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Abstract

Variable selection in semiparametric mixed models for longitudinal data remains a challenge, 

especially in the presence of multiple correlated outcomes. In this paper, we propose a model 

selection procedure that simultaneously selects fixed and random effects using a maximum 

penalized likelihood method with the adaptive least absolute shrinkage and selection op-erator 

(LASSO) penalty. Through random effects selection, we determine the correlation structure 

among multiple outcomes and therefore address whether a joint model is necessary. 

Additionally, we include a bivariate nonparametric component, as approximated by tensor 

product splines, to accommodate the joint nonlinear effects of two independent variables. We 

use an adaptive group LASSO to determine whether the bivariate nonparametric com-ponent 

can be reduced to additive components. To implement the selection and estimation method, 

we develop a two-stage expectation-maximization (EM) procedure. The operating 

characteristics of the proposed method are assessed through simulation studies. Finally, the 

method is illustrated in a clinical study of blood pressure development in children.
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1 Introduction

Longitudinally assessed multiple outcome data are abundant in clinical investigations. For ex-

ample, systolic and diastolic blood pressure readings are always measured in pairs. Together, 

they quantify the arterial pressure that circulating blood exerts on the walls of blood vessels 

during a cardiac cycle. Although one could choose to analyze systolic and diastolic readings in 

separate models, simultaneous modeling of the two measures provides a more complete picture of 

the systemic circulation. The joint modeling approach not only improves estimation efficiency by 

borrowing information across the outcomes, but also provides an opportunity to compare the 

contributions of the same independent variable to different outcomes1.

Among the available methods, multivariate semiparametric mixed effects models provide per-

haps the most general analytical framework for such situations. Structurally, these models are 

extensions of the traditional mixed effects models2, where the fixed effects characterize the in-

fluences of independent variables, and the random effects reflect the correlations among repeated 

measures within each outcome as well as the interdependence of multiple outcomes within each 

subject3–5. In addition, the inclusion of nonparametric functions has greatly enhanced the mod-

eling flexibility for accommodating nonlinear effects of independent variables. Semiparametric 

mixed models have gained popularity in analyzing longitudinal data6,7, and have been applied to 

multivariate settings8,9. These semiparametric modeling techniques have been successfully used 

to disseminate the concurrent nonlinear influences of biological regulators on blood pressure10–12.

For such a general modeling framework, it is always desirable to have a systematic approach 

that helps to determine variable inclusion and functional forms through which key variables enter 

the model. For fixed effects, including unnecessary variables tends to reduce modeling efficiency 

and result in numerical instability while omitting relevant variables may lead to biased estima-

tion13. For random effects, analysts often choose their inclusion based on subjective perceptions of 

the unknown correlation structure. While in generalized estimating equation (GEE) based models, 

correct specification of the correlation structure is less than essential14, misspecification in mixed 

models could nonetheless affect the validity of variance estimation and statistical inference15,16. 

In a multivariate analysis, correct specification of the random effects takes on new importance 

because it determines how the multiple outcomes are related.
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Variables can be selected using regularization methods including the least absolute shrinkage 

and selection operator (LASSO)17, smoothly clipped absolute deviation (SCAD)18, least angle re-

gression (LARS)19, elastic net20, and the adaptive LASSO21. Further extensions of these methods 

have been proposed to select groups of variables, such as the group LASSO22, the adaptive group 

LASSO23,24, and the group bridge approach25. Through regularization, simultaneous selection of 

fixed and random effects has been discussed in linear mixed models26,27 and genearalized linear 

mixed models28. More recently, variable selection and group selection methods have been applied to 

various nonparametric and semiparametric models. For example, Lin and Zhang29 proposed the 

component selection and smoothing operator (COSSO) method for model selection and esti-mation 

in multivariate nonparametric regression. Huang et al.30 used the adaptive group LASSO to select 

nonzero components in nonparametric additive models after obtaining an initial estima-tor with the 

group LASSO. Zhang et al.31 proposed the linear and nonlinear discoverer (LAND) to determine the 

adequacy of linear effects of independent variables in partial linear models. Du et al.32 discussed 

simultaneous selection of additive nonparametric and parametric components in semiparametric 

regression by applying double penalties. Variable selection has been further considered in 

semiparametric models for longitudinal data. Among the published work, Fan and Li33 employed 

the SCAD penalty to select parametric covariate effects in a class of semiparametric models which 

did not require explicit specification of the correlation structure in longitudinal data. Ni et al.34 

proposed a double-penalized likelihood method for semiparametric mixed models, in which a 

shrinkage penalty was used in fixed effect selection and a roughness penalty was used for smooth 

function estimation. Other semiparametric models for longitudinal data in which variable selection 

has been investigated include partially linear varying coefficient models35,36 and additive partial 

linear models37,38.

