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A B S T R A C T
We present the V band variability analysis of the point sources in the Faint Sky Vari
ability Survey on time scales from 24 minutes to tens of days. We find that about 
one percent of the point sources down to V =  24 are variables. We discuss the vari
ability detection probabilities for each field depending on field sampling, amplitude 
and timescale of the variability. The combination of colour and variability information 
allows us to explore the fraction of variable sources for different spectral types. We 
find that about 50 percent of the variables show variability timescales shorter than 
6 hours. The total number of variables is dominated by main sequence sources. The 
distribution of variables with spectral type is fairly constant along the main sequence, 
with 1 per cent of the sources being variable, except at the blue end of the main se
quence, between spectral types F0-F5, where the fraction of variable sources increases 
to about 2 percent. For bluer sources, above the main sequence, this percentage in
creases to about 3.5. We find that the combination of the sampling and the number 
of observations allows us to determine the variability timescales and amplitudes for a 
maximum of 40 percent of the variables found. About a third of the total number of 
short timescale variables found in the survey were not detected in either B or/and I. 
These show a similar variability timescale distribution to that found for the variables 
detected in all three bands.
Key words: surveys -  methods: data analysis -  stars: general -  stars: statistics -  
stars: variables: general

1 IN T R O D U C T IO N

There is a wide range of photom etrically variable systems 
in the universe. The range of timescales on which these sys
tems vary is as wide as the physical processes th a t produce 
their variability. For example we have intrinsically variable 
stars, where the variability is caused by changes in their in
ternal structure or atm osphere th a t vary w ith timescales of 
minutes to  years (Brown & Gilliland 1994). O ther stars show 
variability because they ro tate  and their surface is inhomo- 
geneous, e.g. because of sta r spots, (Brinkworth et al. 2005), 
or because they form p art of a binary or multiple system and 
their revolution around the centre of mass of the system re
sults in changes on the detected flux due to  the changing as
pect of a non-isotropically em itting surface or eclipses. This 
is also the case for planets orbiting stars. The timescale of 
the variability in this case is dictated by the orbital param e

ters of the system and can range from seconds to  years. Near 
E arth  O bjects (NEOs), such as asteroids, also show variabil
ity as they ro tate  and are non-spherical. We find photom etric 
variability in extragalactic objects as well, such as quasars, 
where the variability is probably the result of m aterial being 
accreted by the central engine, or “one of” systems such as 
gamma ray bursts (GRB) or supernovae (SNe) where the 
variability is produced by intrinsic changes in the structure 
of an astronomical object th a t take place only once.

The study of variability provides im portant inform ation 
about the physical nature of the variable objects, leads to 
the discovery of new classes of objects, helps to  study the 
physical structure of stars, e.g. pulsating stars, allows us to  
obtain inform ation on galactic structure through the use of 
variables such as RR Lyrae as standard  candles, and is the 
key to  determ ining extra-galactic distances through the use
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2 L. Morales-Rueda et al.

of standard  candles such as Cepheids and supernovae Type 
Ia.

Most of our knowledge of variability is based on the 
study of apparently bright sources, which naturally  selects 
members of intrinsically bright populations. A t present little 
is known about variability of intrinsically fainter populations 
because in bright samples they are lacking altogether or are 
only represented by a few members. The Faint Sky Vari
ability Survey (FSVS; Groot et al. (2003)) was designed to 
account for this deficit by studying two unexplored regions 
of the variability space: the short timescale variability re
gion (down to  tens of minutes) and the intrinsically faint 
variable sources (down to V =  24 mag) at mid and high 
Galactic latitudes. The FSVS also contains colour informa
tion for all targets, giving us the option of positioning objects 
in the colour-colour diagram as well as finding the variabil
ity timescales and am plitudes th a t characterise them . The 
main aims of the FSVS are thus to  obtain a m ap of a region 
of the Galaxy (~ 21deg2) in variability and colour space, 
to  determ ine the population density of the different variable 
objects th a t reside in the Galaxy and to  find the photom etric 
signature of up-to-now unknown intrinsically faint variable 
populations. In this paper we explore these three goals.

There are other surveys th a t study the variable optical 
sky, each emphasising one aspect or one particular region 
of this param eter space. The timescales sampled, dep th  and 
sky coverage of different variability surveys varies depend
ing on the astronomical objects they are designed to  study. 
For example, w ith a brightness limit similar to  the FSVS, 
S treet et al. (2005) study the variability around an open 
cluster w ith timescales longer th an  a few hours, and R am 
say & Hakala (2005) study the rapid variability (down to
2 minutes) of objects as faint as V~22.5. Of great interest 
is the Deep Lens Survey (DLS) th a t, in a similar way to 
the FSVS, combines colour and variability inform ation and 
explores similar variability timescales (Becker et al. 2004). 
Becker et al. (2004) also provide a comprehensive review of 
past and on-going variability surveys.

The future of optical variability surveys looks quite 
promising with the advent of large aperture telescopes 
such as the Large-aperture Synoptic Survey 8.4 m Telescope 
(Tyson 2002), the 4 m telescope VISTA and the 2.5 m VLT 
Survey Telescope.

2 O B SE R V A T IO N S

The full Faint Sky Variability Survey (FSVS) d a ta  set con
sists of 78 W ide Field Cam era (W FC) fields taken w ith the 
Isaac Newton telescope (INT) at La Palma. The FSVS cov
ers an area in the sky of ~21 deg2 located at mid and high 
Galactic latitudes (—40< b < -2 1 ,  15< b <50, 89< b <90). 
The W FC is a moisac of four 2kx4k CCDs. For each field, we 
took one set of B, I and V band observations on a given pho
tom etric night. Photom etric variability observations were 
taken w ith the V filter on several consecutive nights. On av
erage, fields were observed 10 -  20 times w ithin one week in 
the V band. Exposure times were 10 min w ith a dead time 
between observations of 2 min. This observing pa tte rn  al
lows us to  sample periodicity timescales from 2 x (observing 
tim e +  dead time) (i.e. 24 min) to  twice the maximum time

Table 1. Journal of observations. The number of V band ob
servations taken for each field, not counting those taken about a 
year later for proper motion studies, as well as the maximum time 
interval covered in days, At, are given. For field 48, the two V 
band measurements were taken more than a year apart. For field 
51, two measurements were lost in one of the CCDs. The fraction 
of variable sources (FV) x100 per field found using the x 2 test 
is also given. This will be discussed in detail in Sections 3.1 and
4.1. Notice that the fraction of variables found in fields 36, and 
48, is very high compared to the rest of the fields. These fields 
were only observed in 2 occasions so their variability x 2 was cal
culated based only on 2 points. This is also the case for fields 35, 
and 41 to 45 but they do not show a fraction of variables as large. 
These 6 fields contain about twice the number of stars compared 
to fields 36 and 48.

