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Abstract
Dynamic limited-memory influence diagrams
(DLIMIDs) have been developed as a framework
for decision-making under uncertainty over time.
We show that DLIMIDs constructed from two-
stage temporal LIMIDs can represent infinite-
horizon decision processes. Given a treatment
strategy supplied by the physician, DLIMIDs
may be used as prognostic models. The theory
is applied to determine the prognosis of patients
that suffer from an aggressive type of neuroen-
docrine tumor.

1 Introduction
An important task in medicine is making an accurate prog-
nosis for a particular patient given the patient’s history.Ac-
curate prognosis facilitates patient feedback and allows the
physician to adjust the treatment strategy but is non-trivial
in a world that is characterized by change and uncertainty.
In our research, we have been engaged in the construc-
tion of a prognostic model for high-grade carcinoid tumors
of the midgut, which are an aggressive type of neuroen-
docrine tumor[Modlin et al., 2005]. The model has been
constructed in collaboration with an expert physician of the
Netherlands Cancer Institute (NKI).

The aim of this paper is to show how prognostic mod-
els may be constructed using an approach that is based on
limited-memory influence diagrams(LIMIDs) [Lauritzen
and Nilsson, 2001]. We extend the definition of LIM-
IDs to dynamicLIMIDs, which explicitly take time into
account. We show that dynamic LIMIDs allow the han-
dling of infinite-horizon and partially observable Markov
decision processes (POMDPs)[Aström, 1965] whenever
they are representable as a so-calledtwo-stage temporal
LIMID (2TLIMID). Infinite-horizon POMDPs cannot be
dealt with using standard (limited-memory) influence dia-
grams, and contrary to POMDPs, the 2TLIMID represen-
tation makes explicit a factorization of the state-space that
is defined by the variables in the domain1. This is advanta-
geous, from a computational point of view, since it allows
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1Much recent POMDP research has been concerned with tak-
ing advantage of such factorizations[Boutilier et al., 1996a].

for more efficient inference algorithms, and also from a
representational point of view, since it allows us to describe
the model in terms of the relations that hold between do-
main variables (see e.g.[Peek, 1999]). Given the strategy
of a decision maker, a 2TLIMID can be transformed into
a two-stage temporal Bayes network[Dean and Kanazawa,
1989], and prognosis then proceeds by means of probabilis-
tic inference using this Bayesian network.

In contrast to classical approaches to prognosis, such as
Cox’s proportional hazard model[Cox, 1972], we take a
model-basedapproach that aims to represent as accurately
as possible the causal relations that hold between domain
variables. It has been argued that models which capture
cause-effect relationships are more meaningful, accessible
and reliable than models which capture empirical associa-
tions [Druzdzel, 1997]. Causal models are also richer in
representational power than non-causal models, since they
allow for reasoning under interventions[Pearl, 2000]. In
the context of decision support in medicine, causal models
have several advantages. They allow for capturing expert
knowledge, which is a valuable commodity in itself, and
are more easily modified when new knowledge becomes
available (i.e. they are lessbrittle than models based on
empirical associations). Furthermore, they facilitate the ex-
planation of drawn conclusions, which may increase the ac-
ceptance of decision-support systems in medicine[Teach
and Shortliffe, 1984; Lacave and Dı́ez, 2002]. However,
building causal models often proves to be non-trivial, as it
is difficult to elicit the needed qualitative and quantitative
knowledge.

We proceed as follows. Section 2 describes required
preliminaries. Dynamic LIMIDs and 2TLIMIDs are intro-
duced in Section 3. Section 4 presents a formalization of
prognosis, where we use 2TLIMIDs to represent prognos-
tic models. Section 5 describes the prognostic model for
high-grade carcinoids as an illustration of the theory. Sec-
tion 6 describes some results concerning prognostic model
performance. The paper is concluded in Section 7.

