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A b s tra c t

In this paper we study the term  structure of forward interest rates in dis­
crete tim e settings. We introduce a generalisation of the classical Heath-Jarrow- 
M orton type models. The forward rates corresponding to  different tim e to  m a­
tu rity  values will be equipped w ith different driving processes. In this way we 
use a discrete tim e random  field to  drive the forward rates instead of a single 
process. Since we are interested only in arbitrage free m arkets, we derive several 
no-arbitrage formulas and we also give examples for the structure of the driv­
ing field. We give sufficient conditions for the uniqueness of the no-arbitrage 
measure and finally present some examples.

K eyw ords. Forward interest rate, H JM  model, no-arbitrage, equivalent 
m artingale measure, martingale, random  field, A R sheet, discrete tim e processes

1  I n t r o d u c t i o n

In this paper we study  in terest ra te  and bond pricing structures. In the lite ra tu re  one 
can find several approaches to  the form ulation of in terest ra te  struc tu res and based 
on them  one can derive prices of bonds and o ther in terest ra te  dependent financial 
assets. An overview on th is subject is given e.g. in [7].

O ur approach is based on an idea of H eath, Jarrow  and M orton [4]. They con­
structed  a continuous tim e model for the so-called forward ra te  struc tu res and derived 
the bond prices from this s truc tu re  as follows.

1 T his research has been supported  by th e  H ungarian Foundation for Scientific Research under 
G ran t No. O TK A -T032361/2000
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Let f  (t, x) denote the instantaneous forward ra te  a t tim e t  w ith tim e to  m atu rity  
x, where x , t  G R+, where R+ denotes the set of the  nonnegative real num bers. In 
the  H eath-Jarrow -M orton (HJM ) model the forward rates are assum ed to  follow the 
dynam ics

df (t, x) =  a ( t, x) dt +  <r(t, x) dW (t), (1)

where {W (t)} i£R+ is a stan d ard  W iener process. In an integral form, we have

f  ( t ,x )  =  f  (0, x) +  / a (u ,x )  du +  <r(u, x) d W (u). (2)
0 0

Having defined the forward ra te  dynam ics, they  proposed the following definition for 
the  bond price. Denoting the price of a zero coupon bond a t tim e t  w ith m atu rity  
da te  s by P ( t ,  s), they  defined the bond price by

P (t, s) =  exp I  — J  f  (t, u) du I  , 0 <  t  <  s. (3)

One should emphasise th a t for any value x >  0 in (1), the forward ra te  process 
{ f  (t, x )} i£R+ is driven by the same W iener process. Considering, for instance, the 
case where <r(u,x) is determ inistic, this m eans th a t  the  same ‘shocks’ have effect to  
all of the forward rates, which seems not to  be very realistic. Therefore it is n a tu ra l to  
generalise the model by introducing a random  driving field instead of a single driving 
process. In th is way forward rates w ith different tim e to  m a tu rity  can be driven by 
different processes.

Such generalisation of the continuous tim e model has been proposed by Kennedy
[6]. Later, G oldstein [2] and Santa-C lara and Sornette [9] studied such models. We 
can form ulate the  m ain idea as follows. Let {Z (t, s)} i s£R+ be a random  field and 
suppose th a t  for each fixed x G R + , the forward ra te  dynam ics is given by

df (t, x) =  a ( t, x) dt +  a ( t, x) Z  (dt, x), (4)

where {Z (t, s)} ieR+ is a m artingale for any s >  0. W riting (4) in an integral form, 
we have t t

f  ( t , x ) =  f  (0, x) +  / a (u ,x )  du +  <r(u, x) Z  (du, x). (5)
0 0

We shall call a model like (1) classical in contrast to  model (4).
The HJM  model (see [4]) as well as the  models studied in [6], [2] and [9] are 

continuous tim e models. I t is n a tu ra l to  investigate also the discrete tim e analogue 
of such a model. One can find several papers on the discrete versions of the  classical 
H JM  models. Here we m ention [3], [5] and [8].

In this paper, our m ain aim  is to  construct a discrete tim e forward in terest ra te  
model, where the  forward rates corresponding to  different tim e to  m a tu rity  values 
are driven by different discrete tim e processes, th a t  is, the forward ra tes are driven
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by a random  field w ith discrete param eters. We emphasise th a t th is generalisation 
is not sim ply leading to  the K -factor models in a discrete setting. In the  first p a rt 
of the paper, in Section 2 and 3, we study  classical discrete tim e H JM  models. For 
calculational convenience, we m ostly use a continuously com pounding convention for 
the  form ulation of the bond price processes and for the discount factor process (see 
Model A  in the  forthcom ing sections). We have to  note here th a t results sim ilar to  
th a t of Section 3 can be found in the  literature , e.g. in [3]. However, we find it 
im portan t to  derive and present them  in our way (which is slightly different) in order 
to  get a com parable picture to  our new model, which is in troduced in Section 4.

O ur second aim  is to  characterise no-arbitrage in the  classical (Section 3) and 
in the new setup (Section 5), which has its consequences for the pricing problem. 
We will also investigate the  uniqueness of the equivalent m artingale measure. We 
give examples for random  field models (Section 6) and study  the consequences of 
no-arbitrage for them .

Based on the  present study, we will be able to  make a lim iting transition  in order 
to  arrive a t a continuous tim e model as suggested by [6], [2], [9] and to  characterize 
no-arbitrage in th a t model. In this way we will also find the precise stochastic tools 
(e.g. stochastic integrals) needed for the  continuous tim e lim it models. Results in this 
direction together w ith results on param eter estim ation and pricing problem s will be 
published in our forthcom ing papers (see e.g. [1]).

