two possible ways to
introduce the bond price processes and the discount factor. Both formulations have
certain advantages and disadvantages in our problems. We call these approaches
Model A and Model B.

Let (n, F,P) be a probability space with a filtration {Fk}keZ+, where Z+ denotes
the set of nonnegative integers.

For what follows, f (k,j) will denote the instantaneous forward rate at time k with
time to maturity j, where k G Z+ and j G Z+. We assume that the initial values
f(0,j),] GZ+, are FO-measurable, since they are known at time 0. Next, we suppose



that after time 0 the forward rates are given by the following equations:
fk+ 1j) = f(kj)+a(k j) +a(k,j) (Sk+1 - Sk) (6)

for k,j G Z+, where {Sk}keZ+ is a martingale with respect to the filtration {FKk}kez+.
For the increments of the process we use the notation ASk = Sk+l —Sk, k G Z+.
Furthermore, a(k,j) and <r(k,j) are random variables which are supposed to be mea-
surable with respect to Fk for allj GZ+ and k GZ+. Equivalently with (6), one can

use the form
k-1 k-1

fkj)=10j)+ i+ 53(’) a("j)AS: )
1= 1=
Now, it is natural to define the interest rate holding for the periodt = ktot = k+1
by
r(k) := f (k,0) for all k GZ+.

Model A. In this approach one can say that we formulate the returns of assets and
also the discount factor using a continuous compounding convention, which leads in
fact to a certain exponential form. In other words, the logreturns (the logarithm of
the returns) are modeled directly and not the returns. This looks very much like the
continuous formulation.

It is assumed in the market that there is a stochastic discount factor process, say
{M (k)}kez+, which is the key process in order to price the financial assets in the
market. First, set M (0) := 1 and next we suppose that

Mk +1) = M (k) exp {—(k) + "(k)ASK}, k GZ+, (8)

where (k) is an F k-measurable random variable for all k G Z+. Thus one can write
(k)

logM (k + 1) = logM (k) —r(k)+ ~(k)ASK, k GZ+, 9)

or, alternatively,

k-1 k-1
y=1r(i) + 2 ~(*)AS] kGz
i=0 i=0

Let P (k, 1) denote the price of a zero coupon bond at time k with maturity | for
all 0 < k < I. Hence we put P(k, k) := 1and in general we define

Pk, 1+1)= P (k1) exp{— (k,| —k)}, 0< k<, (10)
or, to put it in another way,
logP (k, k+ j + 1) = logP (k, k +j) —f (k, ), k,j GZ+. (11)
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Thus, one has

I—&-1
P(k,1) = exp / f (k) 0<kc<l
j=0

Model B. In discrete time settings it is also common to write the returns without
the continuous compounding convention used in Model A, and so we can make them
simpler. For instance, consider option theory. In the classical continuous time option
pricing problems the stock price process is of an ‘exponential type’, since it is a
geometric Brownian motion. However, in the discrete time settings we use the simple
binomial or binary tree models, where the asset price is multiplied by a factor (1 + p)
to get the new asset price.

In such type of formulation we can construct models for the discount factor and
the bond process as follows.

Let M(0) := 1 again and define

M (k)
M(k+ 1) = k GZ+,
1+ r(k) —"(k)ASk’
that is,
1
M (k) kGZ,.
Etto (1+ r(i) —"(i)AS))
In a similar way, the price of the zero coupon bond is defined by P(k, k) 1
k GZ+ and
Pk, 1+ 1) = P (k1) 0<kc<l,
1+ f(k,I —k)’
and hence we can write
1
Pk, 1) = 0< k<l
nj=k-1 (1 + f(k,j))’
3 N o-arbitrage criteria in the classical model

The most important property one requires to make the model realistic is the no-
arbitrage condition of the market.