2 Preliminaries
Bayesian networks[Pearl, 1988] provide for a compact fac-
torization of a joint probability distribution of a set of ran-
dom variables by exploiting the notion ofconditional in-
dependence. One way to represent conditional indepen-
dence is by means of an acyclic directed graph (ADG)G
whose nodesV (G) correspond to random variablesX and



the absence of arcs from the set of arcsA(G) represents
conditional independence. Due to this one-to-one corre-
spondence we will use nodesv ∈ V (G) and random vari-
ablesX ∈ X interchangeably. ABayesian network(BN)
is then defined as a pairB = (G, P ), such that the joint
probability distributionP is factorized according toG:

P (X) =
∏

X∈X

P (X | πG(X))

whereπG(X) denotes theparentsof X : {X ′ | (X ′, X) ∈
A(G)}. We also say thatX is thechildof someX ′ ∈ π(X)
where we drop the subscriptG when clear from context. In
this paper, we say that a (random) variableX takes values
x from a setΩX and usex to denote an element inΩX =
×X∈X ΩX for a setX of (random) variables.

Limited-memory influence diagrams are models for
decision-making under uncertainty[Lauritzen and Nils-
son, 2001]. They generalize standard influence-diagrams
(IDs) by relaxing theno-forgettingassumption[Howard
and Matheson, 1984]. This assumption states that, given
a total ordering of the decisions, the information known
when making decisionD is also available when making
decisionD′, if D precedesD′ in the ordering. Alimited-
memory influence diagram(LIMID) is defined as a tuple
L = (C,D,U, G, P ). Here,C is a set ofchance variables
(graphically depicted by circles), which are random vari-
ables as in a Bayesian network that represent the stochastic
component of the model.D is a set ofdecision variables
(graphically depicted by squares), which take on a value
from a set of choicesΩD that represent the decisions that
may be externally manipulated by a decision maker.U is a
set ofutility functions(graphically depicted by diamonds),
which represent the utility of being in a certain state as de-
fined by configurations of chance and decision variables.G
is an ADG, where nodesV (G) correspond toC ∪ D ∪ U.
Again, due to this correspondence, we will use nodes in
V (G) and corresponding elements inC ∪ D ∪ U inter-
changeably.P is a family of probability distributions that
specifies for each configurationd ∈ ΩD a distribution:

P (C : d) =
∏

C∈C

P (C | π(C))

that represents the distribution overC when the decision
maker has setD = d [Cowell et al., 1999]. Hence,C is
not conditioned onD, but rather parameterized byD.

The meaning of an arc(X, Y ) ∈ A(G) is determined
by the type ofY . If Y ∈ C then the conditional proba-
bility distribution associated withY is conditioned byX ,
as in a Bayesian network. IfY ∈ D then the state ofX is
available to the decision maker prior to deciding uponY . If
Y ∈ U thenX takes part in the specification of the utility
functionY such thatY : Ωπ(Y ) → R. Utility nodes cannot
have children and the joint utility functionU is assumed to
be additively decomposable such thatU =

∑

U∈U
U .

In contrast to standard influence diagrams, the order in
which decisions are made in a LIMID should only be com-
patible with the partial order induced byG, and making a
decisionD is based solely on its direct parentsπ(D). A
stochastic policyfor decisionsD ∈ D is defined as a dis-
tributionPD(D | π(D)) that maps configurations ofπ(D)
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Figure 1: Structure of a 2TLIMID.

to a distribution over alternatives forD. If PD is degener-
ate (i.e. consisting of ones and zeros only) then we say that
the policy is deterministic. LetV denoteC∪D. A strategy
is a set of policies∆ = {PD : D ∈ D} which induces the
following joint distribution over the variables inV:

P∆(V) = P (C : D)
∏

D∈D

PD(D | π(D)).

Using this distribution we can compute the expected utility
of a strategy∆ as

E∆(U) =
∑

v

P∆(v)U(v).

The aim of any rational decision maker is then to maxi-
mize the expected utility by finding the optimal strategy
arg max∆ E∆(U).