Field V obs Aí FV Field V obs Aí FV

01 10 5.07 0.59 40 9 3.07 3.44
02 11 5.07 1.04 41 2 0.06 3.22
03 13 5.11 0.21 42 2 0.91 3.91
04 12 3.04 1.19 43 2 0.03 1.62
05 12 3.09 0.55 44 2 0.03 2.05
06 10 3.11 0.74 45 2 0.03 1.90
07 10 5.99 0.48 46 19 4.18 1.06
08 11 5.07 0.09 47 5 6.97 4.20
09 10 5.02 0.79 48 2 - 8.60
10 10 3.02 0.09 49 3 5.94 5.26
11 7 3.04 0.23 50 3 6.07 3.75
12 8 3.07 0.31 51 5,3 5.92 2.09
13 9 5.06 0.77 52 26 5.17 0.80
14 10 5.03 0.54 53 20 6.10 0.24
15 8 3.03 0.55 54 20 6.01 0.15
16 12 3.06 0.51 55 20 5.98 1.11
17 8 3.09 0.64 56 19 4.18 0.37
18 9 5.06 0.67 57 18 5.24 1.30
19 11 4.02 0.35 58 15 4.18 0.70
20 11 4.04 0.11 59 20 5.12 0.60
21 11 4.07 0.74 60 22 4.16 1.93
22 11 4.05 2.73 61 20 4.09 0.47
23 11 4.08 3.06 62 19 4.06 1.95
24 10 4.11 1.62 63 22 6.09 0.52
25 30 6.12 0.06 64 22 6.06 0.43
26 29 5.00 0.58 65 20 6.03 0.40
27 14 6.01 0.25 66 21 6.00 0.41
28 14 5.99 0.66 68 28 12.07 1.11
29 14 6.02 0.45 69 29 13.00 1.50
30 16 4.99 1.60 70 24 6.03 0.88
31 16 4.99 0.87 71 27 6.00 1.04
32 16 4.99 0.36 72 26 6.11 0.50
33 18 6.10 0.18 73 27 6.09 0.66
34 17 6.07 0.42 74 26 6.05 0.23
35 2 0.03 1.83 75 25 6.00 0.21
36 2 0.97 13.68 76 33 7.03 0.37
37 10 4.08 0.35 77 33 7.06 0.48
38 9 4.05 0.73 78 33 7.15 0.48
39 9 3.09 0.77 79 31 7.15 0.28

separation of observations (which ranges from 3 days to  13 
days). See for more details Groot et al. (2003).

All fields were re-observed years later to  determine 
proper motions. In this paper we concentrate on the shorter 
timescale variability (from 0.4 hours to  a few days) of the 
targets and we do not include those observations.

Of the 78 fields, 10 were only observed in the V band
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on two or three occasions due to  bad weather, making it im
possible to  use these for precise variability studies. We also 
encountered d a ta  acquisition/reduction problems in several 
occasions which resulted in parts  of fields being lost. Initially 
79 fields were defined bu t one, 67, was never observed. For 
d a ta  handling consistency we have kept the original num 
bering.

A complimentary analysis on the variability at short 
and long timescales (including year-long timescales) of the 
FSVS has been carried out by Huber et al. (2006). They 
make use of a variability test similar to  th a t described in 
Section 3.1 to  find signatures of the presence of variability 
w ith some indication of its timescale and am plitude. By us
ing the yearly re-observations they find a variability fraction 
of 5 to  8 percent in two survey regions. This num ber is larger 
th an  th a t found in Section 4.1 due to  several factors: in our 
analysis we are only considering short period variables and 
thus do not make use of the yearly re-observations, we de
term ine the variability fraction using the entire area of the 
survey instead of two separate regions, and we use a reduced 
weighted x 2 to  establish variability instead of the reduced 
un-weighted x 2 found in the public release FSVS d a ta  prod
ucts. Most of the variable sources found by H uber et al. 
(2006) are long period variables classified as such thanks to 
the V brightness of the re-observation a year later. The num 
ber of possible periodicities in the d a ta  when the sampling is 
sparse and the tim e span long is very large and their analy
sis is devised to  find possible variable systems more th an  to 
find their actual variability timescale and am plitude, which 
is one of the m ain goals of the work presented here.

Table 1 gives a list of the num ber of times each field 
was observed in V and the maximum tim e span of the data  
in each case. In summary, we have photom etric d a ta  th a t 
can be used for variability analysis for ~17.5 deg2 out of the
21 deg2 th a t constitute the FSVS. For ~9.2 deg2 the number 
of measurem ents is equal or more th an  15 whereas for the 
other ~ 8 .3deg 2 the num ber is between 5 and 15. This makes 
a difference in the accuracy w ith which we can measure the 
variability timescale of each object.

The m ethods used to  study the variability in the data  
are presented in Section 3. The results from the variability 
analysis are discussed in the different subsections of Sec
tion 4. In this paper we carry out a full variability study for 
point sources th a t have not only more th an  4 V band mea
surements taken over a two week baseline, bu t also positive 
detections in the B and I bands. Possible extreme colour 
systems are discussed in detail in Section 4.7.

2.1 D a ta  q u a lity  checks

We carried out several tests to  check the quality of the pho
tometry. These included plotting several quantities obtained 
from the d a ta  to  check for anomalies. We explored how the 
num ber of detected point sources changed w ith epoch for 
each field, the average point source V m agnitude per epoch 
per field and the ratio between the point source mean mag
nitude and the limiting m agnitude for each measurement.

We identified several fields th a t showed anomalies, such 
as field 31 CCD 4, in which one of the observations (num
ber 14) resulted in V band m agnitudes th a t were lower than  
the rest by 2 magnitudes. We found th a t the best way to 
identify these anomalies consisted of plotting the V band

m agnitudes for each point source detected in each field ver
sus its error, for each observation. An example of this test 
is shown in Fig. 1 where the point sources found in Field 
31 CCD 4 on four different epochs are plotted. Each panel 
presents the test for one observation. The average V band 
m agnitude (Vave) for all point sources and the limiting mag
nitude (Vlim) for each image is also given. W hen the field 
was observed through th in  clouds (e.g. epoch 13) the values 
of Vlim and Vave decrease bu t the shape of the curve does 
not change. On the other hand if something went wrong with 
the image or the d a ta  reduction we expect the shape of the 
curve to  change (e.g. epoch 14) giving us an indication th a t 
we should be wary of this V point when doing our variabil
ity searches. We could not trace the reason for the anomaly 
found in epoch 14 of field 31 and just discarded this data  
point.