The purpose of the current paper is to discuss model selection and structural discovery in mul-

tivariate semiparametric regression for longitudinal data. To the best of our knowledge, none of the 

existing variable selection methods are readily applicable to multivariate data in longitudinal 

settings. Multivariate mixed models usually have more complex random effects which accommo-

date both the within-outcome and cross-outcome correlations within each subject, so the challenge 

of model selection lies primarily in determining whether the outcomes are correlated through ran-
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dom effects selection. This is the situation where selection methods are most relevant because of the 

increased model complexity. The research question is of greater importance because it helps justify 

or invalidate the joint modeling approach, an issue that has not been sufficiently addressed in the 

existing literature. Another question of interest discussed in this paper is whether two independent 

variables have joint nonlinear and interacting influences on the outcome variables, which we refer to 

as “structural discovery”. This will also be addressed in the framework of model selection by 

performing group selection on bivariate nonparametric components.

Herein, we propose a model selection method for multivariate semiparametric mixed models. 

The method will (1) aid the simultaneous selection of the fixed and random effects, (2) determine 

the cross-outcome correlations to justify the joint modeling approach, and (3) discover the existence 

of joint nonlinear effects of two independent variables. Specifically, we present a two-stage model 

selection and estimation procedure. In Stage 1, we use the adaptive LASSO and adaptive group 

LASSO penalties to simultaneously select the fixed and random effects as well as the nonparametric 

components. In Stage 2, we obtain unbiased estimates of selected parameters by maximizing 

the observed likelihood function. The performance of the proposed method is demonstrated in 

simulation studies. We illustrate the method by analyzing data from a childhood blood pressure 

study.

2 Methods

2.1 Model Formulation

Suppose that there are m subjects in a longitudinal study and K outcomes are measured at 

each visit. For the ith subject, let Yijk be the kth outcome observed at the jth time point of 

repeated measurements, i = 1, . . . , m, j = 1, . . . , ni, and k = 1, . . . , K. We consider the following 

multivariate semiparametric mixed model:

Yijk = xTijβk + zTijuik + sk(t1ij, t2ij) + εijk, (1)

where βk = (βk1, . . . , βkp)
T is a p×1 coefficient vector for the fixed effects xij, uik is a q×1 vector

of subject- and outcome-specific random effects for the corresponding covariates zij (which can
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be a subset of xij). We assume that the random effects uik follow a multivariate normal distribu-

tion Nq(0,Dkk), the measurement errors εijk independently follow a normal distribution N(0, σ2
k),

and uik and εijk are independent. Let t1ij and t2ij be the continuous independent variables that 

potentially have nonlinear influences on the outcomes. Without loss of generality, we incorporate 

in the model a bivariate nonparametic smooth function sk, which can be easily extended to mul-

tiple nonparametric components. The bivariate nonparametric function can also be expanded to 

three or more variables to allow for higher-order interactions. In practice, however, higher-order 

interactions are rarely explored in data analysis because they are generally hard to interpret. For 

this reason, we are focusing on the modeling and selection of bivariate nonparametric functions in 

this paper.

For smooth function sk, we specify a tensor product basis39 with marginal basis functions 

φl1 (t1ij ), l1 = 1, . . . , L1, ψl2 (t2ij ), l2 = 1, . . . , L2, and all of their pairwise products. Examples of the 

marginal basis functions include truncated polynomials and B-splines. For regression splines, it is 

generally advisable to choose a modest number of knots depending on the specific research problem 

being studied so that the splines adequately represent the unknown true function while maintaining 

computational efficiency. Alternatively, penalized regression splines or smoothing splines may be 

used so the choice of number of knots is not as critical. The potential interactions between t1ij and 

t2ij are incorporated through the product terms in the tensor product basis, and therefore they 

can be selected while keeping the main effects intact. Assuming φ1(t1ij ) = ψ1(t2ij ) = 1, we write

sk(t1ij, t2ij) =
∑L1

l1=1

∑L2

l2=1 αl1,l2,kφl1(t1ij)ψl2(t2ij) where αl1,l2,k are the coefficients associated with

the corresponding basis functions. Using a vector form, we further write sk(t1ij, t2ij) = T T
ijαk,

where αk is a vector of the coefficients αl1,l2,k for l1 = 1, . . . , L1 and l2 = 1, . . . , L2, and T ij is the

corresponding vector of the tensor product basis functions.

For convenience, we rewrite model (1) into a matrix form. We define the response vec-

tor as Y i = (Yi11, · · · , Yini1, · · · , Yi1K , · · · , YiniK)T , the fixed effect coefficient vector as β =

(βT1 , · · · ,βTK)T , the subject-specific random effects as ui = (uTi1, · · · ,uTiK)T , the coefficient vec-

tor for the smooth functions as α = (αT1 , · · · ,αTK)T , and the vector of measurement errors as

εi = (εi11, · · · , εini1, · · · , εi1K , · · · , εiniK)T . Then model (1) can be rewritten as

Y i = X iβ +Ziui + T iα+ εi, (2)
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where ui follows a multivariate normal distribution NKq(0,D). The covariance matrix D ac-

commodates the within-subject correlations among the repeated measurements and across the

multiple outcomes. Specifically, D can be written as

D =


D11 D12 · · · D1K

D21 D22 · · · D2K

...
...

...
...