Definition 1 We say that the market satisfies the no-arbitrage criterion if there ex-
ists a probability measure P* on (Q, F ) which is equivalent with measure P such that
for each 1 G Z+ the discounted value process of the bond {P(k,I)M (k)}0<k<£ is a
P*-martingale. Such a measure P* will be called equivalent martingale measure.



In the following, we shall write simply a.s. instead of P-a.s. or P*-a.s., if P* is an
equivalent martingale measure, since due to their equivalence the two notions are the
same.

We mention here that one might find some equivalent formulations with this def-
inition in the literature. In the following we present different forms of the condition
at issue.

Proposition 1 Suppose that P* is an equivalent measure with P in Model A. Then
P* is an equivalent martingale measure if and only if we have for all 0 < k < |

I-k—2
E* lexp< ™k) —53 a(kj) AS, , Fk
j=0
(12)
I—k—2 I
r(k) —f (k, I —k —1) + a(k,j)>, a.s.,
j=0 J

where E* indicates expectation taken with respect to P*.

If the increment ASk is P*-independent of Fk (k G Z+) then the no-arbitrage

condition (12) is equivalent with
/ Ik \

|—k—2 |
I~ — 53 a(kj)| = exp srx) —f(m —k—1)+ D53a(k.j) » as.
(13)
for all 0 < k < I, where is the moment generating function of ASk with respect

to the measure P*.
Proof. First note that
PE()+ 1y I | k=2 k=2
(€  =ep]/(M-Kk-D- 53 aks)-ask 53
0 < k < I. Now, write
Pt 1, DM (k + 1) = P(k, DM (k)A(k, I),

where

7 |—*k—2 / |—+k—2 \

—(k) + f(k,] =k —1) — 53 a(k,j) + 1~(k) — 53 a(k,j) I Ask
j=0 \ j=0 J
Hence, the no-arbitrage condition is equivalent with

E*(A(k, 1)JFK)= 1 as. forall 0 <k < 1. (14)



There remains the left hand side of (14) to be calculated:

|—k—2
E*(A(k,D|Fk) = exp » —+(k)+ f(k,] =k —1) — ~ a(k,j) E* (exp {c(k,)ASk}|Fk):
j=0
where c(k, I) = ~>(k) —YI1j=0 2a(k,j). Hence we obtain (12).
To see (13), note that c(k,l) is measurable with respect to F k, and recall that
ASk is independent of F k. Hence

E* (exp {c(k, )ASKk}|FKk) = (c(k,1) a.s.

for0< k< 1. O

Corollary 1 If for all k > 0, the r.v. ASk is P*-independent of Fk and standard
normal with respect to an equivalent martingale measure P* then we can write the
no-arbitrage condition in Model A in the form

2

m—L 1 m-1
f(k, to) = r(k) + 53 a(kJ) ~ —53 alki i.s., k>0 m > 0. (15)
52 "K—=3akj)
Moreover,
k-1 k-1
f(k,m) = f(O,m+k)+53 a(*,k+ m——1)+53a(*, k+ m — —1)ASj, a.s. (16)
i=0 i=0
I-1 1
a(i, I) = a(i, 1) - B+ for i, G z+
j=0

Proof. Indeed, due to the fact that Gk(z) = exp{"z2} we have

2
I-k-2 1 I-k-2
(k) - f{k,£- k- 1)+ 53 a(k’) = X —hB3 as.
"W—53 alk))
for 0 < k < I. Then, with m = I —k —1 we obtain (15).
To derive formula (16) we use (15) to obtain fori > 0and | >0
2 11 2

fAi+10)- f@0D)=ad,f+<ga£)-\ ¢ ff(ij) + o E<KIiJ)
j=0 j=0

-1

j=0



Substitution of a(i,l) in this expression by using (6) leads to

i—
fa+ L) —f@0, 1+ 1) =a(, DASj +a(i,l) f£er(*J) </>(*) +
j:O (17)
= a(i, DASj + a(i, )
and hence to (16). O

Fix a maturity time T and suppose that we are interested in the interest rate
corresponding to the interval [T, T + 1]. Before T, we do not know r(T). If we are
at time k then our ‘prediction’ for r(T) is f (k, m), where m = T —k. Thus, formula
(16) explains how the first prediction f (0, T) is modified period by period up to time
k in order to arrive finally at the value f (k, m).