3 Dynamic LIMIDs
In this section we demonstrate how to use dynamic LIM-
IDs that are constructed by means of a structure that we
term atwo-stage temporal LIMID(2TLIMID). When deal-
ing with time, we useT ⊆ N to represent a set of time
points, which we normally assume to be an interval{u |
t ≤ u ≤ t′, {t, u, t′} ⊂ N}, also written ast : t′. We
assume that chance variables, decision variables and util-
ity functions are indexed by a superscriptt ∈ T, and use
C

T, D
T andU

T to denote all chance variables, decision
variables and utility functions at timest ∈ T, where we
abbreviateCT ∪ D

T with V
T. If T = 0 : n, where

n ∈ {1, 2, . . .} is the horizon, then we suppressT alto-
gether, and we suppress indices for individual chance vari-
ables, decision variables and utility functions when clear
from context.

3.1 Constructing Dynamic LIMIDs
A dynamic LIMID (DLIMID) is simply defined as a
LIMID (C,D,U, G, P ) such that for all pairs of variables
Xt, Y u ∈ V∪U it holds that ift < u thenY u cannot pre-
cedeXt in the partial ordering that is induced byG. If the
first-order Markov assumption holds that the future is con-
ditionally independent of the past given the present, then
we can define a DLIMID in terms of a two-stage temporal
LIMID (Fig. 1).



Definition 3.1. A two-stage temporal LIMID
(2TLIMID ) is a pair (L0,Lt) with prior model L0

= (C0,D0,U0, G0, P 0) and transition model Lt =
(Ct−1:t,Dt−1:t,Ut, G, P ) such that chance and decision
variablesV t−1

i in V
t−1 have no parents.

The prior model is used to represent the initial distribu-
tion P 0(C0 : D

0) and utility functionsU ∈ U
0. The tran-

sition model is not yet bound to any specifict, but if bound
to somet ∈ 1 : n, then it is used to represent the con-
ditional distributionP (Ct : D

t−1:t) and utility functions
U ∈ U

t where bothG andP do not depend ont. We define
the interfaceof the transition model as the setI

t ⊆ V
t−1

such that(V t−1
i , V t

j ) ∈ A(G) ⇔ V t−1
i ∈ I

t.
Given a horizonn, we mayunroll a 2TLIMID for n time-

slicesin order to obtain a DLIMID such that we obtain the
following joint distribution:

P (C,D) = P 0(C0 : D
0)

n
∏

t=1

P (Ct : D
t−1:t). (1)

Let ∆t = {PD(D | πG(D)) | D ∈ D
t} be the strategy for

time t and∆ = ∆0 ∪ · · · ∪ ∆n. Given a strategy∆0, L0

defines the following distribution over variables inV0:

P∆0(V0) = P 0(C0 : D
0)

∏

D∈D0

PD(D | πG0(D)).

Likewise, given a strategy∆t with t > 0, Lt defines the
following conditional distribution over variables inVt:

P∆t(Vt | Vt-1) = P (Ct : D
t:t−1)

∏

D∈Dt

PD(D | πG(D)).

Combining these equations, given a horizonn and strat-
egy∆, a 2TLIMID induces the following distribution over
variables inV:

P∆(V) = P∆0(V0)

n
∏

t=1

P∆t(Vt | It). (2)

Let U0(V0) =
∑

U∈U0 U(πG0(U)) stand for the joint
utility for t = 0 and letU t(Vt−1:t) =

∑

U∈Ut U(πG(U))
denote the joint utility for time-slicet > 0. We redefine the
joint utility function for a dynamic LIMID as

U(V) = U0(V0) +

n
∑

t=1

γtU t(Vt−1:t)

whereγ, with 0 ≤ γ < 1, is adiscount factor, representing
the notion that early rewards are worth more than the same
rewards earned later in time.

