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Steps on surfaces are important in crystal growth theory, as the step free energy

determines the two-dimensional nucleation rate, island growth, step flow and

spiral growth. In this paper, it is illustrated that in general in lattice models the

step energy of a single step cannot be determined directly by counting broken

bonds. A new method is proposed that uses the geometry of a step together with

the bonding topology, allowing for a straightforward determination of single-

step energies for any case. The method is applied to an anisotropic Kossel

model.

1. Introduction

Models for crystal morphology prediction date back to the

19th century, in which Bravais and Friedel, followed by

Donnay and Harker, developed the theory nowadays known

as the BFDH theory (Donnay & Harker, 1937, 1961). This

theory states that, when taking into account certain symmetry

arguments, the morphological importance of a crystal-

lographic face (hkl) is proportional to the interplanar distance

dhkl. Although only the lattice parameters are considered, this

theory works quite well for crystal structures with isotropic

interactions.

In the 1950s, the attachment-energy theory was introduced

by Hartman and Perdok, and later refined by Bennema and

Hartman (Hartman & Perdok, 1955a,bc; Hartman &

Bennema, 1980). In this theory, the crystal structure and bonds

are taken into account. It relates the attachment energy of

crystal slices of orientation (hkl) to the morphological

importance of that orientation. Generally, if the attachment

energy released upon growing a slice with thickness dhkl is

high, the growth rate in that direction will be high as well.

The Hartman–Perdok theory considers the energy of flat

faces, but it is well known that in the actual crystal growth

process, steps are more important than the flat terraces.

Indeed, for several crystals with a needle morphology, it has

been shown that the Hartman–Perdok approach fails and that

the step structure is essential for understanding the

morphology (Cuppen et al., 2004, 2005; Deij et al., 2005).

Therefore, in this paper, we no longer look at the attachment

energy between faces, but at the energies of steps on these

faces.

Steps on surfaces play a fundamental role in crystal growth.

Apart from rough growth for surfaces that have the step free

energy �st(u) + �st(�u) � 0 for one or more step-front

orientations u (van Beijeren & Nolden, 1987), the three main

growth mechanisms all involve steps. Firstly, on a misoriented

surface, step flow determines the growth. Secondly, when

growth is taking place on a perfectly flat surface, two-dimen-

sional nucleation and layer-by-layer growth is observed.

Lastly, when a screw dislocation is present in the surface, the

resulting spiral growth pattern emerges from a continuous

step source. For all these mechanisms, the free energy of the

steps plays a central role in the description of crystal growth

(Burton et al., 1951; van der Eerden, 1993).

Most of the crystal growth mechanisms have been studied

using one of the simplest crystal models, the Kossel model

(Kossel, 1927). Other models have been applied successfully

to the understanding of equilibrium surface phase diagrams,

like the body-centred solid on solid (BCSOS) model for

crystals containing two growth units in the unit cell (den Nijs

& Rommelse, 1989; Mazzeo et al., 1995; Grimbergen et al.,

1999).

Real crystals, however, usually have more complex struc-

tures, often with more than one growth unit in the unit cell and

with different bonds, resulting in various step configurations.

The Kossel model and derived theories have limited applic-

ability to these crystal structures. The growth involves multiple

growth unit incorporation barriers, different for each incor-

poration site configuration. Also, the order in which the

different growth units incorporate, affects the overall ener-

getics profile, and multiple pathways to the same structure can

have very different energetics associated with them. This is

reflected in a large set of possible step structures. The first

approach in dealing with this complexity would be to calculate

the step energies of straight single steps, which would be the

step free energy at zero Kelvin.

