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Abstract

Many recent scientific efforts have been devoted to constructing the human connectome using 

Diffusion Tensor Imaging (DTI) data for understanding large-scale brain networks that underlie 

higher-level cognition in human. However, suitable network analysis computational tools are still 

lacking in human brain connectivity research. To address this problem, we propose a novel 

probabilistic multi-graph decomposition model to identify consistent network modules from the 

brain connectivity networks of the studied subjects. At first, we propose a new probabilistic graph 

decomposition model to address the high computational complexity issue in existing stochastic 

block models. After that, we further extend our new probabilistic graph decomposition model for 

multiple networks/graphs to identify the shared modules cross multiple brain networks by 

simultaneously incorporating multiple networks and predicting the hidden block state variables. 

We also derive an efficient optimization algorithm to solve the proposed objective and estimate the 

model parameters. We validate our method by analyzing both the weighted fiber connectivity 

networks constructed from DTI images and the standard human face image clustering benchmark 

data sets. The promising empirical results demonstrate the superior performance of our proposed 

method.

Index Terms

Probabilistic Graph Decomposition; Multi-Graph Decomposition; Human Connectome

I. Introduction

Advent of diffusion MRI technology has made tremendous progress over the last decade [1] 

and enables us to use Diffusion Tensor Imaging (DTI) for non-invasive in vivo white matter 

mapping of the human brain by the inference of axonal fiber pathways from local water 

diffusion [2]. DTI combined with tractography allows reconstruction of the major fiber 

bundles in the brain and also permits the mapping of white matter cortico-cortical and 

cortico-subcortical projections at high spatial resolution. These studies enable the analysis of 

the human connectome as organizational principle of the central nervous system.
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Understanding the structural basis of functional connectivity patterns requires a 

comprehensive map of structural connection of the human brain, which has been 

conceptualized as the human connectome [3]. A connectome is a comprehensive description 

of the network elements and connections that form the brain. Such clear and comprehensive 

knowledge of anatomical connections lies at the basis of understanding network functions. 

The connectome can be represented as a large interconnected graph, in which nodes are 

neuroanatomical regions and synapses are bundles of white matter tracts. The resultant 

networks exhibit important topological properties such as small-worldness and highly 

connected hubs regions in the posterior medial cortical regions. These studies have 

accelerated our understandings of human connectome [4], [5], [6].

Although many network and graph analysis tools have been applied to human connectome 

studies, most of them focus on analyzing the connectome of each subject individually. How 

to find the consistent network modules from a group of subjects under the same condition 

(e.g. normal or Alzheimer) is important to understand the underlying brain structural and 

functional mechanisms. To solve this challenging problem, we propose a Bayesian inference 

based approach to identify consistent network modules from brain connectivity networks of 

multiple subjects. We explore a new graphical model (probabilistic multi-graph 

decomposition) to incorporate multiple networks and inference hidden block state variables, 

by which we identify local cliques among the graphs. The common connectome modules are 

then pruned from the cliques. By analyzing the weighted fiber connectivity network from 24 

young male adults, we identify 4 consistent network modules which consistently carry high 

connectivity among all the subjects. To show the superior clustering capability of our new 

model, we also evaluate our method using the human face image clustering benchmark data 

sets.

We will organize the rest of this paper by the following order. First, we will introduce the 

previous Mixed Membership Block Model, which is powerful to group data points through 

graph but not computationally efficient (use O(n2) latent valuables) and also not for multi-

graph situation. Second, we will propose a new probabilistic graph decomposition model to 

address the computational efficiency problem for single graph case. Third, we will further 

introduce the new Probabilistic Multi-Graph Decomposition (PMGD) method with the 

optimization algorithm for multi-graph problem. After that, we will provide the data 

description and the details of brain connectivity construction. At last, we will show the 

empirical results on both medical image analysis and human face image clustering tasks to 

support the proposed algorithms.