We also carried out visual inspection of the raw unfolded 
lightcurves for all the variable point sources to  identify pos
sible problem atic photom etry points and when confirmed 
these points were thrown out.

3 V A R IA B IL IT Y  A N A L Y S IS  M E T H O D S

3.1 T h e variab ility  x 2 te s t

Groot et al. (2003) determ ine the variability of a given point 
source in the FSVS by calculating the reduced x 2 value of 
the object’s individual brightness measurem ents w ith re
spect to  its weighted m ean brightness value. An object is 
tagged as variable if its reduced x 2 is above the 5-<r level. 
This definition will be used in Sect. 4.1 to  determ ine the 
fraction of variable objects in the survey. Because we have 
colour inform ation for the m ajority of the objects, we can 
determ ine this ratio  for different types of systems.

3.2  T h e floatin g  m ean p eriodogram

If we not only want to  know whether an object is variable or 
not, bu t also w hat the timescale and am plitude of its vari
ability are, and thus w hat type of object it might be, we 
need to  use more refined m ethods to  determ ine its variabil
ity. Because of the relatively small num ber of V band obser
vations (between 2 and 33 depending on the field) we use 
the “floating mean” periodogram technique to  estim ate the 
characteristic variability timescale in each case. This m ethod 
works b e tte r than  the traditional Lomb-Scargle algorithm 
(Lomb1976; Scargle 1982) for small num ber of points and 
has been successfully applied to  planet searches (Cumming, 
M arcy & Butler 1999) and to  determ ine the orbits of sub
dwarf B binaries (M orales-Rueda et al. 2003). A minimum 
num ber of 5 V measurem ents is required to  calculate the 
floating mean periodogram.

The floating mean periodogram consists of fitting the 
d a ta  w ith a model composed of a sinusoid plus a constant 
of the form:

A(t) =  y +  K  sin(2n(t — t 0) / P ),

where y is the average V m agnitude, K  is the am plitude 
of the V variability, P  is the period and t  is the tim e of 
observation. For each given period we perform singular value 
decomposition least square fitting of the d a ta  solving for y
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F igu re  1. V magnitude versus V error for each point source detected in Field 31 CCD 4 in 4 different epochs. These plots were generated 
for all fields to check the quality of the data. See text for details.
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F igu re  2. True period versus calculated-true period using the floating mean periodogram for two example fields, 47 with 5 V band 
measurements and 78 with 33 measurements. The period search was stopped when either the difference between the calculated and the 
true period was larger than 3x the error in the period, or the maximum searchable period was reached, i.e. 2x time baseline (although 
this last condition was never reached). The ratio of the amplitude of the variability to error assumed in both examples is 50.

and K  (Press et al. 1992). We obtain the x 2 of the fits as a 
function of frequency ƒ =  1 /P  and select the minima of this 
x 2 function.

To test whether the periodogram was able to  recover the 
correct periods we generated, for at least 9 different ampli
tudes per field, synthetic lightcurves th a t vary sinusoidally 
with periods between 24 min and several days (we chose 
the upper limit to  be twice the tim e span of the observa
tions) in period steps of 0.1 days, using the tim e sampling 
of each field. For each am plitude and period, we generated 
lightcurves w ith 20 different phasings, i.e. 20 different to. 
For each of these 20 phasings, we generated 10 lightcurves 
where the m agnitude for each point was calculated given 
the period, the phasing, the am plitude and a fixed average 
magnitude. An error was added to  the resulting m agnitude 
for each point. This error was calculated by drawing a ran 
dom num ber from a norm al d istribution centred on zero with 
standard  deviation of 0.03, which is the average V band error 
found in the FSVS data.

We then used the floating mean periodogram to calcu
late the most probable period for each lightcurve, averaging 
the periods obtained for the 200 different lightcurves gener
ated for each input timescale and am plitude. The average 
obtained was a weighted average where the weights used 
were the errors of the periods determined. We stopped the

period search when the difference between the true and the 
calculated period was larger than  3a. This condition was al
ways reached before we got to  the maximum period allowed 
in the search. We noticed large deviations (although still 
within the 3a difference) between the calculated and true 
values at certain isolated periods. In these cases the true 
value for the following periods was again successfully recov
ered. These deviations are caused by the sampling windows 
of each given field. The presence of these isolated deviations 
prom pted us to  select the criteria described above to  stop 
the sim ulated lightcurve fitting even when, in occasions, the 
errors on the calculated period were so large as to  render the 
period determ ination highly inaccurate. To account for this 
inaccuracy, we will apply further filtering criteria to  the er
rors of the periods determ ined from the d a ta  in Section 4.3.

After carrying out the simulations, the result for each 
field, or at least for the ones w ith more than  10 observations, 
is th a t true  periods are recovered successfully w ith an error 
th a t increases w ith period. A few fields also show small devi
ations (but still w ithin 3a) from the true  values at the short
est period (24 min). A common trend  we observe is th a t, as 
we are reaching the limit period, the calculated values tend 
to  underestim ate the true  periods at the same tim e th a t the 
error in the calculated period increases. This is clear in bo th  
panels of Fig. 2 where we have plotted the calculated period

©c 0000 RAS, M NRAS 000 , 000-000
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F igu re  3. Maximum period that can be reconstructed from the simulated data depending on the ratio of the amplitude of the variability 
and the error in V (¿V). The period search was stopped when the same conditions described in Fig.2 were reached. The period search 
was carried out fixing the error in V to 0.03 mags and changing the amplitude of the variability. This is the average error in brightness 
we find in the FSVS.

versus the true  period. This seems to  indicate th a t, when 
pushed to  the limit, the periods calculated by the floating 
mean periodogram will be shorter than  the true  ones. Fig. 2 
shows, as an illustration, two example graphs for two fields 
th a t have a very different num ber of observations, field 47 
with only 5 V band observations and field 78 w ith 33 ob
servations. Notice th a t not only the num ber of observations 
is of im portance, bu t th a t using a different tim e sampling 
also generates slightly different graphs even w ith the same 
number of observations. The am plitude of the variability 
assumed also influences indirectly the maximum period we 
can determ ine in each case. Specifically, it is the ratio be
tween the am plitude of the variability and the errors in the 
photom etry which influence the success in recovering a pe
riod. By fixing the photom etric errors in the simulations to 
a  average =  0.03 mag, we explore the influence of this ratio  by 
varying only the am plitude of the variability. The graphs in 
Fig. 2 have been obtained assuming a variability am plitude 
of 1.5 mags (the maximum value used in the simulations) 
equivalent to  an am plitude - V band error ratio of 50.