Remark 1 So far we studied the no-arbitrage criterion only in Model A. We should
mention, however, that similar no-arbitrage criteria can be given in Model B as well.
W ithout proof we present the analogue of (12) in Model B: for 0 < k < |

E* l
(1 + r(k) —(K)ASK)n 1=0 2(1 + f(k,j) + a(k,j) + a(k, j)ASk) 8)

1
a.s.

nj=k2 1+ f(k,j)):

Comparing (12) to (18) one can see that in Model A the verification of the no-arbitrage
criteria seems to be easier than in Model B. For instance, we derived (13) in Model A,
which is quite useful, since in most of the cases we will suppose to have independence
between the increments and the a-algebra generated by the past. Thus we have
a formula written in terms of moment generating functions which might be easily
calculated for certain probability laws. Unfortunately, in Model B we cannot derive a
formula which would be as good for practical purposes as (13). One has to mention,
however, that for other purposes one might find Model B more appropriate than Model
A.

Proposition 2 Consider Model A. Let us suppose that we have an equivalent mar-
tingale measure P* such that the increment ASk is P*-independent of Fk for k G Z+
and it concentrates on {1, —1}, i.e,,

pk := P*(ASk = 1) = 1 —P*(ASk = —1) G (0,1).

(@) Then P* is a unique equivalent martingale measure. Moreover, (k) is determin-
istic for all k G Z+.



Assume, furthermore, that for k,j G Z+ the a(k,j), a(k,j) and f(0,j) are all
deterministic and (k) = 0.
(b) Then we have a(k,l) = a(k), k,I G Z+, and the values a(k,l), k,I > 0 are
all uniquely determined in the model provided that {a(k)}k£z+, {f(0,]j)}jez+ 's and
{"(k)}kez+ are given.

Proof. In this setup (13) can be written in the form for 0 < k < |

4 i—k—2 1 ( i—k—2
Nk) — E a(k,j)>+(1 —pk) exp <—(k) + E a (k,j)
j:O J | J:O
i—k—2
exp Ar(k) —fk, I —k—1)+ E a (], a.s
j=0

(19)
Since (19) is linear in pk it has a unique solution for pk. Furthermore, (19) for
I = k+1 gives that ~(k) is deterministic for all k G Z+.
Now, we turn to prove (b). By using (7) we can write (19) for 0 < k < | as

V4

i—k—2 i ( i—k—2
ANk) — E  a(k,jn+ (1 —pk)exp<s (k) + E a(k,j)
j:0 | | j:()
k 1
ex” f(0,00 —f (0,1 —k —1 )+ E a(i, 0) —a(i, | —k —1) (0
i=0
k 1 i—k—2 j
+ a(i,0) —a(i, | —k —1) ASi+ E a(k,j) > as.
j=0 J

The left hand-side of ( 0) is deterministic, so has to be the right hand-side. So,

k 1
E [a(i, 0) —a(i, ] —k —1)]AS* =0 a.s. for0< k < |
i=0

and hence
a(i,0) —a(i,j)=0 fori,j Gz+

It follows that we have a.s. for 0 < k < |

pkexp {*(k) —(I —k —1)a(k)} + (1 —pk) exp {—=(k) + (I —k —1)a(k)}

k 1 i—k—2
exp f(0,0) —f (0, —k —1)+X ) a(i,0) —a(i,l —k —1) + E a(k,j)
i=0 j=0

(1



Equation (21) shows that under our assumptions the values a(k, I) cannot be chosen
freely when we would like to set the parameters of the model (since the a(k, 1)’s are
uniquely given in a recursive way from (21)). O

Remark 2 We saw in the model studied in statement (b) of Proposition 2 that the
a(k,j)’s do not depend on j, which means that the model is not as general as one
would think. The reason for that, as it can clearly be seen from the proof, is the fact
that there is only one driving process for the forward rates corresponding to different
time to maturity values. This is a reason why in the next section of this paper we
introduce a more general setup.