Although we are currently capable of simulating crystal

growth for any crystal structure in any crystallographic

orientation (Boerrigter et al., 2004), these simulations give no

fundamental insight into the processes taking place. The aim

of the present research is therefore to develop methodology to

calculate single-step energies for any crystal structure in any
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crystallographic orientation and to use the information

obtained to come to a fundamental understanding of the

crystal growth process in terms of step energies and two-

dimensional nucleation barriers. First, however, in this paper,

it will be shown that a direct and unique determination of

single-step energies is impossible in many cases. This is shown

for a low-symmetry orientation in an anisotropic Kossel

model. The inability to assign step energies in this model has

already been reported by Akutsu and coworkers, when

studying an Ising antiferromagnet in an external field (Akutsu

& Akutsu, 1995). As a solution, we propose a method which

uses the geometry of a step on a given surface and given

crystal structure. This method enables us to calculate the

energy of a single step. For the determination of step energies

for lattice models of any crystal structure, we have developed a

computer program called Steplift, which will be introduced in a

forthcoming paper (Deij et al., 2006).

2. Determination of step energies

In this paper, the determination of step energies is performed

within the framework of lattice models. These models use a

number of implicit assumptions. First of all, the lattice nature

of the model implies that the surface has a bulk termination,

i.e. relaxation and reconstruction are not taken into account.

Secondly, when bonds are broken between particles in a lattice

model, the broken bond energy is divided equally between the

two particles. When a surface is created by cleaving a crystal,

both interfaces will have the same interfacial energy. The

convention used in this paper is to denote � as the energy of a

broken bond per particle. This means that if one bond

between two particles is broken, both particles gain � in

energy. A last assumption made in this paper is that all step

configurations are calculated at zero Kelvin, implying zero

kink density. In other words, entropy is ignored. As the step

free energy has both a positive energetic contribution "st, and

a negative entropic contribution sst, a positive step free energy

at non-zero temperatures depends on the existence of a

positive "st. Therefore, we look at step energy alone as an

approximation for the step free energy. This approximation is

expected to be better for conditions for which the kink density

is small, i.e. at relatively low temperature and supersaturation.

2.1. Calculation of single-step energies

As was already briefly mentioned, a surface will have a non-

zero roughening transition temperature if the sum of the

energies of two opposing steps is greater than zero:

�stðuÞ þ �stð�uÞ> 0 8 u; u � k ¼ 0; ð1Þ

with k the surface normal. However, to determine the optimal

shape of a two-dimensional island with minimal step energy,

the step energy of opposite steps has to be calculated indivi-

dually.

This can be seen in Fig. 1. Here two situations are shown, in

which the sum of the step energies "1 and "2 is equal in both

cases. In Fig. 1(a), "1 = "2, whereas in Fig. 1(b), "1 < "2. The

result is that the shape of the two-dimensional island changes

due to the difference in single-step energies "1 and "2.

Therefore, a method for the determination of energies of

single steps is needed.

For simple systems, like the Kossel crystal, single-step

energies can be calculated directly. This is illustrated in Fig. 2

and is the ‘traditional’ method to determine step energies

(Grimbergen et al., 1998). When the stepped and unstepped

surfaces have broken bonds of the same strength at the same

lateral position, the step energies can be calculated by

subtracting the number of broken bonds of the unstepped

surface from the number of broken bonds of the stepped

surface. As the same type of bonds are broken on the

unstepped surface and on the lower and upper terrace of the

stepped surface, the only extra broken bond is located at the

step front, giving the step energy of one broken bond, �, per

unit cell. In the next section, an example will be given where

the bonds broken on the stepped surface are not located at the

same lateral position as the bonds broken on the unstepped

surface, leading to the inability to calculate single-step ener-

gies directly, i.e. by just counting broken bonds.

2.2. Low-symmetry surface: (0�111) of an anisotropic Kossel
model

We will use an anisotropic Kossel model which is just

complex enough to illustrate the problem of the determination

of single-step energies directly. The crystal graph of this

anisotropic Kossel model is displayed in Fig. 3. A crystal graph
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Figure 1
Two situations in which the sum of the step energies "1 + "2 is equal, but
their individual contributions are different. (a) shows the situation where
"1 = "2, while in (b) "1 > "2. The black dot indicates the origin of the Wulff
shape.

