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A bstract. In this paper we present a novel automated, on-line, model- 
based testing system for on-the-fly testing of thin-client web applications.
Web applications are specified by means of Extended State Machines.
To handle dynamic web applications, arbitrarily large and complex state 
input and output types, and the transport of information from the web­
page to the state of the specification, we define a new, ioco like, confor­
mance relation. In this conformance relation a specification is a function 
from state and input to functions from output to the new states. The 
implementation builds on the GVST test tool and spots errors in real web 
applications.

1 In trodu ction

Web-applications have rapidly become popular. Web-interfaces are defined for 
many ordinary applications. Just like any other software system these web- 
applications and interfaces tend to contain mistakes. In order to  determine the 
quality of software with a web-based interface it needs to be tested. Testing such 
software can be done most thoroughly and cost effectively by using an automatic 
model based test system. Such a system automatically generates test sequences 
based on a formal specification of the desired behavior of the system, executes 
the associated tests, and makes a verdict based on the observed behavior of the 
implementation under test, the iut.

In this paper we present a novel testing system th a t performs automated, 
on-line, model-based testing of thin-client web applications. Systems are speci­
fied using non-deterministic Extended State Machines (ESMs) with arbitrarily 
rich states, inputs, and outputs. Additionally, the transitions in these state ma­
chines are specified by defining them  as functions over the output domain to 
the reachable states. This allows us to concisely express highly dynamic systems 
with states tha t depend on the output and eliminates the need to specify and 
enumerate all possible HTML outputs. For these systems we define a confor­
mance relation tha t is closely related to the well-known ioco relation [20,19]. 
The system performs on-line testing, as propagated by e.g. Larsen et al. [10]. We 
identify the same advantages: we can employ potentially long test runs, we can 
limit the state space to a finite portion, and use non-deterministic specifications.



We intend to perform a black box test and look only at the input and output 
of the web application. For a web application this implies tha t the test system 
performs an input from the current page, e.g. press a button or edit a text 
field, and receives a new page in HTML. We restrict ourselves to testing the web 
application based on the inputs available in the page. Hence, we do not consider 
navigating by back/forward browser buttons, window cloning and history caches. 
Furthermore, we restrict ourselves to  thin clients. The behavior of the web­
interface should be determined by exchanging HTML code with the server instead 
of things like Java-code embedded in the web-page. This restriction enables us 
to investigate the response to an input just by looking at the HTML code.

We show how a web application can be specified by an ESM. Since there is 
always a strict relation between selecting an input from the current page and 
obtaining a new page, we prefer a state machine based specification rather than 
a specification by a Labeled Transition System (LTS). The web application itself 
can have an arbitrary complex state, and can contact any system it needs, e.g. a 
database. As mentioned above, in our black box approach we restrict ourselves to 
the input to the web-application and the associated new page (in sharp contrast 
with the approach by Margaria et al. [15]) This may appear to  be very restrictive, 
but tha t is not the case. The test engineer can incorporate any knowledge of the 
back-end of the system in the ESM specification.

The specification of the web-application can be nondeterministic, either be­
cause the iut is not deterministic, or because the specification has only partial 
knowledge of the world. One of the case studies in this paper tests a web-shop. 
If it is not known whether an item is available in the web-shop, the specification 
should handle the situation tha t the item is available and tha t it is unavailable.

The output of a web-application is typically large, containing a lot of HTML 
code tha t is sent to the browser. We do not want to specify each and every detail 
of this HTML code, nor do we wish to enumerate all allowed responses. Special 
about our approach is tha t instead of explicitly describing the allowed outputs 
in the specification, we use a function th a t has the actual output as argument 
and yields the allowed target states. This function can be a predicate tha t checks 
aspects of the HTML code. Typical examples are the presence of buttons and key 
texts. The function can also extract information from the HTML code and store 
it in the target state. An example of information tha t we want to store in the 
state of the specification is the result of queries executed by the web-application. 
The results can determine future behavior, and should be consistent with later 
responses of the web-application. In this way we can test the contents of the 
HTML code produced by very dynamical web-applications, like web-shops.

We define a conformance relation tha t incorporates parameterized data types 
for state input and output (infinite number of states), nondeterministic systems, 
and functions from the output to the target state. The conformance relation 
is based on the well-known ioco relation. As a host language, we use the pure 
functional programming language Clean [18]. Clean is a state-of-art programming 
language with support for Algebraic D ata Types (ADTs), generic programming
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[1], and features the generic test tool GVST [6] th a t is used in this work to 
implement the testing framework.