Remark 3 We mention that one could also consider the even simpler case where
A(k) = 0 for all kK G Z+. Then the only difference is that one can choose the value
a(k, 0) freely from a certain interval, but for k G Z+ and | > 0, the values a(k, I)

are all uniquely determined again. Indeed, for | = k +1 both sides of (19) reduce
to 1. Thus pk should be determined by the aid of the next equation. Due to the
monotonicity of the exponential function, for | = k + 2 the equation (20) can be

satisfied if and only if

a(k, 0) G (—a(k, 0) —¢k , a(k, 0) —¢k),

where
k-1 k-1
4 = (0,00 + f(0,2) + 1T [a(i,0) —a(i, )] + £ H™*,0) —*(*, 1)]ASI.
i=0 i=0

Thus the assumption ~>(k) = 0 gives a little freedom at the choice of the values a(k, 0).

Remark 4 Another important assertion could be the following. Suppose now, that
the <r(k,j)’s, f(0,j)’s and ~(k)s (k,j GZ+) are all deterministic in the model. Then
the following two statements are equivalent:

(1) a(k, 1) is deterministic for all k, | GZ+,
(2) <rk 1) = <r(k), k, GZ+.

This is trivial since we saw that (19) gives a system of equation that pk, k G Z+,
should fulfill almost surely, that is, for almost every w G 0.

4 A new model, based on random fields

Definitions and assumptions
Let (0, F,P) be a probability space and suppose that |F k}kez+ is a filtration on
it.
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First, suppose that {S(k, I)}kjlez+ is a random field, i.e. S(k, 1) is a random
variable for all k,1 GZ+. We will use the notation AiS(k, 1) := S(k+ 1,1) —S (k, I).
We impose the following assumption on the driving process S:

(A1) For each | G Z+ the process {S(k,l)}keZ+ is a square-integrable martingale
with respect to {Fk}kez+, that is, S(k, I) is F k-measurable and

E(AIS(k,1)JFK)= 0  as. for k > 0.

We shall write
c(k,11,12) := cov (A1S (k,I1), A1S (k,12)

and
0-2* := c(k,I,I) = VarA1S(k,I).
Note that for practical purposes one may assume furthermore that c(k, 11,12) does not
depend on k. This would mean that the covariance of the increments is independent
of the time parameter.
Now, we define the instantaneous forward rate f(k,j) at time k with time to
maturity j as follows:

fk+ 1) = fkj) +a(kj) + ok j)ALS(k]), (22)

where kK GZ+, j GZ+. One can write equivalently
k-1 k-1

f(k.j) = f(0.j) + _£0a(i,j) + EOO(*,j)Als(*,j)- (23)
i= i=

In (22) and (23) the a(k,j)'s and o(k, j)'s are all random variables for k G Z+,
j G Z+. We shall suppose that for all j G Z+, the processes {a(k,j)}kez+ and
{o(k,j)}kez+ are adapted to the filtration {Fk}kez+, i.e.,, a(k,j) and o(k,j) are
F k-measurable.

Thus we have a model where the forward interest rate value f (k,j) can be con-
sidered to be announced at time k since f (k,j) is measurable with respect to F k.

As in the classical model, the interest rate at time k —holding for the period t = k
tot = k+ 1— is defined by

r(k) = f(k,0)  for kGZ+.