Figure 2
Direct determination of step energies in a Kossel crystal, viewed in a
projection along the a axis The determination of the energy of this single
step is performed by subtracting the number of broken bonds of the flat
contour from the number of broken bonds of the stepped contour, giving
the step energy as "st = �.



is a mathematical graph representation of the crystal structure:

growth units are represented by graph vertices; pair-wise

interactions between growth units by weighted undirected

graph edges, as known from mathematical graph theory. There

are three types of bonds in the model, a, b and c, with asso-

ciated bond strengths �a, �b and �c, having �a = 1
2 (�b + �c). The

anisotropy parameter � is defined through �b = ��c and is

chosen in such a way that the � = 1 situation describes the

classical Kossel model.

The steps with step-front directions [011] and ½0�11�11� on the

ð0�111Þ surface will be discussed next to illustrate the inability of

the direct determination of single-step energies. Due to the

symmetry of the system, this also holds for the [011] and ½0�11�11�
steps on the ð01�11Þ surface and the ½0�111� and ½01�11� steps on the

(011) and the ð0�11�11Þ surfaces.

First note that the formation energy of an infinitely elon-

gated island, involving two opposing steps (‘up’ and ‘down’),

can always be calculated directly, using the ‘traditional’

method of subtracting the broken bond energy of a flat surface

from that of the surface with the two opposing steps. However,

as was already pointed out before, to determine the optimal

shape of a two-dimensional island, single-step energies are

needed. The problem with determining these single-step

energies directly is illustrated in Fig. 4. The figure displays an

island viewed along the a axis, infinitely elongated in that

direction. The formation energy of the island (i.e. the sum of

the ‘up’ and the ‘down’ step) per unit length of the a axis is

calculated by subtracting all broken bonds of a flat surface [in

Fig. 4(a): 6(�b + �c)] from the broken bonds of the doubly

stepped surface (8�b + 6�c), giving an island formation energy

of 2�b.

Next in Fig. 4, the island is cut at either a horizontal �c bond

(Fig. 4b) or at a horizontal �b bond (Fig. 4c). One of the newly

formed islands is shifted one unit cell to the right and the total

energy is calculated for the two islands formed. In Fig. 4(b),

this results in two islands, one having a net energy of 2�c and

the other of 2�b. The increase in total net energy with respect

to the original island (a) is 2�c. The same procedure can be

followed for breaking extra �b bonds (Fig. 4c), and in this case

the extra energy is 2�b. In both situations, two new steps are

created, and the simplest choice is to distribute the extra

energy equally between both steps. This choice results in the

following step energies for the four steps in Fig. 4(d): "st,d1 =

"st,d4 = �c and "st,d2 = "st,d3 = �b. That this is not correct can be

seen from the fact that the original island in Fig. 4(a) is built up

from two steps, d1 and d3, which would lead to a total island

energy of �b + �c, a result that is in disagreement with the

value 2�b derived directly by counting the difference in

broken-bond energy.

The solution to this problem is shown in Fig. 5. In this figure

a situation is shown in which first the step energies of two steps

of double height are calculated directly (Fig. 5a). The energy

of these individual double-height steps can be calculated by

virtue of the fact that there is a perpendicular lattice vector

between the upper terrace and the lower terrace, which means

that all bonds that stick out from the upper terrace are also

sticking out from the lower terrace at the same lateral position

(i.e. the condition for calculating step energies directly). The

step energy is then simply equal to the bonds that are broken

at the side of the step, i.e. �b + �c. Next, in Figs. 5(b)–5(e), the

single steps are calculated by creating two steps of single

height, leading again to a situation in which a perpendicular

lattice vector exists between the lower terrace and the

uppermost terrace, which allows for the cancellation of broken

bonds at the lower and uppermost terrace. This is done for the

two single ‘up’ steps [type d1 in Fig. 5(b) and type d2 in

Fig. 5(c)] and two single ‘down’ steps [type d3 in Fig. 5(d) and
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Figure 3
The anisotropic Kossel model crystal graph.

