
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is an author's version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/35655

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

http://hdl.handle.net/2066/35655

M odel-B ased T esting o f T hin-C lient W eb
A pplications

Pieter Koopman, Rinus Plasmeijer, and Peter Achten

Software Technology, Nijmegen Institute for Computing and Information Sciences,
Radboud University Nijmegen

{p ie ter, rinus, P.Achten}@cs.ru.nl

A bstract. In this paper we present a novel automated, on-line, model-
based testing system for on-the-fly testing of thin-client web applications.
Web applications are specified by means of Extended State Machines.
To handle dynamic web applications, arbitrarily large and complex state
input and output types, and the transport of information from the web­
page to the state of the specification, we define a new, ioco like, confor­
mance relation. In this conformance relation a specification is a function
from state and input to functions from output to the new states. The
implementation builds on the GVST test tool and spots errors in real web
applications.

1 In trodu ction

Web-applications have rapidly become popular. Web-interfaces are defined for
many ordinary applications. Just like any other software system these web-
applications and interfaces tend to contain mistakes. In order to determine the
quality of software with a web-based interface it needs to be tested. Testing such
software can be done most thoroughly and cost effectively by using an automatic
model based test system. Such a system automatically generates test sequences
based on a formal specification of the desired behavior of the system, executes
the associated tests, and makes a verdict based on the observed behavior of the
implementation under test, the iut.

In this paper we present a novel testing system th a t performs automated,
on-line, model-based testing of thin-client web applications. Systems are speci­
fied using non-deterministic Extended State Machines (ESMs) with arbitrarily
rich states, inputs, and outputs. Additionally, the transitions in these state ma­
chines are specified by defining them as functions over the output domain to
the reachable states. This allows us to concisely express highly dynamic systems
with states tha t depend on the output and eliminates the need to specify and
enumerate all possible HTML outputs. For these systems we define a confor­
mance relation tha t is closely related to the well-known ioco relation [20,19].
The system performs on-line testing, as propagated by e.g. Larsen et al. [10]. We
identify the same advantages: we can employ potentially long test runs, we can
limit the state space to a finite portion, and use non-deterministic specifications.

We intend to perform a black box test and look only at the input and output
of the web application. For a web application this implies tha t the test system
performs an input from the current page, e.g. press a button or edit a text
field, and receives a new page in HTML. We restrict ourselves to testing the web
application based on the inputs available in the page. Hence, we do not consider
navigating by back/forward browser buttons, window cloning and history caches.
Furthermore, we restrict ourselves to thin clients. The behavior of the web­
interface should be determined by exchanging HTML code with the server instead
of things like Java-code embedded in the web-page. This restriction enables us
to investigate the response to an input just by looking at the HTML code.

We show how a web application can be specified by an ESM. Since there is
always a strict relation between selecting an input from the current page and
obtaining a new page, we prefer a state machine based specification rather than
a specification by a Labeled Transition System (LTS). The web application itself
can have an arbitrary complex state, and can contact any system it needs, e.g. a
database. As mentioned above, in our black box approach we restrict ourselves to
the input to the web-application and the associated new page (in sharp contrast
with the approach by Margaria et al. [15]) This may appear to be very restrictive,
but tha t is not the case. The test engineer can incorporate any knowledge of the
back-end of the system in the ESM specification.

The specification of the web-application can be nondeterministic, either be­
cause the iut is not deterministic, or because the specification has only partial
knowledge of the world. One of the case studies in this paper tests a web-shop.
If it is not known whether an item is available in the web-shop, the specification
should handle the situation tha t the item is available and tha t it is unavailable.

The output of a web-application is typically large, containing a lot of HTML
code tha t is sent to the browser. We do not want to specify each and every detail
of this HTML code, nor do we wish to enumerate all allowed responses. Special
about our approach is tha t instead of explicitly describing the allowed outputs
in the specification, we use a function th a t has the actual output as argument
and yields the allowed target states. This function can be a predicate tha t checks
aspects of the HTML code. Typical examples are the presence of buttons and key
texts. The function can also extract information from the HTML code and store
it in the target state. An example of information tha t we want to store in the
state of the specification is the result of queries executed by the web-application.
The results can determine future behavior, and should be consistent with later
responses of the web-application. In this way we can test the contents of the
HTML code produced by very dynamical web-applications, like web-shops.

We define a conformance relation tha t incorporates parameterized data types
for state input and output (infinite number of states), nondeterministic systems,
and functions from the output to the target state. The conformance relation
is based on the well-known ioco relation. As a host language, we use the pure
functional programming language Clean [18]. Clean is a state-of-art programming
language with support for Algebraic D ata Types (ADTs), generic programming

2

[1], and features the generic test tool GVST [6] th a t is used in this work to
implement the testing framework.

The remainder of this paper is structured as follows: we present the formal
definitions and the conformance relation in Sect. 2. In Sect. 3 we introduce the
test tool GVST and explain how it is used to implement the test system based
on the formal definitions. Two case studies are presented in Sect. 4: one of a
small number guessing game, and one of a dedicated web-shop. Related work is
discussed in Sect. 5. Finally, we conclude in Sect. 6 .

