
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a preprint version which may differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/35712

 

 

 

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16122843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/35712


ar
X

iv
:1

40
1.

31
91

v1
  [

m
at

h.
ST

] 
 1

4 
Ja

n 
20

14

Joint ML estimation of all parameters in a discrete time

random field HJM type interest rate model
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Abstract

We consider discrete time Heath–Jarrow–Morton type interest rate models, where the

interest rate curves are driven by a geometric spatial autoregression field. Strong consis-

tency and asymptotic normality of the maximum likelihood estimators of the parameters

are proved for stable no-arbitrage models containing a general stochastic discounting fac-

tor, where explicit form of the ML estimators is not available given a non-i.i.d. sample.

The results form the basis of further statistical problems in such models.

Keywords: Heath–Jarrow–Morton models, interest rate, maximum likelihood esti-

mation, consistency, asymptotic normality, AR random fields.

1 Introduction

Our aim in the present paper is to consider some statistical questions arising in a Heath–Jarrow–

Morton (HJM) type interest rate model proposed by Gáll, Pap and Zuijlen [5]. Such models are

useful not only for describing the structure of interest rates but also for describing bond price

structures in the market. We focus on asymptotic properties of the joint maximum likelihood

estimators (MLE) of the parameters of the model, where the non-i.i.d. sample and the lack

of an explicit form of the estimators make the derivation of the results difficult. These results

give the basis of further statistical problems, such as hypothesis tests, interval estimations or

model selection tools.
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In the following we specify the model. For Z+ being the sets of non-negative integers, let

fk,ℓ denote the forward interest rate at time k ∈ Z+ with time to maturity date ℓ ∈ Z+. Hence

it is the interest rate for the future time period [k + ℓ, k + ℓ+ 1).

The forward rate dynamics is supposed to be given by the (stochastic) difference equation

fk+1,ℓ = fk,ℓ + αk,ℓ + β∆1Sk,ℓ, k, ℓ ∈ Z+,

where the initial values (f0,ℓ)ℓ∈Z+
are given real numbers, β ∈ R denotes the volatility and

∆1Sk,ℓ := Sk+1, ℓ − Sk,ℓ, where (Sk,ℓ)k,ℓ∈Z+
is a doubly geometric spatial autoregressive process

given by {
Sk,ℓ = Sk−1,ℓ + ̺Sk,ℓ−1 − ̺Sk−1,ℓ−1 + ηk,ℓ,

Sk,−1 = S0,ℓ = S0,−1 := 0,
k ∈ N, ℓ ∈ Z+,

with autoregression parameter ̺ ∈ R, where (ηk,ℓ)k∈N,ℓ∈Z+
is a set of independent standard

normal random variables on a probability space (Ω,F ,P), and N denotes the set of positive

integers. The drift αk,ℓ is supposed to be an Fk-measurable random variable, where the filtration

(Fk)k∈Z+
is given by the trivial σ-algebra F0 := {∅,Ω} and

Fk := σ(ηi,j : 1 6 i 6 k and j > 0), k ∈ N.

Let Pk,ℓ denote the price of a zero coupon bond at time k ∈ Z+ with maturity ℓ ∈ Z+ with

ℓ > k. Assume that the relationship between the forward interest rates and the prices of a zero

coupon bond is given by Pk,k = 1, k ∈ N, and

Pk,ℓ+1 = exp

{
−

ℓ−k∑

j=0

fk,j

}
, k, ℓ ∈ Z+ with k 6 ℓ,

so that Pk,ℓ+1 = e−fk, ℓ−kPk,ℓ. Next we consider for given positive integer J a stochastic discount

factor process (Mk)k∈Z+
given by M0 := 1 and

Mk+1 := Mk exp {−rk}
exp

{∑J
j=0 bj∆1Sk,j

}

E

(
exp

{∑J
j=0 bj∆1Sk,j

} ∣∣Fk

) , k ∈ Z+,

where rk := fk,0 are the spot interest rate (corresponding to time k) and b = (b0, b1, . . . , bJ) ∈
R

J+1 is the vector of the market price of risk parameters. They play an important role in the

market when determining the market prices of assets. This role is discussed in detail in [5],

where also the reasoning for the choice of the special form of the stochastic discount factors

has been given. Note that the collection of unknown parameters we have to deal with are these

risk parameters, the volatility β and the autoregression parameter ρ.

We are interested only in models where arbitrage opportunities are excluded in the mar-

ket. No-arbitrage property follows from a martingale condition, which is satisfied if the Mk-

discounted bond price processes (MkPk,ℓ)06k6ℓ form martingales for all ℓ ∈ N. Using the
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equations resulting from the martingale condition, the drifts αk,ℓ disappear and we obtain





fk,ℓ − fk−1,ℓ+1 − ̺(fk,ℓ−1 − fk−1,ℓ) = βηk,ℓ +
β2

2

2ℓ∑
j=0

̺j − β
J∑

j=ℓ

bj̺
j−ℓ,

fk,0 − fk−1,1 = βηk,0 +
β2

2
− β

J∑
j=0

bj̺
j ,

(1)

for k, ℓ ∈ N. The details of the derivation of these no-arbitrage equations together with the

role of the market discount factors can be found in [5].

The main goal of this paper is to prove strong consistency and asymptotic normality of

the joint MLE of the parameters (β, ̺, b0, . . . , bJ) based on samples (fk,ℓ)16k6Kn, 06ℓ6Ln
, where

Kn = Kn + o(n) and Ln = Ln + o(n) as n → ∞ with some K > 0 and L > 0. Of course,

the main difficulty is that the samples consist of non-independent, non-identically distributed

random variables and moreover, no explicit formula is available for the MLE of (β, ̺, b0, . . . , bJ ).

It will turn out that compared to the other two parameters β, and ̺, the market price of

risk parameters have a different asymptotic behaviour.

When dealing with certain problems and in particular with pricing derivatives, for the

sake of convenience, many authors started modelling interest rate and bond markets under an

equivalent martingale measure. However, statistical properties of the parameter estimations

usually cannot be discussed in that way, so that we had to work under the real (objective)

measure of the market. We would like to mention that in our opinion statistical tools have to

be applied in finance for instance for pricing derivatives, since in many situations the market

will not be complete, so that one cannot work under an equivalent martingale measure and one

has to fit real date to the model. Unfortunately, in the above sense relatively few papers are

written in finance with a real statistical orientation.

Concerning the present literature we mention the following related results. In the type of

interest rate framework we have investigated, there are some results already available for the

MLE of a single parameter assuming that the true values of the other parameters are known.

In [4] the MLE of the volatility β has been investigated, and asymptotic normality has been

obtained both in stable and in nearly unstable cases. (A model is called stable, unstable,

or explosive, if |̺| < 1, |̺| = 1, or |̺| > 1, respectively. In the nearly unstable case given

a sequence of models with corresponding autoregression parameter ̺n we have limn→∞ ̺n =

1.) Volatility estimation has also been studied by Peeters [11] in case of a more complicated

volatility structure. Fülöp and Pap [1] tested the autoregression parameter ̺ both in stable

and unstable cases, and they succeeded in proving local asymptotic normality of the sequence

of the related statistical experiments in the sense of [10]. In a further work, in Fülöp and Pap

[2], they also gave results on strong consistency of the MLE estimator of the autoregressive

parameter.

The paper is organized as follows. In Section 2 we will formulate our results on consistency

(Theorem 2.1) and on the asymptotic normality of the joint ML parameter estimators (Theorem

2.2). In Section 3 we discuss our results together with their consequences, as well as some related
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problems and future work. In Appendix A we give first the derivation of the likelihood function

which is followed by the rigorous mathematical proofs of our main results. In Appendix B we

collected some useful general (not model specific) lemmas we apply in the proofs of the main

theorems.

2 MLE and results

In this section we present the main results on the joint maximum likelihood estimators of the

parameters (β, ̺, b0, . . . , bJ ) of the model.

Consider a sample (fk,ℓ)16k6K,06ℓ6L taken from a model (1). One needs first to obtain the

log-likelihood function which can be derived based on the no-arbitrage conditions given in [5].

