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Solvent Driven Formation of Bolaam phiphilic Vesicles
M . I. K atsnelson and A. Fasolino*
Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, 
The Netherlands

A b stract
We show th a t a spontaneous bending of single layer bolaamphiphiles results from the frustration due to 

the competition between core-core and tail-solvent interactions. We find tha t spherical vesicles are stable 
under rather general assumptions on these interactions described within the Flory-Huggins theory. We con
sider also the deformation of the vesicles in an external magnetic field tha t has been recently experimentally 
observed.

Molecular aggregates, like biological matter, possess the ability to organize into well defined mesoscopic 
structures, such as layers, fibers, vesicles[1, 2, 3, 4]. Addressing this issue for molecular aggregates is relevant not 
only for applications in pharmacology, catalysis, and other fields, but also to understand the behaviour of model 
systems simpler but related to biological matter. The self-organized structures result from the concomitant 
effect of non-covalent interactions, such as hydrogen bonding and n — n stacking between molecules, as well as 
by entropic contributions. A theory capable of predicting the shape of the aggregate from the knowledge of the 
microscopic molecular structure is still missing. Among the forms of self-organization, the formation of empty 
vesicles in, possibly aqueous, solution is particularly important for the wealth of possible applications, from 
microreactors to drug delivery. Surprisingly, vesicle formation has been observed not only in the well known 
case of amphiphiles bilayers, like lipid membranes[1, 2, 5] but also in several bolaamphiphiles[6 , 7, 8] formed by 
an hydrophobic core and two, usually symmetric, lateral hydrocarbon tails terminated by hydrophilic groups[9]. 
Notice that the term bolaamphiphiles has been first introduced to describe synthetic analogs of archaebacterial 
membranes[10, 11]. Here we provide a model predicting spontaneous bending due to frustration resulting from 
competing core-core and tail-solvent interactions.

We refer, in particular, to the case of sexithiophenes bolaamphiphiles (see Fig. 1) that have been found to 
form vesicles albeit in isopropanol[8]. The formation of stable vesicles seems to be favoured by increasing length 
of the tails [7]. Conversely, layer-like structures have been found in liquid crystal bolaamphiphiles with short or 
rigid lateral blocks[12, 13].

F igu re 1: Structural formula of 2,5”” ’-(R-2-methyl- 3,6,9,12,15-pentaoxahexadecyl ester) sexithiophene and its 
schematic representation.

We consider a simplified model of a bolaamphiphile layer with the cores on a two-dimensional surface and 
symmetric flexible tails, each formed by m monomers as sketched in F ig .2.

As illustrated in F ig.3, the cores define a surface S 0 with local coordinates (u 1, u2) such that r0 =  r(u 1, u2) 
gives cartesian coordinates on the surface. If the tails, due to covalent bonding to the cores, tend to be 
perpendicular to the surface, the interactions with the solvent are supposed to take place on the two surfaces 
S± with coordinates

r± =  r (u i ,u 2) ± n ( u i ,u 2)D  (1)
where n  is the vector normal to S0 and D  is the effective length of the tails.

The elementary area vector on S0 is
dSo =  (ri x r2 ) du idu 2 (2)
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F igu re 2: Sketch of a layer formed by self-assembled bolaamphiphiles. The spacing between hydrophilic tails (green) is 
fixed by the hydrophobic cores (yellow) to a value which might be not optim al for tail-solvent interactions.

where S  =  d r /d u i .  The derivative of the normal n  with respect to v,i is given by the so-called Weingarten 
equations[15], whence

dS±  =  dS0 (1 t  2 H D  +  K D 2) (3)
where H  =  (ki +  k2) /2  and K  =  k \ k 2 are, respectively, the mean and gaussian curvature defined in terms 
of the principal curvatures k \ and k2. The tail density in contact with the solvent is determined by the tail 
density n 0 imposed by the core so that n±dS±  =  n 0dS0 leading to an exact expression for the tail density on 
S±  in terms of the curvature

U ° I A \n± =  1 ^  orrn  . r.-rv? • (4)1 t  2H D  +  K D 2 ■
If the tails were not rigidly connected to the cores, they would form a solution with free energy per unit volume

F igu re 3: Schematic geometry of our model. The surface So is the locus of the center of mass of the hydrophobic cores 
and S± are the surfaces formed by the tail ends. The unit vector n  is normal to all three surfaces and D is the effective 
tail length.

