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Abstract for more efficient inference algorithms, and also from a
representational point of view, since it allows us to ddseri
the model in terms of the relations that hold between do-
main variables (see e.gPeek, 199). Given the strategy

of a decision maker, a 2TLIMID can be transformed into
a two-stage temporal Bayes netw@bBean and Kanazawa,
1989, and prognosis then proceeds by means of probabilis-
tic inference using this Bayesian network.

In contrast to classical approaches to prognosis, such as
Cox’s proportional hazard modéCox, 1972, we take a
model-base@pproach that aims to represent as accurately
as possible the causal relations that hold between domain
variables. It has been argued that models which capture
) cause-effect relationships are more meaningful, acdessib
1 Introduction and reliable than models which capture empirical associa-

An important task in medicine is making an accurate progdions [Druzdzel, 1997, Causal models are also richer in
nosis for a particular patient given the patient’s histéry- ~ representational power than non-causal models, since they
curate prognosis facilitates patient feedback and alltves t allow for reasoning under interventiofBearl, 200D In
physician to adjust the treatment strategy but is nonatrivi the context of decision support in medicine, causal models
in a world that is characterized by change and uncertaintydave several advantages. They allow for capturing expert
In our research, we have been engaged in the construénowledge, which is a valuable commodity in itself, and
tion of a prognostic model for high-grade carcinoid tumorsare more easily modified when new knowledge becomes
of the midgut, which are an aggressive type of neuroenavailable (i.e. they are ledwittle than models based on
docrine tumofModlin et al, 2005. The model has been empirical associations). Furthermore, they facilitatedr-
constructed in collaboration with an expert physician ef th planation of drawn conclusions, which may increase the ac-
Netherlands Cancer Institute (NKI). ceptance (_)f decision-support systems in medi¢Feach
The aim of this paper is to show how prognostic mod-and Shortliffe, 1984; Lacave and Diez, 200However,
els may be constructed using an approach that is based éiilding causal models often proves to be non-trivial, as it
limited-memory influence diagran{sIMIDs) [Lauritzen is difficult to elicit the needed qualitative and quantiteti
and Nilsson, 200lL We extend the definition of LIM- knowledge. _ . .
IDs to dynamicLIMIDs, which explicitly take time into We proceed as follows. Section 2 describes required
account. We show that dynamic LIMIDs allow the han- preliminaries. Dynamic LIMIDs and 2TLIMIDs are intro-
dling of infinite-horizon and partially observable Markov duced in Section 3. Section 4 presents a formalization of
decision processes (POMDH#strom, 1963 whenever ~ Prognosis, where we use 2TLIMIDs to represent prognos-
they are representable as a so-calied-stage temporal tic models. Section 5 describes the prognostic model for
LIMID (2TLIMID). Infinite-horizon POMDPs cannot be high-grade carcinoids as an illustration of the theory.-Sec
dealt with using standard (limited-memory) influence dia-tion 6 describes some results concerning prognostic model
grams, and contrary to POMDPs, the 2TLIMID represen-Performance. The paper is concluded in Section 7.
tation makes explicit a factorization of the state-spaeg th o
is defined by the variables in the domkiihis is advanta- 2 Preliminaries

geous, from a computational point of view, since it allows Bayesian networkiPearl, 198Bprovide for a compact fac-

“This research was sponsored by the Dutch Institute Madridrization of a joint probability distribution of a set ofra
and by the Dutch Science Foundation under grant numbeflOm variables by exploiting the notion abnditional in-
612.066.201. dependence One way to represent conditional indepen-

IMuch recent POMDP research has been concerned with takdence is by means of an acyclic directed graph (AMG)
ing advantage of such factorizatiolBoutilier et al,, 19963. whose node¥ (G) correspond to random variabl&sand

Dynamic limited-memory influence diagrams
(DLIMIDs) have been developed as a framework
for decision-making under uncertainty over time.
We show that DLIMIDs constructed from two-
stage temporal LIMIDs can represent infinite-
horizon decision processes. Given a treatment
strategy supplied by the physician, DLIMIDs
may be used as prognostic models. The theory
is applied to determine the prognosis of patients
that suffer from an aggressive type of neuroen-
docrine tumor.