It has the form

LK,L(xk,ℓ : 1 6 k 6 K, 0 6 ℓ 6 L; β, ̺,b) = −K(L+ 1)

2
log(2πβ2)

− 1

2
log(K!)− 1

2β2

K∑

k=1

L−1∑

ℓ=0

(
yk,ℓ(̺)−

β2

2

2ℓ∑

i=0

̺i + β

J∑

j=ℓ

bj̺
j−ℓ

)2

− 1

2β2

K∑

k=1

1

k

(
ỹk,L(̺)−

β2

2

k∑

j=1

2(k+L−j)∑

i=0

̺i + β

J∑

j=0

bjqj,k,ℓ

)2

,

(2)

where

yk,ℓ(̺) :=

{
xk,ℓ − xk−1,ℓ+1 − ̺(xk,ℓ−1 − xk−1,ℓ) for 1 6 ℓ 6 L− 1,

xk,0 − xk−1,1 for ℓ = 0,

ỹk,L(̺) := xk,L − x0,k+L − ̺(xk,L−1 − x0,k+L−1)

(3)

for all k, L > 1, and x0,ℓ := f0,ℓ for ℓ > 1. The derivation of the log-likelihood function is given

in the Appendix A in Remark A.1.

Unfortunately this log-likelihood function has a complicated form. Hence one cannot hope to

get an explicit solutions for the estimators of all the parameters. We mention here that knowing

the true values of some parameters, it is possible to give an explicit formula for the estimator(s)

of the remaining parameter(s). Such a case is considered in [4], where the volatility estimator is

studied in a similar model. In general one has to use numerical procedures to maximise (2) in

order to obtain the ML estimators. Although we do not have explicit form for the estimators,

the following theorems assure us that they have good statistical properties (like in classical

cases): the first theorem is on the consistency, the second is on the asymptotic normality of the

joint estimators.

Theorem 2.1 Let H ⊂ R
J+3 be a compact set such that for all (β, ̺,b) ∈ H we have β 6= 0 and

̺ ∈ (−1, 1). Let (β0, ̺0, b0) ∈ H denote the true parameters, where we write b0 = (b0,0, b0,1,...,
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b0,J). Let Kn, Ln, n ∈ N, be positive integers such that Kn = nK + o(n) and Ln = nL + o(n)

as n → ∞ with some K > 0 and L > 0. For each n ∈ N let (β̂n, ̺̂n, b̂n) denote a maximum

likelihood estimator of (β0, ̺0,b0) maximising the (log-)likelihood function over H.

Then the sequence (β̂n, ̺̂n, b̂n)n∈N is a strongly consistent estimator of (β0, ̺0,b0), i.e.,

(β̂n, ̺̂n, b̂n) → (β0, ̺0,b0) a.s. as n → ∞. (4)

Theorem 2.2 Under the assumptions of Theorem 2.1 we have



n(β̂n − β0)

n(̺̂n − ̺0)√
n(b̂n − b0)




D−→ N (0,Λ), as n → ∞, (5)

such that Λ is of the form

Λ :=

[
Λ1 0

0 Λ2

]
,

where

Λ1 :=

[
σ1,1 σ1,2

σ2,1 σ2,2

]−1

=
(
σ1,1σ2,2 − σ2

1,2

)−1

[
σ2,2 −σ1,2

−σ1,2 σ1,1

]

with

σ1,1 :=
2KL

β2
0

+
K(K + 2L)

2 (1− ̺0)
2 , σ2,2 :=

KL

1− ̺20
+

K(K + 2L)β2
0

2 (1− ̺0)
4 , (6)

σ1,2 = σ2,1 :=
K(K + 2L)β0

2 (1− ̺0)
3 , (7)

furthermore, Λ2 of size (J + 1)× (J + 1) has the form

Λ2 :=
1

K




1 + ̺20 −̺0 0 0 0 . . . 0

−̺0 1 + ̺20 −̺0 0 0 . . . 0

0 −̺0 1 + ̺20 −̺0 0 . . . 0
...

...
...

0 0 . . . 0 −̺0 1 + ̺20 −̺0

0 0 . . . . . . 0 −̺0 1




.

3 Discussion of the results

In this paper we presented statistical results for discrete time HJM type forward rate models

which are driven by autoregressive (AR) random fields. We considered some natural questions

that arise when fitting such a model. Our aim was to examine the joint behaviour of the
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maximum likelihood estimator of all parameters of our model. That is, we considered the joint

estimation of the AR field parameter ̺, the volatility parameter β and the market price of risk

parameters b0, b1, . . . , bJ .

The challenge we faced was to derive good properties of the estimators (consistency, asymp-

totic normality) in a model where the observations are neither independent nor identically

distributed. Furthermore, as a consequence of the complexity of the likelihood function there is

no hope for deriving explicit solutions of the maximum likelihood estimators, which complicated

the task.

Therefore, given a real market data set of forward rates, in order to fit the model one needs

first to use numerical procedures to reach the maxima of the likelihood function (2). Note that

due to Theorem 2.1 one can reach the maxima by the use of first order conditions. On the

other hand, due to the same theorem we are assured that the estimators are consistent. We

also showed that joint asymptotic normality of the estimator holds like in the well-known cases

of MLE for i.i.d. samples (under certain conditions). We emphasise here that the estimators

had different normalising factors in Theorem 2.2, which might be interesting for the reader.

Namely, in the normalizing factor, the market price of risk parameters differ from the ’classical’

(‘square-root’) factor (of the well-known i.i.d. cases) as the sample size goes to infinity. In

that sense it is not classical because it is not proportional to the reciprocal value of the square

root of the sample size. (For this notice that the sample size we took in our theorem was of

order n2). Another interesting property of these risk parameters is that their estimators are

asymptotically uncorrelated from the estimators of β and ̺. To see this we refer to the structure

of the sample’s Fisher information Σ in Theorem A.1.

Gáll, Pap and Peeters [6] discussed more on the numerical problems and gave numerical

results of the estimations at issue. It was shown by the tests that even in case of small sample

sizes the behaviour of the estimators was still very good, the estimators converged fairly fast.

Due to this one can have good hope to fit the model well to real data.

As we mentioned before, Fülöp and Pap [1] considered the separate estimation of the au-

toregression parameter ̺ both in stable and unstable cases. In the stable case the scaling factor

is n−1, like in our case, of course. However, in the unstable cases the scaling factors are differ-

ent, namely, n−2 and n−3. These scaling factors are in accordance with the Fisher information

quantity contained in the sample. Based on Example 9.12 of [12], we expect in the explosive

case the sequence of the related statistical experiments to be locally asymptotic mixed normal.

Finally, we note that Fülöp [3] gave some early numerical results on the estimation of ̺ as well

in the above mentioned cases.

Related models and future work

In Gáll, Pap and Zuijlen [5] a general setup has been proposed for discrete time forward rate

curves driven by random fields. In this paper we studied an important special case. However,

we mention that this is certainly not the only interesting specification of the model one can
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study. More complicated volatility structures, other forms of market price of risk as well as

different random fields can also be the subject of further research. We believe that in order

to derive similar statistical results for several modifications of the recent model, the methods

we used for the proofs will also work. For this Appendix B contains some useful tools. We

appreciate very much the works [13] and [14] of Ying. Though we did not apply directly any of

Ying’s specific results, his methods and ideas were especially fruitful during the development of

the proofs of our main theorems. We note that also other methods might have been also applied

in order to derive the asymptotic results. Here we mention among others the excellent papers

of Heijmans and Magnus [7] and [8]. However, the approach we have we chosen (motivated by

Ying’s approach) has turned out to be fairly appropriate and effective for our purposes.

The asymptotic results we have found can form the basis of hypothesis tests that we intend

to develop in our forthcoming studies. In this way one can hope to be able to test the goodness

of fit of the model and possibly to compare the fits of different models. For model selection,

information criteria might also be used. In our present research we are focusing on such prob-

lems. In that sense this paper is just the first, however the fundamental step for our purposes.

We find these problems important since, unlike in many fields of econometrics, the goodnesses

of fit of recently applied financial market models are often not justified by empirical means at

all (tests, information criteria). They are often ‘just parametrised to be rich enough’ so that

the model produces (derivative) asset prices being ‘close enough’ to market data. However,

overparametrised models or misspecified models may occur in this way.