Again one can build up two approaches for the construction of the discount factors
and the bond price processes.
Model A. The stochastic discount factor process {M (k)}keZ+ of the market is sup-
posed to have the following dynamics: M (0) := 1 and

M(k + 1) = M(k) exp < —r (k) + £ ¢(kj)ALS (k.j) kG Z (24)
=0

11



where 0(k,j) is an F k-measurable random variable for k,j > 0, and we assume that
A"O=0 0(k,j)AiS(k,]j) exists in L2-sense. A natural way of discounting would be to
take the defining equation (24) such that 0(k,j) = 0 for all k,j G Z+, that is, the
discounting would be done only with the interest rate values, as it is often the case in
the literature. However, (24) allows the discount factors to be also modified at time
k by each of the shocks corresponding to time k. Similar discount processes were
considered in [9].

The condition on the L2-convergence is taken in order to guarantee the sum in
(24) to be well defined. Here we mention that to guarantee the L2-convergence one
can find some sufficient conditions. For instance, consider the case where A 1S(k, j)
is independent of for k,j GZ+. Then the condition

@
53 cTig  4>(kd)2 < e, k GZ+, (25)
j=o

is sufficient for the L2 convergence of the series at issue. Indeed, take 0 < m < n.
Then by the independence and the Cauchy-Schwarz inequality we have
2

EO(k, ji)0(k, j2)EAIS (k, ji)AiS(k,]2)
j=m Ji=m j2=m

n n
NB3 B3 v rk i) 2esi ) el

Ji=m j2=m
53 it 0 asm” .
j=m

The definition of the price of a zero coupon bond P (k, I) at time k with maturity
I for all 0 < k < I remains the same, i.e., P(k, k) := 1 and

Pk I+1)=P(kl)exp{-f (k- K3}, if 0<k<l (26)
For the further calculations we find it useful to derive the quotient It is

easy to see that

Pp(k DA = exP 1/ (k1 —k—1) — D3 (/(k+ 1jj) —f (k. 1))

I-k-2 I-k-2
exp<{ f(k,1- k- 1)-53 a(kj)-53 a(kjAiS(k,j)
i=o j=o0

12



Model B. As in the classical case, one could take an alternative way to construct the
discount and bond price processes as follows.
Set M (0) := 1 again and define

M{k+1) = I +r(k)-T¢i(k,j)AS(k,jy k>°nm

In a similar way, the price of the zero coupon bond is defined by P(k, k) := 1,
k GZ+ and

Plti+]) =T Twhr
5 N o-arbitrage criteria in case of random fields

In this section we will give results which are analogous to the results given in Section
3.

Theorem 1 Suppose that P* is an equivalent measure with P in Model A. Then P*
is an equivalent martingale measure if and only if we have a.s. for all 0 < k < |

/ S 00 S \ | 1—k—=2
E*xrexp|E  (kj)AiS(kj)f Fkj = expq§r(k) - f(k1- k- 1)+ E a(k.j)
j=o0
(27)
where
C(k W= Tok.j) - if 0<j<1-k-2
1 \A (K L), if 1-k-1<].

If, furthermore, 0(k,j) = 0 for j > N, where N G Z+ is fixed, and for each
k G Z+ the increments AiS(k,j), j G Z+, are all P*-independent of Fk then the
no-arbitrage condition (27) can be written as

GKkNV(I—+k=2)("I(k,0), ..., I(k,N V(I - k- 2)))
( |—k—2 [ (28)
=exp<r(k)- fk1-k- 1)+ E a(k,j) ,
where Gk ¢ is the joint moment generating function of AiS(k, 0),. .., AiS(k, i) with

respect to measure P*.

Proof. First note that

P(k+ LI)M(k + 1) = P(k, DM(K)A(k, 1), 0< k< I,
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where

, £—k—2
Ak, I) = expi —r(k) + f(k,l —k —1) — E a(k,j)
L j=0
| —k—2 00
— E a(kj)A1S(k,j) + E ~(k,j)A1S(k.))
J=0 J=0

Now, the process {P(k,I)M (k)}o<k<* is a martingale if and only if
E (A, I)|JFk)=1 as. for 0< k<.