We obtain similar curves for all the fields to  determine 
how effective the algorithm is at finding the true periods 
depending not only on the sampling and the num ber of ob
servations, bu t also on the am plitude of the variability and 
the brightness of the objects (which define the errors in the
V band m agnitudes). For each field we generate a curve like 
those shown in Fig. 3, which present the maximum period 
th a t we can reconstruct from the sim ulated d a ta  for a range 
of variability am plitudes. As expected, the larger the ampli
tude of the variability (equivalent to  a larger am plitude-error 
ra tio ), the longer the timescale of the variability th a t we can 
detect. The sampling and the tim e span of the observations 
have a direct influence on the maximum period we can de
tect. The graphs are presented only for the two example 
fields, 47 and 78, where the num ber of V band observations 
is very different over the same tim e span, ~ 7  d. In the case of 
field 47, w ith only 5 measurem ents, the maximum period we 
can reconstruct before the difference between true  and cal
culated period is larger than  3a is about 0.4 d (see left panel

of Fig. 2). Its limit period graph (left panel of Fig. 3) shows 
some departures from the expected behaviour, i.e. higher 
limit period as the am plitude/error ratio increases. In con
trast, for field 78, w ith 33 V measurem ents we can detect 
periods of up to  13.5 d for the same variability am plitude 
and the limit period graph shows the expected behaviour. 
A similar number of measurem ents over a shorter tim e span 
will only allow us to  measure shorter variability timescales. 
E.g. for field 26, w ith 29 measurem ents over 5 d, the m ax
imum period we can reconstruct (for variability am plitude 
of 1.5 mags) is 9.3 d.

We want to  remind the reader at this point, th a t by 
using the floating m ean periodogram we are fitting the data  
with sinusoidal curves. Any non-sinusoidal, or indeed any 
non-periodic variability present in the d a ta  will be poorly 
fitted.

The maximum period th a t can be reconstructed for all 
the fields in the FSVS simultaneously is plotted in Fig. 4. 
For an am plitude of the variability of ~0.25 mags (equivalent 
to  an am plitude to  m agnitude error ratio of ~8.3), we can 
reconstruct variability periods of up to  1 d for ~17.58 deg2 
out of the 18.11 deg2 available for search (66 fields out of the 
68 with more th an  4 V band measurem ents), we can recon
struct variabilities of up to  5 d for ~13.31 deg2 (50 fields). 
For am plitudes of 1.5 mag (m agnitude error ratio  of 50) 
we can reconstruct periods of up to  11 days for a region 
of 6.66 deg2 (25 fields) and so on. We can only search for 
periods of the order of 20 days in 2 fields.

We are also interested in detecting small am plitude and 
short period variability, the limits of the d a ta  being a 24 min 
sampling and the photom etric accuracy of ~ 3  millimags for 
the brightest objects (Groot et al. 2003). The right panel of 
Fig. 4 zooms into the the short timescale, small am plitude 
variability region. We reconstruct successfully (i.e. w ith less 
than  a 3a difference between the true  and calculated period) 
the minimum searchable period in all fields.
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F igu re  4. Left panel: gray scale map presenting the number of deg2 in the sky for which we can reconstruct a given variability timescale 
depending on the ratio of the variability amplitude and the magnitude error. Note that if a variability scale of 5 days can be reconstructed 
for a given field also variabilities smaller than 5 days can be reconstructed. The minimum limit being the minimum possible searchable 
period of 24 min. Right panel: same information but zooming into the short period, small amplitude/error region. We reconstruct the 
minimum searchable period for all fields. Note that the structure seen on this panel cannot be seen on the left hand side panel due to 
the coarser binning in Amplitude/<5V of the left hand side panel.

3.2.1 Our efficiency to detect the variability timescales of 
some interesting astronomical objects

Some interesting astronomical objects such as Cataclysmic 
Variables (CVs) and RR  Lyr show characteristic variabil
ity timescales. CV periods range from 80 min to  ~6 h  (al
though some of them  show longer orbital periods such as 
GK Per w ith a 2 d orbit). The variability of R R  Lyrae ranges 
from ~6  h  to  about 1 d. O ther interesting systems such as 
AM CVn binaries show orbital periods of the order of tens of 
minutes, too short to  be detected in the FSVS. On the other 
hand, orbital periods of 80 min will be detected in the full 
area of the FSVS, as long as the ratio  of the am plitude of the 
variability and the error in the V m agnitude is at least 10, 
i.e. we would be able to  detect all 80 min variables down to
V =  24 if their variability am plitude is a t least 2 mag, down 
to  V =  23 if the variability am plitude is at least 0.7 mag, 
and down to V =  22 if the variability am plitude is at least
0.36 mag. CVs show characteristic orbital variability ampli
tudes of the order of 0.1-0.4 mag thus we will be able to 
detect a fraction at least down to V =  22. For certain  fields, 
when looking at the short period region, the calculated pe
riod underestim ates the value of the true period. This will 
most probably happen also for the real lightcurves.

O rbital periods of up to  6 hours, and between 6 hours 
and 1 day (this last period range is typical of R R  Lyr) will 
be detected in 17.58 deg2 (all fields bu t two) as long as the 
ratio  of the am plitude of the variability and the V error 
is at least 20, i.e. we would be able to  detect all variables 
w ith periods of up to  1 day in this area down to V =  24 
if the variability am plitude is larger than  4 mag, and down 
to  V =  23 if the variability am plitude is at least 1.4 mag. 
The variability am plitudes typical of RR  Lyr range between 
~0.5 and > 1  mag, which indicates th a t we are sensitive to 
R R  Lyr down to V =  23 as long as the variability am plitude 
is at least ~1.4 mag.

O ther pulsating stars such as y D oradus stars, 5 Scuti 
stars, slowly pulsating B stars, 3  Cep stars and short pe
riod Cepheids show pulsation periods and am plitudes in the

detectable range of this survey. Some of them , like 5 Scuti 
stars, show very complicated oscillation patterns th a t are 
far from sinusoidal which means th a t, although they would 
be detected as variables w ith the x 2 test, the periods re
constructed w ith the floating mean periodogram will most 
probably be incorrect. Short period pulsators such as rapidly 
oscillating Ap stars, PG1159 stars, pulsating subdw arf B 
stars and pulsating white dwarfs, and long period pulsators 
such as RV Tauri stars and M ira stars will not be detected in 
the FSVS as their pulsating periods lie outside the range we 
are sensitive to. Solar-like stars show very small am plitude 
pulsations th a t cannot be detected in the FSVS.

Asteroids show rotational periods of the order of a few 
hours and also lie in the detectable range of the FSVS. We 
see a num ber of asteriod tracks in the FSVS images but 
these asteroids do not stay in the same position from image 
to  image and are discarded during d a ta  reduction.