Forward rate models are, of course, not only used for pricing interest rate derivatives.

We hope that by finding the appropriate models and testing tools, risk management of firms

entering to markets of bonds and interest rate related assets can also be better supported.

(Here we also refer to the fact that for derivative pricing one needs not necessarily take our

way of parameter estimation —under the objective measure—, but one can alternatively use

well-known calibration techniques to fit the models.) However, for many problems (e.g. risk

management, goodness of fit) we suggest to take our approach to fit and test the model.
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Appendix A: Proofs of the main results

Remark A.1 (Derivation of the likelihood function) It can be seen from the main re-

sults of Gáll, Pap and Zuijlen [5] that under the assumption that the common distribution of

the ηi,j’s, for i, j ∈ Z+, is standard normal, the no–arbitrage criterion is equivalent with

fk,ℓ − fk−1,ℓ+1 − ̺(fk,ℓ−1 − fk−1,ℓ) = βηk,ℓ +
β2

2

2ℓ∑

i=0

̺i − β
J∑

j=ℓ

bj̺
j−ℓ, (A.1)

and hence

fk,ℓ−1 − fk−1,ℓ = β

ℓ−1∑

i=0

̺ℓ−i−1ηk,i +
β2

2

(
ℓ−1∑

i=0

̺i

)2

− β

J∑

j=0

bj

j∧(ℓ−1)∑

i=0

̺ℓ+j−1−2i (A.2)

for k > 1, ℓ > 1. Furthermore, we have

fk,ℓ − f0,k+ℓ =

k∑

n=0

[
β2

2

(
k+ℓ−n∑

i=0

̺i

)2

+ β

k+ℓ−n∑

i=0

̺k+ℓ−n−iηn,i

− β
J∑

j=0

bj

j∧(k+ℓ−n)∑

i=0

̺k+ℓ−n+j−2i

] (A.3)

and
fk,ℓ − f0,k+ℓ − ̺(fk,ℓ−1 − f0,k+ℓ−1)

= β
k∑

j=1

ηj,k+ℓ−j +
β2

2

k∑

j=1

2(k+ℓ−j)∑

i=0

̺i − β
J∑

j=0

bjqj,k,ℓ

(A.4)

for k > 1, ℓ > 1, where

qj,k,ℓ :=

{∑j−ℓ
n=0∨(j−k−ℓ+1) ̺

n for j > ℓ

0 otherwise.
(A.5)

Consider now a sample (fk,ℓ)16k6K,06ℓ6L By the help of equations (A.1) and (A.4) one can

obtain the joint density function of (fk,ℓ)16k6K,06ℓ6L and hence the likelihood function takes

the form

LK,L(xk,ℓ : 1 6 k 6 K, 0 6 ℓ 6 L; β, ̺,b) =
1

(2πβ2)(L+1)K/2(K!)1/2

× exp

{
− 1

2β2

K∑

k=1

L−1∑

ℓ=0

(
yk,ℓ(̺)−

β2

2

2ℓ∑

i=0

̺i + β

J∑

j=ℓ

bj̺
j−ℓ

)2

− 1

2β2

K∑

k=1

1

k

(
ỹk,L(̺)−

β2

2

k∑

j=1

2(k+L−j)∑

i=0

̺i + β

J∑

j=0

bjqj,k,ℓ

)2
}
,
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where yk,ℓ(̺) and ỹk,L(̺) are given in (3).

Thus the log-likelihood function has, indeed, the form given in (2). Note that qi,k,ℓ (see (A.5))

is bounded over a compact subset of (−1, 1) (since clearly |qi,k,ℓ| 6 1/(1−|̺|)). Moreover recall

that qi,k,ℓ vanishes for large ℓ. These facts will simplify many problems in the proofs of the

results on the asymptotics of the likelihood estimators.

Notation. For simplicity, in what follows we will write

Ln(β, ̺,b) = LKn,Ln
(fk,ℓ : 1 6 k 6 Kn, 0 6 ℓ 6 Ln; β, ̺,b)

and

∂i1
1 ∂

i2
2 ∂

i3
j1
∂i4
j2
Ln(β, ̺,b)

=
∂i1∂i2∂i3∂i4LKn,Ln

(xk,ℓ : 1 6 k 6 Kn, 0 6 ℓ 6 Ln; β, ̺,b)

∂βi1∂̺i2∂bi3j1−3∂b
i4
j2−3

∣∣∣∣
xk,ℓ=fk,ℓ

,

where i1, i2, i3, i4, j1, j2 are non-negative integers and 3 6 ji 6 J + 3 for i = 1, 2. Furthermore,

∂3∂3∂3Ln(β, ̺,b) =




∂3Ln(β, ̺,b)

∂4Ln(β, ̺,b)
...

∂J+3Ln(β, ̺,b)



.

Proof of Theorem 2.1. First we show strong consistency of β̂n, and ̺̂n. For this, the aim

of the following discussion is to derive an asymptotic expansion for the sequence of random

variables

Ln(β, ̺,b) = LKn,Ln
(fk,ℓ : 1 6 k 6 Kn, 0 6 ℓ 6 Ln; β, ̺,b), n > 1.

We have

Ln(β, ̺,b) = −Kn(Ln + 1)

2
log(2πβ2)− 1

2
log(Kn!)

− 1

2β2

Kn∑

k=1

Ln−1∑

ℓ=0

ξ2k,ℓ(β, ̺,b)

− 1

2β2

Kn∑

k=1

k−1

(
k∑

j=1

ξj,k+Ln−j(β, ̺,b)

)2

,

(A.6)

where

ξk,ℓ(β, ̺,b) := gk,ℓ(̺)−
β2

2

2ℓ∑

i=0

̺i + β

J∑

j=ℓ

bj̺
j−ℓ (A.7)
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with

gk,ℓ(̺) :=

{
fk,ℓ − fk−1,ℓ+1 − ̺(fk,ℓ−1 − fk−1,ℓ) for ℓ > 1,

fk,0 − fk−1,1 for ℓ = 0,

for all k > 1. Since we have gk,ℓ(̺) = gk,ℓ(̺0) + (̺0 − ̺)(fk,ℓ−1 − fk−1,ℓ), ℓ > 1, by applying

formula (A.2) we obtain

ξk,ℓ(β, ̺,b) = β0ηk,ℓ +
β2
0

2

2ℓ∑

i=0

̺i0 −
β2

2

2ℓ∑

i=0

̺i − β0

J∑

j=ℓ

b0,j̺
j−ℓ
0 + β

J∑

j=ℓ

bj̺
j−ℓ

+ (̺0 − ̺)

[
β0

ℓ−1∑

i=0

̺ℓ−i−1
0 ηk,i +

β2
0

2

(
ℓ−1∑

i=0

̺i0

)2

− β0

J∑

j=0

b0,j

j∧ℓ∑

i=0

̺ℓ+j−2i
0

]
.

(A.8)

We have

E ξk,ℓ(β, ̺,b) =
β2
0

2

2ℓ∑

i=0

̺i0 −
β2

2

2ℓ∑

i=0

̺i − β0

J∑

j=ℓ

b0,j̺
j−ℓ
0 + β

J∑

j=ℓ

bj̺
j−ℓ

+ (̺0 − ̺)


β

2
0

2

(
ℓ−1∑

i=0

̺i0

)2

− β0

J∑

j=0

b0,j

j∧ℓ∑

i=0

̺ℓ+j−2i
0


→ m(β, ̺)

as ℓ → ∞, where

m(β, ̺) :=
β2
0

2(1− ̺0)
− β2

2(1− ̺)
+

(̺0 − ̺)β2
0

2(1− ̺0)2
. (A.9)

Hence supk,ℓ |E ξk,l(β, ̺,b)| < ∞. Moreover,

Var ξk,ℓ(β, ̺,b) = β2
0

(
1 + (̺0 − ̺)2

ℓ−1∑

i=0

̺
2(ℓ−i−1)
0

)
→ σ2(̺)

as ℓ → ∞, where

σ2(̺) := β2
0

(
1 +

(̺0 − ̺)2

1− ̺20

)
. (A.10)

Hence supk,ℓ |Var ξk,l(β, ̺,b)| < ∞. Since ξk,ℓ(β, ̺,b) has a normal distribution for all k > 1,

ℓ > 0, we conclude supk,ℓ E ξ8k,l(β, ̺,b) < ∞. Furthermore,

n−2

Kn∑

k=1

Ln−1∑

ℓ=0

E ξ2k,ℓ(β, ̺,b) → KL(σ2(̺) +m2(β, ̺))

as n → ∞. Obviously the sets {ξk,ℓ(β, ̺,b) : ℓ ∈ N}, k ∈ N, are independent, hence by Lemma

B.1 we obtain

n−2
Kn∑

k=1

Ln−1∑

ℓ=0

ξ2k,ℓ(β, ̺,b) → KL(σ2(̺) +m2(β, ̺)) a.s. as n → ∞. (A.11)

11



Clearly {ξj,k+Ln−j(β, ̺,b) : 1 6 j 6 k} are independent for all k, n ∈ N, hence

E

(
k∑

j=1

ξj,k+Ln−j(β, ̺,b)

)2

=

k∑

j=1

Var ξj,k+Ln−j(β, ̺,b) +

(
k∑

j=1

E ξj,k+Ln−j(β, ̺,b)

)2

.