2 Specification

The test tool GVST can handle two kinds of properties. It can test properties
stated in logic about (combinations of) functions and it can test the behavior of
reactive systems based on an Extended State Machine (ESM). Web applications
are reactive systems.

An ESM consists of states with labeled transitions between them. A transi­
tion is of the form s t, where s , t are states, i is an input which triggers the
transition, and o is a, possibly empty, sequence of outputs. The domains of the
states, S, inputs, I , and outputs, O, are given by arbitrarily complex, recursive
ADTs. These types can be used to model parameterized states, inputs and out­
puts. None of these types is required to be finite. The model of the system can be
nondeterministic, it is possible to define several transitions for one combination
of state and input. The conformance relation defined in Sect. 2.2 states that
the tested system is free to choose one of these transitions. This constitutes the
main difference with traditional testing with state machines where the testing
algorithms can only handle finite domains and deterministic systems [12].

A transition s t is represented by the tuple (s, i, o ,t) . A relation based
specification 5r is a set of these tuples: 5r Ç S x I x O* x S . Since none of
these types is finite, there can be infinitely many transitions. Our specification
describes synchronous systems. As reaction on input i the system produces a list
of outputs. We assume tha t we are able to detect the end of this list of outputs.
This is similar to detecting quiescence in many ioco based approaches [19].

For instance, a system tha t has natural numbers as state, input and output
i/ [s s —I— i]

can have transitions of the form: Vs, i : N • s ---- ------> i which is equivalent to
the set {(s, i, [s, s + i], i)|s G N, i G N}. The output of this system consists of the
previous input and the sum of the previous input and the current input. The
new state is the current input. It is obvious th a t this rule describes infinitely
many individual transitions. Usually we omit the universal quantifiers and write

i/[s,s+i] ,
s ---------- > i.

Such an infinite set of transitions is fine for a mathematical specification,
but unsuited as a specification for model based testing. Listing all transitions
in a table, as is often done for FSM based testing, is impossible. For our ESMs
this would yield an infinite table. A predicate tha t given the source state, input,
output and target state tells whether the transition is allowed is also not suited

3

for several reasons. First of all, we want an easy way to determine for which
inputs a transition is defined given the current state s . Secondly, we want to
compute the target state, t , from a known source state, the supplied input and
the observed output.

2.1 T ra n s itio n F u n c tio n s

In [7,23] we defined a transition function tha t meets the requirements that
were mentioned in the previous section. The transition function Sf is defined by

Sf (s, i) = {(o, t) | (s, i, o ,t) G Sr }. Hence, s t is equivalent to (o, t) G Sf (s, i).
The type of Sf is s x i ^ IP (o* x s). The system containing only the transition
s ,—] ̂ i can be specified by Sf (s, i) = {([s, s + i], i)}.

The transition function Sf works very well as specification in model based
testing if the number of output-target state tuples, (o, t) in the specification is
small. In a number of situations the number of output-target state tuples can
become very large. A typical example is an authentication protocol. On the input
get-challenge, the protected system should produce a number from a large set,
say a 64-bit number. This would require 264 output-target state tuples. For web
based specifications the situation is even worse. We do not want to specify each
and every detail of the HTML code obtained from the server. We only require
some details like the title of the web page and the availability of certain buttons.
This would require an unbounded number of output-target state tuples.

In order to cope with these requirements we replace1 the output-target state
tuples by a function from output to the allowed target states. This yield a new
kind of transition function called Sp (s, i) of type s x i ^ (o* ^ (IP s)):

3 f G Sp (s ,i) A (o ^ T) G f ^ Vt G T : (s , i ,o , t) G Sr .

or in other words s — ^ t ^ 3 f G Sp (s, i) : t G f (o).

For our example s —s’s—] > i we can use the transition function

Sp(s, i) = {Ao ^ if (o = [s, s + i]) {i} 0}

If we require tha t the output is a value between the current state and current
input we have: Sp (s, i) = {0 ^ if (s < oAo < iV i < oAo < s) {i} 0} This system
is much harder to describe by function yielding a set of tuples, the number of
tuples and their contents depends on s and i . Enumerating all possibilities is
cumbersome and can yield a very large set of tuples. Hence, the specification by
transition functions tha t yield a function instead of a set of output-target state
pairs really adds descriptive power.

A specification is partial if for some state s and input i we have Sp (s ,i) = 0.
A specification is determ inistic if for all states and inputs all functions from the

1 The test tool GVST allows that the transition function yields tuples or functions.
This gives maximum freedom in the specification of the system. For simplicity we
assume here that the new transition function always yields a function.

4

corresponding set of functions contain at most one function and there is at most
one target state for each output. Formally: Vs Vi, Vo : f (o) |f G Sp (s ,i) < 1

A trace a is a sequence of inputs and associated outputs from a given state.
Traces are defined inductively: the empty trace connects a state to itself: s s.