The remainder of this paper is structured as follows: we present the formal 
definitions and the conformance relation in Sect. 2. In Sect. 3 we introduce the 
test tool GVST and explain how it is used to implement the test system based 
on the formal definitions. Two case studies are presented in Sect. 4: one of a 
small number guessing game, and one of a dedicated web-shop. Related work is 
discussed in Sect. 5. Finally, we conclude in Sect. 6 .

2 Specification

The test tool GVST can handle two kinds of properties. It can test properties 
stated in logic about (combinations of) functions and it can test the behavior of 
reactive systems based on an Extended State Machine (ESM). Web applications 
are reactive systems.

An ESM consists of states with labeled transitions between them. A transi­
tion is of the form s t, where s , t  are states, i is an input which triggers the 
transition, and o is a, possibly empty, sequence of outputs. The domains of the 
states, S, inputs, I , and outputs, O, are given by arbitrarily complex, recursive 
ADTs. These types can be used to model parameterized states, inputs and out­
puts. None of these types is required to be finite. The model of the system can be 
nondeterministic, it is possible to define several transitions for one combination 
of state and input. The conformance relation defined in Sect. 2.2 states that 
the tested system is free to choose one of these transitions. This constitutes the 
main difference with traditional testing with state machines where the testing 
algorithms can only handle finite domains and deterministic systems [12].

A transition s t  is represented by the tuple (s, i, o ,t) . A relation based 
specification 5r is a set of these tuples: 5r Ç S  x  I  x  O* x  S . Since none of 
these types is finite, there can be infinitely many transitions. Our specification 
describes synchronous systems. As reaction on input i the system produces a list 
of outputs. We assume tha t we are able to detect the end of this list of outputs. 
This is similar to  detecting quiescence in many ioco based approaches [19].

For instance, a system tha t has natural numbers as state, input and output
i/ [s s —I— i]

can have transitions of the form: Vs, i : N • s ---- ------> i which is equivalent to
the set {(s, i, [s, s +  i], i)|s G N, i G N}. The output of this system consists of the 
previous input and the sum of the previous input and the current input. The 
new state is the current input. It is obvious th a t this rule describes infinitely 
many individual transitions. Usually we omit the universal quantifiers and write

i/[s,s+i] ,
s ---------- > i.

Such an infinite set of transitions is fine for a mathematical specification, 
but unsuited as a specification for model based testing. Listing all transitions 
in a table, as is often done for FSM based testing, is impossible. For our ESMs 
this would yield an infinite table. A predicate tha t given the source state, input, 
output and target state tells whether the transition is allowed is also not suited
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for several reasons. First of all, we want an easy way to determine for which 
inputs a transition is defined given the current state s . Secondly, we want to 
compute the target state, t , from a known source state, the supplied input and 
the observed output.

2.1 T ra n s itio n  F u n c tio n s

In [7,23] we defined a transition function tha t meets the requirements that 
were mentioned in the previous section. The transition function Sf is defined by

Sf (s, i) =  {(o, t) | (s, i, o ,t)  G Sr }. Hence, s t  is equivalent to (o, t) G Sf (s, i). 
The type of Sf is s x  i ^  IP (o* x  s). The system containing only the transition
s ,— ]  ̂ i can be specified by Sf (s, i) =  {([s, s +  i], i)}.

The transition function Sf works very well as specification in model based 
testing if the number of output-target state tuples, (o, t) in the specification is 
small. In a number of situations the number of output-target state tuples can 
become very large. A typical example is an authentication protocol. On the input 
get-challenge, the protected system should produce a number from a large set, 
say a 64-bit number. This would require 264 output-target state tuples. For web 
based specifications the situation is even worse. We do not want to specify each 
and every detail of the HTML code obtained from the server. We only require 
some details like the title of the web page and the availability of certain buttons. 
This would require an unbounded number of output-target state tuples.

In order to cope with these requirements we replace1 the output-target state 
tuples by a function from output to the allowed target states. This yield a new 
kind of transition function called Sp (s, i) of type s x  i ^  (o* ^  (IP s)):

3 f  G Sp (s ,i)  A (o ^  T ) G f  ^  Vt G T  : ( s , i ,o , t )  G Sr .

or in other words s — ^  t  ^ 3 f  G Sp (s, i) : t  G f  (o).

