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Abstract

In fish, vitellogenin is an important nutritional precursor protein produced solely in 

the liver and released into the blood where it binds calcium. In the gilthead sea bream 

(Sparus auratus) 17P-Estradiol (E2) plays an important role in the synthesis of 

vitellogenin, but also the pituitary hormones prolactin (PRL) and growth hormone 

(GH) can stimulate vitellogenin induction in fish. Considering the emerging 

involvement of PTHrP in fish calcium metabolism and the importance of calcium 

regulation in reproduction, we investigated the possible role of PTHrP in 

vitellogenesis. E2 -naive and E2 -primed sea bream hepatocytes were used in an in-vitro 

primary hepatocyte culture and stimulated with a recombinant sea bream PTHrP 

(sbPTHrP) to establish the contribution of sbPTHrP alone or in combination with E 2 

to the regulation of hepatic vitellogenin synthesis. Hepatocytes stimulated solely with 

sbPTHrP were not affected in their vitellogenesis. However, in hepatocytes stimulated 

with E2 in combination with sbPTHrP a higher vitellogenin production was seen than

with E2 alone. It is concluded that sbPTHrP has a potentiating effect on estradiol

iin production by sea bream hepatocytes. The sea bream 

/here vitellogenesis regulation can be studied on E2 -naïve 

liver cells, boti vivo and in vitro .

stimulation of vitel 

provides a uniq
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Introduction

In fish, and other oviparous species, vitellogenin is an important nutritional precursor 

protein produced solely in the liver and released into the blood where it binds 

calcium. Circulating vitellogenin is transported to the ovary and taken up by 

developing oocytes to give rise to two major yolk proteins: lipovitellin and phosvitin. 

Lipovitellin supplies the necessary amino acids and lipids for the developing embryo, 

while phosvitin delivers the minerals important for skeletal development (Polzonetti-

1996)

When E2 induces vitellogenesis also plasma total calcium levels rise as vitellogenin 

binds calcium and the vitellogenin concentration in plasma becomes very significant. 

Importantly, in primary rainbow trout hepatocyte cultures E2 induced vitellogenesis, 

and this induction is dependent on extracellular calcium (Yeo and Mugiya, 1997). The 

hypercalcemic effects of E 2 result from calcium mobilization from bone (scales), 

enhanced intestinal absorption and kidney reabsorption (Persson, 1997). In sea bream
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however, E2 does not induce bone resorption in scales and the high plasma calcium 

levels cannot be explained by renal and intestinal calcium reabsorption.

A 13-fold increase of plasma hypercalcemic parathyroid hormone related protein 

(PTHrP) levels was shown in sea bream treated with E2-implants; the rise in PTHrP 

precedes the rise in plasma calcium levels, and this establishes that PTHrP probably 

mediates the hypercalcemic effects of E2 PTHrP is thought to stimulate calcium 

uptake from the water via the gills in this species (Guerreiro, 2002).

PTHrP was first discovered in the late 80’s as a hypercalcemic factor originating from 

certain cancers of the head, neck, breast, lung and kidney, causing the syndrome 

Humoral Hypercalcemia of Malignancy (HHM). PTHrP is an important factor in 

various tissues in normal physiology with roles in calcium transport, cell proliferation, 

relaxation of vascular tissue and has specific roles during early development 

(Philbrick et al., 1996; Wysolmerski and Stewart, 1998).

In fish, PTHrPs and several PTHPTHrP receptors have been characterized and cloned 

(Danks et al., 1993; Devlin et al., 1996; Flanagan et al., 2000; Gensure et al., 2005; 

Gensure et al., 2004; Ingleton, 2002; Power et al., 2000; Rotllant et al., 2003; Rubin 

and Juppner, 1999). High to moderate levels of immunoreactive PTHrP have been 

detected in various tissues such as the pituitary gland, liver, head kidney, oesophagus, 

gill, intestine, skin and muscle. High PTHrP levels have been measured in pituitary 

extracts and plasma of sea bream and flounder, which indeed supports that PTHrP in 

teleosts can act as an endocrine factor (Rotllant, Worthington et al. 2003).
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Few physiological studies have been conducted on the effect of PTHrP in defined 

tissues. Piscine PTHrP (1-34) was shown to down-regulate mRNA expression of 

osteonectin in sea bream scales (Anjos et al., 2005) and in the same species it was 

found that PTHrP (1-34) stimulates cortisol production by interrenal cells (Rotllant et 

al., 2005). PTHrP stimulates whole body calcium influx and reduces calcium efflux in 

whole sea bream larvae (Guerreiro et al., 2001). Considering the emerging 

involvement of PTHrP in fish calcium metabolism and the pivotal importance of

------------------------------------------------------------------------SSL—of PTHrP in hepatic vitellogenesis; recombinant, full length PT 