II. Probabilistic Multi-Graph Learning Model

A. Problem Description and Related Work

The brain connectome of each subject can be represented as a graph G, in which each nodes 

is an ROI (region of interest) in human brain and the weight of each edge is the density of 

the nerve fibers connecting a pair of nodes. In later section, we will describe the details of 

brain network construction. In this section, we will focus on the new probabilistic graphic 

model to formulate the multiple brain connectivity networks and identify the consistent 

network modules.
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For m subjects with n ROIs, we can denote their connectivity networks as G1, G2, · · ·, Gm, 

where Gk ∈ ℝn×n and Gi j
k  denotes the connectivity of the i-th ROI and the j-th ROI in the k-

th subject, k = 1, 2, · · ·, m, 1 ≤ i, j ≤ n. Given these m networks, we hope to discover the 

consistent network modules, i.e. common structures of connectivity, which are shared by all 

subjects. Given S as the set of all nodes, we say a subset of S : c ⊂ S is a “consistent 

network module” if all the Gc
k are highly connected module, for k = 1, 2, · · ·, m, where

Gc
k

i j
= Gci, c j

k , 1 ≤ i, j ≤ ∣ c ∣ .

Related work on pattern analysis of graphs falls into two folds. The first fold is spectral 
graph partitioning which clusters objects into groups on the spectral embedding space [7]. 

The second category is stochastic block modeling, in which the graphs are assumed to be the 

observations of a pair-dependent stochastic block model [8].

However, all these models are not applicable in our problem, since these models only accept 

single graph as input and no trivial extensions of these methods are available to handle 

multiple graphs. Meanwhile, the existing stochastic block models require high 

computational complexity, which limits their practical applications. To address these 

challenging problems, in this paper we will propose a new and efficient graphical model to 

capture the hidden generative dependency among the ROIs in structural brain activities from 

multiple graphs. We will develop the likelihood function for the model and present an EM-

like algorithm to estimate the model parameters by maximizing the likelihood.

B. Previous Mixed Membership Block Model

We first provide a brief review of previous Mixed Membership Block Model (MMB) [8]. 

MMB extends the mixed membership models, such as latent Dirichlet allocation [9], which 

have emerged in recent years as a flexible modeling tool for data in which the single group 

assumption is violated by the heterogeneity within a unit of analysis. They have been 

successfully applied in many domains, e.g. natural scene categories learning [10].

Mixed membership models associate each node of graph with multiple groups rather than a 

single group, via a membership probability-like vector. More specifically MMB models 

assume that a random graph is generated by the following model:

• For each node i, sample π⃗
i ~ Dir(θ⃗).

• For each node pair (i, j),

– Sample z←ij ~ Mul(π⃗
i)

– Sample z⃗ ji ~ Mul(π⃗
j)

– Sample Gi j Ber z i j
T B z ji

1http://www.fmrib.ox.ac.uk/fsl.html
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where z←ij and z⃗ ji are K × 1 vectors, indicating which group the nodes belong to, i.e., if the 

node belongs to group t, the t position is 1, and all other positions are 0. B is a K × K matrix 

where K is the number of blocks (e.g. the number of topics or clusters). Here we denote the 

Dirichlet, Multinomial, and Bernouli distributions by Dir, Mul and Ber.

This generative model resamples the membership indicator z←ij and z⃗ji for every node pair. 

Notice that θ, B are constant quantities to be estimated, and while π⃗
1, π⃗

2, · · ·, π⃗
n, z←11, 

z←12, · · ·, z←nn, z⃗11, z⃗12, · · ·, z⃗nn are unknown variable quantities whose posterior 

distribution needs to be determined. They employ the variational EM [11] procedure to carry 

out approximate estimation and inference approximately. This model is successfully applied 

in relational data modeling [8].

C. New Efficient Probabilistic Graph Decomposition Model

The mixed membership formalism is a particularly natural idea for relational data, where the 

objects can bear multiple latent roles or cluster-memberships that influence their 

relationships to others. However, from point of view of clustering, this assumption is not 

natural. In most data mining applications, each node usually belongs to a unique cluster. For 

example, in image segmentation by clustering pixels, it is possible that pixels from different 

objects (segments) might have connectivity (similar in color and texture, or close in space), 

but we always assume each pixel belongs to a unique object. Another examples is human 

face image clustering. It is not natural to allow a single image to belong to different persons.

Moreover, the number of latent valuables is O(n2), where n is the number of nodes, which 

leads to prohibitively computational complexity in most of computer vision applications.

In order to address these issues, we propose Probabilistic Graph Decomposition in which the 

membership indicators are sampled once (instead of n times) for each node. To simplify the 

problem, we use undirect graph as example (one can easily generate it into directed graph). 

We assume the observation data are generated by the following model:

• For each node i

– Sample π⃗
i ~ Dir(θ⃗).

– Sample z⃗i ~ Mul(π⃗
i).