the absence of arcs from the set of artis7) represents Lo —/r— L,

conditional independence. Due to this one-to-one corre-
spondence we will use nodesc V(&) and random vari-
ablesX € X interchangeably. Bayesian networkBN)

is then defined as a pal# = (G, P), such that the joint DY Dy Dj
probability distributionP is factorized according tor:

P(X)= ] P(X|mc(X)) c:
XeX
whererg(X) denotes thearentsof X : {X' | (X', X) € DY DL? D}

A(G)}. We also say thaX is thechild of someX’ € 7(X)
where we drop the subscrigtwhen clear from context. In
this paper, we say that a (random) variallldakes values
z from a set) x and usex to denote an element flx =
X xex Qx for a setX of (random) variables.
Limited-memory influence diagrams are models for Figure 1: Structure of a 2TLIMID.
decision-making under uncertainfyauritzen and Nils-
son, 2001 They generalize standard influence-diagram

(IDs) by relaxing theno-forgettingassumptior{Howard ate (i.e. consisting of ones and zeros only) then we say that

and Matheson, 1984 This assumption states that, given s S
a total ordering of the decisions, the information known.the policy is deterministic. LeV denoteCUD. A strategy

when making decisiorD is also available when making S @ Sét of policie\ = {Pp: D € D} which induces the
decisionD’, if D precedeD’ in the ordering. Alimited- following joint distribution over the variables iV

memory influence diagrarf.IMID) is defined as a tuple PA(V) = P(C: D) H Pp(D | m(D)).
L£=(C,D,U,G,P). Here,C is a set othance variables DED

(graphically depicted by circles), which are random vari-, ,_. g o
ables as in a Bayesian network that represent the stochasﬁ{fséngtrtgtlz d)ztrf:gutlon we can compute the expected utility
component of the modeD is a set ofdecision variables 9
(graphically depicted by squares), which take on a value EA(U) = Z Pa(V)U(V).

from a set of choice§p that represent the decisions that .

may be externally manipulated by a decision makéfs &  The aim of any rational decision maker is then to maxi-

set_ofutility functions(g_raphically de_picted by_ diamonds), mize the expected utility by finding the optimal strategy
which represent the utility of being in a certain state as dey o max, Ea ().

fined by configurations of chance and decision varialiles.
is an ADG, where nodeg (G) correspondtC UDUU. 3 Dynamic LIMIDs

Again, due to this correspondence, we will use nodes in_ . . .
V(G) and corresponding elements @ U D U U inter- In this section we demonstrate how to use dynamic LIM-

changeably.P is a family of probability distributions that DS that are constructed by means of a structure that we

specifies for each configuratiehe Qp a distribution: term atwo-stage temporal LIMIZZTLIMID). When deal-
ing with time, we usel’ C N to represent a set of time

P(C:d) = H P(C | 7(C)) points, which we normally assume to be an interjial |
t <u <t {tut'} C N}, also written ag : ¢'. We

assume that chance variables, decision variables and util-
that represents the distribution overwhen the decision ity functions are indexed by a superscripe T, and use
maker has seb = d [Cowellet al, 1999. Hence,Cis  CT, DT andUT to denote all chance variables, decision
not conditioned oD, but rather parameterized iy. variables and utility functions at timgse T, where we

The meaning of an ar€X,Y) € A(G) is determined abbreviateCT U DT with VT. If T = 0 : n, where
by the type ofY". If Y € C then the conditional proba- n ¢ {1,2,...} is the horizon then we suppres¥ alto-
bility distribution associated with” is conditioned byX, gether, and we suppress indices for individual chance vari-
as in a Bayesian network. ¥ € D then the state oK is  ables, decision variables and utility functions when clear
available to the decision maker prior to deciding upanf from context.
Y € U thenX takes part in the specification of the utility ) i
functionY such that”: .,y — R. Utility nodes cannot 3.1 ~ Constructing Dynamic LIMIDs
have children and the joint utility functidd is assumedto A dynamic LIMID (DLIMID) is simply defined as a
be additively decomposable such that= > ", ., U. LIMID (C,D, U, G, P) such that for all pairs of variables