DK1 DK2 · · · DKK

 , (3)

where Djk (j, k = 1, . . . , K) are q × q submatrices. The diagonal submatrices are the covariance

matrices of the random effects within each of the outcomes, and the off-diagonal ones indicate the

potential correlations across the outcomes. If the outcomes are not correlated, then D degener-

ates to a block diagonal matrix diag(D11, · · · ,DKK). Additionally, the measurement errors are

normally distributed, i.e., εi ∼ NKni
(0,Σi) where Σi = diag(σ2

1Ini
, · · · , σ2

KIni
).

Cholesky decomposition of the covariance matrix D is a key step for the selection of random

effects as it ensures that D remains positive semidefinite. Hence, D is decomposed as D =

ΓΓT where Γ is a Kq ×Kq lower triangular matrix. Accordingly, the random effects ui can be

reparameterized as ui = Γbi where bi ∼ NKq(0, IKq). Then model (2) becomes

Y i = X iβ +ZiΓbi + T iα+ εi. (4)

2.2 Penalized Likelihood

We employ a penalized regression method for simultaneous selection of fixed effects, random effects

and joint nonlinear effects of two independent variables in the smooth functions. In particular, we

aim to determine whether there are within-subject correlations across the outcomes by identifying

the nonzero elements of D.

Let θ = (βT ,γT ,αT ,σT )T be a vector of all unknown parameters, where γ is a Kq(Kq+1)
2

× 1

vector of parameters of Γ, and σ = (σ2
1, . . . , σ

2
K). We propose to maximize the following penalized

(observed) log-likelihood function:

p`o(θ) = `o(θ)− ηλ1(β)− ηλ2(γ)−
K∑
k=1

ηλ2+k
(αk), (5)
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where `o(θ) = 1
m

∑m
i=1 log fo(Y i|X i,Zi,θ) is the observed log-likelihood function, and ηλj(·) (j =

1, . . . , K + 2) are nonnegetive and nondecreasing penalty functions for the fixed effects, random

effects and smooth functions, with λj > 0 being the tuning parameters which control the amount

of shrinkage.

A number of options for the penalty functions can be considered as discussed in Section 1.

Here, we choose to use the adaptive LASSO penalty for its model selection consistency and easy

implementation in practice21. For the fixed effects, the penalty function is defined as ηλ1(β) =

λ1
∑K

k=1

∑p
l=1 |β̃kl|−1|βkl|, where β̃kl is the unpenalized maximum likelihood estimator (MLE).

Note that it may not be necessary to penalize all of the fixed effect coefficients, for example, the

intercept can be left out of the penalty function.

Selecting random effects in a multivariate model involves identifying important random effects

for each outcome and determining the correlation structure across the outcomes. Similar to

equation (3), we partition Γ as

Γ =


Γ11

Γ21 Γ22

...
...

. . .

ΓK1 ΓK2 · · · ΓKK

 ,

where Γjk (j = 1, . . . , K, k = 1, . . . , j) are q×q submatrices, and the diagonal submatrices Γjj are

lower triangular. For a single outcome, the penalty is placed on the row vectors of Γjj in a grouped

manner to ensure the positive semidefiniteness of D 22,28. If the elements of a certain row of Γjj

are all shrunk to zero, the corresponding row and column vectors of Djj will also be zero and thus

the corresponding random effect will be removed from the model. In a multivariate setting, we

propose to use the following penalty function: ηλ2(γ) = λ2
∑K

j=1

∑j
k=1

∑q
l=1

√
cjkl||γ̃jkl||−1||γjkl||,

where γjkl is the lth row of the submatrix Γjk, γ̃jkl is the unpenalized MLE, ||γ̃jkl|| = (γ̃Tjklγ̃jkl)
1/2,

and cjkl is a normalizing constant to adjust for the varying sizes of γjkl (e.g., cjkl = dim(γjkl)).

To account for the temporal correlations of the longitudinal measures, we do not penalize the

random intercept for each outcome (i.e., γjj1, j = 1, . . . , K), so the corresponding penalty terms

are removed from ηλ2(γ). The proposed penalty function differs from the existing method in that

instead of penalizing the row vectors of Γ, we separate the penalization of the diagonal submatrices
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j=1

Γjj and the off-diagonal submatrices Γjk (j 6= k), so that the non-random elements in the within-

and between-outcome variance components can be identified individually. Group penalties are 

imposed on Γjj for selecting the random effects within each outcome, whereas Γjk (j 6= k) are 

penalized in order to determine the pairwise correlations between the outcomes.

To select the joint nonlinear effects in the smooth functions, we impose group penalties on 

the corresponding product terms in the tensor product basis. For sk, the penalty function is 
defined as ηλ2+k (αk) = λ2+k||α̃∗

k||−1||α∗
k||, where α∗

k is a (L1 − 1)(L2 − 1) × 1 vector consisting of 

αl1,l2,k, l1 = 2, . . . , L1, l2 = 2, . . . , L2, and α̃∗
k is the unpenalized MLE. Note that we allow different 

degrees of penalty for smooth functions sk in penalized likelihood (5) through different tuning 

parameters λ2+k, k = 1, . . . , K. Depending on the research context, it may be appropriate to 

assume a common tuning parameter for smooth functions across multiple outcomes.