• For each node pair (i, j),

– Sample Gi j Ber z i
TB z j

Since each π⃗
i is sampled independently, we further reduce the generative model by ignoring 

the distribution of z⃗i and consider z⃗i as a free parameter, see Figure 1.

D. New Probabilistic Multi-Graph Decomposition Model

In this paper, we target to identify the consistent network modules, thus we need model the 

multiple graph block structures. The above methods are only designed for single network or 

graph. Thus, we propose a new Probabilistic Multi-Graph Decomposition (PMGD) model to 

formulate the multiple structural brain connectivity networks and identify hidden consistent 
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network modules. The reason of using graphical model is that all the observed graphs are 

naturally integrated in the model and principled to learn the model by fitting the real 

anatomical data. The mixed membership formalism is a particularly natural idea for 

relational data, where the objects can bear multiple latent roles or cluster-memberships that 

influence their relationships to others given multiple graphs.

Based our above probabilistic graph decomposition model, we assume the observation data 

are drawn by the following generative model:

• For each node i, i = 1, 2, · · ·, n

– Sample π⃗
i ~ Dir(θ⃗), where θ⃗, π⃗

i ∈ ℝK,

– Sample z⃗i ~ Mul(π⃗i), where z⃗i ∈ {0, 1}K.

• For each node pair (i, j), 1 ≤ i, j ≤ n,

– For each graph k, Sample Gi j
k Ber z i

TB z j ,

where B ∈ ℝK×K and θ⃗ ∈ ℝK×1 are the model parameters, K is the number of blocks. The 

dependency diagram of our model is illustrated in Figure 1. In this model, we assume the 

ROIs belong to K groups. If ROI i belongs to the p-th group and ROI j belongs to q-th group, 

then the observation of Gij has a probability of Bpq to be 1 and 1 – Bpq to be zero. Then a 

reasonable B should have a diagonal structure, where the diagonal elements have large value 

and off-diagonal elements have values close to zero. We will show this property in the 

experimental section.

Since each π⃗
i is sampled independently, we further reduce the generative model by ignoring 

the distribution of z⃗i and consider z⃗i as a free parameter. In order to balance among the 

individual difference between subjects, we discretize the weighted graph to binary graph by 

thresholding. We use binary graph Gk as input in our algorithm.

III. Optimization Algorithm for PMGD Model

We are going to derive the algorithm to inference the model parameters to fit the 

observations of m connectivity graphs  = {G1, G2, · · ·, Gm}. For convenience, we denote 

Z = [z⃗1, z⃗2, · · ·, z⃗n]T ∈ ℝn×K.

The distribution of  given Z and B is,

P(𝔾 ∣ B, Z) = ∏
k = 1

m
∏

i j
z i

TB z j
Gi j

k
1 − z i

TB z j
1 − Gi j

k
. (1)

We construct an indicator vector c by ci = argmaxk Zik, and Eq. (1) can be written as
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P(𝔾 ∣ B, c) = ∏
k = 1

m
∏

i j
Bcic j

Gi j
k

1 − Bcic j

1 − Gi j
k

. (2)

We will use c the represent the membership indicator in the rest of this paper. To estimate 

the parameters of the PMGD model, we solve the following optimization problem:

maxB, c L(B, c) = ∑
i j

∑
k = 1

m
Gi j

k logBcic j
+ (m − ∑

k = 1

m
Gi j

k )log(1 − Bcic j
) s . t . 0 ≤ B ≤ 1 .

(3)

Here we set 0 ≤ B ≤ 1 to restrict elements in B with the probability constraint. We will show 

that our solution automatically satisfies the constraint. We solve Eq. (3) as following. 

Initialize c and then iteratively: (1) solve B while fixing c and (2) solve c while fixing B until 

c does not change.

A. Estimation of B

Denote Cp = {i : ci = p}, p = 1, 2, …, K. Here Cp serves as the group set, i.e. Cp is the set of 

nodes which belong to group p. For any group pair (p, q), any pair nodes (i, j) : ci = p, cj = q 
equally contribute to the log likelihood function defined in Eq. (3). Thus we can rewrite Eq. 