(Anjos et al., 2005).

commercial fish far 

transported by

5) was used

Material and Methods

Fish

Juvenile sea bream of approximately 1g mass were obtained from a stock bred at a

ilanova, Lda., V. N. Milfontes, Portugal). They were 

cilities at the Radboud University Nijmegen, where they 

were held in 600-litre round tanks with an aerated flow-through system; water salinity 

was 34%a and the water temperature was 22°C. Water quality (pH, N 0 2\  N 0 3', NH4 +) 

was measured once a week and the salinity was checked daily. The photoperiod was 

12 h:12 h and the fish stock was fed commercial pellets (Trouvit, Trouw, Putten, The 

Netherlands) at a ration of 2% of the total estimated body mass per day. Fish used for 

experiments were juvenile sea bream of approximately 90 g mass.
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Hepatocyte Isolation

Hepatocytes were isolated according to Mommsen et al. (1994), with minor 

modifications. After anaesthesia of the fish with 2-phenoxyethanol (0.1%v/v), the 

liver was perfused via the heart with Ca2+-free hepatocyte buffer (HB; 175 mM NaCl, 

5.4 KCl, 0.81mMMgS04, 0.33mM Na2HPO4, 0.44mM KH2PO4 , 5mMNaHCO3, pH 

7.63) containing 1mM EGTA for 10-15 minutes at room temperature.

After clearing the blood from the liver, the liver was excised from the abdominal 

cavity and transferred onto a sterile petri dish, cut into smaller fragments with a razor 

blade and the tissue was treated with HB containing collagenase at a concentration of

0.3 mg/ml for about 30-45 minutes (depending on liver mass) to dissociate the cells. 

The softened liver fragments were further minced with a razor blade and the 

homogenate was filtered twice, through a 200 and a 50 pm sterile nylon mesh screen.

The cell suspension was transferred into a sterile tube (Greiner, 50ml) and 

subsequently centrifuged 3 times at 80g for 4 minutes at 10oC. Cell pellet washes of 

HB containing 1.5 mM CaCl2 (HB-Ca2 ) and a 50/50 mixture of L-15 medium (L-15, 

Gibco) (containing antibiotics/antimycotics (Gibco), 5 mM NaHCO3 and 10mM 

NaCL ) and HB-Ca2 ' were conducted in between centrifugations.

After the last centrifugation, the cell pellet was resuspended in a small volume of L- 

15 medium; cell yield was assessed by determining the number of cells using a 

counting chamber and cell viability monitored by trypan blue exclusion. Only cell 

preparations with more than 90% viability were used for experiments. Isolated 

hepatocytes were plated in 24-well culture plates (Greiner) at a density of 1x106/ml in 

a volume of 1 ml. Cells were incubated at 22oC (the temperature at which the fish are 

kept) at saturated humidity.
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Effect o f E2 and PTHrP on vitellogenin synthesis

Blood parameters after E2 priming

Sea bream is a protandrous fish and therefore in initial experiments the (male) fish 

were estrogenized to induce liver vitellogenesis. Fish received a peritoneal implant of 

coconut butter containing 0, 5 or 10mg/kg body weight (BW) E2 and were left for 8 

days. After estrogenization fish were euthanized with 2-phenoxyethanol (0.1%v/v; 

Sigma-Alderich, St Louis, MO, USA) and fish blood was taken from the caudal 

vessels with a 1ml tuberculin syringe, rinsed with Na+-heparin (Leo Pharma, Weesp,

for 10 

calcium, estradiol

and vitellogenin (VTG) levels (see below).

The Netherlands; 5000 U ml-1). Collected blood was centrifuged at 13 600 g 

min. Plasma was stored at -20oC for subsequent analy

culture was divided 
O

In-vivo and in-vitro priming

To establish the effect of in-vivo priming, fish received a single injection of 10mg/kg 

BW E2 and hepatocytes were isolated 8 days later. Next, the in-vitro hepatocyte

ps for the first 48hrs. One group of cells was treated 

with E2 (10-6M) and one group was treated with vehicle.