In contrast to standard influence diagrams, the order inX*, Y* € VUU it holds that ift < u thenY* cannot pre-
which decisions are made in a LIMID should only be com-cedeX? in the partial ordering that is induced l6¥ If the
patible with the partial order induced ly, and making a  first-order Markov assumption holds that the future is con-
decisionD is based solely on its direct parentsD). A ditionally independent of the past given the present, then
stochastic policyor decisionsD € D is defined as a dis- we can define a DLIMID in terms of a two-stage temporal
tribution Pp (D | «(D)) that maps configurations ef D)  LIMID (Fig. 1).

S[o a distribution over alternatives fd@p. If Pp is degener-

ceC



Definition 3.1. A two-stage temporal LIMID r T
(2TLIMID) is a pair (Lo, L:) with prior model Lo
= (CY, DY UY G P and transiton model £; = |

| | | | |
(Ct=tt D=1t Ut @G, P) such that chance and decision I;_\ I;_\ I;_\ I;_\
variablesV;'~* in Vi~ have no parents.

N | N | g N | i N7 | .

The prior model is used to represent the initial distribu-
tion P°(C°: DY) and utility functions/ € U°. The tran-
sition model is not yet bound to any specifibut if bound
to somet € 1 : n, then it is used to represent the con- _. ] . : L . .
ditional distribution P(C': D'~*) and utility functions '9ure 2: Dealing with perceptual aliasing by introducing
U € U* where bothG: and P do not depend on We define memory variables (blqck circles). Memory variables are
theinterfaceof the transition model as the sEtC Vi—! used mstead_ of asso_uated observed variables ('_shaded cir-
such tha( V!~ 1 Vt) € AG) & thl cTt. - cles) as the informational predecessor for a decision vari-
Givena horlzom we mayunroll a 2TLIMID for n time- able (squares).
slicesin order to obtain a DLIMID such that we obtain the

following joint distribution: account (part of) the observed historywith V/ C Ve
n and current time, as depicted in Fig. 2.
P(C,D) = P°(C°: D°) HP (Ct: D). (1) Note that if we represent the full observed history, infer-
Pl ence becomes intractable for long histories since thesstate

of a memory variablel/ € C associated with a variable
Let At = {Pp(D |07rG(D)) | 2 € ]_Z)t} be the strateogy for v cvare given by)? ,whereQ”l Qiﬁu(% x Q)
timetandA = ATU..-UA”. Givenastrateg\', Lo ang00 = (. However, by restrlcting the length of the
defines the following distribution over variablesw?: observed history and/or by usiraggregationtechniques
0/0. 10 [Boutilieret al,, 19964 that group states which are indistin-
P(C": DY) H Pp(D | mo(D)). guishable from the point of view of the decision maker, we
can both use the limited-memory assumption of LIMIDs
Likewise, given a strategi\® with ¢ > 0, £, defines the and deal with perceptual aliasthgExamples of variables
following conditional distribution over variables W*: that fulfill the role of memory variable arBMDHIST and
TREATHIST in Fig. 3, which maintain information regard-
Pa: (V| VP = p(Ct: DB H Pp(D | m¢(D)).  ing complications and previous treatments respectivety. A
DeDt additional advantage of the use of memory variables is the
fact that we retain the first-order Markov assumption. Due
to this property DLIMIDs can take benefit from efficient
algorithms for probabilistic inference.

o T i 3.3 Inference using 2TLIMIDs
PA(V) = Pao(V )HPA‘(V | ). (2) 1o perform inference with a LIMIDC = (C, D, U, G, P)
t=1 given a strategy\, we convertC into a Bayesian network
Let U°(V) = 3, 0 U(mgo (U)) stand for the joint B = (G, P') that is subsequently used for inference pur-
utility for ¢ = 0 and |%§jt(vt—l:t) = Y pen Ulna(U)) poses. As has been remarked, a stratdgpduces a dis-
c t

denote the joint utility for time-slicé > 0. We redefine the tribution over va(;iaplgéf (vi;. tﬁ& 2). Heglce, giv_elza,
joint utility function for a dynamic LIMID as we may convert decision variablésinto random variables