Applying the above formulas for E ξk,ℓ(β, ̺,b) and Var ξk,ℓ(β, ̺,b) it follows that

n−2
Kn∑

k=1

k−1
E

(
k∑

j=1

ξj,k+Ln−j(β, ̺,b)

)2

→ K2m2(β, ̺)

2

as n → ∞, hence by Lemma B.3 we obtain

n−2

Kn∑

k=1

k−1

(
k∑

j=1

ξj,k+Ln−j(β, ̺,b)

)2

→ K2m2(β, ̺)

2
a.s. as n → ∞. (A.12)

Now, equations (A.11) and (A.12) lead us to

Ln(β0, ̺0,b0)− Ln(β, ̺,b)

=
KLn2

2

(
β2
0

β2
− 1− log

β2
0

β2

)
+

KL (̺0 − ̺)2 β2
0n

2

2β2 (1− ̺20)
(A.13)

+
K(K + 2L)n2

16β2

(
β2
0 (̺0 − ̺)

(1− ̺0)
2 +

β2
0

1− ̺0
− β2

1− ̺

)2

+ o(n2) a.s. as n → ∞.

Furthermore, notice that (A.13) holds uniformly in (β, ̺,b) over H , due to the special from of

the likelihood function. We show the details of the proof of uniformity in Remark A.2.

For a fixed n, one can now consider a maximum likelihood estimator of (β0, ̺0,b0), say

(β̂n, ̺̂n, b̂n), which is the maximiser of Ln(β, ̺,b) over H . Hence, after replacing (β, ̺,b) by

(β̂n, ̺̂n, b̂n) in (A.13) one can easily see that the left hand side is non-positive with probability

one, that is a.s. Ln(β0, ̺0,b0) − Ln(β̂n, ̺̂n, b̂n) 6 0. On the other hand the leading terms of

the right hand side of (A.13) are non-negative and at least one of them is positive if (β̂n, ̺̂n) 6=
(β0, ̺0). Therefore, as n → ∞, equation (A.13) can be kept only if (β̂n, ̺̂n) → (β0, ̺0) a.s.,

since the right hand side of (A.13) would not tend to 0 as n → ∞ for ω ∈ Ω if we had(
β̂n(ω), ̺̂n(ω)

)
6→ (β0, ̺0). That is, the strong consistency of the maximum likelihood estimators

of (β, ̺) holds.

Now we turn to showing strong consistency of b̂n. Consider the system of equations de-

termined by the first order conditions ∂j+3Ln(β̂n, ̺̂n, b̂n) = 0 for j = 0, 1, . . . , J . For large n

(e.g. for Ln > J , for this recall that due the remark made on the vanishing qj,k,ℓ’s at the end

of Remark A.1 only the second line of the right hand side of (2) will contain the market price

of risk parameters) we can rewrite this system of equations in the simple form (see (A.6) and

(A.7))
Kn∑

k=1

j∑

i=0

ξk,i(β̂n, ̺̂n, b̂n)̺̂j−i = 0 for j = 0, 1, . . . , J,

12



which can be reduced to

Kn∑

k=1

ξk,j(β̂n, ̺̂n, b̂n) = 0 for j = 0, 1, . . . , J. (A.14)

Now, taking (A.14) for j = J we obtain

Kn∑

k=1

[
β0ηk,J +

β2
0

2

2J∑

i=0

̺i0 −
β̂2
n

2

2J∑

i=0

̺̂ i
n − β0b0,J + β̂n b̂n,J + (̺0 − ̺̂n) c(2)k,J

]
= 0, (A.15)

where for k, ℓ ∈ Z+, k > 0 we write

c
(2)
k,ℓ := β0

ℓ−1∑

i=0

̺ℓ−i−1
0 ηk,i +

β2
0

2

(
ℓ−1∑

i=0

̺i0

)2

− β0

J∑

j=0

b0,j

j∧ℓ∑

i=0

̺ℓ+j−2i
0 . (A.16)

Notice that the random variable c
(2)
k,ℓ does not depend on (β̂n, ̺̂n, b̂n) and {c(2)k,ℓ}k>0 are i.i.d. for

a fixed ℓ ∈ Z+. Reordering (A.15) we obtain

b̂n,J − b0,J =
β0 − β̂n

β̂n

b0,J − β2
0

2β̂n

2J∑

i=0

̺i0 +
β̂n

2

2J∑

i=0

̺̂ i
n −

1

Knβ̂n

Kn∑

k=1

[
β0ηk,J + (̺0 − ̺̂n) c(2)k,J

]
.

Hence, by the SLLN and the consistency of (β̂n, ̺̂n) we obtain that b̂n,J → b0,J a.s. as n → ∞,

i.e. b̂n,J is strongly consistent. In a similar way, recursively we can obtain the consistency of

b̂n,J−1, b̂n,J−2, . . . , b̂n,1. Indeed, given the consistency of b̂n,J−1, b̂n,J−2, . . . , b̂n,j+1, consider again

(A.14) from which we can obtain

b̂n,j − b0,j =
β0 − β̂n

β̂n

b0,j +
J∑

i=j+1

(
β0

β̂n

b0,i̺
i−j
0 − b̂n,i ̺̂ i−j

n

)

− β2
0

2β̂n

2j∑

i=0

̺i0 +
β̂n

2

2j∑

i=0

̺̂ i
n −

1

Knβ̂n

Kn∑

k=1

[
β0ηk,j + (̺0 − ̺̂n) c(2)k,j

]
,

from which the consistency of b̂n,j follows and thus the proof of Theorem 2.1 is complete. �

Remark A.2 (Uniformity in (A.13)) In the derivation of (A.13) in fact we have shown

that for any fixed point (β, ̺, bbb) ∈ H we have

n−2

(
Ln(β, ̺, bbb) +

1

2
log(Kn!)

)
→ A(β, ̺), a.s.,

where, recalling notations (A.9) and (A.10), the (deterministic) function A is defined as

A(β, ̺) = −KL

2
log
(
2πβ2

)
− KL (σ2(̺) +m2(β, ̺))

2β2
− K2m2(β, ̺)

4β2
,
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for (β, ̺) ∈ R
2, β 6= 0.

Now, introducing the notations c
(1)
ℓ (β, ̺, bbb) := β2̺2ℓ+1

2(1−̺)
+β
∑J

j=ℓ bj̺
j−ℓ and c

(3)
ℓ :=

β2
0

2

∑2ℓ
i=0 ̺

i
0−

β0

∑J
j=ℓ b0,j̺

j−ℓ we can rewrite (A.8) as

ξk,ℓ(β, ̺,b) = β0ηk,ℓ −
β2

2 (1− ̺)
+ c

(1)
ℓ (β, ̺, bbb) + (̺0 − ̺)c

(2)
k,ℓ + c

(3)
ℓ , (A.17)

where c
(2)
k,ℓ is given in (A.16). Notice that c

(2)
k,ℓ is a random variable, c

(3)
ℓ is a constant and these

latter two terms depend only on (β0, ̺0, bbb0) but not on (β, ̺, bbb). In this way of writing ξk,ℓ we

have displayed only the parts which depend on the parameters (β, ̺, bbb). We can see that this

dependence is relatively simple and, say, fairly separated from the random parts.