After the first 48hrs of in-vitro priming the E2 treated group was further divided into 2 

groups: one was further treated with just E2 and one group exposed to a combination 

of E2 and 10-8M sbPTHrP. The vehicle, E2 and the E2 plus sbPTHrP groups were 

cultured for 2 x 24 hrs, media was collected from each well and used to assess 

vitellogenin release with an enzyme-linked immunosorbent assay (ELISA; see 

below). As an extra control, E2-naïve hepatocytes were cultured for 4 days, treated 

with vehicle and the medium analysed.
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As the higher dose of 10mg/kg made the liver cells highly active and refractory to 

further manipulation, fish were then primed with a lower dose, 5mg/kg BW E2 . 

Hepatocytes were isolated 8 days later and liver material from up to 4 fish was 

pooled. The hepatocyte culture was continued for 4 days and the cells were treated 

with E2 (10-6M) and/or sbPTHrP (10-8M). The medium was collected and changed 

every day from each culture plate well and analysed with the vitellogenin ELISA (see 

below).

In-vitro priming

The last series of experiments was run on tissues o: i.e. E?-naïve (no E 2

exogenously administered) fish. Hepatocytes were and cultured for 6 days

treated with E2 (10-6M) and/or sbPTHrP (10 "he hepatocyte culture medium was 

sampled and changed every other da ay of culture VTG levels were 

below detection) to measure proc nin using the ELISA (see below).

Chemicals

17P-Estradiol (E2 ) was purchased from Sigma (Sigma-Aldrich, St Louis, MO, USA). 

E2 was dissolved in ethanol and the final concentration of ethanol in the culture 

medium never exceeded 0.02%. The recombinant parathyroid hormone related protein 

(sbPTHrP 1-125) used in this study was obtained from Manchester University where 

the sbPTHrP was produced and purified (Anjos et al., 2005).
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Plasma analyses

Plasma E2-levels were analysed by an ELISA method (IBL, Hamburg). The lower 

sensitivity limit of the E2-ELISA was 10 pg/ml. Plasma total calcium was measured 

with a calcium kit (Roche, Mannheim, Germany). Plasma vitellogenin was measured 

using a vitellogenin ELISA (see below).

Vitellogenin assay

Vitellogenin concentration in the medium was measured by a standard ELISA 

protocol in 96-well plates using purified sea bream vitellogenin as standard, a 

polyclonal rabbit anti-sea bream vitellogenin antiserum (raised by Dr Per-Erik Olsson, 

Orebro University, Sweden) as primary anti-antibody and a secondary HRP- 

conjugated goat-anti rabbit antibody (Nordic Labs, Tilburg, The Netherlands).

Briefly, the standard curve and sample dilutions were prepared in coating buffer (0.1

M N 2 CO3 , pH 9.6); 100pl of each was added to each well and incubated overnight.

The wells were washed 3 times with PBS-iTween (phosphate buffered saline, 0.05%
o

Tween-20, pH 7.4) and incubated for 1 h at RT with PBS-Tween containing 0.5% 

dry-milk to block non-specific binding. The wells were washed 3 times in PBS- 

Tween followed by incubation with primary antibody (diluted 1:3000) for 1h at RT. 

After washing with PBS-Tween the secondary antibody incubation (diluted 1:3000) 

was performed for 1 h at RT. The wells were washed for 3 times with PBS-Tween 

and 200^l of OPD-H2O2 substrate buffer (McIlvaine Buffer containing 0.05% o- 

phenylenediamine and 0.375% H2 O2) was added to each well. The reaction was 

stopped with 4 M H2SO4 after 10 minutes and the plates were read using a microplate 

reader (Bio-Rad microplate reader model 680). The lower detection limit of the VTG- 

ELISA was 1 ng/ml. The intra-assay coefficient of variation was 4.6% (n=6) and 

inter-assay coefficient variation was 11.9% (n=6).
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Statistical analysis

Data are presented as mean values ± standard error of the mean (SEM) or as mean 

values ± standard deviation (SD), depending on the number of experiments run. 