X p with parentsrg (D) such that

Ppo(VY) =
DeD0

Combining these equations, given a horizemand strat-
egy A, a 2TLIMID induces the following distribution over
variables inV:

UNV) =U(VO)+ >y U (vi-H) P'(Xp | 76/ (Xp)) = Pp(D | 7 (D)).
t=1 Additionally, it is possible to convert utility function§

wherey, with 0 <« < 1, is adiscount factorrepresenting  into random variableXy;. Let e (Xy) = ne(U) where
the notion that early rewards are worth more than the sam@x, = {0,1}. We associaté”’(Xy | 7(Xy)) with Xy

rewards earned later in time. by means of a transformation
3.2 Representing Observed History P(Xy=1]|x) = U(x') — miny U(x)
It is clear from Eqg. 1 that DLIMIDs constructed from a maxy U(x) — miny U(x)

2TLIMID take into accounat mostall chance and decision jth x x/ ¢ Q) as defined ifCooper, 1988 We

0
variables in two subsequenttime-slices, sint®;') C V° ,se B2 A) to denote this transformation. If the strat-

t t—1: t
andn(D;) € V Observations made earlier in time o, 5" stationary for each time-slicec {1,...,n} then
are not taken into account and as a result, states that can apply the transformation to a 2TLIMIZ,, £;)

qualitatively different can appear the same to the decisio, ohain 5 so-calledwo-stage temporal Bayes network
maker, leading to suboptimal policies. This phenomenon
is known asperceptual aliasindWhitehead and Ballard, 2In the context of POMDPs, methods that rely on the use of a
1991. In this paper we usmemory variableso take into finite history are commopAberdeen, 2008



£0 ACt

GENDER »( _GENDER

>
m
Y
>
o)
m

G

- GHS )—>| CHEMO |
I e /4 /4 Y}
MASS - MASS - CGA

TREATHIST TREATHIST

CHEMO > BMD
BMDHIST »( BMDHIST

Figure 3: The prognostic model, where shaded nodes arewaasend rounded rectangles denote internal structure.
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(TBN) (Bo, B:) that is often used to constructdynamic  computing the prognosis however we assume that the hori-
Bayesian networlor DBN [Dean and Kanazawa, 1989; zonn is finite. In the next section we develop the actual
Boutilier et al, 1996a; Peek, 1999 For online infer-  model for prognosis of high-grade carcinoid tumor patients
ence, efficient algorithms exist that exploit the structfre  using the theory developed so far.

a 2TBN. In our work, we have used tivgerface algorithm

[Murphy, 2002, which allows for online filtering, where L oo
the space and time taken to compiieX’ | X!~ 1) is in- 5 The High-Grade Carcinoid Model

dependent of the number of time-slices. A carcinoid tumor is a type of neuroendocrine tumor that
is predominantly found in the midgut and is normally char-
4 Prognosis with 2TLIMIDs acterized by the production of excessive amounts of bio-

) ) o chemically active substances, such as serotfvidlin et
Informally, we interpret prognosis ake prediction of the ). 2004. In a small minority of cases, tumors are of high-
future status of the patient given the patient history, congrade histology which, although biochemically much less
ditional on a treatment StrategyThiS is a non-trivial task active than |0w_grade CarcinoidS’ show much more rapid
since the physician often has incomplete information upoRumor progression. Therefore, aggressive chemotherapy in
which to base treatment and treatment itself can have unhe form of an etoposide and cisplatin-containing scheme
certain effects. Le€ andD be sets of chance and decision jg the only treatment optiofMoertelet al., 1991. In this
variables respectively. Let” with O' C C',t € 0: ¢,  section we develop the prognostic model for high-grade
represent the observed_ewdence until tuerent timec carcinoid tumors, consisting of a 2TLIMIDZ,, £;) and
and letn denote the horizon. ‘We use teery varlable_ a strategy(A°, A?), supplied by the physician. Patients
@ C CUD to denote the variable of interest, and defineare admitted to the hospital at the initial time- 0. Each
prognosis given a 2TLIMID as follows: time-slice represents the patient status at three-moteth in

