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Abstract. The complexity of real-time embedded systems is increasing,
for example due to the use of distributed architectures. An extension
to the Vienna Development Method (VDM) is proposed to address the
problem of deployment of software on distributed hardware. The limita-
tions of the current notation are discussed and new language elements are
introduced to overcome these deficiencies. The impact of these changes
is illustrated by a case study. A constructive operational semantics is de-
fined in VDM++ and validated using VDMTools. The associated ab-
stract formal semantics, which is not specific to VDM, is presented in this
paper. The proposed language extensions significantly reduce the model-
ing effort when describing distributed real-time systems in VDM++ and
the revised semantics provides a basis for improved tool support.

1 Introduction

The complexity of embedded systems is rapidly increasing; they are becoming
distributed almost by default, for example due to the System-on-Chip design
philosophy which is often used nowadays. Safety-critical applications have tra-
ditionally been federated, meaning that each “function” has its own CPU with
minimal interconnections to other functions in the system. This approach is ex-
pensive and for some application areas, such as the automobile industry, it is
no longer economically viable to do so. The current trend is rather to combine
functions together on the same processing unit and then distribute their opera-
tion between a number of networked fault-tolerant processors in order to reduce
cost. It is not hard to imagine that finding the “right” deployment of functional-
ity over such a distributed architecture, that meets all the imposed system-level
requirements, is quite a challenging problem.

It is natural to advocate the use of formal techniques in this application area
in order to cope with this complexity and indeed a large body of knowledge
exists on their use. Most formal techniques however, are not able to deal with
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the combination of complex behavior, timing, concurrency and in particular
distribution in a flexible and intuitive way. Tool support often does not scale
very well to the size of problems faced by industry. System development lead
times remain substantial, even if formal methods can be usefully applied.

The Vienna Development Method (VDM) has been used in several large-
scale industrial projects [1,2,3,4]. Their success was very much due to the solid
formal basis of the notation and the availability of robust and commercial grade
tools. However, not much is known about the application of VDM in the area of
distributed real-time embedded systems. In earlier work [5], we reported that it
is very hard to describe such systems in VDM. The language is not sufficiently
expressive and important tool features are missing to analyze such models.

The aim of this paper is to make VDM++ better suited for describing dis-
tributed embedded real-time systems and to enable the design space exploration
as mentioned before. In Sect. 2, an overview of the notation and the existing
timed extension is presented. The limitations experienced in our earlier work are
summarized and we introduce the main proposed adaptations: the addition of
deployment and asynchronous communication. A small case study is presented
in Sect. 3 that demonstrates the impact of the proposed changes. In Sect. 4, we
define an abstract formal semantics of the extended language and discuss how
the semantics has been validated. Finally, in Sections 5 and 6 we present related
work and we discuss the results achieved.

2 An overview of the VDM notation

VDM++ is an object-oriented and model-based specification language with a
formally defined syntax, static and dynamic semantics. It is a superset of the
ISO standardized notation VDM-SL [6]. VDM++ was originally designed in the
ESPRIT project Afrodite and it was subsequently improved and tools were im-
plemented by IFAD. Different VDM dialects are supported by industry strength
tools, called VDMTools, which are currently owned and further developed by
CSK 4. A timed extension to VDM++ was delivered as part of the Vice project:
“VDM++ In a Constrained Environment” [7].

The dynamic semantics of an executable subset of VDM++ is provided as
a constructive operational semantics specified in VDM-SL which is roughly 500
pages including informal explanation [8]. The core of this specification is an ab-
stract state machine which is able to execute a set of formally defined primitive
instructions. Special functions are supplied to “compile” each abstract syntax
element into such a sequence of instructions. The dynamic semantics specifi-
cation is executable and can be validated using VDMTools. The test suite
contains several thousand test cases which are also used to verify the imple-
mentation. The industrial success of VDMTools is, for a large part, due to
excellent conformance of the tool to the formally defined operational semantics
and the round-trip engineering with UML.

4 http://www.csk.com/support e/vdm/.



For an in-depth presentation of the language and supporting tools 5 see [3].
We provide an overview in Sect. 2.1 and introduce the timed extensions in
Sect. 2.2. The limitations of these extensions are discussed in Sect. 2.3 and we
present our proposed language modifications in Sect. 2.4.