It only remains to be mentioned that B(k, 1) = expj f (k, | —k —1) —" 2a(k,j) —r
is measurable with respect to F k. Thus we get (27).
Next, (28) is also immediate in case of the independence ofthe increment A 1S(K, j)
(j g Z+) of Fk. n
We mention that the assumption ~(k,j) = 0 forj > N was crucial in the derivation
of the left hand-side of (28). By letting N = to one would have further difficulties
to calculate the conditional expectation in (27) in order to arrive at a simple formula
like (28).

Corollary 2 Assume that (k,j) = 0forj > N, where N G Z+ s fixed. If the ran-
dom vector (A1S(k,0), A1S(k,1),..., ALS(k,j)) is normally distributed with respect
to an equivalent martingale measure P* and P*-independent of Fk for all k G Z+ and
j G Z+ then the no-arbitrage criterion in Model A implies

m— 1 NV(m—))
f(k,m) - ~2 a(k,j)-r(k) + - E Pm+k+i(k,jfalj
j=o j=o
(29)
NV(m—L) NV(m—)
+ E E Am+k+1(k,jl) m+k—(k,j2)c(k,jl,j2) =0 as.
ji=o 2=ji+l
for k, m GZ+.
Furthermore,
k-1 k-1
f(k,m) = f@O, m+k)+5" a(i, m+k — —1)+*~~"a(i’' m+k — —{)ALS(i, m+k — —1),
0
(30)
where
NV(—) 14
ia,n=a@n - E J>(i,J’ +EAN ”9+ ”3 i,l GZ
j=o j=o

14



Proof. Forxo,..., xi GR, the random variable Z(xo,..., x¢) = * ¢=0x,A1S(K, j)
is Gaussian with mean zero and variance

2
2 E 1T x%AIS(k,j) = E x2EA1S(K,j)2
<j=0 j=0
i i
+2 B E  Xjix2EAIS(k,jl1)AL1S(Kk,j2),
jl=0 ¢2=¢1+1
from which (29) follows directly by setting m = | —k —1in (28), since Gki =
R

Now we turn to the derivation of (30). For this, we start by writing (29) in the
form

m-1
fkm)=rk)+E “(kij)
j=o
N NA(M—) m—1
E " (k,j)2aL-—2 E ~k,ja(k,j)afee + E a(k,j)2aL-
J=0 J=0 J=0
N N m— N
E E E E
jl=0 ¢2=jl +1 jl=0 ¢2=jl +1
m-2 m-1 NA(mM-2) m-1
+E E E E
jl=0 ¢2=jl +1 jl=o  ¢2=jl+1

Hence for i > 0, | > 0 we have

FG,0+1) —F @, 1) = a(i, 1) + L{N>i}*Li0G, DAG, 1)

N
- - a(i,ifcr2 + E a(hi)<t>(h32)c(i,lj2)
2=1+1
1— NA(—)
—E a(,jlac(,be(,jr,)+ E ALY D e,
jl=o jl=o0

15



Substitution of a(i,l) in this expression by using (22) leads to

fa+ 1,1) —f(i,1+1)

NV/(1—) 1—1
a(i, I)

i=o j=o
= a(i, DA1S(i, 1) + a(i, 1),

and hence to (30). O

6 Examples for the driving process

In the following examples we shall suppose that {n(i,j)}i,;ez+ form a white noise
system, i.e., let n(i,j) be i.i.d. random variables with mean zero and variance 1 for
i,j GZ+. We shall, furthermore, define Fk :=a (n(i,j) |i < k, j GZ+).

Example 1 Define the driving process as a partial sum of the n(k, I)’s, that is,

k 1

S(k,lI):=EE n(ij) k,I GZ+.
i=0 j=0

It gives
Stk+ 1,1+ 1) =S(k,I+ 1)+ S(k+ 1,I) —S(k,I) + n(k + 1,1+ 1).