We combine a trace s t and a transition t — ^ u from the target state t,
7;i/o .. _ i/o i/o , 7 — 7 A

to trace s u. We define s — ► = d t.s — ► t and s ^ = d t.s ^ t. All
traces from state s are: traces(s) = {a|s =5>}. The inputs allowed in a state are

given by in it (s) = { i ^ o : s ==5>}. The states after trace a in state s are given
by s after a = {t|s t}. We overload traces, in i t , and after for sets of states
instead of a single state by taking the union of the individual results. When the
transition function, Sp , is not clear from the context, we add it as subscript.

2.2 C o n fo rm an ce

The basic assumption for testing is th a t the iut has the same input/output
behavior as a state machine: all output is initiated by an input. This implies
that it is possible to obtain trace from the iut. Since we do black box testing,
the state of the iut is invisible. It is assumed tha t the iut accepts any trace of
the specification. This is a weaker requirement than total or input enabled which
is often assumed in similar conformance relations. These traces only contain
inputs/output pairs covered by the specification. This means for instance that
if the specification allows to push a button on a web-page after a sequence of
transitions, tha t the iut should accept this input as well.

Conformance of the iut to the specification spec is defined as (s0 is the initial
state of spec, and t 0 the initial state of iut):

iut conf spec = Va G traces spec(so), Vi G in it (so afterspec a), Vo G O *.
i/o i/o

(to afteriut a) — (so afterspec a) — ►

Intuitively: if the specification allows input i after trace a , the observed output of
the iut should be allowed by the specification. If spec does not specify a transition
for the current state and input, anything is allowed. This notion of conformance
is very similar to the ioco relation [20,19] for LTSs. In a LTS each input and
output is modeled by a separate transition. In our approach an input and all
induced outputs up to quiescence are modeled by a single transition.

2.3 T es tin g co n fo rm an ce

The conformance relation conf tells when an implementation iut behaves con­
form a specification spec. In practice it is usually impossible to determine confor­
mance by testing. Both the number of traces of the specification, tracesspec(so),
and the length of individual traces can be infinite. This implies tha t determin­
ing conformance by experimentation generally requires the execution of infinitely
many transitions, and hence takes infinitely long. Instead of determining the con­
formance of all transitions from all possible traces, we determine the correctness

5

of a limited amount of transitions in a limited number of traces. As usual, testing
approximates the conformance relation. If we find an error during testing the
conformance relation does not hold. When no errors are found we gain confidence
in the conformance of the iut to the specification, but errors may remain.

For the implementation of a test system it is very inconvenient to record
all traces of the specification corresponding to the observed trace of the imple­
mentation. There can be a huge number, in fact even infinitely many, of these
traces of the specification. Instead of keeping track of all traces of the specifica­
tion th a t conform to the observed trace, our test algorithm records all states in
the after set of the specification given the observed trace. By a well engineered
specification, this set can always be sufficiently small.

In the test algorithm we assume tha t the iut is available as a function of type
(S iut x I) ^ (O* x S iut). In this function S iut is the abstract state of the iut
that is carried around as a black box. The test algorithm for a single trace is:

testConfp : N x (IP S) x S iut ^ Verdict
testConfp (n, s ,u) = if s = 0

th e n Fail
else if in it (s) = 0 V n = 0

th e n Pass
else testConfp (n — 1 ,t, v)

w h ere i G in it (s); (o, v) = iut (u, i); s t

Since the transition function yields a function, the new set of possible states is ac­
tually computed as t = | J { f (o) ^ f G Sf (si , i), Vsi G s}. Due to the overloading

i/o
of the transition notation we can write it concisely as s — ► t.

Testing of a single trace is initiated by testConf (N , {so},S°ut), where N is
the maximum length of this trace, so the initial state of the specification, and
S iout the initial abstract state of the iut. The input i used in each step can be
chosen arbitrarily from the set in i t(s). In the actual implementation it is possi­
ble to control this choice. In a complete test the nondeterministic computation
testConf (N , {so}, S iut) is repeated M times. Before each of these test runs, the
iut is brought to its initial state by applying the function reset : S iut ^ S iut to
the state of the iut. If one of these test runs yields Fail, the iut is known to be
not conforming to the specification, otherwise it passes the conformance test.

Due to the dynamic choice of the input to be used in the next transition the
testing is called on-the-fly. This means tha t input generation, test execution,
and result analysis are performed in lock-step, so tha t only the inputs actually
needed are generated.

2.4 T es tin g co n sis ten cy o f o u tp u ts

For large and rich outputs, like HTML code, the internal consistency of the
output as well as the consistency of the output with the target state desires

6

some attention. For instance, if one goes to the next page in a series of pages in
a web-shop, it is required tha t the items displayed in the HTML code are indeed
the items on the desired page.