Analysis of variance (ANOVA) was used to assess differences between groups, 

followed by the Bonferroni test (SPSS Windows version 13.0, Chicago, IL). 

Significance was accepted when P<0.05.
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Results

Blood parameters after E2 priming

In plasma of naïve juvenile sea bream E2-levels were extremely low (0.02 ^M ± .005; 

Table 1). E2 implants significantly increased estradiol levels (P<0.05; Table 1) and 

doubling the E2 dose led to a doubling of plasma E2 -levels. The significant degree of 

hypercalcemia (P<0.05; Table 1) essentially plateaued at the 5mg/kg dose. Both 

concentrations of E2 have a significant (P<0.05; Table 1) effect on plasma 

vitellogenin release compared to control, however VTG levels did not differ between 

the two treatments.

In-vivo and in-vitro priming

In-vivo prim ed with 10mg/kg B W E 2

On day 3 of culture, addition of E 2 alone or combined with sbPTHrP did not affect the
P

VTG-production compared to vehicle treated liver cells, which resulted from priming 

the fish (Fig.1). Vehicle-treated liver cells produced significant amounts of VTG 

compared to vehicle-treated liver cells o fE 2-naïve sea bream (P<0.05). VTG 

production had declined on day 4 of culture for the vehicle treated group to 100ng/ml, 

being significantly elevated compared to VTG levels of E 2-naïve liver cells. The 

combined addition of E2 and sbPTHrP further stimulated VTG production compared 

to day 3 (P<0.05). Day 4 shows significant differences between VTG levels in 

control, E2 and the combination of E2 and sbPTHrP treated hepatocytes. With VTG 

production in E2 treated cells being significantly elevated compared to control 

(P<0.05) and the combination of E2 and sbPTHrP is significantly elevated compared 

to control and E2 treated hepatocytes (P<0.05; Fig.1).
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In-vivo prim ed with 5mg/kg B W E 2

We then set out for an experiment where fish were primed with 5mg/kg E2 .

VTG production declined during the first three days of culture independently of in­

vivo or in-vitro treatment (Fig.2). While control and sbPTHrP group dropped below 

the 50 ng/ml, the E2 group as well as the group co-treated with E2 and sbPTHrP 

stayed significantly elevated compared to control and sbPTHrP treated cells (P<0.05; 

Fig.2.). On day 3 a significant difference of VTG levels was detected between E 2 

treated liver cells and the liver cells treated with E2 and sbPTHrP (P<0.05). On day 4 

all experimental groups show a significant rise in VTG levels compared to control 

(P<0.001) and significantly differ from each other (P<0.00i; Fig 2). Noteworthy is 

the sudden significant rise of VTG levels from the sbPTHrP treated hepatocytes 

compared to control on day 4 of culture.

shown in Fig.3. For 

were measured

In-vitro priming

The effect of E2 and/or sbPTHrP on the isolated hepatocytes of unprimed fish is

.perimental groups almost undetectable levels of vitellogenin 

in ,h e firs ,:  2-4 days (< 5 ng/ml; results not shown). In control as well 

as sbPTHrP (10-8M) treated liver cells the vitellogenin concentration remained very 

low (<15 ng/ml) up to 6 days. Vitellogenin levels rose significantly (P<0.05) when 

treated w ithE 2 (10-6M) after 6 days in vitro. When hepatocytes were co-treated with 

E2 and sbPTHrP a significantly (P<0.05) higher amount of vitellogenin was produced 

on day 6 than with E2 only (Fig.3)
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Discussion

This study is the first to show that PTHrP is directly involved in fish vitellogenesis. 

Two important observations have to be taken into regard from this study. First, the 

recombinant sea bream PTHrP proved to have potentiating effects on E  induced VTG 

production and second the protandrous gilthead sea bream provides us with E 2 -naive 

liver cells. This makes this fish a good model for in vitro hepatocyte bioassays for the 

study of vitellogenesis as hepatocytes can be primed in vivo or in vitro without prior 

‘substantial experience’ to E 2.

To perform this research a primary culture was set up for sea bream hepatocytes. 