2  C l a s s i c a l  H J M - t y p e  m o d e l s

F irs t we shall describe the  type of financial m arket which is the subject of our study  in 
th is paper. The m ain purpose is to  give and study  a model for the zero coupon bonds 
w ith different m atu rity  times. Like in the H eath-Jarrow -M orton type models, for 
th is purpose one should introduce first the  forward in terest ra te  processes. Moreover, 
we need to  construct models for the  discount factor process of the  m arket. This is 
needed for any pricing question in such a m arket and it is also im portan t to  emphasise 
th a t the no-arbitrage criterion can only be w ritten  by taking the  discount factor into 
account.

Having given the definition of the forward rates, we show two possible ways to  
introduce the bond price processes and the discount factor. B oth  form ulations have 
certain  advantages and disadvantages in our problem s. We call these approaches 
Model A  and  Model B.

Let (n , F , P) be a probability  space w ith a filtration  { F k}keZ+, where Z+ denotes 
the  set of nonnegative integers.

For w hat follows, f  (k, j )  will denote the instantaneous forward ra te  a t tim e k w ith 
tim e to  m a tu rity  j , where k G Z+ and j  G Z + . We assume th a t the initial values 
f  (0, j ) ,  j  G Z + , are F 0-m easurable, since they  are known a t tim e 0. Next, we suppose
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th a t  after tim e 0 the forward rates are given by the following equations:

f  (k +  1, j )  =  f  (k, j )  +  a (k , j )  +  a (k , j )  (Sk+1 -  Sk) (6)

for k, j  G Z+, where {Sk}keZ+ is a m artingale w ith respect to  the  filtration  { F k}kez+ . 
For the increm ents of the process we use the no ta tion  A S k =  S k+1 — S k , k G Z+. 
Furtherm ore, a (k , j )  and <r(k, j )  are random  variables which are supposed to  be m ea­
surable w ith respect to  F k for all j  G Z+ and k G Z + . Equivalently w ith (6), one can 
use the  form

k-1 k-1

f  ( k  j )  =  f  (0, j )  +  j )  +  5 3  a ( ^ j )A S ¿. (7)
i=0 i=0

Now, it is n a tu ra l to  define the in terest ra te  holding for the period t  =  k to  t  =  k + 1
by

r(k ) :=  f  (k, 0) for all k G Z+.

Model A . In th is approach one can say th a t we form ulate the  re tu rns of assets and 
also the discount factor using a continuous com pounding convention, which leads in 
fact to  a certain  exponential form. In o ther words, the  logreturns (the logarithm  of 
the  returns) are modeled d irectly  and not the returns. This looks very much like the 
continuous formulation.

It is assum ed in the  m arket th a t  there is a stochastic discount factor process, say 
{ M (k )}keZ+, which is the key process in order to  price the financial assets in the 
m arket. F irst, set M (0) :=  1 and next we suppose th a t

M  (k + 1 )  =  M  (k) exp {—r(k ) +  ^ (k )A S k } , k G Z+, (8)

where ^(k) is an F k-m easurable random  variable for all k G Z+. Thus one can w rite

log M (k  +  1 ) =  log M (k) — r ( k ) +  ^ (k )A S k, k G Z+, (9)

or, alternatively,

{ k-1 k-1
— y~] r ( i)  + ^ 2  ^(*)ASj

i=0 i=0

Let P  (k, I) denote the price of a zero coupon bond a t tim e k w ith m atu rity  I  for 
all 0 <  k <  I. Hence we pu t P (k , k) :=  1 and in general we define

P  (k, I  + 1 ) =  P  (k, I) exp {—f  ( k , l  — k)} , 0 <  k <  I, (10)

or, to  pu t it in another way,

log P  (k, k +  j  +  1) =  log P  (k, k +  j )  — f  (k, j ) ,  k , j  G Z+. (11)

k G Z
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Thus, one has

P (k , I) =  exp  ̂ f  (k, j )
j=0

I—k-1
0 <  k <  I.

Model B. In discrete tim e settings it is also common to  w rite the re tu rns w ithout 
the continuous com pounding convention used in Model A , and so we can make them  
simpler. For instance, consider option theory. In the classical continuous tim e option 
pricing problem s the stock price process is of an ‘exponential ty p e ’, since it is a 
geometric Brow nian m otion. However, in the discrete tim e settings we use the simple 
binom ial or b inary  tree models, where the asset price is m ultiplied by a factor (1 +  p) 
to  get the  new asset price.

In such type of form ulation we can construct models for the  discount factor and 
the bond process as follows.

Let M (0) :=  1 again and define

th a t is,

M  (k +  1) =

M (k)

M (k)
1 +  r(k ) — ^(k)A Sk ’

k G Z+,

E t to  ( 1 +  r( i)  — ^(i)A S j)
k G Z +  •

In a sim ilar way, the  price of the zero coupon bond is defined by P (k , k) 
k G Z+ and

P  (k, I)
P (k , I  +  1) =

1 +  f  ( k , l  — k ) ’
0 <  k <  I,

and hence we can w rite

P (k , I) =
n j= k -1  ( 1 + f  ( k , j ) ) ’

0 <  k <  I.

1

1

1

3  N o - a r b i t r a g e  c r i t e r i a  i n  t h e  c l a s s i c a l  m o d e l

The m ost im portan t p roperty  one requires to  make the model realistic is the  no­
arb itrage condition of the m arket.

D e f in i t io n  1 We say that the m arket satisfies the no-arbitrage criterion i f  there ex­
ists a probability measure P* on (Q, F ) which is equivalent with measure P  such that 
fo r  each 1 G Z+ the discounted value process o f the bond { P (k ,l)M (k )} 0<k<£ is a 
P*-martingale. Such a measure P* will be called equivalent martingale measure.
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In the following, we shall w rite sim ply a.s. instead of P-a.s. or P*-a.s., if P* is an 
equivalent m artingale m easure, since due to  their equivalence the  two notions are the 
same.