For our example s —s’s—] > i we can use the transition function

Sp(s, i) =  {Ao ^  if (o =  [s, s +  i]) {i} 0}

If we require tha t the output is a value between the current state and current 
input we have: Sp (s, i) =  {0 ^  if  (s < oAo < iV i < oAo < s) {i} 0} This system 
is much harder to describe by function yielding a set of tuples, the number of 
tuples and their contents depends on s and i . Enumerating all possibilities is 
cumbersome and can yield a very large set of tuples. Hence, the specification by 
transition functions tha t yield a function instead of a set of output-target state 
pairs really adds descriptive power.

A specification is partial if for some state s and input i we have Sp (s ,i)  =  0. 
A specification is determ inistic  if for all states and inputs all functions from the

1 The test tool GVST allows that the transition function yields tuples or functions. 
This gives maximum freedom in the specification of the system. For simplicity we 
assume here that the new transition function always yields a function.
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corresponding set of functions contain at most one function and there is at most 
one target state for each output. Formally: Vs Vi, Vo : f  (o ) |f G Sp  (s ,i)  < 1 

A trace a  is a sequence of inputs and associated outputs from a given state. 
Traces are defined inductively: the empty trace connects a state to itself: s s.

We combine a trace s t  and a transition t  — ^  u  from the target state t,
7;i/o .. _ i/o i/o , 7  — 7 A

to trace s u. We define s — ► =  d t.s  — ► t  and s ^  = d t.s ^  t. All 
traces from state s are: traces(s) =  {a|s =5>}. The inputs allowed in a state are

given by in it (s) =  { i ^ o  : s ==5>}. The states after trace a  in state s are given 
by s after a  =  {t|s t}. We overload traces, in i t , and after for sets of states 
instead of a single state by taking the union of the individual results. When the 
transition function, Sp , is not clear from the context, we add it as subscript.

2.2 C o n fo rm an ce

The basic assumption for testing is th a t the iut has the same input/output 
behavior as a state machine: all output is initiated by an input. This implies 
that it is possible to obtain trace from the iut. Since we do black box testing, 
the state of the iut is invisible. It is assumed tha t the iut accepts any trace of 
the specification. This is a weaker requirement than total or input enabled which 
is often assumed in similar conformance relations. These traces only contain 
inputs/output pairs covered by the specification. This means for instance that 
if the specification allows to  push a button on a web-page after a sequence of 
transitions, tha t the iut should accept this input as well.

Conformance of the iut to the specification spec is defined as (s0 is the initial 
state of spec, and t 0 the initial state of iut):

iut conf spec = Va G traces spec(so), Vi G in it (so afterspec a), Vo G O *.
i/o i/o

(to afteriut a) — (so afterspec a) — ►

Intuitively: if the specification allows input i after trace a , the observed output of 
the iut should be allowed by the specification. If spec does not specify a transition 
for the current state and input, anything is allowed. This notion of conformance 
is very similar to the ioco relation [20,19] for LTSs. In a LTS each input and 
output is modeled by a separate transition. In our approach an input and all 
induced outputs up to  quiescence are modeled by a single transition.

2.3 T es tin g  co n fo rm an ce

The conformance relation conf tells when an implementation iut behaves con­
form a specification spec. In practice it is usually impossible to determine confor­
mance by testing. Both the number of traces of the specification, tracesspec(so), 
and the length of individual traces can be infinite. This implies tha t determin­
ing conformance by experimentation generally requires the execution of infinitely 
many transitions, and hence takes infinitely long. Instead of determining the con­
formance of all transitions from all possible traces, we determine the correctness
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of a limited amount of transitions in a limited number of traces. As usual, testing 
approximates the conformance relation. If we find an error during testing the 
conformance relation does not hold. When no errors are found we gain confidence 
in the conformance of the iut to the specification, but errors may remain.

For the implementation of a test system it is very inconvenient to record 
all traces of the specification corresponding to the observed trace of the imple­
mentation. There can be a huge number, in fact even infinitely many, of these 
traces of the specification. Instead of keeping track of all traces of the specifica­
tion th a t conform to the observed trace, our test algorithm records all states in 
the after set of the specification given the observed trace. By a well engineered 
specification, this set can always be sufficiently small.