(3) in terms of group index p, q instead of node index i, j as:

L(B) = ∑
pq

spqlogBpq + (npnq − spq)log(1 − Bpq), (4)

where np and nq are the cardinalities of sets Cp and Cq, respectively, and 

spq = ∑k = 1
m ∑i ∈ Cp j ∈ Cq

Gi j
k  is the total number of edges between group p and q (cross-cut 

between the two groups). Thus,

∂L(B)
Bpq

=
spq
Bpq

+
npnq − spq

1 − Bpq
. (5)

We set

∂L(B)
Bpq

= = 0, (6)

Luo et al. Page 6

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2018 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and get the estimation

spq
Bpq

+
npnq − spq

1 − Bpq
= 0, (7)

or

Bpq =
spq

npnq
. (8)

Since spq is the total number of edges between group p and q, spq ≥ 0 and spq ≤ npnq. Thus 

0 ≤
spq

npnq
≤ 1, indicating the constraint in Eq. (3) is automatically satisfied. One can easily 

see that this solution is equivalent to solve maximum likelihood estimation along all the 

Bernouli distributions over groups p and q independently. This is similar with the estimation 

of B in [8].

B. Estimation of Indicator Vector c

One of the advantages of the PMGD model is that it reduces the number of latent valuables 

from n2 to n, thus the estimation of the membership indicators is dramatically simplified. As 

inspired from on-line updating algorithm of K-means method, we solve the indicator one 

node by one node. For Eq. (3), considering node i, we rewrite the likelihood as a function of 

ci = t:

Li(t) = ∑
j ≠ i

log
Btc j

1 − Btc j

+ ∑
k = 1

m
Gii

k log
Btt

1 − Btt
+ ∑

j ≠ i
log(1 − Btc j

) + log(1 − Btt) . (9)

By denoting a n × K matrix Uit = Li(t), we have the maximum likelihood estimation of node 

i:

c i = arg max
t

Uit . (10)

C. PMGD Algorithm

We summarize the algorithm of our new PMGD Algorithm as follows:

D. Consistent Network Module Recovery

In the previous model, we can interpret Btt as the cliqueness among the objects in the block 

t, t = 1, 2, · · ·, K. Thus if Btt is high, we consider the t-th block is a module. In our study, we 

use 0.5 as a threshold,, i.e. if Btt ≥ 0.5 we consider the t-th block is a common module. We 
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can also see the connectivity of block t and s from Bst, which will be discussed in the 

experimental section later.

IV. Theoretical Analysis of Probabilistic Graph Decomposition

Here we explore the relationship between Probabilistic Graph Decomposition and Ratio Cut 

spectral clustering. The Ratio Cut objective [12] is defined as following:

Jrc(c) = ∑
p ≠ q

sqp
np

+
sqp
nq

, (11)

where spq, np, nq are the cross cuts, and cardinality of group p and q, respectively.

Algorithm 1

The proposed PMGD algorithm.

In this section, we show that this objective function is an approximation of log likelihood of 

Probabilistic Graph Decomposition, with a negative coefficient.
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A. Diagonal of B

From Eq. (8), we have

∑
k

Bkk = ∑
k

skk

nk
2 ≈

K2skk
n . (12)

If we assume the data is balanced, i.e. each group has close number of nodes, we have nk ≈ 
n/K.

∑
k

Bkk ≈ K3

n2 skk and Jrc ≈ ∑
p ≠ q

spq
n
K

= ∑
p ≠ q

K
n spq . (13)

Thus

K2

n Jrc + ∑
k

Bkk = K3

n2 ∑
pq

spq = K3

n2 E, (14)

or

Jrc = KE
n −

n∑k Bkk

K2 , (15)

where E is the number of edges in the graph. Eq. (15) indicates that minimizing the Ratio 

Cut objective is equivalent to maximizing the diagonal of B.

B. Ratio Cut versus Probabilistic Graph Decomposition

By substituting Eq. (8) into Eq. (4), we get

Luo et al. Page 9

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2018 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



L(c) = ∑
pq

spqlogspq − spqlognpnq + (npnq − spq)log(1 −
spq

npnq
)

= ∑
pq

npnqlog
npnq − spq

npnq
− spq log

(npnq)2

npnq − spq
− logspq

≈ ∑
pq

n2

K2 log
n2 − K2spq

n2 − spq log
(npnq)2

npnq − spq
− logspq

≈ α − βJc,

(16)

where

α = ∑
pq

n2

K2 log
n2 − K2spq

n2 + ∑
k

skk log (n)4

skk(nk
2 − skk)

,

and

β = n
K log n2

K2 .