We m ention here th a t one m ight find some equivalent form ulations w ith th is def­
inition in the literature . In the following we present different forms of the condition 
a t issue.

P r o p o s i t io n  1 Suppose that P* is an equivalent measure with  P  in  Model A. Then  
P* is an equivalent martingale measure i f  and only i f  we have fo r  all 0 <  k <  l

l-k —2
E* I exp < ^(k) — 5 3  a (k, j ) AS, , Fk

j=0
(12)

{

I — k—2 Ì
r(k ) — ƒ (k, l — k — 1) +  a ( k , j  )>  , a.s.,

j= 0 J

where E* indicates expectation taken with respect to P*.
I f  the increm ent ASk is P*-independent o f Fk (k G Z + ) then the no-arbitrage 

condition (12) is equivalent with
/ l —k — 2 \ I l —k—2 I

I ^ (k) — 53 a(k,j)| =  exp s r(k ) — f ( m —k —1 ) +  5 3 a ( k , j )   ̂ a.s.

(13)
fo r  all 0 <  k <  I, where is the m om ent generating func tion  o f ASk with respect 
to the measure P*.

P ro o f . F irst note th a t

P  (k +  1 l)  Í l —k—2 l —k—2
P(fc = exp j /(M -k - 1) - 53 a (k J ) ~ A s k 53

0 <  k <  l. Now, w rite

P (k  +  1, l)M (k  +  1) =  P (k , l)M (k )A (k , l),

where

Í l —k—2 /  l —k—2 \
—r(k ) +  ƒ (k, l  — k — 1) — 5 3  a ( k , j )  +  I ^ (k) — 5 3  a (k ,j )  I ASk

j=0 \  j=0 J

Hence, the no-arbitrage condition is equivalent w ith

E*(A(k, l ) |F k) =  1 a.s. for all 0 <  k <  l . (14)
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There rem ains the  left hand  side of (14) to  be calculated:

l —k—2
E* (A (k ,l) |F k  ) =  exp  ̂ —r ( k ) +  ƒ ( k , l  — k — 1) — ^  a (k , j )  E* (exp {c(k ,l)A S k  } |F k  ) :

j=0

where c(k, l) =  ^>(k) — Y I j=0 2 a (k, j ) .  Hence we obtain  (12).
To see (13), note th a t c(k, l)  is m easurable w ith respect to  F k, and recall th a t 

A S k is independent of F k. Hence

E* (exp {c(k, l )A S k} |F k) =  (c (k ,l))  a.s.

for 0 <  k <  l. □

C o ro lla ry  1 I f  fo r  all k >  0, the r.v. ASk is P*-independent o f Fk and standard 
normal with respect to an equivalent martingale measure P* then we can write the 
no-arbitrage condition in  Model A in  the form

m— 1 1
f ( k ,  to) = r(k)  +  5 3  a (k J )  ~

j=0

m-1

(̂k) — 53 a(k j)
j=0

i.s., k >  0, m  >  0. (15)

Moreover,

k-1 k-1
ƒ (k, m) =  ƒ (0, m + k )  +  5 3  a (* , k + m  — i —1 ) + 5 3 a (*, k + m  —i — 1)ASj, a.s. (16)

i=0

a(i, l)  =  a ( i, l)
l-1

i=0

1
-  </>(*) +

j=0
fo r  i, l  G Z+

P ro o f .  Indeed, due to  the fact th a t G*k (z) = e x p { ^ z 2} we have

l -k -2  1 
-(k) -  f { k , £ -  k -  1 ) +  5 3  a (k ’j )  =  X

j=0

l-k -2

(̂k) — 53 a(k,j)
j=0

for 0 <  k <  l. Then, w ith m  =  l  — k — 1 we ob tain  (15).
To derive formula (16) we use (15) to  obtain  for i >  0 and l  >  0

ƒ (i, i  +  1 ) -  ƒ (i, I) = a(i, £) + <j>(i)a(i, £ ) - \ E ff(i,j )
j=0

1
+ 2

l-1

£ < K i , j )
j=0

l-1

j=0

2

2

a.s.

2 2
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S ubstitu tion  of a ( i , l )  in th is expression by using (6) leads to

ƒ (i +  1, l)  — ƒ (i, l  +  1) =  a ( i , l)A S j +  a ( i, l)

=  a ( i , l)A S j +  a(i, l)

i  — 1
£ e r ( * J )  -</>(*) +
j=0 (17)

and  hence to  (16). □
Fix a m a tu rity  tim e T  and  suppose th a t we are in terested  in the in terest ra te  

corresponding to  the  interval [T, T  +  1]. Before T , we do no t know r ( T ). If we are 
a t tim e k then  our ‘prediction’ for r ( T ) is ƒ (k, m), where m  =  T  — k. Thus, formula 
(16) explains how the first prediction ƒ (0, T ) is modified period by period up to  tim e 
k in order to  arrive finally a t the value ƒ (k, m).

R e m a r k  1 So far we studied  the no-arbitrage criterion only in Model A. We should 
m ention, however, th a t sim ilar no-arbitrage criteria  can be given in Model B  as well. 
W ithou t proof we present the analogue of (12) in Model B: for 0 <  k <  l

E * 1

(1 +  r(k ) — ^(k )A S k ) n l = 0  2 (1 +  ƒ (k, j )  +  a (k , j )  +  a (k , j )A S k )
Fk

(18)

n j= k  — 1 (1 +  ƒ ( k , j ) ) :

Com paring (12) to  (18) one can see th a t in Model A  the  verification of the no-arbitrage 
criteria  seems to  be easier th an  in Model B . For instance, we derived (13) in Model A , 
which is quite useful, since in m ost of the cases we will suppose to  have independence 
between the increm ents and the  a-algebra generated by the past. Thus we have 
a form ula w ritten  in term s of m om ent generating functions which m ight be easily 
calculated for certain  probability  laws. U nfortunately, in Model B  we cannot derive a 
form ula which would be as good for practical purposes as (13). One has to  m ention, 
however, th a t for o ther purposes one m ight find Model B  more appropria te  th an  Model 
A .