In the test algorithm we assume tha t the iut is available as a function of type 
(S iut x  I ) ^  (O* x S iut). In this function S iut is the abstract state of the iut 
that is carried around as a black box. The test algorithm for a single trace is:

testConfp  : N x ( IP S ) x S iut ^  Verdict 
testConfp (n, s ,u )  =  if s =  0 

th e n  Fail
else  if  in it (s) =  0 V n  =  0 

th e n  Pass
else testConfp (n — 1 ,t, v)

w h ere  i G in it (s); (o, v) =  iut (u, i); s t

Since the transition function yields a function, the new set of possible states is ac­
tually computed as t  =  | J { f  (o) ^ f  G Sf (si , i), Vsi G s}. Due to  the overloading

i/o
of the transition notation we can write it concisely as s — ► t.

Testing of a single trace is initiated by testConf (N , {so},S°ut), where N  is 
the maximum length of this trace, so the initial state of the specification, and 
S iout the initial abstract state of the iut. The input i used in each step can be 
chosen arbitrarily from the set in i t(s). In the actual implementation it is possi­
ble to control this choice. In a complete test the nondeterministic computation 
testConf (N , {so}, S iut) is repeated M  times. Before each of these test runs, the 
iut is brought to its initial state by applying the function reset : S iut ^  S iut to 
the state of the iut. If one of these test runs yields Fail, the iut is known to be 
not conforming to the specification, otherwise it passes the conformance test.

Due to the dynamic choice of the input to be used in the next transition the 
testing is called on-the-fly. This means tha t input generation, test execution, 
and result analysis are performed in lock-step, so tha t only the inputs actually 
needed are generated.

2.4 T es tin g  co n sis ten cy  o f o u tp u ts

For large and rich outputs, like HTML code, the internal consistency of the 
output as well as the consistency of the output with the target state desires
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some attention. For instance, if one goes to the next page in a series of pages in 
a web-shop, it is required tha t the items displayed in the HTML code are indeed 
the items on the desired page.

In principle it is possible to handle this in the transition function. If the out­
put does not correspond to to the intended target state, the transition function 
can simply yield an empty set of states. If there are no other transitions specified, 
there will be no target state and hence our test algorithm will determine an error. 
However, it can be pretty  hard to spot the error in the given trace. We can im­
prove this by introducing a separate predicate over the observed output and the 
set of target states of the specification. If the predicate holds, testing continues as 
usual. Otherwise, we have found an error and testing term inates2. To capture this 
notion we define a new transition function SP th a t is very similar to Sp . The ex-

• • i/o;p(o,t) i/o , . .tension is tha t a transition s -----------► t  implies s — ► t  A p(o, t). Written in terms

of the transition function this is: s %—°,p——\  t  - & 3 f  G Sp (s ,i)  : t  G f  (o) Ap(o, t). 
The corresponding testing algorithm makes clear why it is more convenient to 
have a predicate of type O* x  IP S  ^  Bool than O* x  S  ^  Bool:

testConfP : N x ( IP S ) x S iut ^  Verdict 
testConfP (n, s ,u )  =  if s =  0 

th e n  Fail
else  if  in it (s) =  0 V n  =  0 
th e n  Pass

else if  ^consistent (o, t)
th e n  testConf P (n — 1 ,t, v) 
else Fail

w h e re  i G in it (s); (o, v) =  iut (u, i); s -—- ^  t

GVST implements this algorithm extended with the collection of data indicating 
the trace and the error if testing yields Fail. Moreover, the test engineer is able 
to influence testing details like the choice of the input i from in i t(s).

3 GVST

The test tool GVST executes conformance tests according to the conformance 
relation in Sect. 2. In order to execute such a conformance test we use: ( 1 ) a 
specification in some executable form; (2 ) an implementation of the conformance 
test algorithm; and (3) an interface to the iut. We discuss these topics briefly.

In Sect. 2 we have shown tha t specifications are represented by functions over 
user defined, and problem dependent, ADTs for state, input and output. Instead 
of defining a new language for this purpose, we use the high level functional pro­
gramming language Clean as carrier for these specifications. Modern functional

2 In the actual implementation of GVST, this predicate is replaced by a function yield­
ing success or a list of error messages.
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programming languages are known for their high expressive power and concise 
function definitions. We consider it much better to reuse decades of language 
design and compiler technology than to define a new language.