3 Computational Algorithm

The model selection and estimation procedure is implemented in two stages. In Stage 1, model 

selection is performed by maximizing the penalized likelihood function. Given a set of tuning 

parameters λ = {λj }K+2, we use an EM algorithm to optimize (5) and obtain the maximum

penalized likelihood estimator (MPLE) θ̂λ. The optimization procedure is carried out for different

values of λ. The optimal λ is selected based on a certain criterion, which will be discussed in

detail in Section 3.2. The final form of the model will be determined according to the nonzero

elements of θ̂λ. In Stage 2, we refit the model with selected fixed effects, random effects and

smooth functions (with or without interactions) to obtain the MLE θ̂.

3.1 EM algorithm

Consider (Y i, bi,X i,Zi) and (Y i,X i,Zi), i = 1, . . . ,m, as the complete data and observed data,

respectively. With the same penalty functions in (5), we write the penalized complete log-likelihood

function as

p`c(θ) = `c(θ)− ηλ1(β)− ηλ2(γ)−
K∑
k=1

ηλ2+k
(αk), (6)

where `c(θ) = 1
m

∑m
i=1 log fc(Y i, bi|X i,Zi,θ) is the complete log-likelihood function.
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Denote the estimator of θ at the sth iteration by θ(s) = (β(s)T ,γ(s)T ,α(s)T ,σ(s)T )T . In the

E-step, for a given set of tuning parameters λ, we calculate the expectation of the penalized

complete log-likelihood (6) given the observed data and θ(s) as follows:

Qλ(θ|θ(s)) = E[p`c(θ)|(Y i,X i,Zi)
m
i=1,θ

(s)]

=
1

m

m∑
i=1

E[log f(Y i|bi,θ)|Y i,X i,Zi,θ
(s)]

+
1

m

m∑
i=1

E[log fb(bi)|Y i,X i,Zi,θ
(s)]

−ηλ1(β)− ηλ2(γ)−
K∑
k=1

ηλ2+k
(αk), (7)

where f(Y i|bi,θ) = NKni
(X iβ + ZiΓbi + T iα,Σi), and fb(bi) = NKq(0, IKq). Let g1(bi,θ) =

log f(Y i|bi,θ), and g2(bi) = log fb(bi). The two terms of expectation in (7) can be written as

E[g1(bi,θ)|Y i,X i,Zi,θ
(s)] =

∫
g1(bi,θ)h(bi|Y i,X i,Zi,θ

(s))dbi, (8)

and

E[g2(bi)|Y i,X i,Zi,θ
(s)] =

∫
g2(bi)h(bi|Y i,X i,Zi,θ

(s))dbi, (9)

where

h(bi|Y i,X i,Zi,θ
(s)) =

fc(Y i, bi|X i,Zi,θ
(s))

fo(Y i|X i,Zi,θ
(s))

=
f(Y i|bi,X i,Zi,θ

(s))fb(bi|X i,Zi,θ
(s))∫

f(Y i|bi,X i,Zi,θ
(s))fb(bi|X i,Zi,θ

(s))dbi
. (10)

The q-dimensional integrals in (8), (9) and the denominator of (10) are usually intractable, so

we use multivariate Gauss-Hermite quadrature rules40 to for approximation. Denote the number

of quadrature nodes for each dimension by n. Let bd and wd be the pre-specified quadrature

nodes and weights respectively, d = 1, . . . , NGH where the total number of quadrature nodes is

NGH = nq. The first expectation term (8) can be approximated as

E[g1(bi,θ)|Y i,X i,Zi,θ
(s)] ≈

NGH∑
d=1

wd exp(||bd||2)g1(bd,θ)h(bd|Y i,X i,Zi,θ
(s)). (11)
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Since the second expectation term does not involve θ, it can be omitted in the M-step from the

penalized Q-function (7), and thus we need to find θ(s+1) by maximizing

Q∗
λ(θ|θ(s)) = Q(θ|θ(s))− ηλ1(β)− ηλ2(γ)−

K∑
k=1

ηλ2+k
(αk), (12)

where Q(θ|θ(s)) = 1
m

∑m
i=1E[g1(bi,θ)|Y i,X i,Zi,θ

(s)].

Considering that maximizing (12) with respect to θ involves high-dimensional optimization,

we propose the following expectation-conditional maximization (ECM)41 algorithm which breaks

down the M-step into several conditional maximization (CM) steps:

1. Given γ(s), α(s) and σ(s), find

β(s+1) = arg max
β

Q(β,γ(s),α(s),σ(s)|β(s),γ(s),α(s),σ(s))−mηλ1(β).

2. Given β(s+1), α(s) and σ(s), find

γ(s+1) = arg max
γ

Q(β(s+1),γ,α(s),σ(s)|β(s+1),γ(s),α(s),σ(s))−mηλ2(γ).

3. Given β(s+1), γ(s+1) and σ(s), find

α(s+1) = arg max
α

Q(β(s+1),γ(s+1),α,σ(s)|β(s+1),γ(s+1),α(s),σ(s))−m
K∑
k=1

ηλ2+k
(αk).