Figure 4
Ambiguity in the assignment of step energies to the [011] and ½0�11�11�
steps on the ð0�111Þ orientation of the anisotropic Kossel model. Two extra
steps are created by cutting an existing island (a) either at location ‘B’ or
at ‘C’. The new islands, displayed in (b) and (c), respectively, give an extra
energy of 2�c and 2�b. When this extra energy is divided evenly over the
steps created, the four steps displayed in (d), d1 to d4, become either �c or
�b. However, this distribution of step energy is not correct. This can be
seen in the island (a), which has two steps, d1 and d3. When the island
energy of (a) is calculated as the sum of these two step energies, the island
energy would become �b + �c , and it clearly is 2�b. Therefore, the equal
distribution of the broken bond energy over the steps created is not
correct.



type d4 in Fig. 5(e)]. Since the two single steps are identical,

the energy of a single step is simply half the total energy. This

brings us to the correct solution of "st,d1 = "st,d2 = 1
2 (�b + �c) for

the ‘up’ steps, and "st,d3 = 3
2�b �

1
2�c and "st,d4 = 3

2�c �
1
2�b for

the two ‘down’ steps in Fig. 4(d).

3. Step geometry

In the previous section, the ambiguity for determining step

energies directly was illustrated using an example of the [011]

and ½0�11�11� steps on the ð0�111Þ orientation of an anisotropic

Kossel model. A solution was found by looking at steps of

double height, so that the upper and lower terraces are the

same, i.e. there is a perpendicular lattice vector between the

upper and lower terrace. In the general case, it may take

several individual steps before the upper and lower terraces

are the same, but once this is achieved, the energy of an

individual step can be determined.

In this section, a general method will be introduced to

determine step energies of single-height steps, by taking the

step terrace geometry into account. First the conditions for

determining single-step energies directly are treated.

3.1. Conditions for determining single-step energies directly

Single-step energies on an (hkl) surface with a step height

equal to the interplanar distance dhkl can be calculated directly

when there is a direct lattice vector n of length dhkl, perpen-

dicular to the surface (hkl).

The indices (hkl) refer to the reciprocal-lattice vector khkl,

normal to the (hkl) surface, which is defined as

khkl ¼ ha� þ kb� þ lc�; ð2Þ

with a*, b* and c* the reciprocal-lattice vectors. The length of

the vector khkl is then 1/dhkl, where dhkl is the interplanar

distance of the (hkl) surface. The set � of direct lattice vectors

m is given by

m ¼ uaþ vbþ wc; u; v;w 2 Z; ð3Þ

with a, b and c the direct lattice vectors. Therefore, step

energies can be calculated directly if there is n 2 � satisfying

� 3 n ¼ d2
hklkhkl: ð4Þ

Conversely, when there is no perpendicular lattice vector of

length dhkl, single-step energies cannot be calculated directly,

unless two opposing steps are identical due to symmetry.

3.2. Determining step energies through symmetry

Step energies can also be calculated directly when there

exists a mirror plane or a twofold axis perpendicular to the

surface. In these cases, two opposite steps can be created that

have a similar configuration by virtue of the symmetry in the

system, and hence both steps will contribute equally to the

island energy. A mirror plane can be present in systems

without a translational vector perpendicular to the surface, for

instance in the space group Cm at the (200) surface. An

example of that situation is displayed in Fig. 6, which has two

steps for which the energy can be determined to be 3
2� and 1

2�.

In space groups of higher symmetry, both perpendicular

translational symmetry and a mirror plane or twofold axis can

be present at the same time. While the use of symmetry can

thus allow for a direct derivation of the energy of an individual

step for such special cases, the same result is obtained by using

the general approach described next.
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Figure 5
The step energy of steps of double height can be calculated directly due to
the presence of a perpendicular lattice vector between the top and
bottom terrace. The step energy of all steps of double height is equal to
�b + �c for both double-height steps. Next, in the lower four figures, two
steps of single height are created to obtain the same bonds at the same
lateral position on the lower terrace and the uppermost terrace. The
energy of each single step can be determined to be 1

2 (�b + �c) for the first
two single steps, and 3

2�b �
1
2�c and 3

2�c �
1
2�b for the third and fourth

single step, respectively.