For each | G Z+, the independence of the n(i,j)’s together with En(i,j) = 0
imply that {S(k, I)}kezZ+ is a martingale with respect to {Fk}kez+ for each | G Z+.
Furthermore, we have

12
cov(A1S (k,I11), A1S(k,12) = E E Enk +1,j1)nk +1,j2)
jl=0 ¢2=0
AR
= E E(n(k+ 1,)))2= ILAI2+ 1 := c(I1,12).
j=o0

Hence this driving process fulfills the required assumptions, furthermore, the covari-
ance function c is independent of the time parameter k.

Example 2 (AR model) Fix a constant p GR. We define the driving process by

k 1

sk) = E E pi—=n(ij), k| GZ+.
i=0 j=0

16



Hence, in this case we have
S(k+ L1+ 1)=S(k, I+ 1)+pSk+ 1,1) —pS(k,l) + n(k+ 1,1 + 1)
for k,I GZ+. Then one can write
Al1S(k, I + 1) = pA1S(k,I) + n(k + 1,1 + 1),

which means that {A1S(k, I)}lez+ is an autoregression process (AR(1)) with coeffi-
cient p.
For this, we have
I 12
cov(ALS(i,lI1), A1S(i,I2)) = E E pll+12—51—<2En(i + 1,j1)n(i + 1,j2)
jl=0i2=0
pl1+12+2 _ p|ll1—42]
= - pg—_]_ for

Note that we have again a covariance function that does not depend on the time
parameter k.

For p = 1 we have the model studied in Example 1. For p = —1, one can easily
derive cov(A1S(i, 11), A1S(i, 12)) = (—DI+I2(I11A12+ 1) .

Finally we mention that by the choice p = 0 we obtain A1S(k,j) = n(k + 1,j),
k,j GZ+. In this case the process {S(k, j)}kgz+ is a discrete random walk. Moreover,
S(k,ji_) and S(k,j2) are evolving independently for j = j2 and hence this setup is
not very realistic.

In the next proposition we shall consider a simple case of the AR model.

Proposition 3 (No-arbitrage in the AR model) Letus assume that the forward
rates are driven by an autoregression field presented in Example 2 such that n(i, j)
concentrates on the set {1, —1} with

p*¢ = P*(n(i,j) = 1) = 1—P*(n(i,j) = —1) G(0,1),

where P* is an equivalent martingale measure. Letp = 0, and a(k,j) = 0 a.s,
k,j GZ+. Suppose that ~(k,j) = 0forj > N, k GZ+ with some N GN.
Then the only equivalent martingale measure is P*.

Proof. Let G*; denote the moment generating function of n(i,j) taken with
respect to P*. Clearly, G*;(x) = p*¢ex+ (1 —p*¢)e—x. In this case (28) gives us the
following system of equations:

(I%k—2)VN /(E—&—2)VN \ ( £—k—2
11 Gk+1,i £ pi—V I1(k,j) = expS r(k) — —k —1)+ E a(k,j)
i=0 y =i J [ (=0
(31)
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for 0 < k < I. In this special case we have

Ak, ) —"(k,§), if0<j < (I —k —2) AN,

Lo —<r(k.j), ifN+1 <j <1 —k—2
~i(k j) AL o

(k. 1), ifl -k —1<j <N,

0, otherwise.

In order to get a more detailed picture of this problem, below we rewrite (31) for two

particular cases. Thus, for I = k+1, (31) leads to
n G*,i £ pi—n .?)] =1, 32)
i=0 \J=i

secondly, with k+ 1< 1 < k+ N + 2 we obtain

N /' N | —k—2
G k+Li £ pi~V (kj — £ pi=V (kj
i=o \¢=i ¢=i
|—k—2 (33)
exp *r(k) —f(k, I —k—1)+ £ a(k,j) >
¢=0 l

Consider now the case where ~(k,j) = 0 for k GZ+ and 0 < j < N. Then we
have N +2 equations from (33) to determine pk+1o,... ,Pfc+ln. Taking the ratio of
(33) for I + 1 and | we obtain

Y Itt2GI+i,
nto -2 GfeHl, (sf=i )-E i) (34)
= exp {f (k,| —k —1) —f (k, | —Kk) + a(k, | —k —1)} .