4. Given β(s+1), γ(s+1) and α(s+1), find

σ(s+1) = arg max
σ

Q(β(s+1),γ(s+1),α(s+1),σ|β(s+1),γ(s+1),α(s+1),σ(s)).

5. Iterate the above steps until convergence to obtain the MPLE θ̂λ.

To start the optimization procedure, we fit the full model with all covariates and use the

unpenalized parameter estimates as the initial values.

3.2 Tuning Parameter Selection

The performance of the proposed method depends on the appropriate selection of tuning parame-

ters. Selection criteria that have been extensively used include cross validation (CV), generalized
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cross-validation (GCV), and information criterion such as Akaike and the Bayesian information

criteria (AIC and BIC)42,43. Here, we utilize the following form of BIC to select the optimal tuning

parameters:

BICλ = −2`o(θ̂λ) + log(N)dfλ,

where `o(θ̂λ) is the value of the observed log-likelihood at the MPLE θ̂λ obtained through the

proposed EM algorithm for given λ. In practice, `o(θ̂λ) is approximated using the Gauss-Hermite

quadrature rules described in Section 3.1. The sample size N in a multivariate setting is defined

as N = K
∑m

i=1 ni. The degrees of freedom dfλ is defined as the number of nonzero elements

of θ̂λ. The proposed EM algorithm is repeated over a grid of tuning parameters, and the one that 

minimizes BICλ is considered optimal. In practice, the multidimensional grid search will be 

increasingly difficult when the number of outcomes becomes large. One can start with a crude 

search by using a relatively large interval between grid points to identify the neighborhoods where 

the optimal tuning parameters potentially reside, and then refine the search within those 

neighborhoods. The computational burden can also be alleviated by assuming a common tuning 

parameter for smooth functions across the outcomes in which case the total number of tuning 

parameter would drop to 3.

3.3 Implementation

The proposed computational algorithm is developed using R software. The M-steps in the EM 

algorithm are implemented using the optim function in the stats package44. The initial values of 

the parameters are obtained by fitting the full multivariate semiparametric model using the gamm4 

function in the gamm4 package45.

4 Simulation Study

To evaluate the performance of the proposed method, we conduct a simulation study in which we 

consider two settings. For each setting, we generate bivariate outcomes from the following model: Yij1 = xTijβ1 + zTijui1 + s̄1(t1ij, t2ij) + εij1

Yij2 = xTijβ2 + zTijui2 + s̄2(t1ij, t2ij) + εij2,
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for i = 1, . . . , 200 and j = 1, . . . , 5.

In Setting 1, we set the fixed effect coefficients as β1 = (β10, β11, β12, β13, β14, β15)
T = (1, 1, 3, 0,−1, 0)T

and β2 = (β20, β21, β22, β23, β24, β25)
T = (1, 2, 0,−2, 0, 0)T . The corresponding covariates xij =

(xij0, xij1, xij2, xij3, xij4, xij5)
T are generated independently from N(0, 1) except that the intercept

xij0 = 1. The subject-specific random effects are (uTi1,u
T
i2)

T = (ui10, ui11, ui12, ui20, ui21, ui22)
T ∼

N6(0,D) with

D =



1 0.5 0.5 0 0 0

0.5 1.25 0.75 0 0 0

0.5 0.75 1.5 0 0 0

0 0 0 1 0.5 0

0 0 0 0.5 0.5 0

0 0 0 0 0 0


,

and the corresponding covariates zij = (zij0, zij1, zij2)
T = (xij0, xij1, xij2)

T . Note that the outcomes

are independent of each other since the 3 × 3 off-diagonal submatrices in D are 0. The smooth

functions are given by s1(t1, t2) = t1 + t2 and s2(t1, t2) = t1 + t2 + 2 exp(t1)/(1.2 − t2) with

t1, t2
iid∼ Uniform(0, 1), and s̄1(t1ij, t2ij) and s̄2(t1ij, t2ij) are the values of corresponding smooth

functions centered over (t1ij, t2ij). The measurement errors are εij1 ∼ N(0, σ2
1) and εij1 ∼ N(0, σ2

2)

with σ1 = 1 and σ2 = 1.5.

In Setting 2, the setup is the same as the previous setting except that the outcomes are

correlated with the covariance matrix D given by

D =



1 0.5 0.5 0.25 0.25 0

0.5 1.25 0.75 0.375 0.375 0

0.5 0.75 1.5 0.5 0.5 0

0.25 0.375 0.5 1.1875 0.6875 0

0.25 0.375 0.5 0.6875 0.6875 0

0 0 0 0 0 0


.

These two settings allow us to assess whether the proposed method can correctly determine the

correlation structure between the outcomes.

The simulation is repeated 100 times for each setting using the proposed two-stage procedure.

In Stage 1, we identify important fixed effects and random effects, and determine the presence
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Table 1: Frequency of correct selection, incorrect inclusion and incorrect exclusion of model com-

ponents in 100 simulation replications.