2.1 The basic VDM++ notation

In VDM++, a model consists of a collection of class specifications. We distin-
guish active and passive classes. Active classes represent entities that have their
own thread of control and do not need external triggers in order to work. In
contrast, passive classes are always manipulated from the thread of control of
another active class. We use the term object to denote the instance of a class.
More than one instance of a class might exist. An instance is created using the
new operator, which returns an object reference. A class specification has the
following components:

Class header: The header contains the class name declaration and inheritance
information. Both single or multiple inheritance are supported.

Instance variables: The state of an object consists of a set of typed variables,
which can be of a simple type such as bool or nat, or complex types such
as sets, sequences, maps, tuples, records and object references. The latter
are used to specify relations between classes. Instance variables can have
invariants and an expression to define the initial state.

Operations: Class methods that may modify the state can be defined implic-
itly, using pre- and postcondition expressions only, or explicitly, using im-
perative statements and optional pre- and postcondition expressions.

Functions: Functions are similar to operations except that the body of a func-
tion is an expression rather than an imperative statement. Functions are not
allowed to refer to instance variables, they are pure and side-effect free.

Synchronization: Operations in VDM++ are re-entrant and their invocation
is defined with synchronous (rendez-vous) semantics. It is possible to con-
strain the execution of an operation by specifying a permission predicate [9].
A permission predicate is a Boolean expression over so-called history coun-
ters that acts as a guard for the operation, for example to express mutual
exclusion. History counters are maintained per object to count the number
of requests, activations and completions per operation.

Thread: A class can be made “active” by specifying a thread. A thread is a
sequence of statements which are executed to completion at which point the
thread dies. The thread is created whenever the object is created but the
thread needs to be started explicitly using the start operator. It is possible
to specify threads that never terminate.

2.2 The existing timed extension to VDM++

In the Vice project [7], time was added by assigning a user-configurable default
duration to each basic language construct. Whenever a statement is evaluated by

5 Many examples and free tool support can be found at http://www.vdmbook.com.



the interpreter, the global notion of time is increased by the specified amount. In
this way, it was possible to simulate the timed behavior of a program running on
a single processor. In addition, the user can specify the task switch overhead and
the scheduling policy used. The duration statement was added to the language,
with the concrete syntax duration(d) IS, which implies that all statements in
IS are executed instantaneously and then time is increased by d time units.
The duration statement is used to override the default execution time for IS.
Furthermore, the periodic statement was introduced, with the concrete syntax
periodic(d)(Op). This statement can only be used in the thread clause to denote
that operation Op is called periodically every d time units.

2.3 The limitations of timed VDM++

In previous work [5], we assessed the suitability of timed VDM++ for distributed
real-time embedded systems. We list the most important problems here.

1. Operations in VDM++ are synchronous; calls are either blocked on a per-
mission predicate (guard) or executed in the context of the thread of control
of the caller. The caller has to wait until the operation is completed before it
can resume. This is very cumbersome when embedded systems are modeled.
These systems are typically reactive by nature and asynchronous. An event
loop can be specified to describe this, but the complexity of the model is
increased and analysis of the model becomes harder.

2. Timed VDM++ supports a uni-processor multi-threading model of compu-
tation which means that at most one thread can claim the processor and only
this active thread can push time in the model forward. This is insufficient
for describing embedded systems because 1) they are often implemented on
a distributed architecture and 2) these systems need to be described in com-
bination with their environment. The subsystems and the environment are
independent and therefore need their own notion of time which requires a
multi-processor multi-threading model of computation.

3. The duration statement in timed VDM++ denotes a time penalty that is in-
dependent of the resource that executes the statement. When deployment is
considered, it is essential to also be able to express time penalties that are rel-
ative to the capacity of the computation resource. Furthermore, there should
be an additional time penalty that reflects the message handling between two
computation resources whenever a remote operation call is performed.

2.4 Proposed changes

Our aim is to minimize the impact on the existing language as much as possi-
ble. Ideally, we want to remain backwards compatible in order to reuse existing
models and tools. Therefore, we have not considered to merge VDM++ with
other techniques. Informally, we propose the following changes:



1. The semantics of timed VDM++ is based on the assumption that at most
one thread can push time forward in the model. We propose a richer seman-
tics in which this limitation is removed. Any thread that is running on a
computation resource or any message that is in transit on a communication
resource can cause time to elapse. Models that contain only one computation
resource are compatible to models in timed VDM++.