We will use these results again in Section 4.3 to  estim ate 
how reliable our detections and non-detections for variability 
are a t given timescales and amplitudes.

4 R E SU L T S

4.1 Fraction  o f variab le sou rces

In the entire FSVS, using the x 2 test, after discarding prob
lematic points, we find a to ta l of 1 713 short timescale vari
able V -band point sources th a t have been detected also in 
the B and I bands. The num ber of non variable sources found 
(after applying the same criteria as for the variables sources, 
i.e. account for problem atic points and positive detections in 
B and I) is 173 276 (~1 percent of all point sources detected 
are short term  variables).

In the top left panel of Fig. 5 we present the d istribu
tion of sources in the FSVS in the form of a grey-scale plot, 
which shows th a t most objects fall along the main sequence 
w ith the largest numbers at its blue end. The top right panel 
presents the same plot for the variable sources in the FSVS
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F igure 5. Top left panel: non variable sources in the FSVS. Top right panel: short term variable sources in the FSVS. Bottom left panel: 
fraction of short term variable sources in the FSVS. The fraction is presented in percentages. The region in the colour-colour diagram 
where there are more variable sources lies above the blue cut-off, i.e. (B-V)<0.38, and 0<(V-1)<1. Bottom right panel: colour-colour 
diagram presenting the 976 variable point sources that have more than 4 measurements and can be studied using the floating mean 
periodogram method. Note that some of the blue variables found in this diagram might be QSOs.

as determ ined by the x 2 test. Again, most sources are situ
ated along the main sequence, bu t there is also a significant 
fraction of sources above the main sequence and as a ‘b lue’ 
extension of the main-sequence. To highlight the difference 
in distribution between the variable and non variable sources 
we present the fraction of variable sources as a function of 
colour in the lower left panel (which is basically the ratio of 
the upper two panels in Fig. 5). This shows a clear enhance
m ent of sources above the blue tip  of the main sequence 
(about 4 percent are variable) and a less marked enhance
m ent to the right and above the main sequence while the 
main sequence itself appears as an area w ith relatively few 
variables, of the order of 1 per cent. These values agree with 
those found by Everett et al. (2002) in a similar, albeit shal
lower, study.

The fraction of variable point sources found in each field 
using the x 2 test is given in Table 1. The fraction of vari
ables differs from field to field ranging from 0.06 to 13.68 
per cent. We find th a t fields w ith less than  4 measurem ents 
tend to have larger fractions of variables bu t we are not cer
tain  th a t there is a direct correlation w ith the num ber of 
observations and th a t other effects, such as position in the

sky, are not taking place. If we do not consider the fields 
with less than  4 observations, we determ ine a 0.7 per cent 
fraction of variables in the full FSVS. The distribution along 
the main sequence decreases only slightly, by 0.2 per cent, 
for all colour-colour bins.

4.2  S am p le o f  variables stu d ied  w ith  th e  floating  
m ean  p eriod ogram

Ten fields have less than  5 V measurements. The timescale 
of the variability for the variables in these 10 fields cannot 
be determ ined because of the low num ber of measurements, 
thus only a fraction of the 1 713 short term  variables found 
in the FSVS can be studied in more detail using the float
ing mean periodogram. Once we account for fields w ith less 
than  5 measurements, for problem atic epochs, and for ob
jects th a t although observed more than  4 times, were only 
detected 4 times or less, we end up w ith 976 point sources 
th a t can be studied in further detail. In most cases the non 
detection of a source was the result of faint objects, occa
sionally falling below the limit of detection, and in some 
cases of the objects being blended or truncated. After ac-
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Table 2. Fraction of variable objects (out of the 744) found in 
the FSVS for different cutoff limits on the error of the timescale 
and the error of the amplitude.

o
o

¿P (%) 1G 2G SG 4G

¿A (%) 
1G 29.4 29.7 29.7 29.7
2G 75.7 7G.2 7G.S 7G.S
SG 91.4 92.2 92.G 92.G
4G 9G.G 97.4 97.8 97.8

counting for these three factors we find th a t the fraction 
of variable systems found is independent of the num ber of
V measurements. For the objects w ith more th an  4 detec
tions, inform ation about the timescale and am plitude of the 
variability can be obtained. The d istribution of these 976 
sources in the colour-colour diagram  is given in the bottom  
right panel of Fig. 5.

4.3  T im esca le  and A m p litu d e  o f th e  variab ility

W hen we run the floating mean periodogram on the real 
d a ta  lightcurves we obtain their most likely variability 
timescale and the am plitude of the variability on th a t 
timescale. After rejecting those sources for which the period 
and am plitude measured lie outside the ranges th a t can be 
reconstructed, according to  the simulations carried out in 
Section 3.2, we are left w ith 744 variable point sources out 
of the 976 mentioned above.

To understand this sample of variables, we select dif
ferent cutoffs for the error in the variability timescale and 
am plitude calculated. Table 2 gives the fraction of variable 
point sources found for different combinations of error cu t
offs in timescale and am plitude. Applying an error cutoff of 
30 percent in the periods and 50 percent in the am plitudes 
we can already reconstruct the 744 initial variables. Apply
ing an error cutoff of 30 percent in bo th  period and ampli
tude we find th a t 50 percent of the variables show periods 
between 24 min and 6 hours, 22 percent between 6 hours and 
1 day, 20 percent between 1 and 4 days, and 8 percent show 
periods above 4 days. If we apply fairly strict error cutoffs 
for the period and am plitudes, i.e. 10 percent, the num ber 
of variable sources decreases to  219, of which the d istribu
tion in the same period bins is 51, 20, 19 and 10 percent 
respectively.

If we assume a norm al d istribution for the data , a 50 
percent error corresponds to  2a, a 30 percent error to  3.3a, 
a 20 percent to  5a, and a 10 percent to  10a.

The num ber of variable point sources for which we can 
determ ine their variability timescales and am plitudes by us
ing the floating mean periodogram test is a very good frac
tion of the to ta l number of variables detected using the x 2 
test (i.e. ~700 out of the 976 if we use error cutoffs of the 
order of 30 per cent).