In principle it is possible to handle this in the transition function. If the out­
put does not correspond to to the intended target state, the transition function
can simply yield an empty set of states. If there are no other transitions specified,
there will be no target state and hence our test algorithm will determine an error.
However, it can be pretty hard to spot the error in the given trace. We can im­
prove this by introducing a separate predicate over the observed output and the
set of target states of the specification. If the predicate holds, testing continues as
usual. Otherwise, we have found an error and testing term inates2. To capture this
notion we define a new transition function SP th a t is very similar to Sp . The ex-

• • i/o;p(o,t) i/o , . .tension is tha t a transition s -----------► t implies s — ► t A p(o, t). Written in terms

of the transition function this is: s %—°,p——\ t - & 3 f G Sp (s ,i) : t G f (o) Ap(o, t).
The corresponding testing algorithm makes clear why it is more convenient to
have a predicate of type O* x IP S ^ Bool than O* x S ^ Bool:

testConfP : N x (IP S) x S iut ^ Verdict
testConfP (n, s ,u) = if s = 0

th e n Fail
else if in it (s) = 0 V n = 0
th e n Pass

else if ^consistent (o, t)
th e n testConf P (n — 1 ,t, v)
else Fail

w h e re i G in it (s); (o, v) = iut (u, i); s -—- ^ t

GVST implements this algorithm extended with the collection of data indicating
the trace and the error if testing yields Fail. Moreover, the test engineer is able
to influence testing details like the choice of the input i from in i t(s).

3 GVST

The test tool GVST executes conformance tests according to the conformance
relation in Sect. 2. In order to execute such a conformance test we use: (1) a
specification in some executable form; (2) an implementation of the conformance
test algorithm; and (3) an interface to the iut. We discuss these topics briefly.

In Sect. 2 we have shown tha t specifications are represented by functions over
user defined, and problem dependent, ADTs for state, input and output. Instead
of defining a new language for this purpose, we use the high level functional pro­
gramming language Clean as carrier for these specifications. Modern functional

2 In the actual implementation of GVST, this predicate is replaced by a function yield­
ing success or a list of error messages.

7

programming languages are known for their high expressive power and concise
function definitions. We consider it much better to reuse decades of language
design and compiler technology than to define a new language.

For the implementation of the test system we also use Clean. This prevents a
language border between the specification and its use. Moreover, Clean provides
polymorphism, overloading and generic programming. These techniques enable
us to use functions over various types in a very convenient way. This is particulary
useful for the functions used as specification. The types used in these functions
for state, input and output are tailor-made for the system at hand. Using generic
programming the generation of input elements [8], the printing and comparing
of elements of all types needed can be generated automatically.

The test tool GVST implements the test algorithm presented above with a few
additional bells and whistles. For instance, the system records the trace leading
to an error. Most importantly, it controls the choice of the input to be applied
to the iut. By default GVST generates a list of elements and pseudo randomly
selects an input element, i , th a t is accepted by the specification. That is, there is
a state si in the set of possible states of the system such tha t Sf (si , i) = 0. The
test engineer can provide a user defined selection algorithm. A default algorithm
is provided to select all traces needed to fully test a FSM. The test engineer can
provide an algorithm to guide the test to specific targets.

In order to apply an input to the iut and to obtain the answer, the test
system needs an interface to the iut. GVST assumes tha t there are two functions
in this interface. The first function takes the input to the iut as argument and
yields the corresponding output from the iut to GVST. In the case of testing
web applications typical inputs are pushing buttons and editing text boxes. The
output is the HTML code tha t corresponds with the new web page. The second
function, rese t, brings the iut to its initial state at the start of a new trace.

4 T esting W eb A pp lication s

We test web applications from the viewpoint of a user. The user enters a URL in
a browser and obtains an initial web-page. In such a page there can be various
ways to give input, like buttons, edit fields, and dropdown menus. If the user
supplies such an input, the browser sends the current page and information about
the input to the web application. In response the web application sends a new
web-page in HTML to the browser.

For automatic model based testing, our test system GVST provides the input
and checks the HTML code received as response. We use a data structure repre­
senting the HTML code instead of a textual representation. The data structures
for HTML from the iData approach [16,17] are reused. W ithout restricting the
general approach in any way we test web applications constructed with iData.
Compared with testing an arbitrary web application it has as advantage that
it enables us to make a shortcut tha t increases the speed of testing. Instead
of transforming the data structures generated by the web-application to HTML
text, transm itting this text over the web, parsing the text, and converting it to a

8

suitable data structure to inspect the code in a structural way, we directly pass
the HTML data structure to the web-interface of GVST. Also the input is sent
directly as data structure from GVST to the web-application under test.

W ithin the HTML data structure all viewable information is stored in a list
of body-tags. The recursive ADT for body-tags contains separate cases for items
like strings, tables, buttons, and edit fields. To retrieve information from these
data structures easily we have created functions to select strings, tables and table
contents from HTML or body-tags. The function findBodyTags finds the named
list of body-tags in a specification.

In the examples below we assume th a t we have limited information of the
iut. In the number guessing game the specification does not know the number
to be found, and in the CD-shop the specification does not know the content of
the CD database at the back-end of the application. Nevertheless, we are able
to do useful tests and to spot errors in both cases. Including the CD database
in the specification allows us to check more details of the obtained web-pages.