Now take the square of ξk,ℓ(β, ̺,b) based on (A.17) and substitute it in (A.6). In the

followings we will consider the terms we obtain in the square of ξk,ℓ(β, ̺,b). We mention that

in (A.17) we displayed the term − β2

2(1−̺)
rather than embedding it in c

(1)
ℓ (β, ̺, bbb). The reason

for that was that the terms (of the log-likelihood function) which contain c
(1)
ℓ (β, ̺, bbb) will be

shown to vanish uniformly as n → ∞ unlike the terms containing − β2

2(1−̺)
.

By the application of Lemmas B.1, B.2, B.3 and their corollaries (see Appendix B) we can

easily see that for m = 1, 2 the terms

n−2

Kn∑

k=1

Ln−1∑

ℓ=0

(ηk,ℓ)
m , n−2

Kn∑

k=1

k−1

(
k∑

j=1

ηj,k+Ln−j

)m

,

n−2
Kn∑

k=1

Ln−1∑

ℓ=0

(
c
(2)
k,ℓ

)m
, n−2

Kn∑

k=1

k−1

(
k∑

j=1

c
(2)
j,k+Ln−j

)m

,

n−2
Kn∑

k=1

Ln−1∑

ℓ=0

ηk,ℓc
(2)
k,ℓ, n−2

Kn∑

k=1

k−1ηj,k+Ln−jc
(2)
j,k+Ln−j

all have an almost sure limit. Therefore, let Γβ0,̺0,bbb0 ⊂ Ω denote the set over which these terms

all converge to the their limits (given by Lemmas B.1, B.2, B.3 and their corollaries). Thus,

P(Γβ0,̺0,bbb0) = 1. We will show that the uniformity of the almost sure convergence at issue is

fulfilled over this set.

Next consider the terms we obtain in (A.6) after taking the square of ξk,ℓ(β, ̺,b) based on

(A.17) which contain c
(1)
ℓ . According to our assumptions sup(β,̺,bbb)∈H |̺| < 1. Hence observe that∣∣∣

∑Ln−1
ℓ=0 c

(1)
ℓ

∣∣∣ and
∣∣∣k−1

∑k
j=1 c

(1)
k+Ln−j

∣∣∣ are both bounded above for k, n. Therefore for m = 1, 2

the terms

n−2

Kn∑

k=1

Ln−1∑

ℓ=0

(
c
(1)
ℓ

)m
and n−2

Kn∑

k=1

k−1

(
k∑

j=1

c
(1)
k+Ln−j

)m

vanish uniformly over H .
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Furthermore, the cross product terms containing c
(1)
ℓ all vanish uniformly in H . One can

see this by applying the Cauchy-Schwartz inequality. For instance,
∣∣∣∣∣n

−2

Kn∑

k=1

Ln−1∑

ℓ=0

c
(1)
ℓ c

(2)
k,ℓ

∣∣∣∣∣ 6
[
n−2

Kn∑

k=1

Ln−1∑

ℓ=0

(
c
(1)
ℓ

)2
]1/2 [

n−2

Kn∑

k=1

Ln−1∑

ℓ=0

(
c
(2)
k,ℓ

)2
]1/2

→ 0

as n → ∞ uniformly in H .

It is easy to check that the remaining terms we obtained in (A.6) also converge almost surely

and uniformly over H .

Summarising the above results we obtain that on the one hand

n−2

(
Ln(β, ̺, bbb) +

1

2
log(Kn!)

)
→ A(β, ̺), ∀ω ∈ Γβ0,̺0,bbb0, ∀(β, ̺, bbb) ∈ H, (A.18)

and on the other hand the uniformity of the convergences detailed in the last paragraphs imply

that (A.18) holds uniformly over H , which means that the almost sure expansion (A.13) holds

uniformly in (β, ̺, bbb) ∈ H , indeed.

Proof of Theorem 2.2. We apply again Taylor’s expansion for the gradient vector of

Ln(β, ̺, b) up to order 2. Write



n−1∂1Ln(β̂n, ̺̂n, b̂n)

n−1∂2Ln(β̂n, ̺̂n, b̂n)

n−1/2∂3∂3∂3Ln(β̂n, ̺̂n, b̂n)


−




n−1∂1Ln(β0, ̺0,b0)

n−1∂2Ln(β0, ̺0,b0)

n−1/2∂3∂3∂3Ln(β0, ̺0,b0)


 = (An +Bn)




n(β̂ − β0)

n(̺̂− ̺0)√
n(b̂− b0)


 (A.19)

where An and Bn are (J +3)× (J +3) matrices defined as follows. Write An := (ani,j)i,j=1,...,J+3

and define

ani,j := nli,j∂i∂jLn(β0, ̺0,b0),

where

li,j :=





−2 if i ∨ j 6 2

−1 if i ∧ j > 3

−3/2 otherwise.

Denoting the ith row ofBn by Bi
n we will write it in the form Bi

n = D⊤
nR

i
n, where the superscript

⊤ denotes the transposed,

D⊤
n := (β̂n − β0, ̺̂n − ̺0, b̂n − b0),

Ri
n :=

(
rn,ij1,j2

)
j1,j2=1,2,...,J+3

and

rn,ij1,j2
:=

1

2
nli,j2∂i∂j1∂j2Ln(β̃, ˜̺, b̃)

with appropriate (β̃, ˜̺, b̃) taking values —coordinate-wise— between (β0, ̺0,b0) and (β̂n, ̺̂n, b̂n).

Under the assumptions of Theorem 2.1 we will need the following lemmas on the terms

introduced in (A.19). The proofs of these lemmas follow this proof.
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Lemma A.1 Under the assumptions of Theorem 2.1 we have



n−1∂1Ln(β0, ̺0,b0)

n−1∂2Ln(β0, ̺0,b0)

n−1/2∂3∂3∂3Ln(β0, ̺0,b0)




D−→ N (0,Σ), (A.20)

where Σ = (σi,j)i,j=1,...,J+3 with σi,j for i ∨ j 6 2 defined in (6) and (7) in Theorem 2.2,

σi+3,j+3 = K

i∧j∑

k=0

̺i+j−2k for i, j = 0, 1, . . . , J,

and the remaining entries of Σ are zero.

Lemma A.2

An → −Σ a.s. as n → ∞.

Lemma A.3 For i = 1, 2, . . . , J + 3 we have

Bi
n

P−→ 0.

Clearly, the first term on the left hand side of (A.19) tends to zero almost surely, in fact

it takes value 0 a.s. for large n due to Theorem 2.1. Hence, by Slutsky’s Lemma the limit

distribution of the left hand side of (A.19) is N (0,Σ), which is given in Lemma A.1. Lemma

A.2 and Lemma A.3 together with Slutsky’s Lemma give

An +Bn
P−→ −Σ.

Having these asymptotic results and recalling (A.19) we can apply Lemma B.5 to obtain (5).

For this note that Λ = Σ−1 where Σ is given in Lemma A.1. Thus, for the proof of Theorem

2.2 there remains to prove Lemma A.1, Lemma A.2 and Lemma A.3. �

Proof of Lemma A.1. First we will show that

Zn :=




n−1∂1Ln(β0, ̺0, bbb0)

n−1∂2Ln(β0, ̺0, bbb0)

n−1/2∂∂∂3Ln(β0, ̺0, bbb0)




can be considered as a martingale with respect to an appropriate filtration. Namely, rewriting

the terms of Zn in an appropriate order we will obtain the form

Zn =

Kn(Ln+1)∑

m=1

M (n)
m ,

where M
(n)
m is defined below. The idea of reordering the terms is simple: starting with and

fixing k = 0 we increase ℓ step by step (as m increases) from 0 to Ln. When ℓ = Ln is reached
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after Ln + 1 steps than we consider the next value of k (= 1) and we take again the possible

values of ℓ from 0 to Ln. We continue this as long as k = Kn is reached. Thus the number of

summands is Kn(Ln +1). This means that in each step a new ηk,ℓ will occur in the martingale

sum (which is independent of the previous terms). The case ℓ = Ln is a little bit special, since

it involves a number of new variables, namely, ηk,Ln
, ηk−1,Ln+1, ... η1,Ln+k−1 (which are also

independent of the previous terms).