3.2 Representing Observed History
It is clear from Eq. 1 that DLIMIDs constructed from a
2TLIMID take into accountat mostall chance and decision
variables in two subsequent time-slices, sinceπ(D0

i ) ⊆ V
0

andπ(Dt
i) ⊆ V

t−1:t. Observations made earlier in time
are not taken into account and as a result, states that are
qualitatively different can appear the same to the decision
maker, leading to suboptimal policies. This phenomenon
is known asperceptual aliasing[Whitehead and Ballard,
1991]. In this paper we usememory variablesto take into

Figure 2: Dealing with perceptual aliasing by introducing
memory variables (black circles). Memory variables are
used instead of associated observed variables (shaded cir-
cles) as the informational predecessor for a decision vari-
able (squares).

account (part of) the observed historyv
′ with V

′ ⊆ V
0:c

and current timec, as depicted in Fig. 2.
Note that if we represent the full observed history, infer-

ence becomes intractable for long histories since the states
of a memory variableM ∈ C associated with a variable
V ∈ V are given byΩn

M , whereΩj+1
M = Ωj

M ∪(Ωj
M ×ΩV )

andΩ0
M = ΩV . However, by restricting the length of the

observed history and/or by usingaggregationtechniques
[Boutilieret al., 1996a] that group states which are indistin-
guishable from the point of view of the decision maker, we
can both use the limited-memory assumption of LIMIDs
and deal with perceptual aliasing2. Examples of variables
that fulfill the role of memory variable areBMDHIST and
TREATHIST in Fig. 3, which maintain information regard-
ing complications and previous treatments respectively. An
additional advantage of the use of memory variables is the
fact that we retain the first-order Markov assumption. Due
to this property DLIMIDs can take benefit from efficient
algorithms for probabilistic inference.

3.3 Inference using 2TLIMIDs
To perform inference with a LIMIDL = (C,D,U, G, P )
given a strategy∆, we convertL into a Bayesian network
B = (G′, P ′) that is subsequently used for inference pur-
poses. As has been remarked, a strategy∆ induces a dis-
tribution over variablesV (viz. Eq. 2). Hence, given∆,
we may convert decision variablesD into random variables
XD with parentsπG(D) such that

P ′(XD | πG′(XD)) = PD(D | πG(D)).

Additionally, it is possible to convert utility functionsU
into random variablesXU . Let πG′(XU ) = πG(U) where
ΩXU

= {0, 1}. We associateP ′(XU | π(XU )) with XU

by means of a transformation

P ′(XU =1 | x′) =
U(x′) − minx U(x)

maxx U(x) − minx U(x)

with x,x′ ∈ Ωπ(U), as defined in[Cooper, 1988]. We
useB(L, ∆) to denote this transformation. If the strat-
egy is stationary for each time-slicet ∈ {1, . . . , n} then
we can apply the transformation to a 2TLIMID(L0,Lt),
to obtain a so-calledtwo-stage temporal Bayes network

2In the context of POMDPs, methods that rely on the use of a
finite history are common[Aberdeen, 2003].
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Figure 3: The prognostic model, where shaded nodes are observed and rounded rectangles denote internal structure.

(TBN) (B0,Bt) that is often used to construct adynamic
Bayesian networkor DBN [Dean and Kanazawa, 1989;
Boutilier et al., 1996a; Peek, 1999]. For online infer-
ence, efficient algorithms exist that exploit the structureof
a 2TBN. In our work, we have used theinterface algorithm
[Murphy, 2002], which allows for online filtering, where
the space and time taken to computeP (Xt | X

t−1) is in-
dependent of the number of time-slices.

4 Prognosis with 2TLIMIDs
Informally, we interpret prognosis asthe prediction of the
future status of the patient given the patient history, con-
ditional on a treatment strategy. This is a non-trivial task
since the physician often has incomplete information upon
which to base treatment and treatment itself can have un-
certain effects. LetC andD be sets of chance and decision
variables respectively. Leto0:c with O

t ⊆ C
t, t ∈ 0 : c,

represent the observed evidence until thecurrent timec
and letn denote the horizon. We use thequery variable
Q ⊆ C ∪ D to denote the variable of interest, and define
prognosis given a 2TLIMID as follows:

Definition 4.1. A prognosis for a query variable Q
and a horizonn is a conditional probability distribution
P∆(Qc:n | o0:c) overQc:n.