Fig. 6 shows the ratio of variable sources for which we 
have determ ined the timescale and the am plitude of their 
variability w ith an error less th an  20 percent w ith the float
ing mean periodogram w ith respect to  the num ber of sources 
flagged as variable w ith the x 2 test as a function of the 
number of observations. To account for the fact th a t there

o
o

a
o

u o  « m
0JT3
X

CL,
S

10 2 0  30

N u m b e r  of  V o b s e r v a t i o n s

F igu re  6. Ratio of variable sources solved with the floating mean 
periodogram with respect to the number of sources flagged as 
variable with the x 2 test, as a function of number of observations. 
We have only included the sources determined using the floating 
mean periodogram that have errors of less than 20 percent. We 
only plot those fields that contain more than 10 variables. FMP 
stands for floating mean periodogram.

are large differences between the num ber of variable sources 
for each field, we have only plotted those fields for which 
the num ber of variable sources is 10 or more. There is a 
clear correlation between the num ber of observations and 
the fraction of variables we can solve w ith the floating mean 
periodogram. Including the fields w ith less than  10 vari
ables increases the scatter in the plot, whereas including 
only those fields w ith 20 or more variables decreases the 
scatter. The slope of the correlation remains the same and 
indicates th a t w ith a num ber of observations of the order of 
30, taken w ithin a 2 week tim e span, we can reconstruct most 
variables present in the d a ta  (with those periods and am
plitudes in the range determ ined in Section 3.2). Of course, 
this argum ent assumes th a t the lightcurves of the variables 
are close to  sinusoidal.

Fig. 7 presents the d istribution of variables we find 
in the FSVS according to  the period and am plitude of 
the variability as well as their cumulative period distri
bution. The top panels consider the to ta l number of vari
ables in the trusted  range of periods and am plitudes (689) 
where the error on the periods and am plitudes is less 
than  30 per cent. The bottom  panels present the d istri
butions when we only take the systems where the period 
and am plitude determ ined has a maximum error of 10 
per cent. In bo th  cases we find th a t most systems lie at 
short periods and low am plitudes, w ith only a few systems 
showing larger am plitudes and periods. We find th a t 50 
per cent of the objects show periods below 6 hours with 
peaks in the 30 per cent error d istribution at ~24m in, 
~0.03days (~43m in), ~0.12days (~2.9hours), ~0.79days 
(~19hours), ~1 .3days and ~4days, and in the 10 per cent 
distribution at ~0.12days (~2.9hours). In the 30 per cent 
period distribution, the clump of sources between ~24 and 
36 min (—1.778< logP  <  —1.6) contains 67 sources. To con
firm th a t these are short period variables, and not ju st a
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F igu re  7. Histograms showing the cumulative period distribution (left panels), the period distribution (middle panels) and the amplitude 
distribution (right panels) for the short term variable point sources in the FSVS. Top: the 689 out of 744 sources with accuracies in the 
periods and amplitudes of the order of 30 per cent or less. Bottom panels: sources where the error in their periods and amplitudes is of 
the order of 10 per cent or less.

system atic problem caused by the sampling (after all the 
minimum period we are sensitive to  is 24 min) they were 
inspected by eye resulting in 80 per cent being bona-fide 
short period variables w ith the remaining 20 per cent show
ing only one point off the average brightness of the target 
and thus giving the short period result based only on one 
point variability. These one point off sources are not present 
in the 10 per cent sample.

Regarding the am plitude distribution, 50 per cent of the 
objects show am plitudes lower th an  ~0.07 mag in the 30 per 
cent error sample and lower th an  ~ 0.1 2 mag in the 10 per 
cent sample.

W hen we combine the num ber of sources we find per 
period and am plitude bin w ith the sensitivity of the float
ing mean periodogram search, plotted in Fig. 4, we obtain 
lower limits for the space density of variables, i.e. num ber 
of variables per square degree, versus period. These are pre
sented in the form of a histogram  in Fig. 8. We see four 
distinct peaks in the d istribution centred at 6 hours, 1 day,
3.75 days and 12.75 days w ith a somewhat less significant 
peak at 6 days. The highest density of variables show pe
riods below 12 hours. These periods include CVs, R R  Lyr 
stars, and other short period pulsators such as 5 Scuti stars. 
The period range centred at 1 day includes also possible 
CVs, RR  Lyr and other pulsators like y Doradus stars and 
Pop II Cepheids. A t 3.75 days we would still find some longer 
period CVs, y Doradus stars, Pop II Cepheids and longer pe
riod pulsators such as subdw arf B stars. A t periods around
12.75 days, we expect to  find, apart from binaries w ith those

P e r i o d  (d)
F igu re  8. Space density of variables obtained from the FSVS.

orbital periods, Pop II Cepheids contributing to  the space 
density of variables.

4.4  V ariab ility  co lour-co lou r d iagram s

Keeping in m ind the uncertainty of the variability timescales 
determined, when we combine the variability inform ation 
with the colour inform ation available for the FSVS we obtain 
the colour-colour diagrams shown in Fig. 9. We find th a t, if 
we take only the sources w ith less th an  30 per cent errors 
in their timescales and the am plitudes, 344 point sources
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344 so u rces  : 0.4 — 6 h  152 sou rces: 0.25 — 1 d 138 sou rces: 1 — 4 d 55 sou rces: > 4 d

(V—I) (V-I) (V-I) (V-I)

F igu re  9. Colour-colour diagrams for several variability timescales obtained from the FSVS after applying a 30 per cent error cutoff in 
both the timescale and amplitude of the variability. The solid curve indicates the 3-a upper limit of the main sequence. The dashed line 
indicates the blue cut-off at (B-V)<0.38.

160 so u rces  : 0.4 — 1 h  66 sou rces: 1 — 2 h  39: 2 — 3 h  35: 3 — 4 h

(V-I) (V-I) (V-I) (V-I)

F igu re  lO. Same as in Fig.9 but only for short variability timescales. Most short period variables show variability timescales lower than 
lh .

show variabilities shorter than  6 h (0.25days). These short 
timescale variables are found along the main sequence in the 
colour-colour diagram  (see first panel of Fig. 9), where we 
expect to  find for example S Scuti stars, as well as above 
the main sequence and in more extrem e colour areas usu
ally filled by binary systems where one of the components 
is blue and the other red, e.g. detached red dwarf-white 
dwarf binaries. A t these short timescale variabilities we also 
find a clump of objects above the, so called, blue cut-off 
a t (B -V )< 0 .38 . The blue cut-off of the main sequence re
sults from the com bination of the num ber density of differ
ent spectral types and the scale height of the Galaxy. The 
colours and the short variability timescales, of the order of 
characteristic close binary orbital periods, suggest th a t these 
sources above the blue cut-off are possibly interacting bi
nary systems of the CV type or detached binary systems 
such as subdw arf B binaries. Longer coverage, be tte r sam
pled lightcurves combined w ith spectroscopy are necessary 
in order to  identify the sources.