Let us turn now to the rigorous definition of the martingale difference M
(n)
m , and the corre-

sponding filtration. Fix n ∈ N and notice that for any positive integer m there exist uniquely

determined integers km, ℓm such thatm = (km−1)(Ln+1)+ℓm+1 with 0 < km and 0 6 ℓm 6 Ln.

We remark that km and ℓm depend on n as well, however, for simplicity we omit to denote their

dependence on n. Now, define G(n)
0 := {∅,Ω} and

G(n)
m :=




σ
{
G(n)
m−1

⋃
σ {ηkm,ℓm}

}
if 0 6 ℓm < Ln,

σ
{
G(n)
m−1

⋃
σ {ηkm−i,Ln+i | 0 6 i < km}

}
if ℓm = Ln.

Furthermore, write M
(n)
m := (M

1,(n)
m ,M

2,(n)
m , . . . ,M

J+3,(n)
m )⊤ and

η̄k,Ln
:=

k−1∑

j=0

ηj+1,k+Ln−j−1, η̃k,Ln
:=

k−1∑

j=0

k+Ln−j−1∑

i=0

̺k+Ln−j−i−1
0 ηj+1,i. (A.21)

For the sake of convenience and better readability, in the following definition of M
i,(n)
m we will

simply write ℓ instead of ℓm and k instead of km. Define

M1,(n)
m :=





1
nβ0

[
η2k,ℓ − 1 + ηk,ℓ

(
β0

∑2ℓ
j=0 ̺

j
0 −

∑J
j=ℓ b0,j̺

j−ℓ
0

)]
if 0 6 ℓ < Ln,

1
nβ0k

[
η̄2k,Ln

− k + η̄k,Ln

(
β0

∑k−1
j=0

∑2(k+Ln−j−1)
i=0 ̺i0

)]
if ℓ = Ln,

M2,(n)
m :=





1
n
ηk,ℓ

[∑ℓ−1
j=0 ̺

ℓ−j−1
0 ηk,j +

β0

2

(∑ℓ−1
j=0 ̺

j
0

)2
+ β0

2

∑2ℓ
j=1 j̺

j−1
0

−β0

∑J
j=0 b0,j

∑j∧(ℓ−1)
i=0 ̺ℓ+j−1−2i

0 − β0

∑J
j=ℓ+1 b0,j(j − ℓ)̺j−ℓ−1

0

]

if 0 6 ℓ < Ln,

1
nk
η̄k,Ln

[
η̃k,Ln

+ β0

2

∑k−1
j=0

(∑k+Ln−j−2
i=0 ̺i0

)2
+ β0

2

∑k−1
j=0

∑2(k+Ln−j−1)
i=1 i̺i−1

0

−∑k−1
i=0

∑J
j=0 b0,j

∑j
n=0 ̺

j+k+Ln−i−1−2n
0

]

if ℓ = Ln,

and for j = 0, . . . , J

M j+3,(n)
m :=

{
−111{j>ℓ}n

−1/2̺j−ℓ
0 ηk,ℓ if 0 6 ℓ < Ln,

0 if ℓ = Ln.

Now, by the independence of the ηk,l’s, it is easy to see that

E

(
M (n)

m |G(n)
m−1

)
= 0

17



for 1 6 m 6 Kn(Ln+1). Hence, we can see that
(
M

(n)
m

)
16m6Kn(Ln+1)

are martingale differences

with respect to the filtration
(
G(n)
m

)
06m6Kn(Ln+1)

. Furthermore, recalling (A.1), (A.2), (A.3)

and (A.4) we can see that for sufficiently large n (s.t. Ln > J) we clearly have

Zn =

Kn(Ln+1)∑

m=1

M (n)
m .

Next observe that the sequence consisting of the conditional covariances of M
(n)
m tends to

Σ in probability, i.e.

γ
(n)
i,j :=

Kn(Ln+1)∑

m=1

E

(
M i,(n)

m M j,(n)
m | G(n)

m−1

)
P−→ σi,j for i, j = 1, 2, . . . , J + 3 (A.22)

as well as the conditional Liapounov condition holds, i.e.

Kn(Ln+1)∑

m=1

E

(∥∥M (n)
m

∥∥4 | G(n)
m−1

)
P−→ 0. (A.23)

In fact, we will show more: the convergence results in (A.22) and (A.23) are valid even in

almost sure sense. For what follows (for the martingale limit theorem that we shall apply),

however, the convergence in probability is sufficient.

To show how to check (A.22) we only demonstrate two cases. Firstly, for i = 1 and j = 2

write

δk,ℓ :=

ℓ−1∑

i=0

̺ℓ−i−1
0 ηk,i +

β0

2

(
ℓ−1∑

i=1

̺i0

)2

+
β0

2

2ℓ∑

i=1

i̺i−1
0 , (A.24)

δ̃k,Ln
:= η̃k,Ln

+
β0

2

k−1∑

j=0

(
k+Ln−j−2∑

i=0

̺i0

)2

+
β0

2

k−1∑

j=0

2(k+Ln−j−1)∑

i=1

i̺i−1
0 . (A.25)

Thus we obtain

γ
(n)
1,2 =

1

β0n2

Kn∑

k=1

Ln−1∑

ℓ=0

δk,ℓ E ηk,ℓ

(
η2k,ℓ − 1 + β0ηk,ℓ

2ℓ∑

i=0

̺i0

)

+
1

β0n2

Kn∑

k=1

1

k2
δ̃k,Ln

E η̄k,Ln


η̄2k,Ln

− k + β0η̄k,Ln

k−1∑

j=0

2(k+Ln−j−1)∑

i=0

̺i0


 + o(1)

=
KL

β0

[
β0

2 (1− ̺0)
2 +

β0

2 (1− ̺0)
2

]
β0

1− ̺0

+
1

β0n2

Kn∑

k=1

1

k2

[
β0k

2 (1− ̺0)
2 +

β0k

2 (1− ̺0)
2

]
β0k

2

1− ̺0
+ o(1) → σ1,2

18



a.s. as n → ∞. Note that all the terms containing the market price of risk parameters vanish,

i.e. their order is o(n2), hence we omit to display these terms. Secondly, take i, j ∈ {0, 1, . . . , J}
and consider γ

(n)
i+3, j+3. Now we obtain

γ
(n)
i+3, j+3 = n−1Kn

i∧j∑

ℓ=0

̺i+j−2ℓ
0 E η2k,ℓ → σi+3,j+3 a.s. as n → ∞.

The remaining cases can be derived in a similar way.

To show (A.23) notice that even

nz

Kn(Ln+1)∑

m=1

E

((
M i,(n)

m

)4 | G(n)
m−1

)

has an almost sure limit, where z = 2 for i = 1, 2, and z = 1 for 3 6 i 6 J + 3. This can

be shown easily by the application of Lemmas B.1, B.2, B.3 and their corollaries. From this

(A.23) is immediate.

Finally, it is known that according to the martingale limit theorem (see Theorem VIII.3.33. in

[9]) that (A.22) and (A.23) are together sufficient to imply (A.20). �

Proof of Lemma A.2. First consider the case i ∨ j 6 2. Then one can easily show that

1

n2
E ∂i∂jLn(β0, ̺0,b0) → −σi,j as n → ∞.

Hence, by Lemma B.1, Lemma B.3 (with κ = 2) and/or by the corollaries following from these

lemmas one can easily see that

1

n2
∂i∂jLn(β0, ̺0,b0) → −σi,j a.s. as n → ∞.

To demonstrate the method, consider the most complicated case, where i = 1, j = 2. Recalling

notations (A.21), (A.24) and (A.25) we have a.s.

∂1∂2Ln(β0, ̺0,b0) = −
Kn∑

k=1

Ln−1∑

ℓ=0

ηk,ℓ

[
2

β0
δk,ℓ −

2ℓ∑

i=1

i̺i−1
0

]
+

Kn∑

k=1

Ln−1∑

ℓ=0

δk,ℓ

2ℓ∑

i=1

̺i0

−
Kn∑

k=1

1

k
η̄k,Ln


 2

β0
δ̃k,Ln

−
k−1∑

j=0

2(k+Ln−j−1)∑

i=1

i̺i−1
0




+

Kn∑

k=1

1

k
δ̃k,Ln

k−1∑

j=0

2(k+Ln−j−1)∑

i=0

̺i0 + o(n2).