For the implementation of the test system we also use Clean. This prevents a 
language border between the specification and its use. Moreover, Clean provides 
polymorphism, overloading and generic programming. These techniques enable 
us to use functions over various types in a very convenient way. This is particulary 
useful for the functions used as specification. The types used in these functions 
for state, input and output are tailor-made for the system at hand. Using generic 
programming the generation of input elements [8], the printing and comparing 
of elements of all types needed can be generated automatically.

The test tool GVST implements the test algorithm presented above with a few 
additional bells and whistles. For instance, the system records the trace leading 
to an error. Most importantly, it controls the choice of the input to be applied 
to the iut. By default GVST generates a list of elements and pseudo randomly 
selects an input element, i , th a t is accepted by the specification. That is, there is 
a state si in the set of possible states of the system such tha t Sf (si , i) =  0. The 
test engineer can provide a user defined selection algorithm. A default algorithm 
is provided to select all traces needed to fully test a FSM. The test engineer can 
provide an algorithm to guide the test to specific targets.

In order to apply an input to the iut and to obtain the answer, the test 
system needs an interface to the iut. GVST assumes tha t there are two functions 
in this interface. The first function takes the input to the iut as argument and 
yields the corresponding output from the iut to GVST. In the case of testing 
web applications typical inputs are pushing buttons and editing text boxes. The 
output is the HTML code tha t corresponds with the new web page. The second 
function, rese t, brings the iut to its initial state at the start of a new trace.

4 T esting W eb A pp lication s

We test web applications from the viewpoint of a user. The user enters a URL in 
a browser and obtains an initial web-page. In such a page there can be various 
ways to give input, like buttons, edit fields, and dropdown menus. If the user 
supplies such an input, the browser sends the current page and information about 
the input to the web application. In response the web application sends a new 
web-page in HTML to the browser.

For automatic model based testing, our test system GVST provides the input 
and checks the HTML code received as response. We use a data structure repre­
senting the HTML code instead of a textual representation. The data structures 
for HTML from the iData approach [16,17] are reused. W ithout restricting the 
general approach in any way we test web applications constructed with iData. 
Compared with testing an arbitrary web application it has as advantage that 
it enables us to make a shortcut tha t increases the speed of testing. Instead 
of transforming the data structures generated by the web-application to HTML 
text, transm itting this text over the web, parsing the text, and converting it to a
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suitable data structure to  inspect the code in a structural way, we directly pass 
the HTML data structure to the web-interface of GVST. Also the input is sent 
directly as data structure from GVST to the web-application under test.

W ithin the HTML data structure all viewable information is stored in a list 
of body-tags. The recursive ADT for body-tags contains separate cases for items 
like strings, tables, buttons, and edit fields. To retrieve information from these 
data structures easily we have created functions to select strings, tables and table 
contents from HTML or body-tags. The function findBodyTags finds the named 
list of body-tags in a specification.

In the examples below we assume th a t we have limited information of the 
iut. In the number guessing game the specification does not know the number 
to be found, and in the CD-shop the specification does not know the content of 
the CD database at the back-end of the application. Nevertheless, we are able 
to do useful tests and to spot errors in both cases. Including the CD database 
in the specification allows us to check more details of the obtained web-pages.

4.1 E x a m p le  1: A  n u m b e r g u essin g  g am e

The first example is a number guessing game tha t randomly selects a number be­
tween integer bounds low and up. After each guess, the game provides feedback: 
if the number is too low (high), the guess count is incremented, and the player 
is told tha t the number to guess is larger (smaller); if the number matches, then 
the player’s name and used number of guesses are entered and displayed in the 
Hall of Fame. At any time, a different player name can be entered.

Although this is a small example, there are many aspects tha t can be tested. 
To mention just a few of them: ( 1 ) the game should give consistent answers 
to guesses; (2 ) the Hall of Fame should add the player with the given name 
and number of guesses; (3) the Hall of Fame should be persistent and not alter 
existing entries; (4) entering a different player name should not change the state. 
Here we test aspect (1) and (4).