Research has been conducted on sea bream liver before, but only in vivo or in vitro 

using liver fragments of a certain size (Carnevali et al., 2005; Mosconi et al., 2002), 

not on isolated cells. Isolated hepatocytes in our hands remained viable for up to at

least 8 days (trypan blue exclusion) and remained E2 sensitive, which is in accordance 

with other studies on this and other species (Flouriot et al., 1993; Islinger et al., 1999; 

Kim and Takemura, 2003; Kim et al., 2003; Kwon and Mugiya, 1994; Peyon et al., 

1996; Riley et al., 2004; Tollefsen et al., 2003; Yeo and Mugiya, 1997).

E2 is known to upregulate its own receptor, preceding the upregulation of vitellogenin 

mRNA (Flouriot et al., 1997) and this can be an explanation for the observed result in 

control (unprimed) juvenile sea bream where, after 2-4 days, no response is measured 

in either of the groups, only after 6 days the response can be seen clearly (Fig.3). The 

vitellogenic response observed after 6 days corresponds with similar kinetics in the 

study of Peyon et al. (Peyon et al., 1996).

In the cells of E -naïve fish no direct effect of sbPTHrP on vitellogenesis was 

observed, but importantly sbPTHrP alone did stimulate VTG production in 

hepatocytes of fish primed with 5mg/kg BW E2 ; only on day 4 of subsequent culture 

the direct effect of sbPTHrP was observed (Fig.2). We take this as a ‘memory effect’
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induced by the E2 priming (Peyon et al., 1993). Indeed, plasma E 2 levels were strongly 

elevated after both priming treatments and suggest that such highE 2 levels in vivo 

could have lasting and dose-dependent effects on the hepatocytes in culture, as can be 

seen with the high dosage priming (10 mg/kg E2; Fig. 1) where no difference was 

shown between vehicle and experimental treated cells. Accordingly, in controls VTG 

production finally decreased after 3 days of culture, whereas with a lower E2 priming 

dose the decline of VTG sets in earlier (Fig.2). The potentiating effect of sbPTHrP in 

the ‘lower dose primed’ fish became significant as of day 4 of culture.

For a long time E2 was considered to be the main trigger in the process of hepatic 

vitellogenesis, it is now known that this process is under a multihormonal regulation in 

which factors such as pituitary hormones (GH, PRL) and steroid hormones, e.g. 

progesterone and cortisol play a role (Polzonetti-Magni et al., 2004). In a study of

Mosconi and co-workers hepatocytes were treated, (besides E2 and GH), with a 

pituitary homogenate inducing VTG production (Mosconi et al., 2002), such a 

homogenate may well contain significant amounts of PTHrP (Ingleton, 2002; Rotllant

et al., 2003). This study demonstrates PTHrP as one of the factors involved in the 

process of hepatic vitellogenesis, with known expression of PTHrP and the PTHrP- 

receptor in sea bream liver (Hang et al., 2005) and the pituitary as the main source 

suggested (Rotllant et al., 2003). Although the mechanism for the potentiating effect of 

PTHrP on the E2 induced hepatocytes has not been studied in more detail here, it is 

known that extracellular calcium is an important factor during vitellogenesis (Yeo and 

Mugiya, 1997). E2 significantly stimulates the secretion of PTHrP into the bloodstream 

before the rise in plasma calcium levels and this suggests that PTHrP is a good 

candidate for the modulation of the hypercalcemic action of E2 as it elevates plasma 

PTHrP that has hypercalcemic actions (Guerreiro, 2002).
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This hypothesis of a hypercalcemic action of PTHrP and possibly even acting as the 

main calcium up-regulator is supported by studies performed on sea bream larvae 

where PTHrP was able to stimulate whole body calcium influx and reduce calcium 

efflux (Guerreiro et al., 2001), and elevated levels of PTHrP were measured when 

calcium is limited in water or in diet (Abbink et al., 2004).

However, other possible mediators of the calciotropic action of E 2 may be factors such 

as GH and PRL (Flik et al., 1994; Takagi et al., 1992).