4>(u) . Therefore, we write the bending free energy as

SF =  D  J  dS  [^ (ñ + )+  ^>(ñ_) ] +  a J  d S H 2 +  B  J  dS K . (5)

The first term is the free energy of the tail/solvent subsystem whereas the terms proportional to A  and B  
represent the bending elasticity of the core layers[1, 2, 5]. To account phenomenologically for bent surfaces 
for lipid bilayers, the term A H 2 is usually replaced by the so-called Canham-Helfrich (CH) bending energy 
A (H  — Ho)2 with A  >  0 so that negative linear terms in H  are responsible for bending[1]. However, the CH 
expression is not appropriate for symmetric bolaamphiphiles where odd terms vanish by symmetry. Moreover, 
the spontaneous curvature H 0 is introduced phenomenologically and is not justified by any microscopic model. 
We also note that the term B  ƒ  d S K  is usually neglected because due to the Gauss-Bonnet theorem [15] it is 
constant within a given topology of the surface and it actually depends on the number of handles. We consider
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mesoscopic vesicles with curvature much larger than the molecular size, namely |Kj|D < <  1. Within this 
approximation we can expand 4>(n± ) up to second order in D  as

4>(n± ) =  ^(no) ±  no^/(no)2H D +

+ n 0^ ( n 0) [AH2D 2 -  K D 2} +  \ n 204>" (n0)AH2 D 2 (6)2
n2 |n=n0. Notice unau the sum oi the uei

integrand of Eq.5 vanishes whereas other terms contribute to the term proportional to H 2 so that
where ^/(n0) =  d ^ /d n |„=„0 and ^"(n0) =  d2<p/dn2 |n=n0. Notice that the sum of the terms linear in H  in the

A  ^  A =  A  +  SA =  A  +  4D 3 [n2^" +  2n0^'] (7)
We will show that A  can become negative and lead to spontaneous bending as a result of the microscopic 
tail/solvent interactions. The reason for a negative SA is that the available volume per tail on the two sides of 
a bent surface may be different and a specific curvature can minimize the resulting free energy.

We can further specify the driving term SA by calculating it, within the Flory-Huggins theory for polymers 
solvent m ixtures[14, 1]

<p(n) m n n i
rji =  X ----- :---------HT n i  +  m n  

(  ni \  (  m n  \  , ,+ n i  In ----- -------- +  n 2 In ----- -------- (8)y n i +  m n  J \ n i  +  m n J
where n i is the solvent density, m  is the number of monomers per tail, x  ~  (2Wts — W ss — W tt ) / T  with Wts, W ss 
and W tt the tail-solvent, solvent-solvent and tail-tail interaction energies respectively and T  is the temperature. 
Substitution of Eq .8 into Eq.7 gives

SA 2xm nino  ni
T  (m  +  m no)2 (n i +  m no)2

• [m (m — 2) n 0 +  (2m — 3) ni] (9)
For hydrophilic tails, x  <  0 leading to a free energy gain for bent surfaces. This constitutes a possible micro
scopic mechanism for vesicle formation, albeit within the Flory-Huggins theory which is more qualitative than 
quantitative[16]. Furthermore, the last term that accurately represents entropy is always negative unless m  =  1 
and increases as m 2 for m  ^  1. The observation of planar structures in liquid crystals bolaamphiphiles with 
rigid tails could be explained by this entropic reason. This completes our microscopic analysis. Our model 
leads naturally to a negative contribution to the free energy of the term quadratic in the curvature that does 
not need to be imposed phenomenologically as done for amphiphile bilayers.