The test specification in Clean [18] is given in Fig. 1. We keep track of the 
current valid lower and upper bound, expressed by the state type TestState (lines 
1-2). This ADT expresses the fact tha t the application starts in an initial state 
(In itS ta te), and continues running in a running state (Running). The function 
spec is the heart of the specification. The transition from initial state to running 
state (line 5) is standard idiom for web applications. Line 6 captures every switch 
to a new name. Lines 7-11 are concerned with numerical input; lines 8-9 check 
the consistency with earlier answers of the application; line 10 checks the correct 
answer; line 11 brings down the range of possible answers by a non-deterministic 
choice. Note tha t each function alternative yields a list of functions of type 
[Html] —— [TestS tate]. This is the instance of O* ^  IP S  for this test.

The functions tooLow, tooHigh, and correct are the functions tha t compute 
the reachable states from the associated input and output page. They are very 
similar. They inspect the HTML text elements th a t are tagged with labels "Hint" 
and "Answer". For instance, correct demands tha t the text line labelled with 
"Answer" has content "Congratulations" and resets to a new guess state.
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: : TestState =  In itS ta te  | Running RunState 1 .

:: RunState =  {lowB::Int, upB::Int} 2 .

newRunState =  {lowB=low , upB=up} 3 .

spec :: TestState In ^  [[Html] ^  [T estS tate]] 4 .

spec In itS ta te  input =  [A_ ^  [Running newRunState ]] 5 .

spec (Running r) (StringTextBox s) =  [A_ ^  [Running r ]] 6 .

spec (Running r) (IntTextBox i)  7 .

| i  < r.lowB =  [tooLow r ] 8 .

| i  > r.upB =  [tooHigh r ] 9 .

| i  == r.upB A i  == r.lowB =  [correct r ] 10 . 

| otherwise =  [tooLow {r & lowB=i+1} ,tooHigh {r & upB=i-1} ,correct r ] 11 .

where 12 .

tooLow r  [html] 13 . 

| htmlTexts (findBodyTags "Hint" html) == ["la rger"]
A htmlTexts (findBodyTags "Answer" html) == [ "Sorry" ] 14 .

= [Running r ] 15 .

| otherwise =  [] 16 .

tooHigh r  [html ] 17 . 

| htmlTexts (findBodyTags "Hint" html) == ["sm aller"]
A htmlTexts (findBodyTags "Answer" html) == [ "Sorry" ] 18 .

= [Running r ] 19 .

| otherwise =  [] 20 .

correct r  [html] 21 .

| htmlTexts (findBodyTags "Answer" html) == [ "Congratulations" ] 22 .

= [Running {r & lowB=low , upB=up}] 23 .

| otherwise =  [] 24 .

Fig. 1. The specification of the number guessing game.

As inputs domain we specify numbers between low — 1 and up +  1 and a new 
name. GVST tries these values in a pseudo random order. In each state GVST 
applies the first input element th a t is accepted by one of the current states of 
the specification (e.a. is an element of in i t(s)).

We have run the test against an iut tha t interprets the switching of player 
names differently than the specification does: whenever a new player name is 
entered, the iut starts with a new number to guess. This violates the consistency 
checks at lines 8-10 of the test specification. After entering a new name the iut 
give answers tha t are not consistent to previous guesses. GVST spots tha t there 
is no new state for the specification according to answers of guesses outside the 
range [lowB. .upB]. For this example P consistent(o, t) always holds. When testing 
against a maximum trace length of 100 transitions, the system requires 4 paths on 
average to reveal the error (more precisely, 377 transitions). The average testing 
time was 0.40 sec per detected error. Testing was done on an AMD Athlon XP 
2200+, 1.80GHz PC, 512MB RAM, running Microsoft Windows XP.

4.2 E x am p le  2: A  w eb-shop

Our second example is a highly dynamic web-shop selling CD’s. This application 
contains four main views: (1) the initial home-view; (2) the shop-view to browse,
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search and order the CDs in the shop; (3) the basket-view to examine and change 
the CDs the user is ordering; (4) the order-view to make the order definitive 
and pay. The actual contents of the shop-view is determined by the contents of 
a database. The contents of the basket-view and order-view are determined by 
the CDs selected by the user.

|Category^^^^^|SearcMbr^^^l#ltems foundptems /  page: | |  Täf ' ÿ |Category: [Search for: interns found ffltern;: / page 9 *9

Last Itehi pul into basket:

|ltem prize |Artist |Album |Year (Duration |

•3/4 169 -Euro: 5.00 Pink Floyd Dark side ofthe moon 1973 42:52 jgSf.

p a  . . i |
4/4 '201 :Euro: 5.00 Rush A show of hands 1989 73:24 E l l

n .
; 1 /I ;55 Euro: 20.00Dream Theater Octavarium 2005 73:32 ETSI

jl/1 ;55 iEuro: 20.00:Dream Theater :Octavarium 2005 73:32 Q j

Fig. 2. Screen shots of the web-shop. On the left page 3 of the shop-view, on the right 
the graphical representation of the error found by GVST.