For long, fish were thought to lack parathyroid hormone (PTH), but certainly fish 

including sea bream express PTHrP. As PTH and PTHrP signal through the same 

receptor (Gensure et al., 2005) it was thought that the PTHrP gene was the ancestral 

gene to PTH (Blair et al., 2002). Recently PTH genes and their products were 

demonstrated in zebrafish and the puffer fish (Canario et al., Gensure et al.,

2004) and has opened new fields of re 

hepatocytes (Klin et al., 1994) 

whole body influx in sea bream larvae (Canario et al., 2006). In both cases the pathway, 

via which the PTH action is realised, involves the G protein-adenylate cyclase-cAMP 

system. Indeed, also PTHrP can act through this pathway (Canario et al., 2006; Gensure

TH induces calcium influx in rat

P:fis H-like ligand induces calcium

et al., 2005) via shared receptors. Via the second messenger pathway another possible 

mechanism may be responsible for the potentiating action of PTHrP. Protein kinases 

can enhance the E2 dependent estradiol-receptor (ER) transcription activity. E 2, cAMP 

and certain growth factors, for instance insulin-like growth factor-I, have been shown 

to mediate regulatory effects of certain genes via the ER (Cho and Katzenellenbogen, 

1993)

IGF-I has been shown to stimulate vitellogenin synthesis in the frog and it was recently 

suggested that the GH effect on synthesis of vitellogenin is at least partly mediated 

through its action on IGF-I synthesis (Carnevali et al., 2005). It has been shown that
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PTHrP and PTH can induce elevations of IGF-I in humans (Horwitz et al., 2005) and 

in cultures of 21-day fetal rat calvaria (Canalis et al., 1990). Moreover it is speculated 

that during fracture healing of bone PTHrP influences IGF-1 expression and both 

enhance the ossification in an autocrine/paracrine fashion (Okazaki et al., 2003). To 

elucidate the pathways in which PTHrP works in the process of hepatic vitellogenesis 

requires further study.

In conclusion, we have established a new role for PTHrP showing a potentiating 

effect on hepatocyte vitellogenesis when induced with E2 . This study with other 

studies on the effect of PTHrP on corticosteroidogenic activity (Rotllant et al., 2005), 

downregulation of osteonectin mRNA in scales (Anjos et al., 2005) and the ability to 

stimulate whole body calcium influx and reduce calcium efflux in whole sea bream 

larvae show that PTHrP in fish (Guerreiro et al 001), as in 1 al human 

physiology, is probably a pleiotropic hormone 

tissues.

ing on different levels in different
s
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Legends

Fig. 1. Vitellogenin release, after in-vivo priming (10mg/kg BW E 2 ). Hepatocytes 

treated with either vehicle, E2 or a combination of E2 and sbPTHrP. Values are 

expressed as means ± SEM (N= 4). On Day 3 no significant differences occurred 

between the groups. On Day 4 E  and the combination group differ significantly from 

control and each other. On both days VTG levels were significantly higher then VTG 

levels of cultured hepatocytes treated with vehicle from E 2 -naive fish. Letters denote 

significance atP<0.05.

Fig. 2. In-vitro vitellogenin synthesis, after lower dose priming of E 2 (5mg/kg BW), 

during 4 days of E2 and/or sbPTHrP treatments. After 4 days a potentiating effect can 

be seen of the group treated with E2 (10-6M) and sbPTHrP (10"8M). Values are

enote significance per day of culture. On Is
day 2 and 3 letters show significance at P<0.05 and on day 4 letters denote significant 

difference at P<0.001.

expressed as means ± SD (n= 6).

Fig. 3. Effect of E2 and/or sbPTHrP on the production of vitellogenin in control 

(unprimed) hepatocytes in primary culture. Comparison of the vitellogenin synthesis 

in control vs. sbPTHrP, E2 and E 2 + sbPTHrP on the last day of culture. Values are 

expressed as means ± SEM (N=6). Bars with different letters denote significant 

difference (P< 0.05).
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Tables

Table 1.

Plasma levels Control 0mg E2-injected 5mg E2-injected 1 0mg
Estradiol (^M) 0.02 ± .005a 2.04 ± 1.33b 4.53 ± 0.27c
Total Calcium(mM) 1.85 ± 0.28a 17.10 ± 2 .4 b 20.16 ± 3 .0 c
VTG (ng/ml) 5.29 ± 2.18a 770.91 ±38.67b 804.02 ±47.78b

Table 1. Plasma levels of Estradiol, Total Calcium and Vitellogenin in sea bream 

injected with 0 (Control), 5mg or 10mg/kg BW 17P-Estradiol (E2 -injected) coconut

butter implants. Values are the mean ± SD, N=10 for Control 

Letters in the same row denote significant difference (P<0.0

r E2 -injected.
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