2. The suggestion is to introduce the async keyword in the signature of an
operation to denote that an operation is asynchronous. The caller shall no
longer be blocked, it can immediately resume its own thread of control after
the call is initiated. A new thread is created and started immediately to
execute the body of the asynchronous operation.

3. A collection of special predefined classes, BUS and CPU, are made available
to the specifier to construct the distributed architecture in his model. The
system class is used to contain such an architecture model. User-defined
classes can be instantiated and deployed on a specific CPU in the model. The
communication topology between the computation resources in the model
can be described using the BUS class.

4. The duration statement is kept intact to specify time delays that are in-
dependent of the system architecture. In addition, we introduce the cycles
statement, with a similar concrete syntax, to denote a time delay that is
relative to the capacity of the resource. The time delay incurred by the mes-
sage transfer over the BUS can be made dependent of the size of the message
being transfered, which is a function of the parameter values passed to the
operation call.

We will demonstrate the impact of these changes in Sect. 3 using a small case
study and in Sect. 4 we present the semantics of the main extensions.

3 Modeling an in-car radio navigation system

In previous work [10,11], we have studied the design of an in-car radio naviga-
tion system. Such an infotainment system typically executes several concurrent
software applications that share a common, and often distributed, hardware plat-
form. Each application has individual requirements that need to be met and the
question is whether all requirements can be satisfied when a particular archi-
tecture is chosen. We present a VDM++ model of the distributed in-car radio
navigation system using the suggested language improvements. We have focused
on modeling the non-functional performance aspects because these will highlight
the impact of the language changes most prominently. The case study aims to
demonstrate that it is easy to describe distributed architectures and the asso-
ciated deployment of functionality onto it. The model presented here reflects
one of the proposals that was considered during the design, consisting of three
processing units connected through an internal communication bus. We use the
terms application and task to informally describe the case study. An overview is
presented in Fig. 1.



Fig. 1. Informal overview of the case study

Two applications are running on the system: ChangeVolume and ProcessTMC.
Each application consists of three individual tasks. The ChangeVolume appli-
cation, represented by the top right gray box, controls the volume of the ra-
dio. The task HandleKeyPress takes care of all user interface input handling,
AdjustVolume modifies the volume accordingly and UpdateVolume displays the
new volume setting on the screen. The ProcessTMC application, indicated by
the bottom right gray box in Fig. 1, handles all Traffic Message Channel (TMC)
messages. TMC messages arrive at the HandleTMC task where they are checked
and forwarded to the DecodeTMC task to be translated into human readable text
which is displayed on the screen by the UpdateTMC task.

Two additional applications represent the environment of the system: Vol-
umeKnob and TransmitTMC. The former is used to simulate the behavior of a
user turning the volume knob at a certain rate and the latter is used to simulate
the behavior of a radio station that transmits TMC messages. Both applications
inject stimuli into the system (createSignal) and observe the system response
(handleEvent).

In the remainder of this section, we will present how applications and tasks
from the informal case study description relate to classes, operations and threads
in VDM++. Furthermore, we will show how distributed architectures are de-
scribed and how objects are deployed. We present the environment model in
more detail in Sect. 3.1 and the system model in Sect. 3.2.

3.1 The environment model

In our case study, there are two environment applications. Each application is
represented by a class, the tasks are represented by operations in that class.
An instance of the class is automatically deployed on an implicit computation
resource, denoted by the dashed boxes in Fig. 1. Environment applications op-
erate in parallel to the system and independent of each other. Execution of an



environment application does not affect the notion of time in other environ-
ment or system applications. Environment applications communicate with the
system applications over an implicit communication resource that connects all
computation resources in the model.