The variable sources w ith timescales shorter than  6 h 
represent 50 per cent of the to ta l num ber of short timescale 
variables in the survey. Fig. 10 shows how most of those short 
period sources subdivide in smaller variability timescale 
ranges. We find th a t about half of the short period sources 
have variability timescales shorter th an  1 h. These are again 
distributed along the main sequence w ith a few objects 
placed above it.

There are 152 objects showing variability in the 0.25 
- 1 d range. These objects are also mostly distributed 
along the main sequence, including y Doradus pulsators 
amongst others, w ith some cases found in the extreme 
colour region. The R R  Lyr variables present in the sur
vey should be found in this variability range. If we com
bine this w ith the colours expected for RR  Lyr systems,
i.e. 0 .1< (B -V )< 0 .45 , 0 .1< (V -1)< 0 .65  (Guldenschuh et 
al. 2005) we find 12 R R  Lyr candidates. One of these will 
be discussed, as an example, in Section 4.6.

We find 138 sources th a t show variabilities between 1
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and 4 d again distributed mostly along the m ain sequence. 
This would include 7  Doradus pulsators as well as Pop II 
Cepheids. There are 55 point sources th a t show variabilities 
on timescales longer th an  4 d. Binary systems w ith these 
periods as well as Pop II Cepheids are included in this period 
range. The blue sources found in these two period ranges 
above the blue cutoff could be subdw arf B slow pulsators or 
binaries.

Fig. 11 presents similar diagrams to  those in Fig. 9 but 
for the sources where the error limits were set to  20 percent. 
The distribution of variables in the diagrams is very similar 
to  the initial one. Again about half of the sources show vari
ability timescales shorter th an  6 h. Most of the objects th a t 
have disappeared from the diagram  come from the shorter 
period ranges (23 per cent out of the 0.4 - 6 h  bin and 22 per 
cent out of the 0.25 - 1 d bin). This could be due to  the fact 
th a t if the signal is not sinusoidal or regular, the floating 
mean periodogram tends to  calculate periods shorter than  
the input ones w ith large errors. It is worth noticing th a t 
a few of the interesting objects above the blue cut-off have 
disappeared.

4.5 Fraction  o f variab le sou rces as a fu n ction  of 
sp ectra l ty p e

The fraction of variable point sources along the m ain se
quence, as a function of spectral type (as defined in Johnson 
1966), is presented in Table 3. The num ber of variables used 
here is th a t obtained from the x 2 test. The fraction of vari
ables is constant w ith spectral type and has a value around
1 per cent.

We also present the d istribution of variability periods 
and am plitudes measured for the num ber of variables th a t 
were analysed w ith the floating mean periodogram algo
rithm . Four period bins and four am plitude bins are pre
sented in Table 4. Some spectral type ranges contain very 
few objects. For those w ith a larger num ber of objects (K0 to 
M5) the variable sources spread themselves in similar frac
tions in the spectra ranges K0 to  M0 w ith more short pe
riod systems in the spectral range M0 -  M5. The fraction of 
variables w ith timescales longer than  4 days is significantly 
smaller than  in the other timescale bins. In the case of the 
am plitudes of the variability, most sources show variabilities 
with am plitudes lower than  0.1 mags.

4.6 E xam p le ligh tcu rves

Fig. 12 presents the lightcurves for two example sources 
found in our data. The examples have only been selected 
to  illustrate two very different samplings. The first example 
corresponds to  one of the candidate RR  Lyr (see Section 4.4) 
for which we determ ined a period of 6.34 h from the floating 
mean periodogram. The second example corresponds to  a 
source w ith very blue colours, for which we have obtained 
spectra th a t suggests it is a subdw arf B star. The period 
measured for this system, which probably corresponds to  its 
orbital period in a binary system, is 4.95 h. For bo th  sources 
we present the measurem ents as a function of phase folded at 
the period determ ined from the floating mean periodogram. 
The best sinusoidal fit to  the d a ta  is also plotted.

The FSVS covers a region in the sky in which there are

two known cataclysmic variables, GO Com and V394 Lyr. 
These two sources were identified as variables in bo th  the 
x 2 and the floating mean periodogram tests. Interestingly 
enough, bo th  of them  went into ou tburst during the ob
servations which made it more difficult to  determ ine their 
orbital periods. GO Com was observed in three different 
epochs and it rose by a m agnitude in V from the second to 
the th ird  epoch (from 19.4 to  18.5). In an attem pt to  sub
trac t the ou tburst contribution to  the variability, and thus 
to  be able to  measure its orbital period, we calculated its av
erage brightness for each epoch and subtracted  the average 
from the measurem ents taken on th a t epoch. W hen we run 
the floating mean periodogram on the resulting lightcurve 
we obtain a periodogram w ith two m ain groups of aliases, 
one centred in 30 min and another on 90 min. The sampling 
of the lightcurve does not allow us to  determ ine the pe
riod w ith more accuracy than  this. The second alias lies 
near the 94.8min period determ ined by Howell et al. (1995). 
V394 Lyr was observed in 7 epochs and it rose by two mag
nitudes in V from the first to  the sixth (from 19.1 to  17) 
starting  to  decrease on the the seventh. We followed the 
same steps outlined above for GO Com and found the lower 
x 2 aliases to  be 43 min and 4.32 h. There are no measure
ments of the orbital period of V394 Lyr in the literature th a t 
we can compare these values with. The folded lightcurves on 
these two periods do not look convincing which lead us to 
th ink th a t none of these are the true orbital period of the 
system.

4.7  Sources not d e tec te d  in all th ree  bands

A th ird  of the variable point sources found in the FSVS 
using the x 2 test were not detected either in B, I or in both  
B and I bands. In a handful of cases this was due to  the point 
source being close to  the CCD boundary, in 21 percent of the 
cases the source appeared as blended w ith another one, in 
28 per cent of the cases the source was not detected because 
it was too faint, and in 50 per cent of the cases the source 
was sa turated  in the I band. Most of these sources sa turated  
in the I band are very bright in the three bands (71 percent) 
indicating th a t about one sixth of the variable sources found 
are at the bright end of the survey. This is expected as most 
variables probably show low am plitude variations which are 
easier to  detect for bright sources. In the case of the blended 
sources, blending would most probably affect the V band 
magnitudes perhaps introducing spurious variability.

On the other hand, 29 percent of the sources undetected 
in B and /o r I, do show larger colour differences, (B -1 )> 3  
and up to  5 m agnitudes in some cases. Colour differences 
of (B -1 )> 3  are expected for some main sequence stars and 
do not imply th a t we are dealing w ith extreme colour ob
jects. The lower limit colours calculated for these sources 
(by assuming their I band m agnitude is equivalent to  the
I band m agnitude of the brightest unsaturated  sta r in the 
field) fill an area of the colour space, which is also filled 
by the point sources th a t were detected (unsaturated) in 
the three bands. This indicates th a t, although their colours 
are more extreme, they are not unusual compared w ith the 
sources detected in all three bands, they are just brighter 
and therefore sa turated  in the I band.