4.1 E x a m p le 1: A n u m b e r g u essin g g am e

The first example is a number guessing game tha t randomly selects a number be­
tween integer bounds low and up. After each guess, the game provides feedback:
if the number is too low (high), the guess count is incremented, and the player
is told tha t the number to guess is larger (smaller); if the number matches, then
the player’s name and used number of guesses are entered and displayed in the
Hall of Fame. At any time, a different player name can be entered.

Although this is a small example, there are many aspects tha t can be tested.
To mention just a few of them: (1) the game should give consistent answers
to guesses; (2) the Hall of Fame should add the player with the given name
and number of guesses; (3) the Hall of Fame should be persistent and not alter
existing entries; (4) entering a different player name should not change the state.
Here we test aspect (1) and (4).

The test specification in Clean [18] is given in Fig. 1. We keep track of the
current valid lower and upper bound, expressed by the state type TestState (lines
1-2). This ADT expresses the fact tha t the application starts in an initial state
(In itS ta te), and continues running in a running state (Running). The function
spec is the heart of the specification. The transition from initial state to running
state (line 5) is standard idiom for web applications. Line 6 captures every switch
to a new name. Lines 7-11 are concerned with numerical input; lines 8-9 check
the consistency with earlier answers of the application; line 10 checks the correct
answer; line 11 brings down the range of possible answers by a non-deterministic
choice. Note tha t each function alternative yields a list of functions of type
[Html] —— [TestS tate]. This is the instance of O* ^ IP S for this test.

The functions tooLow, tooHigh, and correct are the functions tha t compute
the reachable states from the associated input and output page. They are very
similar. They inspect the HTML text elements th a t are tagged with labels "Hint"
and "Answer". For instance, correct demands tha t the text line labelled with
"Answer" has content "Congratulations" and resets to a new guess state.

9

: : TestState = In itS ta te | Running RunState 1 .

:: RunState = {lowB::Int, upB::Int} 2 .

newRunState = {lowB=low , upB=up} 3 .

spec :: TestState In ^ [[Html] ^ [T estS tate]] 4 .

spec In itS ta te input = [A_ ^ [Running newRunState]] 5 .

spec (Running r) (StringTextBox s) = [A_ ^ [Running r]] 6 .

spec (Running r) (IntTextBox i) 7 .

| i < r.lowB = [tooLow r] 8 .

| i > r.upB = [tooHigh r] 9 .

| i == r.upB A i == r.lowB = [correct r] 10 .

| otherwise = [tooLow {r & lowB=i+1} ,tooHigh {r & upB=i-1} ,correct r] 11 .

where 12 .

tooLow r [html] 13 .

| htmlTexts (findBodyTags "Hint" html) == ["la rger"]
A htmlTexts (findBodyTags "Answer" html) == ["Sorry"] 14 .

= [Running r] 15 .

| otherwise = [] 16 .

tooHigh r [html] 17 .

| htmlTexts (findBodyTags "Hint" html) == ["sm aller"]
A htmlTexts (findBodyTags "Answer" html) == ["Sorry"] 18 .

= [Running r] 19 .

| otherwise = [] 20 .

correct r [html] 21 .

| htmlTexts (findBodyTags "Answer" html) == ["Congratulations"] 22 .

= [Running {r & lowB=low , upB=up}] 23 .

| otherwise = [] 24 .

Fig. 1. The specification of the number guessing game.

As inputs domain we specify numbers between low — 1 and up + 1 and a new
name. GVST tries these values in a pseudo random order. In each state GVST
applies the first input element th a t is accepted by one of the current states of
the specification (e.a. is an element of in i t(s)).

We have run the test against an iut tha t interprets the switching of player
names differently than the specification does: whenever a new player name is
entered, the iut starts with a new number to guess. This violates the consistency
checks at lines 8-10 of the test specification. After entering a new name the iut
give answers tha t are not consistent to previous guesses. GVST spots tha t there
is no new state for the specification according to answers of guesses outside the
range [lowB. .upB]. For this example P consistent(o, t) always holds. When testing
against a maximum trace length of 100 transitions, the system requires 4 paths on
average to reveal the error (more precisely, 377 transitions). The average testing
time was 0.40 sec per detected error. Testing was done on an AMD Athlon XP
2200+, 1.80GHz PC, 512MB RAM, running Microsoft Windows XP.