Here we assume that the off-diagonal of B is relative small compared to the diagonal. This is 

supported by the argument in [8] and our experimental results (see experiment section for 

more details).

In order to verify Eq. (16), we use four datasets AT&T, JAFFE, PIE, and YALEB to 

construct the relational graph, (see experiment section for more details) and we randomly 

generate membership indicators around the solution of our algorithm c*, i.e. randomly pick 

some position of c* and randomly assign the node to other clusters. In Figure 2, we plot 

Jrc(c) versus the log likelihood L(B̂, c) with randomly generated membership indicator c 
(red dots) and the the curve A – BJc (blue solid line). Here B̂ is computed by Eq. (8). From 

the figures, we can see that in most cases, the true log likelihood of Probabilistic Graph 

Decomposition is linear to the Ratio Cut objective with a coefficient − n
K log n2

K2 .

V. Construction of Structural Brain Connectivity Networks

In this section, we will describe how did we collect and construct the human connectome, 

which are used to identify the consistent network modules. In our project, participants 

included 24 healthy young male adults (age: 24.0 ± 3.2) with no history of neurological or 

psychiatric disorder. The MRI scans were acquired on a Siemens 3T TIM Trio (Erlangen, 

Germany) using a 12-channel receive only phased array head coil in combination with a 
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body coil for radio frequency transmission. A SE-EPI DTI sequence was applied using 

parameters: matrix= 128 × 128; FOV= 256 × 256mm; TE/TR=77/8300 ms; 68 transversal 

slices with 2mm thickness; 48 diffusion directions with gradients b=1000s/mm2, and 8 

samplings at b=0. Each session also included a high resolution T1-weighted MP-RAGE 

imaging as anatomical reference for subsequent parcellation and co-registration. Our 

processing pipeline includes three major steps: (1) DTI tractography, (2) ROI generation 

from T1-weighted MRI (MP-RAGE or SPGR), and (3) connectivity network construction.

The DTI data are analyzed in FSL1. DTI preprocessing includes correction for motion and 

eddy current effects in DTI images. The processed DTI images are then output to Diffusion 

Toolkit (http://trackvis.org/) for fiber tracking, using the streamline tractography algorithm 

called FACT (fiber assignment by continuous tracking). The FACT algorithm initializes 

tracks from many seed points and propagates these tracks along the vector of the largest 

principle axis within each voxel until certain termination criteria are met. In our study, stop 

angle threshold is set to 35 degree, which means if the angle change between two voxels is 

greater than 35 degree, the tracking process stops. A spline filtering is then applied to 

smooth the tracks.

Anatomical parcellation is performed using FreeSurfer 5.1 [13], [14], [15] on the high-

resolution T1-weighted anatomical MRI scan acquired with MP-RAGE sequence. The 

parcellation is an automated operation on each subject to obtain 68 gyral-based ROIs, with 

34 cortical ROIs in each hemisphere. The T1-weighted MRI image is registered to the low 

resolution b0 image of DTI data using the FLIRT toolbox in FSL, and the warping 

parameters are applied to the ROIs so that a new set of ROIs in the DTI image space are 

created. These new ROIs are used for constructing the structural network.

The topological representation of a network is a collection of nodes and edges between pairs 

of nodes. In constructing the weighted, undirected network, the nodes are chosen to be the 

68 registered ROIs obtained from FreeSurfer parcellation. The weight of the edge is defined 

as the density of the fibers connecting a pair of nodes, which is the number of tracks 

between two ROIs divided by the mean volume of the two ROIs [16], [17]. A fiber is 

considered to connect two ROIs if and only if its end points fall in the two ROIs respectively. 

The weighted network can be represented by a matrix. The rows and columns correspond to 

the nodes, and the elements of the matrix correspond to the weights.

VI. Experimental Results

In our experiments, we first perform the proposed PMGD method on the connectivity 

networks to identify the consistent modules. Because the biomedical image application lacks 

the ground truth, we also evaluate the proposed model using the image clustering tasks on 

four human face benchmark data sets.