Now, (34) gives a condition that pk+1i—k—! has to fulfill. (Note that only | —k —1
moment generating functions occur in (34), which correspond to n(k + 1,0), n(k +
1,1),...n(k + 1,1 —k —2).) Since the function

pea+ (l-p)e~a A
P peb¥ 5T v th

is strictly monotone if a = b, thus it follows that pk+1i—k—! is uniquely determined
forl = k+1,...,k+ N + 1

One can easily see that as we increase the value of I in (31), such that | > k+ N +2,
in each step one more generating function, namely G*+1 |—k—1 occurs on the left hand-
side of (31). Thus, forany | > k+ N + 2, (31) gives the condition for pk+1i—k—! and
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a(k, | —k —2). From this, we can see the uniqueness of p£+1j forj > N +2 as well.
Thus, we have shown that P* is unique.
a

Remark 5 Consider the autoregression model discussed in Proposition 3 and sup-
pose that the assumptions of this proposition are valid. If, furthermore, we assume
that {ff(k,j)}kjEz+ and {f(0,j)}c.ez+ are all deterministic, then a(k,j) , k > 0,
j G Z+, cannot be deterministic. This can be seen from (31). Indeed, the left hand-
side of (31) is deterministic, hence the right hand-side has to be deterministic. The
latter is

I-k-2 k-1
r(k) —f(k,| —k —1) — 53 a(k.j) = 53 a(i, 0) —a(*,] —k —1)
j=0 i=0
k-1 / I-k-1 \ I-k-2
+ £ la(*0)n(i+1,0) —A(*,1 —k —1) 53 pl-k-1-jn(i + 1,j)I — 53 a(k,j).
i=0 y j=0 y j=0

(35)
Let us write a(k,j) = B(k,j) + m(k,j), k,j GZ+, where Ea(k,j) = m(k,j). One
can see from (34) that even if (35) has to be deterministic, and so B(k, | —k—1) cannot
be chosen freely, there is still a little freedom at the choice of the value m (k, 1 —k —1).
Namely, one could derive an interval such that choosing m(k, | —k —1) from that
interval, the solution p£+!1-k-1 would be in (0,1). Since the calculation of such
intervals for each a(k,j) could be done only in a recursive way, it would be fairly
complicated.

Remark 6 There are two possible ways one could build up a model we study now.
One possibility is to suppose that we fix a(k,j), ~(k,j), f(0,j) and a(k,j) first. Here
we have to emphasise that, as we saw so far, a(k,j) cannot be chosen freely in order
to guarantee the existence of an equivalent martingale measure. In fact, depending on
the construction, sometimes a(k, j) is not chosen freely at all, sometimes only its shift
parameter m(k,j) could be chosen freely from a certain interval. Further difficulties
might be caused by the fact that these intervals can only be calculated in a recursive
way. Having set up a(k, j) as well, the next step would be to determine the equivalent
martingale measure, since it is a key object at pricing problems. Therefore, even if
this way would be natural, we have calculational difficulties in this case.

Another way to look at and to construct the model would be the following. Since
we may have difficulties with the choice of a(k,j) (more precisely with the choice
of m(k,j)), we fix <r(k,j), ~(k,j), f(0,j), and furthermore, we fix an equivalent
martingale measure. Having done this, a(k,j) is already uniquely defined. That is
why many authors choose this second way.
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Remark 7 There are certainly further questions that one could ask in the setting we
introduced. First, the problem of pricing of interest rate derivatives. Secondly, one
can study the limiting connections between the discrete and continuous time models.
A third interesting area would be the estimations of parameters in our models. The
latter two problems are considered in [1].
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