4.2 E x am p le 2: A w eb-shop

Our second example is a highly dynamic web-shop selling CD’s. This application
contains four main views: (1) the initial home-view; (2) the shop-view to browse,

10

search and order the CDs in the shop; (3) the basket-view to examine and change
the CDs the user is ordering; (4) the order-view to make the order definitive
and pay. The actual contents of the shop-view is determined by the contents of
a database. The contents of the basket-view and order-view are determined by
the CDs selected by the user.

|Category^^^^^|SearcMbr^^^l#ltems foundptems / page: | | Täf ' ÿ |Category: [Search for: interns found ffltern;: / page 9 *9

Last Itehi pul into basket:

|ltem prize |Artist |Album |Year (Duration |

•3/4 169 -Euro: 5.00 Pink Floyd Dark side ofthe moon 1973 42:52 jgSf.

p a . . i |
4/4 '201 :Euro: 5.00 Rush A show of hands 1989 73:24 E l l

n .
; 1 /I ;55 Euro: 20.00Dream Theater Octavarium 2005 73:32 ETSI

jl/1 ;55 iEuro: 20.00:Dream Theater :Octavarium 2005 73:32 Q j

Fig. 2. Screen shots of the web-shop. On the left page 3 of the shop-view, on the right
the graphical representation of the error found by GVST.

The specification does not know the contents of the database, so we cannot
check whether the right CDs are displayed. Still, the specification does prescribe
consistent behavior during the navigation and searching in the shop-pages, and
takes care tha t ordered items appear in the basket and the final order.

Also in this web-application GVST found an error. If the user is not on the
first page with CDs and makes a selection (on artist name, album or song), the
web application does not go to the first page of CDs. This can cause that an
empty page with CDs is shown although there are CDs in the selection.

shopSpec :: ShopState ShopInput ^ [[Html] ^ [ShopState]] 1 .

shopSpec s=: {view=InitView} input = [Ao ^ [{ s&view=HomeView }]] 2 .

shopSpec s ShopButton 3 .

= [A[html] ^ [{s&view=ShopView, cds=findCdCount htm l}]] 4 .

shopSpec s=: {view=ShopView} (PageButton (PageNum n)) 5 .

| n = s.pageNum A n*s.itemsPage < s.cds 6 .

= [A[html] ^ [{s & pageNun=i}]] 7 .

| otherwise = [] 8 .

shopSpec s=: {view=ShopView} (SearchTextBox s tr) 9 .

= [A[html] ^ [{s & pageNun=0, cds=findCdCount htm l}]] 10 .

shopSpec s i = [] /* defau lt: undefined * / 11 .

Fig. 3. The partial specification of the web-shop.

The complete specification is too large for this paper. Fig. 3 contains a self­
contained specification that is just capable of finding the described error. This
is only part of the complete specification, but it can be used on its own by GVST
and finds the error quickly. Line 2 covers the standard transition from the initial
state to the home page. The lines 3 and 4 states that the shop-button brings
you from any state to the shop-view. The number of CDs is retrieved from the
HTML code and stored in the cds field of the shop state record of type ShopState.
Lines 5 — 8 handle navigation through the various pages in the shop-view. Such

11

a transition is only possible if the target page is different from the current page
and exists. Entering a new text in the search box is specified in line 9 — 10. The
specification states th a t the number of CDs in the state must be read from the
page and the page number should be set to 0.

The inconsistency is spotted by a predicate over the output and the new
state. This predicate checks whether the CDs with desired numbers, represented
as string like "3/7" (third of seven CDs), are listed on the current page.

5 R elated W ork

Testing web applications is experiencing an increased interest. A wide variety of
existing testing techniques and theories are being extended and modified for the
web. It is beyond the scope of this paper to discuss them all.

In van Beek and Mauw [22] black box conformance testing of thin (no local
client based computations) Internet applications is presented. In their approach,
Internet applications are modelled with MRRTS-es (m ulti request-response tran­
sition system s). In order to create specifications conveniently, they use the
process algebraic DiCons [21] specification language. DiCons has been devel­
oped specifically for distributed consensus applications. These are applications
in which several users have a common goal tha t needs to be reached. In their test
system, they run the implementation under test and consider the link-activations
and form submissions. Differences with our approach are tha t we use a functional
specification style with rich algebraic data types; the implementation under test
is a function tha t yields HTML code; we test only form submissions.

In Sect. 1 we have argued tha t interactive applications are modelled natu­
rally with Extended State Machines, which are LTSs over input/ou tput pairs.
Conformance of these systems is well studied by Latella and Massink [11]. They
prove tha t a quiescence supporting semantics is crucial to obtain substitutivity
properties: implementations conforming to a specification can be safely replaced
with a testing equivalent implementation without breaking conformance, and
implementations conforming to a specification also conform to testing equiva­
lent specifications. Our approach is geared towards practical situations in the
sense th a t we consider states, input and output labels to be values of arbitrarily
complex, recursive ADTs. It is an interesting and open question whether the
theoretical results also hold for our approach.

Frantzen et al. [4] study black box conformance testing with symbolic state.
This is related to our work because they address the issue of working with
arbitrarily complex data structures. In their approach the data structures are
specified by means of first order logic specifications. Their approach is more
general than our approach, but this leads to a number of open issues, such
as finding the solution to a logical formula (if it exists at all), and the actual
computation of concrete input values to the iut. Our approach is based on ADTs,
and functional term graph rewriting. Confluence holds for these systems, and
our ESMs can rely on arbitrarily complex state transition functions to describe
complex systems.