1
a.s.

P r o p o s i t io n  2 Consider Model A. Let us suppose that we have an equivalent m ar­
tingale measure P* such that the increm ent ASk is P* -independent o f Fk fo r  k G Z+ 
and it concentrates on {1, —1}, i.e.,

pk :=  P*(ASk =  1) =  1 — P*(ASk =  —1) G (0,1).

(a) Then  P* is a unique equivalent martingale measure. Moreover, ^(k) is determ in­
istic fo r  all k G Z+.
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Assum e, furtherm ore, that fo r  k , j  G Z+ the a ( k , j ) ,  a ( k , j )  and ƒ (0, j )  are all 
determ inistic and ^ (k) =  0.
(b) Then we have a ( k , l )  =  a (k ), k, l  G Z + , and the values a ( k , l ) ,  k, l  >  0 are 
all uniquely determined in  the model provided that {a(k)}k£Z+, {ƒ(0, j)} jez+  's and 
{^(k)}kez+ are given.

P ro o f .  In this setup (13) can be w ritten  in the form for 0 <  k <  l

Í i —k — 2 Ì ( i  — k — 2 
^(k) — E  a ( k , j ) > + ( 1  — pk) exp < — ̂ (k) +  E  a (k ,j)  

j=0 J I j=0

i  — k — 2
exp  ̂ r(k ) — ƒ (k, l  — k — 1) +  E  a ( j ,  a .s

j=0
(19)

Since (19) is linear in pk it has a unique solution for pk. Furtherm ore, (19) for
l  =  k + 1  gives th a t  ^ (k) is determ inistic for all k G Z+.

Now, we tu rn  to  prove (b). By using (7) we can w rite (19) for 0 <  k <  l  as

Í i —k — 2 Ì ( i —k — 2 
^(k) — E  a ( k , j n + ( 1  — p k )ex p <  — ̂ (k) +  E  a (k ,j)  

j=0 I I j=0

k 1
e x ^  ƒ (0,0) — ƒ (0, l  — k — 1 ) + E

i=0

k 1

+ a (i, 0) — a ( i , l  — k — 1)

a ( i ,  0) — a (i, l  — k — 1)

i —k — 2 'j 
A Si +  E  a (k , j )  >, 

j=0 J

( 0)

a.s.

The left hand-side of ( 0) is determ inistic, so has to  be the right hand-side. So,

k 1

E
i=0

and hence

[a(i, 0) — a ( i , l  — k — 1)] AS* =  0 a.s. for 0 <  k <  l

a ( i, 0) — a ( i , j ) = 0  for i , j  G Z+

It follows th a t we have a.s. for 0 <  k <  l

pk exp {^(k) — ( l — k — 1)a(k)} +  (1 — pk) exp {—̂ (k) +  (l — k — 1)a(k)}

exp
k 1 i —k — 2

i=0
ƒ(0 ,0 ) — ƒ (0 ,l  — k — 1 ) + X )  a ( i ,  0) — a ( i , l  — k — 1) +  E  a ( k , j )  .

j=0
( 1)
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E quation  (21) shows th a t under our assum ptions the values a (k , l)  cannot be chosen 
freely when we would like to  set the param eters of the model (since the  a (k , l ) ’s are 
uniquely given in a recursive way from (21)). □

R e m a r k  2 We saw in the  model studied in sta tem ent (b) of Proposition  2 th a t the 
a (k , j ) ’s do not depend on j ,  which m eans th a t the model is not as general as one 
would th ink. The reason for th a t, as it can clearly be seen from the  proof, is the fact 
th a t  there is only one driving process for the  forward rates corresponding to  different 
tim e to  m a tu rity  values. This is a reason why in the next section of th is paper we 
introduce a more general setup.

R e m a r k  3 We m ention th a t one could also consider the  even sim pler case where 
^(k) =  0 for all k G Z+. Then the only difference is th a t one can choose the value 
a (k , 0) freely from a certain  interval, bu t for k G Z+ and l  >  0, the values a (k , I) 
are all uniquely determ ined again. Indeed, for l  =  k + 1  bo th  sides of (19) reduce 
to  1. Thus pk should be determ ined by the aid of the next equation. Due to  the 
m onotonicity  of the exponential function, for l  =  k +  2 the equation (20) can be 
satisfied if and only if

a (k , 0) G ( — a(k , 0) — ¿k , a (k , 0) — ¿k),

where

k -1 k -1
4  =  ƒ (0, 0) +  ƒ (0,1) +  ] T  [a(i, 0) — a (i, 1)] +  £  H * , 0) — *(*, 1)] A Si.

i=0 i=0

Thus the assum ption ^>(k) =  0 gives a little  freedom a t the choice of the values a (k , 0).

R e m a rk  4 A nother im portan t assertion could be the following. Suppose now, th a t 
the <r(k, j ) ’s, ƒ(0, j ) ’s and  ^ (k ) ’s (k, j  G Z+ ) are all determ inistic in the model. Then 
the following two sta tem ents are equivalent:

(1) a (k , I) is determ inistic for all k, l  G Z + ,

(2) <r(k, l )  =  <r(k), k , l  G Z + .