The specification does not know the contents of the database, so we cannot 
check whether the right CDs are displayed. Still, the specification does prescribe 
consistent behavior during the navigation and searching in the shop-pages, and 
takes care tha t ordered items appear in the basket and the final order.

Also in this web-application GVST found an error. If the user is not on the 
first page with CDs and makes a selection (on artist name, album or song), the 
web application does not go to the first page of CDs. This can cause that an 
empty page with CDs is shown although there are CDs in the selection.

shopSpec :: ShopState ShopInput ^  [[Html] ^  [ShopState ]] 1 .

shopSpec s=: {view=InitView} input =  [Ao ^  [ { s&view=HomeView } ]] 2 .

shopSpec s ShopButton 3 .

=  [ A[html] ^  [{s&view=ShopView, cds=findCdCount htm l}]] 4 .

shopSpec s=: {view=ShopView} (PageButton (PageNum n)) 5 .

| n =  s.pageNum A n*s.itemsPage < s.cds 6 .

= [A[html] ^  [{s & pageNun=i}]] 7 .

| otherwise =  [] 8 .

shopSpec s=: {view=ShopView} (SearchTextBox s tr )  9 .

=  [ A[html] ^  [{s & pageNun=0, cds=findCdCount htm l}]] 10 .

shopSpec s i  =  [] /*  defau lt: undefined * /  11 .

Fig. 3. The partial specification of the web-shop.

The complete specification is too large for this paper. Fig. 3 contains a self­
contained specification that is just capable of finding the described error. This 
is only part of the complete specification, but it can be used on its own by GVST 
and finds the error quickly. Line 2 covers the standard transition from the initial 
state to the home page. The lines 3 and 4 states that the shop-button brings 
you from any state to the shop-view. The number of CDs is retrieved from the 
HTML code and stored in the cds field of the shop state record of type ShopState. 
Lines 5 — 8 handle navigation through the various pages in the shop-view. Such

11



a transition is only possible if the target page is different from the current page 
and exists. Entering a new text in the search box is specified in line 9 — 10. The 
specification states th a t the number of CDs in the state must be read from the 
page and the page number should be set to 0.

The inconsistency is spotted by a predicate over the output and the new 
state. This predicate checks whether the CDs with desired numbers, represented 
as string like "3/7" (third of seven CDs), are listed on the current page.

5 R elated  W ork

Testing web applications is experiencing an increased interest. A wide variety of 
existing testing techniques and theories are being extended and modified for the 
web. It is beyond the scope of this paper to  discuss them  all.

In van Beek and Mauw [22] black box conformance testing of thin (no local 
client based computations) Internet applications is presented. In their approach, 
Internet applications are modelled with MRRTS-es (m ulti request-response tran­
sition system s ). In order to create specifications conveniently, they use the 
process algebraic DiCons [21] specification language. DiCons has been devel­
oped specifically for distributed consensus applications. These are applications 
in which several users have a common goal tha t needs to  be reached. In their test 
system, they run the implementation under test and consider the link-activations 
and form submissions. Differences with our approach are tha t we use a functional 
specification style with rich algebraic data types; the implementation under test 
is a function tha t yields HTML code; we test only form submissions.

In Sect. 1 we have argued tha t interactive applications are modelled natu­
rally with Extended State Machines, which are LTSs over input/ou tput pairs. 
Conformance of these systems is well studied by Latella and Massink [11]. They 
prove tha t a quiescence supporting semantics is crucial to obtain substitutivity 
properties: implementations conforming to a specification can be safely replaced 
with a testing equivalent implementation without breaking conformance, and 
implementations conforming to a specification also conform to testing equiva­
lent specifications. Our approach is geared towards practical situations in the 
sense th a t we consider states, input and output labels to  be values of arbitrarily 
complex, recursive ADTs. It is an interesting and open question whether the 
theoretical results also hold for our approach.