In order to computeP∆(Qc:n | o
0:c), we assume that

the prognostic model is defined by
(

(L0,Lt), (∆
0, ∆t)

)

,
where(L0,Lt) is a 2TLIMID and (∆0, ∆t) is a pair of
strategies. Prognosis then proceeds as follows:

1. Define
(

(L0,Lt), (∆
0, ∆t)

)

.

2. Create(B0,Bt) =
(

B(L0, ∆
0), B(Lt, ∆

t)
)

.

3. Recursively computeP∆(Qc:n | o0:c) using(B0,Bt).

Although the processes we consider in medicine are fi-
nite since they are bounded by patient’s life-span, we de-
scribe them as infinite-horizon processes where the process
has some probability of terminating at each time-slice. In

computing the prognosis however we assume that the hori-
zon n is finite. In the next section we develop the actual
model for prognosis of high-grade carcinoid tumor patients
using the theory developed so far.

5 The High-Grade Carcinoid Model

A carcinoid tumor is a type of neuroendocrine tumor that
is predominantly found in the midgut and is normally char-
acterized by the production of excessive amounts of bio-
chemically active substances, such as serotonin[Modlin et
al., 2005]. In a small minority of cases, tumors are of high-
grade histology which, although biochemically much less
active than low-grade carcinoids, show much more rapid
tumor progression. Therefore, aggressive chemotherapy in
the form of an etoposide and cisplatin-containing scheme
is the only treatment option[Moertelet al., 1991]. In this
section we develop the prognostic model for high-grade
carcinoid tumors, consisting of a 2TLIMID(L0,Lt) and
a strategy(∆0, ∆t), supplied by the physician. Patients
are admitted to the hospital at the initial timet = 0. Each
time-slice represents the patient status at three-month inter-
vals since patients return for follow-up every three months.
Since the aim is not to improve upon the provided strategy,
we omit utility nodes from the discussion.

The qualitative structure of the 2TLIMID that resulted
from our modeling efforts is depicted in Fig. 3. The pa-
tient’sgeneral health status(GHS) is of central importance.
In oncology, one way to represent the general health sta-
tus is by means of theperformance status[Oken et al.,
1982]. We defineΩGHS = {0, . . . , 5} where GHS = 0
stands for normal health status,GHS = 1 stands for mild
complaints,GHS = 2 stands for impaired age-appropriate
activity, GHS = 3 stands for confinement to bed for more
than 50% of the time,GHS=4 stands for intensive care and
GHS=5 stands for patient death. The general health status
depends on patient properties such asAGE, GENDER and
current general health status. Furthermore,GHS is influ-
enced by the tumor mass (MASS) and the treatment policy



Figure 4: Kaplan-Meier curve, showing the cumulative probability of survival for patients A (dashed line) and B (solid
line) over a five year period, as predicted by the model (left), and the physician (right).

that is adopted. Chemotherapy (CHEMO), with ΩCHEMO =
{none, reduced, standard}, is the only available treatment,
where a reduced dose is at 75% of the standard dose.
Chemotherapy can have both positive and negative effects
on general health status; positive due to reductions in tumor
mass, and negative due to severe bone-marrow depression
(BMD) and damage associated with prolonged chemother-
apy. We useBMDHIST, with ΩBMDHIST = {no-bmd, bmd},
as a memory variable to represent whether or not the patient
has experiencedBMD in the past. SevereBMD is assumed
to be fully observable since patients are always tested for
it. We useTREATHIST, with ΩTREATHIST = {0, 1, 2, 3}, as
a memory variable to represent the patient’s relevant treat-
ment history, such thatTREATHIST = i represents contin-
ued chemotherapy over the past3 · i months. Reductions
in tumor mass due to chemotherapy are often described in
terms of tumor response (RESP).