Typical system-level temporal and timing properties can be specified over the
interface between the environment and the system model. Informal examples of
these requirements are: “The order of the VolumeKnob stimuli is preserved by
the output response sequence of the system.” and “For each HandleTMC stim-
ulus, the maximum allowed response time shall be less than 1000 time units.”.
These requirements can be modeled using standard VDM++ constructs. The
TransmitTMC class is presented in Fig. 2.

class TransmitTMC

instance variables

static private id : nat := 0;

protected e2s : map nat to nat := {|->};
protected s2e : map nat to nat := {|->}

operations

getNum : () ==> nat

getNum () == ( dcl res : nat := id ; id := id + 1; return res );

async public handleEvent : nat ==> ()

handleEvent (pev ) == s2e := s2e munion {pev |-> time}
post forall idx in set dom s2e & s2e (idx ) - e2s (idx ) <= 1000;

createSignal : () ==> ()

createSignal () ==

( dcl num : nat := getNum (); e2s := e2s munion {num |-> time};
RadNavSys‘radio.HandleTMC (num ) )

thread periodic (1000) (createSignal )

sync mutex(getNum )

end TransmitTMC

Fig. 2. The TransmitTMC class

Two instance variables are maintained to log the stimuli (e2s) and the re-
sponses (s2e). These variables are mappings from a unique natural number pro-
vided by the operation getNum, to identify each stimulus, to another natural
number that represents the time at which the event was recorded. The time
keyword provides access to the “wall clock” of the interpreter whenever the
model is executed. A TMC event is inserted into the system by the periodic
thread createSignal every 1000 time units by calling the asynchronous opera-
tion HandleTMC of the Radio class shown in Fig. 3. The operation handleEvent

is called by the system at the end of the UpdateTMC operation (not shown here),



indicating that the event was completely processed by the ProcessTMC appli-
cation. The worst-case response time requirement is encoded as a postcondition
to the handleEvent operation. The postconditions are checked when the model
is simulated. Whenever the postcondition is false, the interpreter will stop and
the state of the system can be inspected to determine the cause of the problem.
Other timeliness requirements can be specified in a similar way.

3.2 The system model

In the system model of our example, there are two independent applications that
consist of three tasks each. Tasks can either be triggered by external stimuli or by
receiving messages from other tasks. A task can also actively acquire or provide
information by periodically checking for available data on an input source or
delivering new data to an output source. All three notions of task activation
are supported by our approach. Note that task activation by external stimuli
can be used to model interrupt handling. The HandleKeyPress and HandleTMC

tasks belong to this category. The other tasks in our system model are message
triggered. We already used periodic task activation in the environment model
(createSignal).

class Radio

operations

async public AdjustVolume : nat ==> ()

AdjustVolume (pno) ==

( duration (150) skip; RadNavSys‘mmi.UpdateVolume (pno ) );

async public HandleTMC : nat ==> ()

HandleTMC (pno) ==

( cycles (1E5) skip; RadNavSys‘navigation.DecodeTMC (pno ) )

end Radio

Fig. 3. The Radio class

Application tasks are modeled by asynchronous operations in VDM++. Fig. 3
presents the definition of AdjustVolume and HandleTMC, which are grouped to-
gether in the Radio class. We use the skip statement for illustration purposes
here, it can be replaced with an arbitrary complex statement to describe the
actual system function that is performed, for example changing the amplifier
volume set point. Note that AdjustVolume uses the duration statement to de-
note that a certain amount of time expires independent of the resource on which
it is deployed. The duration statement now states that changing the set point
always takes 150 time units. For illustration purposes, HandleTMC uses the cy-
cles statement to denote that a certain amount of time expires relative to the
capacity of the computation resource on which it is deployed. If this operation
is deployed on an resource that can deliver 1000 cycles per unit of time then the



delay (duration) would be 1E5 divided by 1000 is 100 time units. A suitable unit
of time can be selected by the modeler.

A special class called CPU is provided to create computation resources in
the system model. Each computation resource is characterized by its process-
ing capacity, specified by the number of available cycles per unit of time, the
scheduling policy that is used to determine the task execution order and a factor
to denote the overhead incurred per task switch. For this case study, fixed pri-
ority preemptive scheduling with zero overhead is used, although our approach
is not restricted to any policy in particular.

system RadNavSys

instance variables

-- create the application tasks

static public mmi := new MMI ();

static public radio := new Radio ();

static public navigation := new Navigation ();

-- create CPU (policy, capacity, task switch overhead)

CPU1 : CPU := new CPU (<FP>, 22E6, 0);

CPU2 : CPU := new CPU (<FP>, 11E6, 0);

CPU3 : CPU := new CPU (<FP>, 113E6, 0);

-- create BUS (policy, capacity, message overhead, topology)