This is triv ial since we saw th a t (19) gives a system  of equation  th a t pk , k G Z + , 
should fulfill alm ost surely, th a t is, for alm ost every w G 0 .

4  A  n e w  m o d e l ,  b a s e d  o n  r a n d o m  f i e l d s

Definitions and assumptions
Let (0 , F , P) be a probability  space and suppose th a t | F k}keZ+ is a filtration on

it.

10



F irst, suppose th a t {S (k, l ) } kjleZ+ is a random  field, i.e. S  (k, I) is a random  
variable for all k, l  G Z + . We will use the no ta tion  A iS  (k, I) :=  S  (k +  1,1) — S  (k, I). 
We impose the following assum ption on the driving process S :

(A 1 ) For each l  G Z+ the process { S (k ,l)} keZ+ is a square-integrable m artingale 
w ith respect to  { F k}keZ+, th a t is, S (k, l)  is F k-m easurable and

E (A 1S(k, l ) |F k) =  0 a.s. for k >  0.

We shall w rite
c(k, l 1, l 2) :=  cov (A 1S ( k , l 1) , A 1S ( k , l2))

and
0-2,* :=  c ( k , l , l )  =  V arA 1S (k ,l) .

Note th a t  for practical purposes one m ay assume furtherm ore th a t c(k, l 1, l 2) does not 
depend on k. This would m ean th a t the covariance of the increm ents is independent 
of the tim e param eter.

Now, we define the  instantaneous forward ra te  ƒ (k ,j)  a t tim e k w ith tim e to  
m a tu rity  j  as follows:

ƒ (k +  1, j )  =  ƒ (k, j )  +  a (k , j )  +  o(k , j)A 1 S  (k, j ) ,  (2 2)

where k G Z+, j  G Z+. One can w rite equivalently

k-1 k-1

f  (k ,j )  =  ƒ  (0 ,j)  +  £  a ( i , j )  +  E  o (*, j ) A l S (*, j ) . (23)
i=0 i=0

In (22) and (23) the  a (k , j ) 's  and o(k , j ) 's  are all random  variables for k G Z+, 
j  G Z+. We shall suppose th a t for all j  G Z+, the processes { a ( k , j ) } keZ+ and 
{ o (k ,j )} keZ+ are adap ted  to  the filtration { F k}keZ+, i.e., a ( k , j )  and o ( k , j )  are 
F k-m easurable.

Thus we have a model where the forward in terest ra te  value ƒ (k, j )  can be con­
sidered to  be announced a t tim e k since ƒ (k, j )  is m easurable w ith respect to  F k.

As in the  classical model, the in terest ra te  a t tim e k — holding for the  period t  =  k 
to  t  =  k +  1— is defined by

r(k ) =  ƒ (k, 0) for k G Z+.

Again one can build up two approaches for the  construction of the discount factors 
and the bond price processes.
Model A. The stochastic discount factor process {M (k )}keZ+ of the m arket is sup­
posed to  have the following dynamics: M (0) :=  1 and

M (k  +  1) =  M (k) exp < —r E
j=0

(k) + V  ¿ (k ,j)A 1  S  (k ,j) k G Z (24)

11



where 0 (k ,j )  is an F k-m easurable random  variable for k, j  >  0, and we assume th a t 
^O=o 0(k, j )A iS (k , j )  exists in L 2-sense. A n a tu ra l way of discounting would be to  
take the defining equation (24) such th a t 0 (k, j ) =  0 for all k , j  G Z+, th a t is, the 
discounting would be done only w ith  the in terest ra te  values, as it is often the case in 
the  literature . However, (24) allows the discount factors to  be also modified a t tim e 
k by each of the  shocks corresponding to  tim e k. Similar discount processes were 
considered in [9].

The condition on the L 2-convergence is taken  in order to  guarantee the sum  in 
(24) to  be well defined. Here we m ention th a t to  guarantee the L 2-convergence one 
can find some sufficient conditions. For instance, consider the  case where A 1S(k, j )  
is independent of for k, j  G Z+. Then the condition

5 3  cTfcj 4>(kJ)2 <  œ , k G Z+, 
j=o

(25)

is sufficient for the L 2 convergence of the  series a t issue. Indeed, take 0 <  m  <  n. 
Then by the independence and the Cauchy-Schwarz inequality we have

E 0(k, j i )0 (k ,  j2 )E A iS  (k, j i ) A iS ( k ,  j2)
Ji=m j2=m

n n
 ̂ 53 53 V ^ k ,  i i ) 2E</>(k, j 2 )2v l }jl ° l , j2
Ji=m j2=m

53 j f 0 as m  ^  œ .

The definition of the price of a zero coupon bond P  (k, I) a t tim e k w ith m atu rity
I  for all 0 <  k <  I  rem ains the  same, i.e., P (k , k) :=  1 and

P  (k, I  + 1 ) =  P  (k, I) exp { - ƒ  ( k , l  -  k)} , if 0 <  k <  I. (26)

For the further calculations we find it useful to  derive the quotient It is
easy to  see th a t

P p ( k  l ) ^  =  exP I / (k; I  — k — 1) — 53 ( / (k +  Ij j )  — ƒ (k, i) )

l-k -2 l-k -2
exp<{ ƒ (k, I  -  k -  1) - 5 3  a ( k , j )  - 5 3  a (k, j)A iS (k , j )

j=o j=o

OO

2

j=m

2

j=m

12



Model B. As in the classical case, one could take an alternative way to  construct the 
discount and bond price processes as follows.