3.3. A general approach

The general approach to calculate single-step energies uses

the given crystal’s geometry in addition to the bonding

topology. Without losing generality, this approach uses a unit

cell with the a and b axes defining the surface plane of interest,

i.e. (001). Any surface (hkl) can be transformed into (001) by a

proper choice of axis transformation. The resulting unit cell is

called a slice cell, and its axes will be labeled as, bs and cs

(Boerrigter et al., 2004). The slice cell transformation is chosen

in such a way that the as vector lies parallel to the step front.

As as and bs lie in the plane of interest, cs has the only

perpendicular component with respect to the surface.

As was already shown in Fig. 5, for a single step a perpen-

dicular lattice vector of length dhkl allows for a direct calcu-

lation of its step energy. If there is no such perpendicular

lattice vector for a step of single height, we can proceed by

constructing a perpendicular lattice vector for a multiple-

height step, satisfying

ðwcsÞ? ¼ wd2
hklkhkl ’ n 2 � ð5Þ

for some integer number w. Clearly, for some crystals, ðwcÞ?
may not be exactly equal to a lattice vector for any w, but it can

be chosen arbitrarily close to a lattice vector n. Now, for a step

of height w, all bonds that were broken at the lower terrace are

also broken at the same lateral position on the upper terrace w

layers higher, which means that their energies cancel exactly,

allowing for the calculation of the total step formation energy.

To create a construction with w similar single steps, as

shown in Fig. 7, the bs axis is used v times. Any convenient

value for v is allowed. The total translation is then given by the

lattice vector (vbs + wcs). The length of the vector product of

the parallel component of this lattice vector with the vector as

defines the total projected area under the full step structure

Atotal (see also Fig. 7):

Atotal ¼ as � ðvbs þ wcsÞk

�� ��
¼ as � ½vbs þ wðcs � cs;?Þ�
�� ��
¼ as � vbs þ w cs �

cs � ðas � bsÞ

jas � bsj
2

as � bsð Þ

� �� �����
����

¼ w as �
v

w
bs þ cs �

cs � ðas � bsÞ

jas � bsj
2
ðas � bsÞ

� �����
����:

ð6Þ

Now, to calculate the formation energy of w identical steps in

this construction, we use the following equation:

wEstep ¼ Ew � AtotalEsurf; ð7Þ

where Ew is the total broken-bond energy of the surface with

the w steps. This energy is well defined because the upper and

lower terrace are identical. The specific surface energy Esurf is

given by

Esurf ¼
Es

jas � bsj
ð8Þ

where Es is the surface energy per slice cell for a step-free

surface.

The structure shown in Fig. 7 can also be understood

in terms of a vicinal surface along the translational vector

(vbs + wcs), so that the Ew term in equation (7) is equal to the

vicinal surface energy. The vicinal surface energy must,

however, be taken with respect to the underlying flat surface

area, Atotal, not the area of the vicinal surface, which would be

equal to |as � (vbs + wcs)|.

Since the total step energy given in equation (7) consists of

w identical individual steps, the energy of a single step is given

by

Estep ¼
Ew

w
�

Atotal

w
Esurf: ð9Þ

Per step, the projected area Ast, is equal to

Ast ¼
Atotal

w
¼ as �

v

w
bs þ cs �

cs � ðas � bsÞ

jas � bsj
2
ðas � bsÞ

� �����
����:
ð10Þ

As Ew is built up from w contributions, Ew is written as
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Figure 6
The top left figure displays a unit cell of a structure with space group Cm.
This is a case where there is no perpendicular translational symmetry
between (200) surfaces [a (200) translational symmetry vector, 1

2 (a + b), is
indicated by the red vector in the top right figure). There is a mirror plane
perpendicular to b and parallel to c, and due to this mirror symmetry the
steps (left and right) in the middle and bottom figure are equivalent, and
their energy can be calculated to be 3

2� (middle) and 1
2� (bottom).

Figure 7
The construction of w steps (for w = 6) to let the perpendicular
component of wcs coincide with a lattice vector n 2 � perpendicular to
the surface. This choice, together with as, defines the total area under the
full step structure, Atotal . In the left upper part, a single-step structure is
enlarged to show the area under a single-step structure Ast .