BUS1 : BUS := new BUS (<FCFS>, 72E3, 0, {CPU1 , CPU2 , CPU3 })

operations

-- the constructor of the system model

public RadNavSys : () ==> RadNavSys

RadNavSys () ==

( CPU1.deploy (mmi ); -- deploy MMI on CPU1

CPU2.deploy (radio ); -- deploy Radio on CPU2

CPU3.deploy (navigation ) ) -- deploy Navigation on CPU3

end RadNavSys

Fig. 4. The top-level system model for the case study

A special class BUS is provided to create communication resources in the
system model. A communication resource is characterized by its throughput,
specified by the number of messages that can be handled per unit of time, the
scheduling policy that is used to determine the order of the messages being
exchanged and a factor to denote the protocol overhead. The granularity of a
message can be determined by the user. For example, it can represent a single
byte or a complete Ethernet frame, whatever is most appropriate for the problem
under study. For this case study, we use First Come First Served scheduling with
zero overhead, but again the approach is not restricted to any policy in particular.
An overview of the VDM++ system model is presented in Fig. 4.



4 Abstract Operational Semantics

In this section we formalize the semantics of the proposed changes to VDM++,
as described in Sect. 2.4. To highlight the main changes and modifications, an
abstract basic language which includes the new constructs is defined in Sect. 4.1.
We describe the intended meaning and discuss the most important issues that
had to be addressed when formalizing this. In Sect. 4.2, a formal operational
semantics is defined. Validation of this semantics is discussed in Sect. 4.3.

4.1 Syntax

We abstract from many aspects and constructs in VDM++ and assume given
definitions of classes, including explicit definitions of synchronous and asyn-
chronous operations. It is assumed that these definitions are compiled into a
sequence of instructions. We abstract from most local, atomic instructions (such
as assignments) and consider only the skip instruction. Let d denote a nonneg-
ative time value, and let duration (d) be an abbreviation of duration(d) skip.
Assume that, for an instruction sequence IS, the statement duration(d) IS is
translated into IS ˆ duration(d), where internal durations inside IS have been
removed and the “ˆ” operator concatenates the duration instruction to the end
of a sequence. The concatenation operation is also used to concatenate sequences
and to add an instruction to the front of the sequence. Functions head and tail
yield the first element and the rest of the sequence, resp., and 〈〉 denotes the
empty sequence. Let ObjectId be the set of object identities, with typical ele-
ment oid. Operation denotes the set of operations, with typical element op. The
predicate syn?(op) is true iff the operation is synchronous. The syntax of the
instructions is defined by:

Instr. I ::= skip | call(oid, op) | duration(d) | periodic(d) IS

Instr. Seq. IS ::= 〈〉 | I ˆIS

These basic instructions have the following informal meaning:

– skip represents a local statement which does not consume any time.
– call(oid, op) denotes a call to an operation op of object oid. Depending on the

syn? predicate, the operation can be synchronous (i.e., the caller has to wait
until the execution of the operation body has terminated) or asynchronous
(the caller may continue with the next instruction and the operation body
is executed independently). There are no restrictions on re-entrance here,
but in general this can be restricted by permission predicates as discussed
in Sect. 2.1. These are not considered here, also parameters are ignored.

– duration(d) represents a time progress of d time units. When d time units
have elapsed the next statement can be executed. As shown in Sect. 3.2,
cycles(d) can be expressed as a duration statement.

– periodic(d) IS leads to the execution of instruction sequence IS each period
of d time units.



To formalize deployment, assume given a set of nodes Node and a function
node which gives for each object identity oid its processor, denoted node(oid).
Furthermore, assume given a set of links, defined as a relation between nodes
Link = Node×Node, to express that messages can be transmitted from one node
to another via a link. In the semantics described here we assume, for simplicity,
that a direct link exists between each pair of communicating nodes. Note that
CPU and BUS, as used in the radio navigation case study, are concrete examples
of a node and a link.

The formalization of the precise meaning of the language described above
raises a number of questions that have to answered and on which a decision has
to be taken. We list the main points:

– How to deal with the combination of synchronous and asynchronous opera-
tions, e.g. does one has priority over the other, how are incoming call request
recorded, is there a queue at the level of the node or for each object sepa-
rately? We decided for an equal treatment of both concepts; each object has
a single FIFO queue which contains both types of incoming call requests.