The amount of tumor mass can be estimated by mea-
suring the plasmachromogranin Alevel (CGA) since it is
strongly correlated with tumor burden[Nobelset al., 1998].
SinceCGA levels are always measured we need not include
the decision variable whether or not to determineCGA
levels (i.e., the associated policy isblind). Severe bone-
marrow depression may cause patient death due to associ-
ated sepsis and/or internal bleeding[Moertelet al., 1991].
AGE andGENDER are risk factors that may lead to patient
death due to causes other than the disease.MASS andGHS
in Fig. 3 are compact representations of a Bayesian net-
work fragment. This representation has the advantage of
preventing unnecessary clutter in the graphical represen-
tation of a Bayesian network and provides a way to repre-
sentcontext-specific independence[Boutilier et al., 1996b].
Due to space restrictions, we will not discuss the internal
structure of these fragments.

To complete the model, we have to choose a treatment
strategy and assess the probabilities that parameterize the
model. We mention only the chosen treatment strategy. In
L0, π(CHEMO0) = {GHS0}, whereas inLt, π(CHEMOt) =
{TREATHISTt, BMDt, GHSt}. The policy for chemotherapy
in ∆0 is to apply standard chemotherapy only if the gen-

eral health status is good enough (GHS0 ≤ 3); otherwise
no chemotherapy is applied. The policy used in∆t is as
follows:

(TREATHISTt =0 ∧ GHSt≤3 ∧ BMDHISTt =x)∨
(TREATHISTt =1 ∧ GHSt <3 ∧ BMDHISTt =x)
→ CHEMOt =y

wherex = no-bmd⇔ y = standardandx = bmd⇔ y =
reduced. In all other cases, we do not give chemotherapy.

6 Experimental Results
In this section we use the prognostic model to answer the
following query:

What is the probability of patient survival over
the next five years?

We assume that the current timec = 0 and compare the
prognosis for the following two patients. Patient A is a 75
year old male of poor general health status (GHS0 =2) and
an initially extremeCGA level. Patient B is a 50 year old
female of average general health status (GHS0 = 0) and an
initially elevatedCGA level.

In order to compute the probability of patient survival
(Q) over the next five years, we assume thatQ ∈ C with
ΩQ = {alive, dead} , whereGHS is a parent ofQ, such that
P (Qt =alive | GHSt = x) is one ifx 6= 5 and zero other-
wise for0 ≤ t ≤ n. We have compared the prognosis made
by the model with the prognosis made by the physician, as
is shown in Fig. 5.

The physician felt that model predictions where some-
what too positive for patient A, whereas they where some-
what too negative for patient B. Of course, it is difficult
to decide how the model would perform in clinical prac-
tice, since the physician’s opinion is not necessarily the
gold standard with which to compare performance. Fur-
thermore, according to the physician, the predictions made
by the model do make sense from a qualitative point of
view in that it reflects a much worse prognosis for patient A
than for patient B. The evaluation and possible calibration
of the model in a clinical setting deserves further attention.



7 Conclusion
We have defined DLIMIDs constructed from 2TLIMIDs
as a framework for decision-making under uncertainty and
used them as the basis for a prognostic model for high-
grade carcinoid patients. Although the repetitive struc-
ture of a 2TLIMID has been used implicitly in[Lauritzen
and Nilsson, 2001], the explicit use of a 2TLIMID and its
transformation to a 2TBN allows for the representation of
infinite-horizon POMDPs. This benefit comes at the ex-
pense of using policies that may suffer from perceptual
aliasing. This is resolved by means of memory variables
which represent the observed history that is considered rel-
evant by the physician. This approach is particularly useful
whenever the policy depends on a small subset of the ob-
served history, as is for instance dictated by a treatment
protocol. In general, we would also like to use 2TLIMIDs
in order to improve strategies for infinite-horizon partially-
observable Markov decision processes, which is a research
topic we are currently pursuing. The advocated model-
based approach allows for a computationally efficient prog-
nostic model that facilitates interpretation by the physician,
while the experimental results demonstrate the feasibility
of our approach to prognosis in medicine.
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