Definition 4.1. A prognosisfor a query variable@  Valssince patients return for follow-up every three months

and a horizonn is a conditional probability distribution ~Since the aim is not to improve upon the provided strategy,
PA(Q°™ | 0%¢) overQem. we omit utility nodes from the discussion.

cn |0 The qualitative structure of the 2TLIMID that resulted
In order to computa_DA(Q_ | 07), we ass(tjjmet that  fom our modeling efforts is depicted in Fig. 3. The pa-

the prognostic model is defined HyLo, £,), (A%, A")), tient'sgeneral health statugHs) is of central importance.

where (Lo, L) is a 2TLIMID and (A% A') is a pair of  |n oncology, one way to represent the general health sta-

strategies. Prognosis then proceeds as follows: tus is by means of thperformance statu§Oken et al.,
1. Define((ﬁo,ﬁt), (AO,N)). 1983. We defineQens = {0,...,5} whereGHs = 0
stands for normal health statusHs = 1 stands for mild

2. CreatgBy, B;) = (B(Lo,A"), B(Ly, AY)). complaints,GHs = 2 stands for impaired age-appropriate

. : : . activity, GHs = 3 stands for confinement to bed for more
3. Recursively compute (Q°" | 0%) using (5o, B;). than 50% of the timeGHSs=4 stands for intensive care and
Although the processes we consider in medicine are fiGHS=5 stands for patient death. The general health status

nite since they are bounded by patient’s life-span, we dedepends on patient properties suchaas, GENDER and

scribe them as infinite-horizon processes where the processirrent general health status. Furthermags is influ-

has some probability of terminating at each time-slice. Inenced by the tumor massi£ss) and the treatment policy
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Figure 4: Kaplan-Meier curve, showing the cumulative piolity of survival for patients A (dashed line) and B (solid
line) over a five year period, as predicted by the model (laftjl the physician (right).

that is adopted. ChemotherapgyHEMO), with Qcpevo = eral health status is good enougbHE”’ < 3); otherwise
{nonereducedstandard, is the only available treatment, no chemotherapy is applied. The policy usedAhis as
where a reduced dose is at 75% of the standard doséollows:

Chemotherapy can have both positive and negative effects
on general health status; positive due to reductions in tumo
mass, and negative due to severe bone-marrow depression
(BMD) and damage associated with prolonged chemother-
apy. We useMDHIST, with Qgupust = {no-bmdbmd:,  wherez = no-bmd< y = standardandz = bmd < y =

as amemory variable to represent whether or not the patiemgéduced In all other cases, we do not give chemotherapy.
has experiencedMD in the past. SeverBmD is assumed

to be fully observable since patients are always tested fog Experimental Results

it. We useTREATHIST, with Qrrearnist = {0,1,2,3}, as . . .

a memory variable to represent the patient’s relevant-treaf" this section we use the prognostic model to answer the
ment history, such thatREATHIST = i represents contin- following query:

ued chemotherapy over the p&sti months. Reductions What is the probability of patient survival over

in tumor mass due to chemotherapy are often described in  the next five years?