– How to deal with synchronous operation calls; are the call and its acceptance
combined into a single step and does it make a difference if caller and callee
are on different nodes? In our semantics, we distinguish between a call within
a single node and a call to an operation of an object on another node.
For a call between different nodes, a call message is transferred via a link
to the queue of the callee; when this call request is dequeued at the callee,
the operation body is executed in a separate thread and, upon completion,
a return message is transmitted via the link to the node of the caller.
For a call within a single node, we have made the choice to avoid a context
switch and execute the operation body directly in the thread of the caller.
Instead, we could have placed the call request in the queue of the callee.

– Similar questions hold for asynchronous operations. On a single node, the
call request is put in the queue of the callee, whereas for different nodes the
call is transferred via a link. However, no return message is needed and the
caller may continue immediately after issuing the call.

– How are messages between nodes transferred by the links? In principle, many
different communication mechanisms could be modeled. As a simple exam-
ple, we model a link by a set of messages which include a lower and an upper
bound on message delivery. For a link l, let δmin(l) and δmax(l) be the min-
imum and maximum transmission time. It is easy to extend this and make
the transmission time dependent of, e.g., message size and link traffic.

– How to deal with time, how is the progress of time modeled? In our seman-
tics, there is only one global step which models progress of time on all nodes.
All other steps do not change time; all assumptions on the duration of state-
ments, context switches and communications have to be modeled explicitly
by means of duration statements.

– What is the precise meaning of periodic(d) IS if the execution of IS takes
more than d time units? We decided that after each d time units a new
thread is started to ensure that every d time units the IS sequence can be



executed. Of course, this might potentially lead to resource problems for
particular applications, but this will become explicit during analysis.

4.2 Formal Operational Semantics

The aim of the operational semantics is to define the execution of the language
defined in Sect. 4.1. To capture the state of affairs at a certain point during
the execution, we introduce a configuration (Def. 1). Next we define the possible
steps from one configuration to another, denoted by C −→ C ′ where C and
C ′ are configurations (Def. 3). This finally leads to a set of runs of the form
C0 −→ C1 −→ C2 −→ . . . (Def. 8).

To focus on the essential aspects, we assume that the set of objects is fixed
and need not be recorded in the configuration. However, object creation can be
added easily, see e.g. [12]. Let Thread be a set of thread identities; each thread
i is related to one object, denoted by oi. This also leads to the deployment of
threads: node(i) = node(oi). Finally, we extend the set of instructions Instruction
with an auxiliary statement return(i). This statement will be added during the
executing at the end of the instruction sequence of a synchronous operation
which has been called by thread i.

Definition 1 (Configuration). A configuration C contains the following fields:

– instr : Thread → seq[Instruction] which is a function which assigns a se-
quence of instructions to each thread.

– curthr : Node → Thread yields for each node the currently executing thread.
– status : Thread → {dormant, alive,waiting} to denote the status of threads.
– q : ObjectId → queue[Thread × Operation] records for each object a FIFO

queue of incoming calls, together with the calling thread (needed for syn-
chronous operations only).

– linkset : Link → set[Message×Time×Time] records the set of the incoming
messages for each link, together with lower and upper bound on delivery.
A message may denote a call of an operation (including calling thread and
called object) or a return to a thread.

– now : Time to denote the current time.

For a configuration C, we use the notation C(f) to obtain its field f , such as
C(instr). For a FIFO queue, functions head and tail yield the head of the queue
and the rest, respectively; insert is used to insert an element and 〈〉 denotes the
empty queue. For sets we use add and remove to insert and remove elements.
We use exec(C, i) as an abbreviation for C(curthr)(node(i)) = i to express that
thread i is executing on its node. Let fresh(C, oid) yield a fresh, not yet used,
thread identity (so with status dormant) corresponding to object oid. To express
modifications of a configuration, we define the notion of a variant.

Definition 2 (Variant). The variant of a configuration C with respect to a
field f and value v, denoted by C[ f 7→ v ], is defined as

(C[ f 7→ v ])(f ′) =

{

v if f ′ = f

C(f ′) if f ′ 6= f

Similarly for parts of the fields, such as instr(i).



Steps have been grouped into several definitions, leading to the following
overall definition of a step.