Our results can be cast in the form of an effective Landau Hamiltonian, i.e. we can write the free energy F  
as a Taylor expansion in terms of the curvatures H  and K . These quantities, or more precisely k 1 and k2, take 
the apparent role of order parameters assuming their smallness in comparison to a typical inverse molecular 
size. However, k 1 and k 2 are not independent at different points of the surface, implying that F  is not a true 
Landau Hamiltonian and that a local analysis is insufficient. In fact, the local free energy density has not a 
minimum but a saddle point for a sphere (k1 =  k2) if c2 +  2c3 <  0 , in contradiction with the numerical data 
presented below. Since the term proportional to H 2 resulting from our microscopic model is negative, higher 
order terms are needed to stabilize the mean curvature to a finite value. Up to fourth order terms in k 1 and k 2 
we can write

F  =  ƒ  dS  [—|A |H 2 +  b H K  +  b'H3 +  ci H 4 +  c2H 2K  +  c3K 2] (10)
The odd terms in b and b' that can lead to first order phase transitions have to vanish for the symmetric 

bolaamphiphiles considered here so that we take b =  0 and b' =  0. Moreover, ci +  c2 +  c3 >  0. Since, in general, 
the bending energy is much smaller that the surface tension, we go to the limit of infinite surface tension that 
allows to perform minimization of F  on a surface of constant area. We have minimized Eq.10 numerically for 
surfaces topologically equivalent to spheres with radius R  =  2 (ci +  c2 +  c3) / \A \  and found that spheres are 
always the solution.
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Our model can be extended to consider the recently observed effect of external magnetic fields B  on the 
equilibrium shape of bolaamphiphilic vesicles[8]. To this purpose we add to E q.10 the diamagnetic energy term

D B2 f  /  \
E m a g  =  ~  ^  9 I d S  s in 2  0  +  X|| C°S 2 & J  ( H )

i
where D i is the effective thickness of the core layer (i =  1) or of the tails (i =  2), xj_, x \  are the components 
of the corresponding magnetic susceptibility and 0 is the polar angle of the direction of the magnetic field 
B. Due to the tendency of the aromatic rings in the core segment to align parallel to the magnetic field, 
the spherical vesicles will be transformed into ellipsoids, as predicted by Helfrich[17] for amphiphilic bilayers. 
This deformation in high magnetic fields has been recently observed experimentally for sexithiophene[8], that 
is an example of symmetric bolaamphiphiles[8] where the CH model of free energy is not correct. In F ig .4 
we present the deformation calculated by minimizing the sum of Eqs. 10 and 11 for constant surface as a 
function of magnetic field, compared to the one resulting from the CH model. In both cases, the deformation is 
proportional to B 2 for low fields and flattens out as the field increases. However, for the same initial slope, our 
model predicts smaller deformations at high fields, the details of the curve being determined by the parameters 
Cl, C2, C3 .

B

F igu re 4: Difference A R  between short and long axis of the ellipsoid resulting from minimization of the free energy 
in a magnetic field B  for three choices of c2 and c3 (ci +  c2 +  c3 =  1 and |A| =  1), compared with the Helfrich model 
(H 0 =  1). The inset shows th a t initial B 2 dependence of the distortion depends mostly on c2 +  2c3.

In summary, we have demonstrated that the frustration resulting from competing core-core and tail-solvent 
interactions can lead to spontaneous bending of single bolaamphiphilic layers. By describing the tail solvent 
interactions within the Flory-Huggins theory, we have constructed a Landau-like free energy appropriate to 
describe symmetric bolaamphiphiles that gives a rationale for the formation of spherical vesicles. Measurement 
of their deformation in high magnetic fields can provide information about the parameters of the theory, opening 
the possibility to validate microscopic models of interactions in these systems.
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