A. Brain Connectivity Network Module Finding

We employ the PMGD model on the connectivity network data described in the above 

section. Notice that there is only one hyper-parameter (the number of groups K, which is set 

to be 8 in all experiments) in our model no parameters in the its optimization algorithm. We 
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first compare three connectivity networks measurements: fiber number (FN), fiber length 

(LL), and the weighted network (W) [6]. Since we have no ground truth for the consistent 

modules of the human brain structure modules, we test the quality of connectivity 

measurements by comparing with the random background. For each connectivity 

measurement (FN, LL, or W), we run our algorithm and obtain consistent network modules 

(we use 0.01 as the threshold to discretize the weighted graph). Then we randomly permute 

all graph. With the random permuted graph, we apply our algorithm again. Presumably, 

results on such random graph should be very poor and thus serve as a background to 

compare.

We compare the significance of the differences between each connectivity graph and its 

permutation and use the P-value to measure the quality of the connectivity graph (100 

permutations). We show the results in Table I. For the weighted, fiber number, and fiber 

length networks, we discover 4, 6, and 7 consistent network modules, respectively. We show 

the P-values for the all the consistent network modules for weighted and the first 4 for FN 

and LL (sorted by the cliqueness Btt). One can observe from Table I that our method 

performs much better than the background for the weighted network. For example, the 

significance of difference between the first and the second consistent network modules and 

the random background is 2.14 × 10−54 and 7.25 × 10−53, respectively, while other networks 

achieve much lower level of significance. We also visualize the locations of the consistent 

modules in Figure 4 in top, bottom, left and right views.

We visualize the weighted connectivity network and highlight the consistent modules 

discovered by PMGD algorithm in Figure 3. Module 1 includes 5 ROIs: RINS, RPOC, 

RST, RSMG,, and RTRT. Module 2 includes LINS, LPOC, LST, LSMG, and LTRT. 

They are symmetric. Module 3 includes 7 ROIS LCMF, LLOF, LPCS, LPOB, LPAG, 

LPRC, and LRMF. Module 4 includes 10 ROIs: LCNS, LISC, LLIN, LPEC, LPCN, 

RCNS, RISC, RLIN, RPEC, and RPCN. Module 4 itself is symmetric.

Since the result of block matrix B represents the cliqueness within modules and the 

connectivity between modules, we are also interested in the representation capability of 

block matrix B, which is show in (a) in Figure 5. In (b), we demonstrate how consistently 

they ROIs belong to the corresponding consistent network modules among the 24 subjects. 

One can observe that LPOC, LST, LSMG, LTRT, RPOC, RST, RSMG, RTRT, LCNS, 
LPCN, and RPCN are always consistent among the 24 subjects with high probability (≥ 

0.99) of belonging to the corresponding consistent network modules.

B. Evaluations Using Clustering Benchmark Data

We also evaluate our model using the human face benchmark data sets. Because existing 

clustering methods are usually for single data graph clustering, to compare different 

methods, we apply the probabilistic graph decomposition method in §2.3 to data graph and 

perform clustering task. Using this set up, we can compare the clustering performance of our 

new model with other related clustering approaches.

We use ten benchmark data sets to evaluate the performance of the proposed model and 

algorithm, including five image data sets: AT&T 2, JAFFE (The Japanese Female Facial 
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Expression)3, CMU PIE (Face Pose, Illumination, and Expression) [18], YALEB4, MNIST; 

and five data sets: Zoo, Wine, Iris, Soybean, Dermatology, from UCI machine learning 

repository5.

In all experiments, we construct the pairwise relation using K-nearest neighbor graph, i.e. 
Gij = 1 if node i is the K-nearest neighbor of j or node j is the K-nearest neighbor of i, Gij = 

0 otherwise. We set K = 5 in all the experiments.

We first compare our algorithm with standard K-means [19] and spectral clustering 

(normalized cut) [20], [21]. For K-means, we use the gray level values of pixels as feature, 

and the distance and means are taken in Euclidean space. For spectral clustering, we first 

calculate the eigenvector of graph Laplacian L = D – G, where D = diag(d1, d2, …, dn) and 

di = Σj Gij. And a standard K-means algorithm is applied on the K eigenvectors associated 

with the K least eigenvalues of graph Laplacian L. Here K is set to the number of person 

according to ground truth.

The clustering accuracy is computed as follows. Suppose we have N = n1 + n2 + · · · + nK 

data objects (n1 are known/observed to belong to class F1, etc.). They are clustered into K 
clusters. with mk = |Ck|. This forms a contingency table T = (Tkl), where Tkl denotes the 

number of objects from class Fk and have been clustered into cluster Cl. Clearly, Σl Tkl = nk 

and Σk Tkl = ml. The clustering accuracy is the percentage of objects been correctly 

clustered: ρ = Σk Tkk/N. In practice, matching Fk to Cl is obtained by running the Hungarian 

algorithm for the optimal bipartite matching.