Setting 1 Setting 2

Incorrect Incorrect Incorrect Incorrect

Model Component Correct Inclusion Exclusion Correct Inclusion Exclusion

Model 99 1 0 94 1 6

Fixed Effects 99 1 0 99 1 0

Random Effects 100 0 0 100 0 0

Correlation 100 0 − 94 − 6

s1 100 0 − 100 0 −

s2 100 − 0 100 − 0

of joint nonlinear effects in the bivariate functions. The between-outcome correlation structure 

is determined as part of the random effects selection. Then we estimate the selected effects and 

bivariate surfaces (or two additive univariate smooth functions) in Stage 2. For estimation, we use 

the same algorithm as described in Section 3.1, but remove the penalty terms from the likelihood 

function (6). In both settings, 4 quadrature nodes are used for each random effect; quadratic 

splines with 3 knots are used as the marginal basis for bivariate smooth functions.

Table 1 summarizes the selection results for the whole model and its components, including the 

fixed effects, the random effects, the interaction effects in the smooth functions, and the correlation 

between the outcomes. We report the numbers of times the model and individual components are 

correctly identified, as well as the frequencies of incorrect inclusion (an unimportant effect being 

selected) and incorrect exclusion (an important effect not being selected). Under both settings, the 

proposed algorithm achieves high rates of correct selection of the true model and its components. 

Specifically, it is able to identify the true fixed effects, random effects as well as the interactions with 

a correct selection rate ≥ 99%. The performance in terms of determining the between-outcome 

correlation is also satisfactory, although errors mostly occur when the outcomes are truly correlated.

Tables 2 and 3 show the estimated fixed effect coefficients and variance components from Stage 2. 

The magnitude of bias in the estimation of non-zero parameters is generally small. Only
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Table 2: Estimates of the fixed effect coefficients with empirical standard errors (SEs) averaged

over 100 simulation replications.

Setting 1 Setting 2

Parameter True Value Estimate SE Estimate SE

β10 1 0.941 0.055 0.985 0.037

β11 1 1.013 0.041 1.079 0.072

β12 3 2.957 0.058 2.955 0.052

β13 0 0 0 0 0

β14 −1 −0.997 0.021 −0.993 0.023

β15 0 0 0 0 0

β20 1 1.062 0.056 0.904 0.059

β21 2 2.077 0.051 1.923 0.064

β22 0 −0.001 0.008 0.001 0.006

β23 −2 −1.953 0.034 −1.908 0.213

β24 0 0 0 0 0

β25 0 0 0 0 0

one of the unimportant covariates was incorrectly included in the model. In addition, the mean 

squared errors (MSE) of the estimated smooth functions are: in Setting 1, MSE(ŝ1) = 0.010, and 

MSE(ŝ2) = 0.347; in Setting 2, MSE(ŝ1) = 0.039, and MSE(ŝ2) = 0.382. These results support 

the notion that the two-stage algorithm works well for both model selection and estimation.

Additional simulation studies are conducted to further evaluate the sensitivity of the proposed 

procedure to different choices of basis function and number of knots for the bivariate smooth 

functions. Data are simulated under Setting 2 with two correlated outcomes. We consider two 

choices of marginal basis functions, (1) quadratic splines with 4 knots, and (2) cubic splines with 3 

knots. For each scenario we carry out 100 simulation replications. Model selection and estimation 

results are provided in the Supplement. In Supplementary Table 1, the structures of the bivariate 

smooth functions are all correctly identified using both types of marginal basis. Combined with the 

selection results for s1 and s2 in Table 1, it suggests that the selection procedure is robust to
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Table 3: Estimates of the variance components with empirical standard errors (SEs) averaged over

100 simulation replications.

Setting 1 Setting 2

Parameter True Value Estimate SE True Value Estimate SE

D11 1 0.923 0.058 1 0.864 0.137

D22 1.25 1.306 0.084 1.25 1.364 0.098

D33 1.5 1.771 0.165 1.5 1.776 0.127

D44 1 1.044 0.062 1.1875 1.103 0.141

D55 0.5 0.406 0.070 0.6875 0.742 0.074

D66 0 0 0 0 0 0

σ1 1 0.998 0.018 1 1.029 0.013

σ2 1.5 1.595 0.047 1.5 1.553 0.040

the choice of basis functions and knots. The rates of correct selection for other model components 

are all > 90%, and the overall selection performance for the model as a whole is reasonably well. 

Supplementary Tables 2 and 3 provide the estimation results averaged over the 100 replications. 

Bias is minimal in the estimated fixed effects and slightly larger for variance components in a 

magnitude comparable to that of the estimates in Tables 2 and 3. Using quadratic splines with 4 

knots, the mean squared errors of the estimated smooth functions are MSE(ŝ1) = 0.029 and 

MSE(ŝ2) = 0.329; using cubic splines with 3 knots, MSE(ŝ1) = 0.027 and MSE(ŝ2) = 0.253. 

Compared to the estimation results using quadratic splines with 3 knots, there is a decrease in the 

mean squared error as the number of knots or the order of basis function increases.