Note that all the terms containing the market price of risk parameters vanish, i.e. their order
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is o(n2), hence we omit to display these terms. For the expected values we have

1

n2
E ∂1∂2Ln(β0, ̺0,b0) = −β0

n2

Kn∑

k=1

Ln−1∑

ℓ=0

[
2ℓ∑

i=0

̺i0

]
1
2

(
ℓ−1∑

i=0

̺i0

)2

+
1

2

2ℓ∑

i=0

i̺i−1
0




− β0

n2

Kn∑

k=1

1

k




k−1∑

j=0

2(k+Ln−j−1)∑

i=1

̺i0




×


1
2

k−1∑

j=0

(
k+Ln−j−2∑

i=0

̺i0

)2

+
1

2

k−1∑

j=0

2(k+Ln−j−1)∑

i=1

i̺i−1
0


+ o(1)

= −β0KL

1 − ̺0

[
1

2

1

(1− ̺0)
2 +

1

2

1

(1− ̺0)
2

]

− β0K
2

2 (1− ̺0)

[
1

2

1

(1− ̺0)
2 +

1

2

1

(1− ̺0)
2

]
+ o(1) → −σ1,2

as n → ∞.

Now consider the case i ∨ j > 2. Then in a similar way one can easily show that

1

n
E ∂i∂jLn(β0, ̺0,b0) → λ as n → ∞,

where λ ∈ R and λ = −σi,j for i∧ j > 2. Hence, by the application of Lemma B.2, Lemma B.3

(with κ = 1) one can easily see that

1

n
∂i∂jLn(β0, ̺0,b0) → −σi,j a.s. as n → ∞

for i ∧ j > 2, and

1

n3/2
∂i∂jLn(β0, ̺0,b0) → 0 = −σi,j a.s. as n → ∞

for i ∧ j 6 2. For instance, taking i, j ∈ {0, 1, . . . , J} we have

∂i+3∂j+3Ln(β0, ̺0,b0) = −Kn

i∧j∑

ℓ=0

̺i+j−2ℓ
0 ,

from which the statement is immediate. The remaining cases can easily be calculated in a

similar way. �

Proof of Lemma A.3. Based on Lemma B.1, Lemma B.2, Lemma B.3 one can show that

1

2
nli,j2∂i∂j1∂j2Ln (β, ̺,b)

has an almost sure limit uniformly in (β, ̺,b) ∈ H . This can be shown similarly to the

uniform convergence in (A.13). (Recall also Remark A.2 for this. Notice that in fact the higher
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order derivatives of the likelihood function will have at most the same speed of convergence

as the first order ones in their asymptotic expansion due to its relatively easy dependence on

the parameters.) Thus, by Lemma B.4 we obtain that rn,ij1,j2
is stochastically bounded for all

1 6 j1, j2 6 J + 3. On the other hand, the estimators β̂n, ̺̂n, b̂n are proved to be strongly

consistent and thus D⊤
n → 0 a.s. as n → ∞. Hence we obtain that Bi

n = D⊤
nR

i
n converges to

zero in probability. �

Appendix B

In what follows we summarise some simple but useful lemmas that are often used in the proofs

of the main results. They give some general statements which are not model specific (which

was the reason for presenting them in a separate appendix).

Lemma B.1 Let ξk,ℓ,n, k, ℓ, n ∈ N, be random variables such that for each n ∈ N the sets

{ξk,ℓ,n : ℓ ∈ N}, k ∈ N, are independent (i.e., the σ-algebras σ(ξk,ℓ,n : ℓ ∈ N), k ∈ N, are

independent), and supk,ℓ,n∈N E ξ
8
k,ℓ,n < ∞. Let Kn, Ln, n ∈ N, be positive integers such that

Kn = nK + o(n) and Ln = nL+ o(n) as n → ∞ with some K > 0 and L > 0. Then

n−2
Kn∑

k=1

Ln∑

ℓ=1

(
ξ2k,ℓ,n − E ξ2k,ℓ,n

)
→ 0 a.s. as n → ∞.

Proof. It suffices to show that for all ε > 0 we have

∞∑

n=1

P(|ζn| > εn2) < ∞,

where

ζn :=

Kn∑

k=1

Ln∑

ℓ=1

(
ξ2k,ℓ,n − E ξ2k,ℓ,n

)
.

By Markov inequality we obtain P(|ζn| > εn2) 6 ε−4n−8
E ζ4n, hence it is enough to show that

E ζ4n = O(n7−δ) as n → ∞ with some δ > 0. We have

E ζ4n =

Kn∑

k1, k2, k3, k4 =1

Ln∑

ℓ1, ℓ2, ℓ3, ℓ4 =1

E ζk1,ℓ1,nζk2,ℓ2,nζk3,ℓ3,nζk4,ℓ4,n,

where ζk,ℓ,n := ξ2k,ℓ,n − E ξ2k,ℓ,n. By the Cauchy–Schwartz inequality

|E ζk1,ℓ1,nζk2,ℓ2,nζk3,ℓ3,nζk4,ℓ4,n| 6
(
E ζ4k1,ℓ1,n E ζ4k2,ℓ2,n E ζ

4
k3,ℓ3,n

E ζ4k4,ℓ4,n
)1/4

.

Moreover

E ζ4k,ℓ,n = E(ξ2k,ℓ,n − E ξ2k,ℓ,n)
4 6 23

(
E ξ8k,ℓ,n + (E ξ2k,ℓ,n)

4
)
6 16E ξ8k,ℓ,n 6 16M8,
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where M8 := supk,ℓ,n∈N E ξ8k,ℓ,n < ∞ by the assumptions. Hence we conclude

|E ζk1,ℓ1,nζk2,ℓ2,nζk3,ℓ3,nζk4,ℓ4,n| 6 16M8.

By the assumptions the sets {ζk,ℓ,n : ℓ ∈ N}, k ∈ N, are independent for each n ∈ N, and

E ζk,ℓ,n = 0 for all k, ℓ, n ∈ N, hence

E ζ4n =

Ln∑

ℓ1, ℓ2, ℓ3, ℓ4 =1

(
Kn∑

k=1

E ζk,ℓ1,nζk,ℓ2,nζk,ℓ3,nζk,ℓ4,n

+ 6
∑

16k1<k26Kn

E ζk1,ℓ1,nζk1,ℓ2,nζk2,ℓ3,nζk2,ℓ4,n

)
.

(B.1)

Consequently we obtain E ζ4n = O(n6) as n → ∞. �

Lemma B.2 Let ξk,n, k, n ∈ N, be random variables such that for each n ∈ N the random

variables ξk,n, k ∈ N, are independent and supk,n∈N E ξ4k,n < ∞. Let Kn, n ∈ N, be positive

integers such that Kn = nK + o(n) as n → ∞ with some K > 0. Then

n−1
Kn∑

k=1

(ξk,n − E ξk,n) → 0 a.s. as n → ∞.

Proof. This statement can be proved almost readily in the same way as Lemma B.1. �

Corollary B.1 Let ξk,ℓ,n and ζk,ℓ,n, k, ℓ, n ∈ N, be random variables such that for each n ∈ N

the sets {ξk,ℓ,n, ζk,ℓ,n : ℓ ∈ N}, k ∈ N, are independent (i.e., the σ-algebras σ(ξk,ℓ,n, ζk,ℓ,n : ℓ ∈ N),

k ∈ N, are independent), and supk,ℓ,n∈N E(ξ
8
k,ℓ,n + ζ8k,ℓ,n) < ∞. Let Kn, Ln, n ∈ N, be positive

integers such that Kn = nK + o(n) and Ln = nL + o(n) as n → ∞ with some K > 0 and

L > 0. Then

n−2
Kn∑

k=1

Ln∑

ℓ=1

(ξk,ℓ,nζk,ℓ,n − E ξk,ℓ,nζk,ℓ,n) → 0 a.s. as n → ∞.