Since the results of all clustering methods depend on the initializations, we run multiple 

random trials to approximate the optimal results. We perform 128 trials for all three methods 

with random initializations. We evaluate the performance as following. Define Best(N) to be 

the highest accuracy among N random trials for all four approaches. Clearly, Best(N) 

improves as we increase N. We plot Best(N) versus N in Figure 6 for all four data sets. In 

experimental results, our method consistently outperforms other related methods. For 

example, in JAFFE data set, the best our clustering accuracy is quite close to 1, about 95%, 

which is far better than the other approaches. Please not ice that these approaches are totally 

unsupervised.

In Figure 7, we visualize the block structures found by our algorithm on JAFFE data set 

(other data sets have more clusters and cannot be clearly plotted). We plot the faces 

according the membership indicators c of the solution of probabilistic graph decomposition. 

The edges within the groups are also plotted. We can see that the structure we find is 

consistent with human understanding.

Soft Membership Indicator—One of the advantage of the Probabilistic Graph 

Decomposition is the soft clustering capability.

2http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
3http://www.kasrl.org/jaffe.html
4http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
5http://archive.ics.uci.edu/ml/
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The probability of node i belonging to cluster k (soft membership indicator) is calculated as 

following:

P(i, k) = e
Uik

∑k e
Uik

, (17)

where U is defined near Eq. (9).

Here we select four groups from each face image data set (other non-image data cannot be 

meaningfully visualized) and visualize the data with membership probabilities in Figure 8.

In Figure 8, we plot the original faces and the corresponding soft membership above each 

them. Notice that the selected images are sorted by the probability obtained by the our 

algorithm. One can see that the soft membership indicator is consistent with human 

perception. For example, in the first group in AT&T dataset (left top panel of Figure 8), even 

though two last 6 faces come from different person, they are visually similar with the first 9 

face images. And for the fist 9 images, they have a high probability to belong to the group.

VII. Conclusion

In this paper, we proposed a novel brain connectivity network analysis method by employing 

the new probabilistic multi-graph decomposition model to identify the consistent network 

modules (common pseudo-cliques) cross multiple brain connectivity networks, which are 

potentially associated to cognitive functions of humans. We first proposed a new 

probabilistic graph decomposition method to reduce the high computational complexity 

which appears in previous stochastic block models. After that, we introduced the 

probabilistic multi-graph decomposition model to solve the multi-graph problem. 

Meanwhile, we derived an efficient optimization algorithm to solve the proposed objective 

and estimate the model parameters. The real DTI data were used to construct the brain 

connectivity networks to validate our methods. We also evaluate the proposed models via the 

humane face image clustering task on benchmark data.
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Fig. 1. 
A graphical dependency diagram of the proposed Probabilistic Multi-Graph Decomposition 

(PMGD) model.
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Fig. 2. 
The relationship between Ratio Cut objective and log likelihood of Probabilistic Graph 

Decomposition on 4 datasets. Blue circles are for the solutions ĉ of our method.
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Fig. 3. 
The weighted connectivity networks of 24 young males and their consistent network 

modules discovered by PMGD algorithm. There are 5, 5, 7, and 10 ROIs in Modules 1, 2, 3, 

and 4 respectively. Module 1 is symmetric with Module 2 and Module 4 itself is symmetric.
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Fig. 4. 
Location visualization of 4 consistent network modules discovered by PMGD model from 

(a) top, (b) bottom, (c) right, and (d) left views.
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Fig. 5. 
The optimization results for PMGD algorithm on the networks of 24 connectivity young 

males. (a): the visualization of block matrix B. M1, M2, M3, and M4 are four modules 

discovered by our method. (b): The probability (Uit) of each ROI i belonging to the 

corresponding consistent network module (t) for M1, M2, M3, and M4.
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Fig. 6. 
Clustering accuracy and Ratio Cut objective on ten data sets. For Ratio Cut objective, the 

lower the better.
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Fig. 7. 
Block structures found by our method on JAFFE. Our probabilistic graph decomposition 

model can correctly identify categories of different face images.
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Fig. 8. 
Probability output of our method for AT&T, JAFFE, PIE and YALEB data. For each class, 

the first row is the probability of a face belong the class, and the image below it is the 

corresponding face image.
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