The proposed method has a reasonably good computational efficiency. For example, the sim-

ulation study was performed on a Dell PowerEdge R930 server with a Linux operating system. The 

server has 4 Intel Xeon CPU E7-4850 with 8-core processors and 256 GB memory (shared by 

multiple users). Under Setting 2, it takes about an hour to perform model selection in Stage 1 for a 

given set of tuning parameters, and another hour for parameter estimation in Stage 2.
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5 Data Application

This research is motivated by an ongoing study of blood pressure development in children. In

this section, we illustrate the proposed model selection method by analyzing the data from this

study. Detailed recruitment protocol of the study can be found in Pratt et al.46 and the follow-up

protocol in Tu et al.47,48. Briefly, study subjects were recruited from schools in Indianapolis, which

were selected to provide a wide range of socioeconomic status. Enrolled subjects were followed

twice a year for measurement of blood pressure, height, weight and upper arm circumference. For

blood pressure, three readings were obtained at least two minutes apart, and the average of the

last two was taken as the final measurement. Body mass index (BMI) was calculated based on

height and weight as follows: BMI (kg/m2) = weight/height2. Overnight urine samples were also

collected to determine urine volume and excretion rates of sodium and potassium.

A subset of the blood pressure data is used for this illustration. Of the 250 randomly selected

subjects, 117 are males and 80 are blacks. The selected data include a total of 1776 follow-up

visits, with a range of 1 − 18 visits and an average of 7.1 visits per subject. The mean age at

enrollment is 9.8 years (standard deviation = 2.7 years).

In this analysis, we consider systolic and diastolic blood pressure as paired outcomes, and use

the proposed method to identify covariates associated with the outcomes. We start the model

selection process with the following full model: Yij1 = xTijβ1 + zTijui1 + s1(t1ij, t2ij) + εij1

Yij2 = xTijβ2 + zTijui2 + s2(t1ij, t2ij) + εij2,

where Yij1 and Yij2 are the systolic and diastolic blood pressure respectively for the ith sub-

ject measured at the jth visit, xij is a vector of fixed effect covariates including an intercept,

gender (male or female), race (black or other), birth weight (pound), mother’s length of preg-

nancy (month), upper arm circumference (cm), urine volume (L), urinary sodium excretion rate

(mmol/mg creatinine) and urine potassium excretion rate (mmol/mg creatinine), zij is a vector

of random effect covariates including an intercept, birth weight and mother’s length of pregnancy,

(uTi1,u
T
i2)

T ∼ N(0,D) are the subject-specific random effects, s1 and s2 are bivariate smooth func-

tions of age (t1ij) and BMI (t2ij), and εij1 ∼ N(0, σ2
1) and εij2 ∼ N(0, σ2

2) are the independent

measurement errors. We choose age and BMI as the bivariate nonparametric components because
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a preliminary analysis (Figure 1) show that both tend to have nonlinear effects on blood pressure.

We herein examine whether they interact with each other.

In Stage 1, the outcomes and the continuous covariates are standardized to ensure numerical

stability before selection is performed. In Stage 2, the selected covariates are estimated in the

original scale so that the coefficient estimates can be easily interpreted. Standard errors are

calculated based on the observed Fisher information evaluated at the MLEs. The model selection

and estimation results are summarized in Table 4. Zero estimates indicate that the corresponding

covariates are not selected. For systolic blood pressure, the selected fixed effect covariates are

gender, race and upper arm circumference; race and upper arm circumference are also selected for

diastolic blood pressure. Based on the coefficient estimates, males have significantly higher systolic

blood pressure than females. Comparing with other races, blacks tend to have higher systolic and

diastolic blood pressure. Upper arm circumference, an indicator of obesity, is positively associated

with both systolic and diastolic blood pressure.

As to the random effects, neither of the covariates, birth weight and mother’s length of preg-

nancy, are selected for systolic or diastolic blood pressure. Table 4 provides the variance component

estimates, i.e., square roots of the diagonal elements ofD, as well as σ1 and σ2. In addition, the sys-

tolic and diastolic blood pressure are highly correlated within each subject (ρ = 0.78, SE = 0.074),

as suggested by the non-zero estimate of the off-diagonal element of D.

The estimated bivariate smooth functions s1 and s2 are presented using the contour plots in

Figure 2. Generally speaking, the systolic and diastolic blood pressure increase with both age and

BMI. We also note that there are substantial interactions between the two. Specifically, the effect

of BMI on blood pressure is stronger in older children over 12 years of age than in younger children.

These observations lend support to the inclusion of bivariate smooth functions for depiction of the

joint influences of age and BMI.

6 Discussion

The ability of determining the relevance of independent variables to outcomes of interest and

incorporating variables in appropriate functional forms is of vital importance in scientific investi-

gations. Model selection has long presented challenges to data analysts, who often struggled to
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Figure 1: Marginal effects of age and BMI on systolic and diastolic blood pressure (subject to the

centering constraint) (solid lines) with 95% confidence bands (dashed lines).
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Table 4: Model selection and estimation results for the blood pressure data.