Set M (0) :=  1 again and define

M { k + 1 )  =  l  + r ( k ) - T ¿ ¡ ( k , j ) A S ( k , j y  k > ° ■

In a sim ilar way, the  price of the zero coupon bond is defined by P (k , k) :=  1, 
k G Z+ and

P|t-i+1) = T T w h r

5  N o - a r b i t r a g e  c r i t e r i a  i n  c a s e  o f  r a n d o m  f i e l d s

In this section we will give results which are analogous to  the results given in Section 
3.

T h e o re m  1 Suppose that P* is an equivalent measure with  P  in  Model A. Then  P* 
is an equivalent martingale measure i f  and only i f  we have a.s. fo r  all 0 <  k <  I

/ s oo s \ I i —k— 2
E * ^ e x p | E  (k, j  )A iS  (k, j  )ƒ  F k j  =  exp <j r(k ) -  ƒ (k, I  -  k -  1) +  E  a ( k , j  )

I—k —2
a(

j=o
(27)

where

, (k ■ ) :=  Í 0 (k ,j )  -  i f  0 <  j  <  1 -  k -  2
1 \ ^ ( k , j ), i f  I  -  k -  1 <  j .

If, furtherm ore, 0(k, j ) =  0 fo r  j  >  N , where N  G Z+ is fixed, and fo r  each 
k G Z+ the increm ents  A i S  (k ,j) ,  j  G Z+, are all P *-independent o f Fk then the 
no-arbitrage condition (27) can be w ritten as

G k,NV(l—k — 2 )(^ l(k , 0 ), . . . , ^ l (k , N  V ( l -  k -  2)))

( I—k — 2 Ì (28)
=  exp < r(k ) -  ƒ (k, I  -  k -  1) +  E  a ( k ,j ) ,

where Gk ¿ is the jo in t m om ent generating function  o f A iS (k , 0 ),. . . ,  A iS (k , i) with 
respect to measure P *.

P r o o f .  F irst note th a t

P (k  +  1, l)M (k  +  1) =  P (k , l)M (k )A (k , I), 0 <  k <  l,

13



where

, £—k —2 
A(k, l)  =  ex p i — r(k ) +  ƒ (k, l  — k — 1) — E  a ( k , j )  

L j=o

I —k —2 oo

— E  a ( k j ) A 1S (k ,j )  +  E  ^ ( k , j ) A 1S (k ,j )
j=o j=o

Now, the  process { P (k ,l)M (k )} o< k<* is a m artingale if and only if 

E  (A(k, l ) |F k) =  1 a.s. for 0 <  k <  I.

I t only rem ains to  be m entioned th a t B (k , l)  =  exp j  ƒ (k, I  — k — 1) — ^  2 a (k , j )  — r  

is m easurable w ith respect to  F k. Thus we get (27).
Next, (28) is also im m ediate in case of the  independence of the increm ent A 1S(k, j )

(j g Z + ) of F k. n
We m ention th a t the assum ption ^ ( k , j )  =  0 for j  >  N  was crucial in the derivation 

of the left hand-side of (28). By letting  N  =  to one would have further difficulties 
to  calculate the  conditional expectation  in (27) in order to  arrive a t a simple formula 
like (28).

C o ro lla ry  2 Assum e that ^(k , j )  =  0 fo r  j  >  N , where N  G Z+ is fixed. I f  the ran­
dom vector (A 1 S  (k, 0), A 1 S  (k, 1 ) , . . . ,  A 1 S (k ,j ) )  is normally distributed with respect 
to an equivalent martingale measure P* and P*-independent o f Fk fo r  all k G Z+ and 
j  G Z+ then the no-arbitrage criterion in  Model A implies

m—1 1  N V(m —1)
f ( k , m )  -  ^ 2  a ( k , j ) - r ( k )  + -  E  rtPm+k+i(k, j f a l j  

j=o j=o
(29)

NV(m—1) NV(m—1)
+  E  E  ^m +k+1 (k, j 1 )^m +k—1 (k, j 2 )c(k, j 1 , j'2 ) = 0  a.s. 

ji=o ¿2 =ji + 1

fo r  k, m  G Z+.
Furthermore,

k-1 k-1
[ ', m ­

o
ƒ (k, m) =  ƒ (0, m + k ) + 5 ^  a(i, m + k  — i —1)+^~~^ a ( i , m + k  — i — 1 )A 1 S (i, m + k  — i —1),

(30)
where

NV(l—1) 1—1
i(i, I) =  a ( i, I) -  E  J>(i, J, + E  ̂  *) + *)

j=o j=o
i, l  G Z.
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P ro o f. For x o, . . . ,  x i G R, the  random  variable Z(xo, . . . ,  x¿) =  ^ ¿=o x¿A 1S(k, j )
is G aussian w ith m ean zero and variance

E ] T  x¿ A 1 S(k , j )  =  E  x2EA 1S (k, j ) 2
<j=o j=o

i i
+ 2  E  E  Xji x ¿2 E A 1 S  (k ,j1 )A 1 S (k ,j2 ),

jl=o ¿2=¿1 + 1

from which (29) follows directly  by setting  m  =  l  — k — 1 i n  (28), since Gk i =  

, ....}•

Now we tu rn  to  the derivation of (30). For this, we s ta r t by w riting (29) in the 
form

m-1
ƒ (k, m) =  r(k ) +  E  “ (k, j )

j=o

N NA(m—1) m—1

E ^ (k ,j )2 a L - — 2 E  ^ ( k , j ) a ( k , j ) a fc,¿ +  E  a ( k , j ) 2 a L-
j=o j=o j=o

N N m —1 N

E  E  E  E
jl=o ¿2=jl + 1 jl=o ¿2=jl + 1

m-2 m-1 NA(m-2) m-1

+ E  E  E  E
jl=o ¿2=jl + 1 jl=o ¿2= jl+ 1

Hence for i >  0, l  >  0 we have

ƒ (i, l  + 1 )  — ƒ (i, l)  =  a ( i, l)  +  1{N >i}^l,i0(i, l )^ ( i ,  l)