Ew ¼ wE1 ð11Þ

and using these expressions, the single-step formation energy

becomes

Estep ¼ E1 � AstEsurf: ð12Þ

Thus we find that the energy of a single step can be deter-

mined by first calculating the total energy of a surface with a

single step and by subtracting from this the energy of the

corresponding flat surface. The latter is the surface with the

same projected area and with the specific surface energy Esurf .

3.4. Application to the anisotropic Kossel model

The four steps discussed earlier are displayed in Fig. 8. For

the two steps labeled ‘1’ and ‘2’, the slice cell basis vectors as

defined in x3.3 are given by as = a, bs = b + c and cs = c. For the

other two steps, ‘3’ and ‘4’, they are as = a, bs = �(b + c) and

cs = �b. In all figures displaying steps for this model, the step

front lies along the as axis.

The red arrows in Fig. 8 (left) indicate the lattice vector

(v
w bs + cs), which is used for the definition of new periodic

boundary conditions corresponding to a vicinal orientation,

which includes the step of interest. The lattice vector (v
w bs + cs)

is, in all four cases, 3bs + cs, with v = 6 and w = 2 [see equation

(5)]. This results in Ast being equal to 7
2 |as � bs|, which

expressed in the original lattice vectors is 7
2 |a � (b + c)| for all

the steps.

The surface energy of the surface with the single step has to

be calculated along the vicinal orientation, using periodic

boundary conditions for the vicinal surface. The resulting

energies are listed in Table 1. Using equation (12), the two

½0�11�11� steps both have a step energy of 1
2 (�b + �c) and the two

[011] steps have step energies of 3
2�b �

1
2�c and 3

2�c �
1
2�b,

respectively. This is, as expected, consistent with the results

found for the earlier approach using steps of double height

(see Fig. 5). For the island formation energy, combining an up

and a down step, we find either 2�b or 2�c, depending on the

choice of the [011] step position, which is also consistent with

the direct calculations on islands shown in Fig. 4. When the

anisotropy factor � equals 1, so that �b = �c = �, giving the

classical isotropic Kossel model, the step energy becomes

Estep = � for all steps in Table 1. Hence, this method for

determining single-step energies is also in accordance with the

underlying Kossel model for � = 1.

3.5. Application to a variable-angle anisotropic Kossel model

It is well known that crystallographic angles may vary,

depending on, for instance, temperature or pressure. To

investigate the effect of a varying angle, we now apply the

method introduced previously to the model shown in Fig. 9. In

this case we allow the slice cell angle � to be variable. It will be

shown that the energy of single steps becomes angle-depen-

dent, but that in any combination of two opposing steps the

dependence on the angle vanishes.

Again, the specific surface energy Esurf is given by

Esurf ¼
ð�b þ �cÞ

jas � bsj
:

The angle � can be expressed as

tan� ¼ dhkl=l;

where l is the length of the cs axis projected on the bs axis. This

means that for the steps, shown in Fig. 9, the projected areas
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Figure 8
The four single steps in the [011] and ½0�11�11� directions on the ð0�111Þ surface.
The numbers correspond to those in Fig. 4(d). The slice cell used is
displayed on the right and the red arrows on the left define the vector
(v

w bs + cs) which, projected on the lower terrace, gives Ast. In all cases, Ast

is equal to 7
2 |a� (b + c)|. The vectors cs and bs of the slice cells on the right

are expressed in terms of the axes of the original unit cell in Fig. 3.

Table 1
Step energies and individual contributions according to equation (12),
calculated for the step configurations in Fig. 8.

[uvw] Ew Ast Esurf Estep

1 ½0�11�11� 4(�b + �c)
7
2 |a � (b + c)| (�b + �c)/|a � (b + c)| 1

2 (�b + �c)

2 ½0�11�11� 4(�b + �c)
7
2 |a � (b + c)| (�b + �c)/|a � (b + c)| 1

2 (�b + �c)

3 ½011� 5�b + 3�c
7
2 |a � (b + c)| (�b + �c)/|a � (b + c)| 3

2�b �
1
2�c

4 [011] 5�b + 3�c
7
2 |a � (b + c)| (�b + �c)/|a � (b + c)| 3

2�c �
1
2�b

Figure 9
Dependence of step energy on the angle �.



are given by Ast = (2 + l/|bs|)|as � bs| for the step up, and Ast =

(2 � l/|bs|)|as � bs| for the step down.