terms of tumor responsegsy. ) We assume that the current time= 0 and compare the
The amount of tumor mass can be estimated by megpyrognosis for the following two patients. Patient A is a 75
suring the plasmahromogranin Alevel (CGA) since itis  year old male of poor general health statasi§’ = 2) and
strongly correlated with tumor burdéNobelsetal, 1998.  ap initially extremecGa level. Patient B is a 50 year old
SincecGa levels are always measured we need notincludgemale of average general health state{ = 0) and an
the decision variable whether or not to determinea initially elevatedcGa level.
levels (i.e., the associated policy bfind). Severe bone-  |n order to compute the probability of patient survival
marrow depression may cause patient death due to assog) over the next five years, we assume t@at C with
ated sepsis and/or internal bleedingoertelet al., 1991. Q) = {alive dead , whereGHsis a parent of), such that
AGE andGENDERare risk factors that may lead to patient P(Q* =alive | GHS' = x) is one ifz # 5 and zero other-
death due to causes other than the disemsss andGHS  jise for0 < ¢ < n. We have compared the prognosis made
in Fig. 3 are compact representations of a Bayesian neby the model with the prognosis made by the physician, as
work fragment. This representation has the advantage Q& shown in Fig. 5.
preventing unnecessary clutter in the graphical represen- The physician felt that model predictions where some-
tation of a Bayesian network and provides a way to repreyhat too positive for patient A, whereas they where some-
sentcontext-specific independeri@sutilieretal, 19964.  \what too negative for patient B. Of course, it is difficult
Due to Space reStrICtlonS, we W|” not d|SCUSS the |nternato decide hOW the mode| Wou'd perform in C|inica| prac_
structure of these fragments. tice, since the physician’s opinion is not necessarily the
To complete the model, we have to choose a treatmergold standard with which to compare performance. Fur-
strategy and assess the probabilities that parametegze tthermore, according to the physician, the predictions made
model. We mention only the chosen treatment strategy. Iy the model do make sense from a qualitative point of
Lo, 7(CHEMOY) = {GHS}, whereasinC;, 7(CHEMO!) =  view in that it reflects a much worse prognosis for patient A
{TREATHIST!, BMD?, GHS'}. The policy for chemotherapy than for patient B. The evaluation and possible calibration
in A is to apply standard chemotherapy only if the gen-of the model in a clinical setting deserves further attemtio

(TREATHIST! =0 A GHS' <3 A BMDHIST! =1x) V
(TREATHIST! =1 A GHS' <3 A BMDHIST! =1z)
— CHEMO'=y



7 Conclusion [Druzdzel, 199% M.J. Druzdzel. Five useful properties of

We have defined DLIMIDs constructed from 2TLIMIDs prol_aab|llst!c kn_owledge representations from the point
as a framework for decision-making under uncertainty and ©f View of intelligent systemsFundamenta Informati-
used them as the basis for a prognostic model for high- cag 30(3-4):241-254,1997.

grade carcinoid patients. Although the repetitive struc{Howard and Matheson, 19BR.A. Howard and J.E.
ture of a 2TLIMID has been used implicitly ifLauritzen Matheson. Influence diagrams. In R.A. Howard and
and Nilsson, 200]1 the explicit use of a 2TLIMID and its J.E. Matheson, editorReadings in the Principles and
transformation to a 2TBN allows for the representation of ~Applications of Decision AnalysisStrategic Decisions
infinite-horizon POMDPs. This benefit comes at the ex- Group, Menlo Park, CA, 1984.

pense of using policies that may suffer from perceptuaf| acave and Diez, 2002C. Lacave and F.J. Diez. A re-
aliasing. This is resolved by means of memory variables yjew of explanation methods for Bayesian networks.
which represent the observed history that is considered rel  knowledge Engineering Revied7(2):107-127, 2002.
evant by the physician. This approach is particularly usefu . . . .
whenever the policy depends on a small subset of the o -@uritzen and Nilsson, 2001S.L. Lauritzen and D. Nils-
served history, as is for instance dictated by a treatment SON- Representing and solving decision problems with
protocol. In general, we would also like to use 2TLIMIDs  limited information.Management Sciencd7(9):1235-

in order to improve strategies for infinite-horizon patial 1251, 2001.

observable Markov decision processes, which is a researdModlin et al, 2004 I.M. Modlin, M. Kidd, I. Latich,
topic we are currently pursuing. The advocated model- M.N. Zikusoka, and M.D. Shapiro. Current sta-
based approach allows for a computationally efficient prog- tus of gastrointestinal carcinoids.Gastroenterology
nostic model that facilitates interpretation by the phigsic 128:1717-1751, 2005.

while the experimental results demonstrate the feagibilit [Moertelet al, 1991 C.G. Moertel, L.K. Kvols, M.J.

of our approach to prognosis in medicine. O’Connell, and J. Rubin. Treatment of neuroendocrine
carcinomas with combined etoposide and cisplatin. Evi-
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