N
-  -  a(i ,  i f c r 2̂  +  E  a ( h i )<t>(h32)c(i,lj2)

¿2 =1+1

I — 1 NA(l—1)

— E a ( i ,j1 )a ( i , l ) c( i , j1 , l )  +  E  ^ ( i , j1 ) ^ ( i , l ) c ( i , j1 , l ) .
jl=o jl = o

2
2
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S ubstitu tion  of a ( i , l )  in th is expression by using (22) leads to  

ƒ (i +  1 ,l)  — ƒ ( i , l  + 1 )

NV(l—1) I— 1
a ( i, l)

j=o j=o

=  a (i, l ) A 1 S (i, l)  +  a(i, l), 

and hence to  (30). □

6  E x a m p l e s  f o r  t h e  d r i v i n g  p r o c e s s

In the following examples we shall suppose th a t {n(i, j )}i,¿ez+ form a white noise 
system, i.e., let n(i, j ) be i.i.d. random  variables w ith m ean zero and variance 1 for
i, j  G Z + . We shall, furtherm ore, define F k :=  a  (n(i, j )  | i <  k, j  G Z+).

E x a m p le  1 Define the driving process as a p artia l sum  of the n(k, l ) ’s, th a t is,

k I
S ( k , l ) : = E E  n ( i , j )  k , l  G Z+.

i=o j=o

It gives

S  (k +  1 , l  +  1) =  S ( k , l  +  1) +  S (k  +  1 ,l)  — S (k ,l )  +  n(k +  1 , l  +  1).

For each l  G Z+, the independence of the n(i, j ) ’s together w ith E n ( i ,j )  =  0 
im ply th a t {S(k, l ) } keZ+ is a m artingale w ith respect to  { F k}keZ+ for each l  G Z+. 
Furtherm ore, we have

Il 12
cov(A 1S ( k , l 1), A 1S ( k , l2)) =  E E  En(k + 1 ,  j1 )n(k  + 1 ,  j2 )

jl=o ¿2 =o

Il A12
=  E  E (n(k +  1 , j ) ) 2 =  l 1 A l 2 +  1  :=  c ( l 1 , l 2 ).

j=o

Hence th is driving process fulfills the required assum ptions, furtherm ore, the covari­
ance function c is independent of the tim e param eter k.

E x a m p le  2 (A R  m o d e l)  F ix a constant p G R. We define the driving process by

k I

S  (k ,l)  =  E E  pl —¿ n ( i , j ) ,  k, l  G Z+.
i=o j=o
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S  (k +  1, l  +  1) =  S  (k, l  +  1) +  pS(k  +  1, l)  — pS  (k, l)  +  n(k +  1, l  +  1)

for k, l  G Z + . Then one can w rite

A 1S(k , l  +  1) =  p A 1S(k , l)  +  n(k +  1, l  +  1),

which m eans th a t {A 1S(k, l)} leZ+ is an autoregression process (AR(1)) w ith coeffi­
cient p.

For this, we have

ll 12
cov(A 1 S ( i , l 1 ), A 1 S ( i , l 2 )) =  E  E  pll+ l2—j l —¿2E n(i +  1 ,j1 )n (i +  1,j2)

jl = o ¿2 = o

pl l+ l 2+2 _ p|ll —12|
=  - ------------- 2— 7 -------------  f o rp2 — 1

Note th a t we have again a covariance function th a t does not depend on the tim e 
param eter k.

For p =  1 we have the  model studied  in Exam ple 1. For p =  —1, one can easily 
derive cov(A 1S (i, l 1), A 1S (i, l 2)) =  ( —1)l l +l2 ( l 1 A l 2 +  1) .

F inally  we m ention th a t by the choice p =  0 we ob tain  A 1S(k , j )  =  n(k +  1, j ) ,  
k, j  G Z+. In th is case the  process {S(k, j ) } kgz+ is a discrete random  walk. Moreover,
S (k, ji_) and S (k , j 2) are evolving independently  for j  =  j 2 and hence th is setup is 
not very realistic.

In the next proposition we shall consider a simple case of the AR model.

P r o p o s i t io n  3 (N o - a r b i t r a g e  in  t h e  A R  m o d e l)  Let us assume that the forward  
rates are driven by an autoregression field presented in  Example 2 such that n(i, j )  
concentrates on the set {1, —1} with

p*¿ :=  P*(n(i, j )  =  1) =  1 — P*(n(i, j )  =  —1) G (0,1),

where P* is an equivalent martingale measure. Let p =  0, and a (k , j )  =  0 a.s., 
k, j  G Z+. Suppose that ^(k , j )  =  0 fo r  j  >  N , k G Z+ with some N  G N.

Then the only equivalent martingale measure is P*.

P ro o f .  Let G*¿ denote the m om ent generating function of n ( i , j )  taken with 
respect to  P*. Clearly, G *¿(x) =  p*¿ex +  (1 — p*¿)e—x. In th is case (28) gives us the 
following system  of equations:

(l—k — 2)VN /(£—k — 2)VN \  ( £—k —2

I l  G k+1,i £  p¿—'V l (k ,j )  = exp S  r(k ) — — k — 1 ) +  E  a ( k , j )
i=o y ¿=i J  [ ¿=o

Hence, in th is case we have

(31)

17



for 0 <  k <  l. In this special case we have

^ i ( k  j )

^(k , j )  — ^(k , j ) ,  if 0 <  j  <  ( l — k — 2) A N,

—<r(k,j), if N  + 1  <  j  <  l  — k — 2,

^(k , j ) ,  if l  — k — 1 <  j  <  N,

0, otherwise.