Definition 3 (Step). C −→ C ′ is a step iff it corresponds to the execution of
an instruction (Def. 4), a context switch (Def. 5), the delivery of a message by
a link (Def. 6), or the processing of a message from a queue (Def. 7).

Definition 4 (Execute Instruction). A step C −→ C ′ corresponds to the
execution of an instruction iff there exists a thread i such that exec(C, i) and
head(C(instr)(i)) is one of the following instructions:

– skip: Then the new configuration equals the old one, except that the skip
instruction is removed from the instruction sequence of i, that is,
C ′ = C[ instr(i) 7→ tail(C(instr)(i)) ]

– call(oid, op): Let IS be the explicit definition of operation op of object oid.
If caller and callee are on the same node, i.e. node(i) = node(oid) and
syn?(op) then IS is executed directly in the thread of the caller, i.e.,
C ′ = C[ instr(i) 7→ ISˆtail(C(instr)(i)) ]
Otherwise, if not syn?(op), we add the pair (i, op) to the queue of oid, i.e.,
C ′ = C[ instr(i) 7→ tail(C(instr)(i)), q(oid) 7→ insert((i, op), C(q)(oid)) ]
If node(i) 6= node(oid) and link l connects the nodes, then the call is trans-
mitted via l, so added to the linkset. If syn?(op), thread i becomes waiting:
C ′ = C[ instr(i) 7→ tail(C(instr)(i)), status(i) 7→ waiting,

linkset(l) 7→ insert(m, C(linkset)(l)) ]
where m = (call(i, oid, op), C(now) + δmin(l), C(now) + δmax(l)). Similarly
for asynchronous operations, except that then the status of i is not changed.

– duration(d): To allow progress of time, we require that all threads that are
alive and have a non-empty instruction sequence can only perform a dura-
tion. Then time may progress with t time units if C(now) + t is smaller or
equal than all upper bounds of messages in link sets and t is smaller or equal
than all durations that are at the head of an instruction sequence of some
thread. To ensure progress of time (and to avoid Zeno behavior) we choose
the largest t satisfying these conditions. Durations in instruction sequences
are modified by the following definition which yields a new function from
threads to instruction sequences:
NewDuration(C, t) = λi : if head(C(instr)(i)) = duration(di)

then if di − t = 0 then tail(C(instr)(i))
else duration(di − t)ˆtail(C(instr)(i))

else C(instr)(i).
C ′ = C[ instr 7→ NewDuration(C, t), now 7→ C(now) + t ]

– periodic(d) IS: In this case, IS is added to the instruction sequence of thread
i and a new thread j = fresh(C, oi) is started which repeats the periodic
instruction after a duration of d time units, i.e.
C ′ = C[ instr(i) 7→ IS, instr(j) 7→ duration(d)ˆperiodic(d) IS,

status(j) 7→ alive ]
– return(j): Then we have node(i) 6= node(j) and the return is transmitted

via the link l which connects the nodes, i.e.,



C ′ = C[ instr(i) 7→ tail(C(instr)(i)), linkset(l) 7→ insert(m, C(linkset)(l)) ]
where m = (return(j), C(now) + δmin(l), C(now) + δmax(l))

Definition 5 (Context Switch). A step C −→ C ′ corresponds to a context
switch iff there exists a thread i which is not running, i.e. ¬exec(C, i), and also not
dormant or waiting, i.e. C(status)(i) = alive. Then i becomes the current thread
and a duration of δcs time units is added to represent the context switching time:
C ′ = C[ instr(i) 7→ duration(δcs)ˆC(instr)(i), curthr(node(i)) 7→ i ]

Definition 6 (Deliver Link Message). A step C −→ C ′ corresponds to
the message delivery by a link iff there exists a link l and a triple (m, lb, ub) in
C(linkset)(l) with lb ≤ C(now) ≤ ub. There are two possibilities for message m:

– call(i, oid, op): Insert the call in the queue of object oid:
C ′ = C[ q(oid) 7→ insert((i, op), C(q)(oid)),

linkset(l) 7→ remove((m, lb, ub), C(linkset)(l)) ]
– return(i): Wake-up the caller, i.e.