12

Andrews et al. [2] employ FSMs with constraints to model and test web ap­
plications. Hierarchical decomposition and constraints are used to control the
usual state space explosion problem: with hierarchical decomposition the FSM
can be decomposed recursively into subsystems. For each subsystem tests can
be generated and assembled into compound tests up to the entire application
level. Constraints for sequencing and sets remove the need to tediously specify all
different possible input sequences in terms of state transitions. The hierarchical
decomposition is done manually by the tester, as well as defining the constraints.
The inputs on which the constraints are defined correspond with standard form
elements, such as (multi-)lines, URLs, links, (radio) buttons, and so on. As in
our approach, they model the web application at the user level.

Wu and Offutt [24] model web applications by identifying the structure of web
pages in terms of atomic sections tha t are composed with process algebraic like
operators such as sequential composition, choice, and aggregation. Interactions,
such as link transitions, composite transitions, and operational transitions, define
the relationship between different pages. From these models, tests can be derived.
As with our approach, the authors restrict themselves to monitoring HTML
output only. In contrast with our approach, they deliberately ignore state. This
is argued by the fact tha t the HTTP protocol is stateless. However, a standard
way to include state is to pass additional information along with the HTML.

Jia and Liu [5] present a general framework to automatically test several
key aspects of web applications, such as functionality, page structure (which is
what our approach concentrates on), security and performance is presented. XML
is chosen to formally specify the requirements because it also provides access
to specify page structure properties using standard utilities such as DOM and
XPath. A test suite is a tree structure of test steps. A test case is a tree traversal
from root to leaf of these test steps. A test step is basically a precondition-
response pair tha t is executed only if the precondition is true. The response is
an assertion on the HTTP output of the web application. XML is also used by
Lee and Offutt [13] as a vehicle for test specifications and data transmissions.
In our approach web pages are modelled by means of ADTs, and access to these
pages is provided by means of functions. Advantages of our approach are that
specifications are type correct, and tha t the user can specify arbitrarily complex
computations on these pages (for instance, extract the complete content of a
table and return it as a matrix of values).

Although we have not considered incorporating testing of browser function­
ality such as window cloning and the use of the back/forward browsing buttons
as done e.g. by Di Lucca and Di Penta [3], our framework can be used for these
purposes. It is up to the test engineer to model the desired behavior of the
application under these circumstances. This is even the case when testing the
behavior of web applications in the presence of users who manually edit links
or even alter page codes. Usually for these kinds of robustness tests white box
testing techniques are used (e.g. Liu et al. [14] and Kung et al. [9]). Our system is
independent of the concrete implementation language(s) of the web application.

13

6 C onclusions

The automatic, model based, testing of web applications is an im portant topic
since the amount of web applications is growing rapidly. Thin-client web ap­
plications sends a complete new web page in pure HTML to the browser in
response to each input. Usually it is undesirable to specify each and every as­
pect of this HTML code. For most specification techniques this is troublesome
since they commonly require to explicitly list the combinations of allowed output
and target state. In this paper we introduced a specification technique and the
associated, ioco-like, conformance relation to tackle this problem. The key step
is to replace the combination of allowed outputs and target states by a function
from output to allowed target states. This function can check aspects of the
output, as well as retrieve information to be stored in the target state.

This technique is implemented as an extension of the on-the-fly test tool
GVST. In this paper we illustrate with two examples tha t it is possible to (par­
tially) specify the desired behavior of highly dynamic web applications in this
way and to find errors in the concrete implementations of these web applications.

R eferences

1. A. Alimarine and R. Plasmeijer. A Generic Programming Extension for Clean.
In T. Arts and M. Mohnen, editors, The 13th International workshop on the Im ­
plementation of Functional Languages, IF L ’01, Selected Papers, volume 2312 of
LNCS, pages 168-186. Älvsjö, Sweden, Springer, Sept. 2002.

2. A. Andrews, J. Offutt, and R. Alexander. Testing Web Applications by Modelling
with FSMs. Software Systems and Modeling, 4(3), August 2005.

3. G. Di Lucca and M. Di Penta. Considering Browser Interaction in Web Application
Testing. In Proceedings of the 5th International Workshop on Web Site Evolution,
Amsterdam, The Netherlands, October 2002. IEEE Computer Society, USA.

4. L. Frantzen, J. Tretmans, and T. Willemse. Test Generation Based on Symbolic
Specifications. In J. Grabowski and B. Nielsen, editors, Proceedings 4th Interna­
tional Workshop, FATES 2004, Revised Selected Papers, volume 3395 of LNCS,
pages 1-15, Linz, Austria, September 21 2004. Springer-Verlag.

5. X. Jia and H. Liu. Rigorous and Automatic Testing of Web Applications. In
Proceedings of the 6th IASTED International Conference on Software Engineering
and Applications (SEA 2002), pages 280-285, Cambridge, MA, USA, Nov. 2002.