In order to  get a more detailed picture of this problem , below we rew rite (31) for two 
particu lar cases. Thus, for l  =  k + 1 ,  (31) leads to

n G *k+1 ,i £ p¿—1m . ? ) ]  = 1 , (3 2 )
i=o \J= i

secondly, w ith  k +  1 <  l  <  k +  N  +  2 we obtain

N /  N l —k —2
I l G k + 1 ,i £ p¿—V ( k j  — £  p¿—V ( k j
i=o \¿= i ¿=i

l —k—2
exp  ̂ r(k ) — ƒ (k, l  — k — 1) +  £  a ( k , j )  >.

¿=o I

(33)

Consider now the case where ^(k , j )  =  0 for k G Z+ and 0 <  j  <  N . Then we 
have N  + 2  equations from (33) to  determ ine pk+1 o, . . .  ,Pfc+1 n . Taking the ra tio  of 
(33) for l  +  1 and l  we obtain

Y l t t 2G l+i ,

n t o -2 G*fc+1,  ( s f =i J) -  E  j ) )  (34)

=  exp {ƒ (k, l  — k — 1) — ƒ (k, l  — k) +  a (k , l  — k — 1)} .

Now, (34) gives a condition th a t pk+1 i —k—1 has to  fulfill. (Note th a t only l  — k — 1 
m om ent generating functions occur in (34), which correspond to  n(k +  1, 0), n(k +  
1 ,1),...,n(k +  1, l  — k — 2).) Since the function

p ea + ( l - p ) e ~ a ^
P ^ — t,— r--------ñ— 1),p eb +  (1 — p )e —b v h

is s tric tly  m onotone if a =  b, thus it follows th a t pk+1 i —k—1 is uniquely determ ined 
for l  =  k +  1 , . . . , k +  N  +  1.

One can easily see th a t as we increase the value of l  in (31), such th a t l  >  k + N + 2 , 
in each step  one more generating function, nam ely G^+1 l —k—1 occurs on the  left hand- 
side of (31). Thus, for any l  >  k +  N  +  2, (31) gives the condition for pk+1 i —k—1 and
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a (k , I  — k — 2). From  this, we can see the uniqueness of p £ + 1  j  for j  >  N  + 2  as well. 
Thus, we have shown th a t P* is unique.

□

R e m a r k  5 Consider the  autoregression model discussed in Proposition 3 and sup­
pose th a t  the  assum ptions of this proposition are valid. If, furtherm ore, we assume 
th a t { ff(k ,j)} k ,j£z+ and { ƒ (0 ,j)} ¿ eZ+ are all determ inistic, then  a ( k , j )  , k >  0, 
j  G Z+, cannot be determ inistic. This can be seen from (31). Indeed, the  left hand- 
side of (31) is determ inistic, hence the right hand-side has to  be determ inistic. The 
la tte r is

l -k -2  k-1 
r(k ) — f ( k , l  — k — 1) — 5 3  a ( k , j )  =  5 3  a ( i ,  0) — a (* ,l  — k — 1)

j=0 i=0

k-1 /  l -k -1  \  l -k -2  
+  £  I a (*,0)n(i + 1 ,0 )  — ^(*,1 — k — 1) 5 3  pl - k - 1 - j n(i +  1 , j ) l  — 5 3  a (k , j ) .

i=0 y  j=0 y  j=0
(35)

Let us w rite a ( k , j )  =  ß(k , j )  +  m (k, j ) ,  k, j  G Z+, where E a ( k , j )  =  m (k ,j) .  One 
can see from (34) th a t even if (35) has to  be determ inistic, and so ß(k , I  — k — 1) cannot 
be chosen freely, there is still a little  freedom a t the choice of the  value m  ( k , I  — k — 1). 
Namely, one could derive an interval such th a t choosing m (k, I  — k — 1) from th a t 
interval, the  solution p £ + 1  l -k -1  would be in (0,1). Since the calculation of such 
intervals for each a (k , j )  could be done only in a recursive way, it would be fairly 
com plicated.

R e m a r k  6  There are two possible ways one could build up a model we study  now.
One possibility is to  suppose th a t we fix a (k , j ) ,  ^(k, j ) ,  ƒ (0, j )  and  a (k , j )  first. Here 
we have to  em phasise th a t, as we saw so far, a (k , j )  cannot be chosen freely in order 
to  guarantee the existence of an equivalent m artingale measure. In fact, depending on 
the construction, sometimes a (k , j )  is not chosen freely a t all, sometimes only its shift 
param eter m (k, j )  could be chosen freely from a certain  interval. Further difficulties 
m ight be caused by the fact th a t these intervals can only be calculated in a recursive 
way. Having set up a (k , j )  as well, the  next step  would be to  determ ine the equivalent 
m artingale measure, since it is a key object a t pricing problems. Therefore, even if 
th is way would be natu ra l, we have calculational difficulties in this case.

A nother way to  look a t and to  construct the model would be the following. Since 
we m ay have difficulties w ith the  choice of a (k , j )  (more precisely w ith the choice 
of m (k ,j) ) ,  we fix <r(k,j), ^ ( k , j ) ,  ƒ (0 ,j) , and furtherm ore, we fix an equivalent 
m artingale measure. Having done this, a (k , j )  is already uniquely defined. T h a t is 
why m any authors choose this second way.
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R e m a r k  7 There are certain ly  further questions th a t one could ask in the setting  we
introduced. F irst, the  problem  of pricing of in terest ra te  derivatives. Secondly, one
can study  the lim iting connections between the discrete and continuous tim e models.
A th ird  interesting area would be the estim ations of param eters in our models. The
la tte r two problem s are considered in [1].
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