Proof. Clearly

ξk,ℓ,nζk,ℓ,n − E ξk,ℓ,nζk,ℓ,n

=
1

4

[{
(ξk,ℓ,n + ζk,ℓ,n)

2 − E(ξk,ℓ,n + ζk,ℓ,n)
2
}
−
{
(ξk,ℓ,n − ζk,ℓ,n)

2 − E(ξk,ℓ,n − ζk,ℓ,n)
2
}]

,

and we can apply Lemma B.1 for {ξk,ℓ,n + ζk,ℓ,n : k, ℓ, n ∈ N} and {ξk,ℓ,n − ζk,ℓ,n : k, ℓ, n ∈ N}.
�
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Corollary B.2 Let ξk,ℓ,n, k, ℓ, n ∈ N, be random variables such that for each n ∈ N the sets

{ξk,ℓ,n : ℓ ∈ N}, k ∈ N, are independent (i.e., the σ-algebras σ(ξk,ℓ,n : ℓ ∈ N), k ∈ N, are

independent), and supk,ℓ,n∈N E ξ
8
k,ℓ,n < ∞. Let Kn, Ln, n ∈ N, be positive integers such that

Kn = nK + o(n) and Ln = nL+ o(n) as n → ∞ with some K > 0 and L > 0. Then

n−2
Kn∑

k=1

Ln∑

ℓ=1

(ξk,ℓ,n − E ξk,ℓ,n) → 0 a.s. as n → ∞.

Proof. Corollary B.1 applies with ζk,ℓ,n = 1, k, ℓ, n ∈ N. �

Lemma B.3 Let κ ∈ {1, 2}. Let ξk,j,n, k, j, n ∈ N, be random variables such that for each

n ∈ N the sets {ξk,j,n : k ∈ N}, j ∈ N, are independent (i.e., the σ-algebras σ(ξk,j,n : k ∈ N),

j ∈ N, are independent), and supk,j,n∈N E ξ4κk,j,n < ∞. Let Kn, n ∈ N, be positive integers such

that Kn = nK + o(n) as n → ∞ with some K > 0. Then

n−κ
Kn∑

k=1

k−1

[(
k∑

j=1

ξk,j,n

)κ

− E

(
k∑

j=1

ξk,j,n

)κ]
→ 0 a.s. as n → ∞.

Proof. Consider the case κ = 2. Clearly

(
k∑

j=1

ξk,j,n

)2

− E

(
k∑

j=1

ξk,j,n

)2

=

k∑

j1=1

k∑

j2=1

(ξk,j1,nξk,j2,n − E ξk,j1,nξk,j2,n).

As in the proof of Lemma B.1 it suffices to show that E ζ4n = O(n7−δ) as n → ∞ with some

δ > 0, where

ζn :=

Kn∑

k=1

k−1
k∑

j1=1

k∑

j2=1

ζk,j1,j2,n

with

ζk,j1,j2,n := ξk,j1,nξk,j2,n − E ξk,j1,nξk,j2,n.

We have

ζ4n =

Kn∑

k1, k2, k3, k4 =1

[
(k1k2k3k4)

−1

×
k1∑

j1, j2 =1

k2∑

j3, j4 =1

k3∑

j5, j6 =1

k4∑

j7, j8 =1

E ζk1,j1,j2,nζk2,j3,j4,nζk3,j5,j6,nζk4,j7,j8,n

]
.

(B.2)

As in the proof of Lemma B.1 we obtain

|E ζk1,j1,j2,nζk2,j3,j4,nζk3,j5,j6,nζk4,j7,j8,n| 6 16M8,
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where M8 := supk,j,n∈N E ξ8k,j,n < ∞ by the assumptions. By the independence of the sets

{ξk,j,n : k ∈ N}, j ∈ N, we obtain that E ζk1,j1,j2,nζk2,j3,j4,nζk3,j5,j6,nζk4,j7,j8,n = 0 if one of the sets

{j1, j2}, {j3, j4}, {j5, j6}, {j7, j8} is disjoint from the other three sets. Consequently

k1∑

j1, j2 =1

k2∑

j3, j4 =1

k3∑

j5, j6 =1

k4∑

j7, j8 =1

E ζk1,j1,j2,nζk2,j3,j4,nζk3,j5,j6,nζk4,j7,j8,n = O(n6)

as n → ∞. Using
∑n

k=1 k
−1 = O(logn) we conclude E ζ4n = O

(
n6(logn)4

)
as n → ∞.

The case κ = 1 can be proved almost readily in the same way. �

Corollary B.3 Let ξk,j,n, ζk,j,n, k, j, n ∈ N, be random variables such that for each n ∈ N the

sets {ξk,j,n : k ∈ N}, j ∈ N, are independent (i.e., the σ-algebras σ(ξk,j,n, ζk,j,n : k ∈ N), j ∈ N,

are independent), and supk,ℓ,n∈N E(ξ
8
k,ℓ,n + ζ8k,ℓ,n) < ∞. Let Kn, n ∈ N, be positive integers such

that Kn = nK + o(n) as n → ∞ with some K > 0. Then

n−2

Kn∑

k=1

k−1

k∑

j=1

(ξk,j,nζk,j,n − E ξk,j,nζk,j,n) → 0 a.s. as n → ∞.

Proof. Similar to the proof of Corollary B.1. �

Lemma B.4 Let Hn : Rn+1 → R, n ∈ N, be measurable functions and {ξn}n∈N be a sequence

of random variables. Suppose that H : R → R is continuous and C is a compact subset of R

such that

sup
α∈C

|Hn(ξ1, . . . , ξn, α)−H(α)| → 0 P-a.s.

Then, given random variables αn, n ∈ N, with P (αn ∈ C) = 1, the sequence

{Hn(ξ1, . . . , ξn, αn)}n∈N

is stochastically bounded in the following sense:

lim
R→∞

lim sup
n→∞

P (|Hn(ξ1, . . . , ξn, αn)| > R) = 0. (B.3)

Proof. Let R > 0. We have

P(|Hn(ξ1, . . . , ξn, αn)| > R)

6 P (|Hn(ξ1, . . . , ξn, αn)−H(αn)|+ |H(αn)| > R)

6 P

(
|Hn(ξ1, . . . , ξn, αn)−H(αn)| >

R

2

)
+ P

(
|H(αn)| >

R

2

)

6 P

(
sup
α∈C

|Hn(ξ1, . . . , ξn, α)−H(α)| > R

2

)
+ P

(
sup
α∈C

|H(α)| > R

2

)
,

(B.4)
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hence, taking in both sides of (B.4) first the ‘lim sup’ as n → ∞ and then the limit as R → ∞,

one gets the desired statement. �

Let us remark that stochastic boundedness is not necessarily defined as in (B.3) in the

literature. However, it suffices for our purpose. For this, we note that given a sequence of

random variables, say {Xn}n∈N, with limit 0 in the sense of convergence in probability and

given a stochastically bounded (in the sense of (B.3)) sequence of r.v.’s, say {Yn}n∈N, one easily
gets that Xn · Yn converges to 0 in probability, as well.

Lemma B.5 Let {Xn}n∈Z+
, {Yn}n∈Z+

and {Zn}n∈Z+
be sequences of random matrices of type

m × 1, m × m and m × 1, respectively, such that Xn = YnZn, where m ∈ N. Suppose that

Xn
D−→ X, Yn

P−→ A, where A is a non-degenerate matrix. Then Zn
D−→ A−1X.

Proof. Define

Y ⊖
n :=

{
Y −1
n if Yn invertible,

0 otherwise.

Clearly, we have P(Y ⊖
n = Y −1

n ) → 1, as n → ∞. Hence,

P(||Y ⊖
n − A−1|| > ε) 6 P(||Y −1

n − A−1|| > ε and Y ⊖
n = Y −1

n ) + P(Y ⊖
n 6= Y −1

n ) → 0

as n → ∞, that is Y ⊖
n

P−→ A−1. By Slutsky’s Lemma, Y ⊖
n Xn

P−→ A−1X . Further, P(Zn =

Y ⊖
n Xn) → 1, and hence Zn

P−→ A−1X . Thus, the proof of Lemma B.5 is completed, and so is

the proof of Theorem 2.1. �
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