Systolic Blood Pressure Diastolic Blood Pressure

Variable Estimate SE Estimate SE

Fixed effects

Intercept 90.52 1.25 48.13 1.34

Male 2.69 0.45 0 −

Black 2.23 0.51 2.01 0.55

Birth weight 0 − 0 −

Mother’s length of pregnency 0 − 0 −

Upper arm circumference 0.44 0.054 0.54 0.058

Urine volume 0 − 0 −

Urine sodium concentration 0 − 0 −

Urine potassium concentration 0 − 0 −

Variance components

Intercept 6.09 0.46 5.99 0.49

Birth weight 0 − 0 −

Mother’s length of pregnency 0 − 0 −

Error term 9.28 0.16 10.04 0.17
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Figure 2: Contour plot of the estimated joint effects of age and BMI on systolic and diastolic

blood pressure (subject to the centering constraint).

find appropriate selection methods and implementation algorithms. The situation has improved

considerably in the last two decades since the publication of the LASSO by Tibshirani17,49, which

helps to lay the theoretical foundation of regularization methods. Applications of LASSO to vari-

ous models have since alleviated barriers for model selection in most standard settings. This said,

significant challenges remain for newly developed statistical models, such as the one discussed in

the current paper.

In this paper, we consider model selection in multivariate semiparametric regression, a newer

class of models that have been shown to be useful, yet for which selection methods have not been

made available. To remedy, we present a two-stage model selection and estimation method for

selecting fixed and random effects and for determining the presence of joint nonlinear effects in the

form of bivariate smooth functions. To the best of our knowledge, the proposed selection method is

the first for such models. In fact, there are relative few formal discussions of model selection in the

context of multivariate models, a setting for which random effect selection plays an important role

of determining unknown correlation structures. In other words, selection of random effects helps

analysts to decide whether considering multiple outcomes in a joint structure is necessary. Along

the same vein, selection of joint nonlinear effects depicted by bivariate surfaces is equally critical
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because it facilitates the understanding of the concurrent influences of two independent variables. 

Our own scientific investigations have repeatedly demonstrated the scarcity of true linear effects 

in biological research and the danger of over-simplification with linear approximations. Through 

simulation studies, the proposed method has shown an excellent performance in addressing those 

issues.

This said, we are cognizant that post-selection inference is an important yet understudied topic 

for almost all data-driven model selection methods. The uncertainty involved in the model selection 

process needs to be accounted for in the subsequent inference such as confidence intervals and 

hypothesis testing. In linear regression, valid confidence intervals can be constructed by satisfying 

simultaneous coverage for all coefficients of the selected model or conditional coverage that 

conditions on the model being selected50. Further work is needed for making post-selection inference 

in the model setting discussed in this paper. Other future extensions can be considered to make the 

proposed method more widely applicable in situations where non-normal outcomes are of interest. 

We anticipate the extensions to be straightforward, although nontrivial. Notwithstanding these 

limitations, we believe the proposed method could be of use in a wide variety of investigations.
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Supplement to “Model selection in multivariate

semiparametric regression”

Zhuokai Li, Hai Liu and Wanzhu Tu

Table 1: Frequency of correct selection, incorrect inclusion and incorrect exclusion of model com-

ponents in 100 simulation replications under Setting 2 with different marginal basis functions for

bivariate nonparametric components.

Quadratic Splines with 4 knots Cubic Splines with 3 knots

Incorrect Incorrect Incorrect Incorrect

Model Component Correct Inclusion Exclusion Correct Inclusion Exclusion

Model 84 7 9 88 5 7

Fixed Effects 94 6 0 97 3 0

Random Effects 99 1 0 98 2 0

Correlation 91 − 9 93 − 7

s1 100 0 − 100 0 −

s2 100 − 0 100 − 0

1



Table 2: Estimates of the fixed effect coefficients with empirical standard errors (SEs) averaged

over 100 simulation replications under Setting 2 with different marginal basis functions for bivariate

nonparametric components.

Quadratic Splines with 4 knots Cubic Splines with 3 knots

Parameter True Value Estimate SE Estimate SE

β̂10 1 1.004 0.097 0.998 0.103

β̂11 1 0.986 0.112 0.974 0.115

β̂12 3 3.007 0.125 2.999 0.128

β̂13 0 0 0 0 0

β̂14 −1 −0.996 0.046 −0.996 0.043

β̂15 0 0 0 0 0

β̂20 1 1.007 0.081 1.004 0.082

β̂21 2 2.010 0.091 2.009 0.098

β̂22 0 0 0 −0.001 0.007

β̂23 −2 −1.891 0.406 −1.904 0.375

β̂24 0 0.002 0.015 0.001 0.006

β̂25 0 −0.0004 0.025 0.002 0.018
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Table 3: Estimates of the variance components with empirical standard errors (SEs) averaged over

100 simulation replications under Setting 2 with different marginal basis functions for bivariate

nonparametric components.

Quadratic Splines with 4 knots Cubic Splines with 3 knots

Parameter True Value Estimate SE Estimate SE

D̂11 1 1.077 0.159 1.089 0.172

D̂22 1.25 1.380 0.235 1.404 0.224

D̂33 1.5 1.749 0.348 1.750 0.334

D̂44 1.1875 1.325 0.212 1.323 0.204

D̂55 0.6875 0.767 0.189 0.768 0.188

D̂66 0 0.001 0.014 0.003 0.018

σ̂1 1 1.020 0.032 1.019 0.030

σ̂2 1.5 1.871 0.167 1.857 0.136
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