The step energies of the steps become

Estep;up ¼ 3ð�b þ �cÞ � ð�b þ �cÞ 2þ
dhkl

jbsj tan �

� �

and

Estep;down ¼ 3�b þ �c � ð�b þ �cÞ 2�
dhkl

jbsj tan�

� �
:

Combining the up and down step gives an energy of 2�b,

without a dependence on the angle.

4. Discussion

We have shown that the energy of a single step can be

calculated directly and unambiguously only when a certain

symmetry is present. This symmetry can be a perpendicular

lattice vector, a mirror plane or twofold axis. In fact, such

symmetry, present in many simple models, has facilitated the

calculation of single-step energies in the past. Thus, in these

cases, the geometry of the system was implicitly used in the

calculation of step energies.

The method presented here is based on a perpendicular

lattice vector, the presence of which makes the upper and

lower terraces identical. This also means that our method is

not applicable to steps that have different upper and lower

terraces. Although crystals are usually terminated by similar

surfaces below the roughening temperature, examples are

known that do not have the same surface for the upper and

lower terrace, for instance crystals with an A–B layered

structure (Plomp et al., 2000). In addition, crystals with inter-

laced step patterns (van Enckevort & Bennema, 2004) will

need special attention.

In the framework of statistical physics, step energies are

calculated based on bonding topology alone (Akutsu &

Akutsu, 1995). When a crystal lattice parameter is altered, for

instance a change in the angle �, as shown in x3.5, translational

symmetry will be altered, and as a result the step energies

change in our approach. This raises the question whether the

step energy should be allowed to change when the crystal

lattice is altered without any change in bonding topology. On

the basis of the topology alone, this question should be

answered negatively. However, when the crystal lattice is

altered, the bond strengths may change as they are all a

function of distance between interacting growth units. Thus,

bonding topology and geometry are not independent in

practice, and upon modification of the crystal lattice the step

energy will therefore change both because of a change in

geometry as well as a change in all the bond strengths.

The formation of kinks on steps is analogous to the

formation of steps on surfaces, but one dimension lower: a

straight step is analogous to a flat surface; a kink is analogous

to a step on a surface. Our method can in principle be used to

calculate kink energies. The roughening behaviour of steps is

different, however: steps are always rough, as opposed to

surfaces. The prerequisite that kinks should have the same

lower and upper step front can therefore not always be

fulfilled and, although kink energies can be calculated using

the method, this can become very complicated in the general

case.

One of the applications of the step energies, when calcu-

lated using our method, is to find the two-dimensional island

with minimal step energy. As the single-step energies can

always be determined using the geometric method, the shape

of the island only depends on the magnitude of the step

energies and the step-front orientations. The total island

energy can be used as a measure for the nucleation barrier on

a surface. When nucleation is the rate-limiting step for crystal

growth, this result for the nucleation barrier can be used as a

parameter to estimate the growth rate.

5. Conclusion

It has been shown that the step energy of steps lacking a

perpendicular lattice vector of length dhkl or any alternative

appropriate symmetry cannot be determined directly. Using

the geometry of the crystal in addition to the bonding

topology, this problem was solved. For the anisotropic Kossel

model it was shown that this method is both consistent with

the energy of an island, i.e. two opposing steps, and with the

limiting case of the Kossel model.

A result of our approach is that the step energies change

when the geometry is distorted. From a statistical mechanical

point of view, this is a remarkable result. We argue, however,

that in reality bonding topology and geometry of crystals are

closely connected. The geometry is determined by the bonding

properties and, conversely, the bond strength will depend on

the geometry.

The method put forward in this paper will be applied to a

number of crystal structures studied experimentally in a

forthcoming paper, in which an automated method for the

determination of step energies is presented and applied to

predict crystal morphology (Deij et al., 2006).
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