C ′ = C[ status(i) 7→ alive, linkset(l) 7→ remove((m, lb, ub), C(linkset)(l)) ]

Definition 7 (Process Queue Message). A step C −→ C ′ corresponds to
the processing of a message from a queue iff there exists an object oid with
head(C(q)(oid)) = (j, op). Let j = fresh(C, oid) be a fresh thread and IS be the
explicit definition of op. Then if the operation is synchronous, i.e. syn?(op), then
we start a new thread with IS followed by a return to the caller:
C ′ = C[ instr(j) 7→ ISˆreturn(j), status(j) 7→ alive, q(oid) 7→ tail(C(q)(oid)) ]
Similarly for an asynchronous call, where no return instruction is added:
C ′ = C[ instr(j) 7→ IS, status(j) 7→ alive, q(oid) 7→ tail(C(q)(oid)) ]

Definition 8 (Operational Semantics). The operational semantics of a
specification in the language of Sect. 4.1 is a set of execution sequences of the
form C0 −→ C1 −→ C2 −→ . . ., where each pair Ci −→ Ci+1 is a step (Def. 3)
and the initial configuration C0 satisfies a number of constraints, such as: ini-
tially no thread has status waiting, all current threads are alive, the auxiliary
instruction return does not occur in any instruction sequence, and all queues
and link sets are empty.

Observe that in the current semantics the threads that may execute are cho-
sen non-deterministically. By introducing fairness constraints, or a particular
scheduling strategy such as round robin or priority-based pre-emptive schedul-
ing, the set of execution sequences can be reduced. Another reduction can be
obtained by the use of permission predicates.

4.3 Validation

The formal operational semantics has been validated by formulating it in the
typed higher-order logic of the verification system PVS 6 and verifying properties
about it using the interactive theorem prover of PVS.

6 PVS is freely available, see http://pvs.csl.sri.com/. The PVS files and all VDM++
models are available on-line at http://www.cs.ru.nl/∼marcelv/vdm/.



In fact, the formal operational semantics presented in this paper is based
on a much larger constructive (and therefore executable) operational seman-
tics of the extended language, which has been specified in VDM++ itself. This
“bootstrapping” approach allows us to interpret models written in the modi-
fied language by symbolic execution of its abstract syntax in the constructive
operational semantics model using the existing and unmodified VDMTools.

A large collection of test cases has been created to observe the behavior of
each new language construct and we are fairly confident that the proposed lan-
guage changes are consistent. The constructive operational semantics is currently
approximately 100 pages including the test suite. It can be used as a specification
to implement the proposed language changes in VDMTools.

5 Related work

In the context of UML, there is related work [13,12] about the precise meaning
of active objects, with communication via signals and synchronous operations,
and threads of control. In [13] a labeled transition system has been defined using
the algebraic specification language CASL, whereas [12] uses the specification
language of the theorem prover PVS to formulate the semantics. Note that UML
2.0 adopts the run-to-completion semantics, which means that new signals or
operation calls can only be accepted by an object if it cannot do any local
action, i.e., it can only proceed by accepting a signal or call. Hence, the number
of threads is more restricted than in the VDM++ semantics described here.
In addition none of these works deal with deployments. The related work that
comes closest here is the UML Profile for Schedulability, Performance and Time,
and research on performance analysis based on this profile [14].

6 Concluding remarks

We propose an extension of VDM++ to enable the modeling of distributed
real-time embedded systems. These language extensions allows us to experiment
with different deployment strategies at a very early stage in the design. On the
syntactic level, the changes seem minor but they make a big difference. The
model of the in-car navigation system presented in this paper is significantly
smaller than the model that was created earlier with timed VDM++. Moreover,
the new model covers a much larger part of the problem domain. We believe
that important system properties can be validated in a very cost-effective way
if these features are implemented in VDMTools.

A constructive operational semantics was defined for a language subset to
prototype and validate the required improvements in the semantics. The changes
are substantial but they still fit the general framework of the full VDM++
dynamic semantics. Furthermore, a generalized abstract operational semantics,
that is not specific to VDM, is presented in this paper as a result.

One might argue that VDM and therefore this work, is not very relevant for
distributed real-time embedded systems. We believe that this is not true. The



Japanese company CSK, which has recently bought the intellectual property
rights to VDMTools, is targeting this market in particular and they have al-
ready expressed their interest in our results. For example, we were granted access
to the company confidential dynamic semantics specification. Furthermore, we
hope that the availability of free VDM tools and the recently published book [3]
will revitalize the VDM community.
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