Frantzen et al. [4] study black box conformance testing with symbolic state. 
This is related to our work because they address the issue of working with 
arbitrarily complex data structures. In their approach the data structures are 
specified by means of first order logic specifications. Their approach is more 
general than our approach, but this leads to a number of open issues, such 
as finding the solution to a logical formula (if it exists at all), and the actual 
computation of concrete input values to the iut. Our approach is based on ADTs, 
and functional term  graph rewriting. Confluence holds for these systems, and 
our ESMs can rely on arbitrarily complex state transition functions to describe 
complex systems.
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Andrews et al. [2] employ FSMs with constraints to model and test web ap­
plications. Hierarchical decomposition and constraints are used to control the 
usual state space explosion problem: with hierarchical decomposition the FSM 
can be decomposed recursively into subsystems. For each subsystem tests can 
be generated and assembled into compound tests up to the entire application 
level. Constraints for sequencing and sets remove the need to tediously specify all 
different possible input sequences in terms of state transitions. The hierarchical 
decomposition is done manually by the tester, as well as defining the constraints. 
The inputs on which the constraints are defined correspond with standard form 
elements, such as (multi-)lines, URLs, links, (radio) buttons, and so on. As in 
our approach, they model the web application at the user level.

Wu and Offutt [24] model web applications by identifying the structure of web 
pages in terms of atomic sections tha t are composed with process algebraic like 
operators such as sequential composition, choice, and aggregation. Interactions, 
such as link transitions, composite transitions, and operational transitions, define 
the relationship between different pages. From these models, tests can be derived. 
As with our approach, the authors restrict themselves to monitoring HTML 
output only. In contrast with our approach, they deliberately ignore state. This 
is argued by the fact tha t the HTTP protocol is stateless. However, a standard 
way to include state is to pass additional information along with the HTML.

Jia and Liu [5] present a general framework to automatically test several 
key aspects of web applications, such as functionality, page structure (which is 
what our approach concentrates on), security and performance is presented. XML 
is chosen to formally specify the requirements because it also provides access 
to specify page structure properties using standard utilities such as DOM and 
XPath. A test suite is a tree structure of test steps. A test case is a tree traversal 
from root to  leaf of these test steps. A test step is basically a precondition- 
response pair tha t is executed only if the precondition is true. The response is 
an assertion on the HTTP output of the web application. XML is also used by 
Lee and Offutt [13] as a vehicle for test specifications and data transmissions. 
In our approach web pages are modelled by means of ADTs, and access to these 
pages is provided by means of functions. Advantages of our approach are that 
specifications are type correct, and tha t the user can specify arbitrarily complex 
computations on these pages (for instance, extract the complete content of a 
table and return it as a matrix of values).

Although we have not considered incorporating testing of browser function­
ality such as window cloning and the use of the back/forward browsing buttons 
as done e.g. by Di Lucca and Di Penta [3], our framework can be used for these 
purposes. It is up to the test engineer to model the desired behavior of the 
application under these circumstances. This is even the case when testing the 
behavior of web applications in the presence of users who manually edit links 
or even alter page codes. Usually for these kinds of robustness tests white box 
testing techniques are used (e.g. Liu et al. [14] and Kung et al. [9]). Our system is 
independent of the concrete implementation language(s) of the web application.
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6 C onclusions

The automatic, model based, testing of web applications is an im portant topic 
since the amount of web applications is growing rapidly. Thin-client web ap­
plications sends a complete new web page in pure HTML to the browser in 
response to each input. Usually it is undesirable to specify each and every as­
pect of this HTML code. For most specification techniques this is troublesome 
since they commonly require to explicitly list the combinations of allowed output 
and target state. In this paper we introduced a specification technique and the 
associated, ioco-like, conformance relation to tackle this problem. The key step 
is to replace the combination of allowed outputs and target states by a function 
from output to allowed target states. This function can check aspects of the 
output, as well as retrieve information to be stored in the target state.

This technique is implemented as an extension of the on-the-fly test tool 
GVST. In this paper we illustrate with two examples tha t it is possible to (par­
tially) specify the desired behavior of highly dynamic web applications in this 
way and to find errors in the concrete implementations of these web applications.
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