6. P. Koopman, A. Alimarine, J. Tretmans, and R. Plasmeijer. Gast: Generic auto­
mated software testing. In R. Pena and T. Arts, editors, The 14th International
Workshop on the Implementation of Functional Languages, IFL'02, Selected Pa­
pers, volume 2670 of LNCS, pages 84-100. Springer, 2003.

7. P. Koopman and R. Plasmeijer. Testing reactive systems with GAST. In
S. Gilmore, editor, Trends in Functional Programming 4, pages 111-129, 2004.

8. P. Koopman and R. Plasmeijer. Generic Generation of Elements of Types. In Sixth
Symposium on Trends in Functional Programming (TFP2005), Tallin, Estonia, Sep
23-24 2005.

9. D. Kung, C. Liu, and P. Hsia. An Object-Oriented Web Test Model for Testing
Web Applications. In IEEE Proceedings of the 24th Annual International Com­
puter Software & Applications Conference (COMPSAC’00), pages 537-542, Taipei,
Taiwan, Oct. 2000.

14

10. K. Larsen, M. Mikucionis, and B. Nielsen. Online Testing of Real-Time Systems
Using UPPAAL. In J. Grabowski and B. Nielsen, editors, Formal Approaches to
Software Testing, 4th International Workshop, FATES 2004 - Revised Selected
Papers, volume 3395 of LNCS , pages 79-94. Springer, September 21 2004.

11. D. Latella and M. Massink. On Testing and Conformance Relations for UML Stat-
echart Diagrams Behaviours. In Proceedings of the 2002 ACM SIGSOFT Interna­
tional Symposium on Software Testing and Analysis (ISSTA ’02), pages 144-153,
New York, NY, USA, 2002. ACM Press.

12. D. Lee and M. Yannakakis. Principles and methods of testing finite state machines
- a survey. In Proc. IEEE, volume 84(8), pages 1090-1126, 1996.

13. S. Lee and J. Offutt. Generating Test Cases for XML-based Web Component In­
teractions Using Mutation Analysis. In 12th International Symposium on Software
Reliability Engineering (ISSRE 2001), pages 200-209, Hong Kong, November 2001.

14. C. Liu, D. Kung, P. Hsia, and C. Hsu. Object-Based Data Flow Testing of Web
Applications. In Proceedings First Asian Pacific Conference on Quality Software
(APAQS 2000), pages 7-16, Oct. 2000.

15. T. Margaria, O. Niese, and B. Steffen. Automated Functional Testing of Web-
based Applications. In Proceedings of the 5th International Conference on Software
and Internet Quality Week Europe, pages 157-166, Brussels, March 2002.

16. R. Plasmeijer and P. Achten. The Implementation of iData - A Case Study in
Generic Programming. In A. Butterfield, editor, Proceedings Implementation and
Application of Functional Languages, 17th International Workshop, IFL05, Dublin,
Ireland, September 19-21 2005. Technical Report No: TCD-CS-2005-60.

17. R. Plasmeijer and P. Achten. iData For The World Wide Web - Programming
Interconnected Web Forms. In Proceedings Eighth International Symposium on
Functional and Logic Programming (FLOPS 2006), volume 3945 of LNCS, Fuji
Susono, Japan, Apr 24-26 2006. Springer Verlag.

18. R. Plasmeijer and M. van Eekelen. Concurrent CLEAN Language Report (version
2.0), December 2001. http://www.cs.ru.nl/~clean/.

19. J. Tretmans. Test generation with inputs, outputs and repetitive quiescence.
Software— Concepts and Tools, 17(3):103-120, 1996.

20. J. Tretmans. Testing Concurrent Systems: A Formal Approach. In J. Baeten
and S. Mauw, editors, CONCUR’99, volume 1664 of LNCS, pages 46-65. Springer­
Verlag, 1999.

21. H. van Beek. Specification and Analysis of Internet Applications. PhD thesis,
Technical University Eindhoven, The Netherlands, 2005. ISBN 90-386-0564-1.

22. H. van Beek and S. Mauw. Automatic Conformance Testing of Internet Appli­
cations. In A. Petrenko and A. Ulrich, editors, Proceedings Third International
Workshop on Formal Approaches to Testing of Software, FATES 2003, volume 2931
of LNCS, pages 205-222, Montreal, Quebec, Canada, October 6 2003. Springer­
Verlag.

23. A. van Weelden, M. Oostdijk, L. Frantzen, P. Koopman, and J. Tretmans. On-the-
fly formal testing of a smart card applet. In R. Sasaki, S. Qing, E. Okamoto, and
H. Yoshiura, editors, Proceedings of the 20th IFIP TC11 International Information
Security Conference SEC 2005, pages 564-576, Makuhari Messe, Chiba, Japan,
May 2005. Springer. Also available as Technical Report NIII-R0428.

24. Y. Wu and J. Offutt. Modeling and Testing Web-based Applications. GMU
ISE Technical ISE-TR-02-08, Information and Software Engineering Department,
George Mason University, Fairfax, USA, Nov. 2002.

15

http://www.cs.ru.nl/~clean/