The same analysis carried out in Section 4.3 for point 
sources w ith B, I and V detections, and more th an  4 V
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264 s o u rc e s  : 0.4 — 6 h  119 so u rc es : 0.25 — I d  133 so u rces : 1 — 4 d 51 so u rc e s : > 4 d

(V-I) (v—I) (v—I) (v—I)

F igure  11. Same as in Fig.9 but with error limits set to 20 for both timescales and amplitudes.

Table 3. Fraction of variable sources per spectral type bin found in the FSVS. Notice that although the first main sequence bin (spectral 
types F0—F5) contains more variables than the rest, this is likely to be the result of including non main sequence sources in that bin. 
Non MS stands for non main sequence sources. Two fractions are given, for all sources in the FSVS and only for those with more than 
3 V measurements.

Jpectral type B -V V -I #  Var #  Sources Fraction (‘

non MS < 0.38 0.47-0.64 11 700 1.6
non MS < 0.38 0.00-0.4 29 833 3.5
F0-F5 0.31-0.43 0.47-0.64 13 602 2.2
F5-G0 0.43-0.59 0.64-0.81 62 6054 1.0
G0-G5 0.59-0.66 0.81-0.89 20 1816 1.1
G5-K0 0.66-0.82 0.89-1.06 63 6814 0.9
K0-K5 0.82-1.15 1.06-1.62 204 20207 1.0
K5-M0 1.15-1.41 1.62-2.19 133 12974 1.0
M0-M5 1.41-1.61 2.19-3.47 153 16256 0.95
M5-M8 1.61-2.00 3.47-4.70 3 179 1.7

measurem ents can be carried out for 154 sources w ith no 
B and /o r I detections. In these cases the inform ation we 
have of the variable sources is only their timescales and am
plitudes and not their colours. Once we discard sources for 
which their calculated periods and am plitudes lie outside the 
trustab le ranges determ ined in Section 3.2 for each field, we 
are left w ith 71 short period variable sources. We find th a t
29.5 per cent of the variables w ith 30 per cent accuracy in 
their periods and am plitudes show periods between 0.4 and 
6 hours, 39.3 per cent between 6 hours and 1 day, 21.3 per 
cent between 1 and 4 days, and 9.8 per cent of more th an  4 
days. These values are slightly different (19, 23.8, 33.3 and 
23.8 respectively) if we consider the 21 sources where the 
periods and am plitudes determ ined have errors of less than
10 per cent. W hen we compare this d istribution of variables 
in period bins w ith the one we found for systems w ith B 
and I measurem ents (50, 22 20, 8 per cent respectively for 
each period b in ), we find th a t the num ber of shorter period 
variables (first period range) is smaller for the sources with 
no B and /o r I detections and the num ber of variables in the 
last two period bins is larger.

5 C O N C L U SIO N S

We have analysed the short timescale variability informa
tion contained in the FSVS and find th a t about 1 per cent 
of all point sources are variable. Of those variables, about
50 per cent show variability timescales shorter th an  6 hours,
22 per cent show variabilities between 6 hours and 1 day, 20 
per cent between 1 and 4 days and 8 per cent show periods 
longer th an  4 days. The d istribution of variables w ith spec
tra l type is fairly constant along the m ain sequence, with
I per cent of all the sources being variable, except at the 
blue end of the m ain sequence where the fraction of vari
able sources increases possibly due to  contam ination by non 
m ain sequence sources. Above the m ain sequence, beyond 
the blue cut-off at (B -V )< 0 .38 , we find th a t the fraction of 
variables increases to  3.5 percent.

The highest space density of variables found in the 
FSVS (i.e. 17 per deg2) show periods below 12 hours. These 
include CVs, RR  Lyr stars, and other short period pulsators 
such as S Scuti stars. We find a density of 4 variables per deg2 
centred at a 1 day period which includes longer period CVs, 
RR  Lyr and other pulsators like y Doradus stars and Pop
II Cepheids. A space density of 2 variables per deg2 a t 3.75
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Table 4. Period and amplitude distribution of the main sequence variables analysed with the floating mean periodogram. Four bins for 
the variability timescale and four for the variability amplitude are shown. The percentage of sources in each bin is given. FMP stands 
for floating mean periodogram. Amplitudes are given in magnitudes.

Spectral type #  VarFMP Period distribution(%) Amplitude distribution(%)
0.4-0.6 h 0.25-1.0 d 1.0-4.0 d >4 d 0.01- 0.1 0.1-0.25 0.25-1.0 > 1.0

F0-F5 6 50.0 33.3 0 16.6 16.6 50.0 16.6 16.6
F5-G0 30 53.3 23.3 23.3 0 60 26.6 10.0 3.3
G0-G5 6 50.0 33.3 16.6 0 83.3 16.6 0 0
G5-K0 18 61.1 22.2 5.5 11.1 88.8 11.1 0 0
K0-K5 86 43.0 23.2 23.2 10.5 82.6 11.6 5.8 0
K5-M0 66 36.4 33.3 25.8 4.5 77.3 12.1 7.6 3.0
M0-M5 69 63.8 10.1 18.8 7.2 78.3 17.4 4.3 0
M5-M8 2 100.0 0 0 0 50 50 0 0

Phase Phase

F igu re  12. Lightcurves of two example objects folded on the period determined with the floating mean periodogram. The left hand side 
lightcurve corresponds to one of the RR Lyr candidates discussed in Section 4.4 and the right hand side lightcurve to a subdwarf B star 
candidate. The best sinusoidal fit is also plotted.

days includes, some longer period CVs, y Doradus stars, Pop
II Cepheids and longer period pulsators such as subdw arf B 
stars. A t 12.75 days we also find 2 variables per deg2. These 
would be mainly binaries w ith those orbital periods and Pop
II Cepheids.

It is easier to  compare these space densities w ith those 
expected for the mentioned populations when we combine 
the period inform ation w ith the colours of the populations 
under study. The case of CVs and many pulsators is com
plicated as they appear mixed through several period and 
colour ranges and in many cases it is necessary to  obtain 
spectra to  confirm the nature of the variable source. The 
space densities of CVs and subdw arf B stars will be studied 
in detail in a future paper. In the case of RR  Lyr stars, we 
find 3 certain  members and 9 other candidates down to V 
=  21.6. Assuming we have detected all RR  Lyr between V 
=  16-22, we determ ine a space density of ~ 10- 3kpc-3  in 
agreement w ith the space density determ ined by Preston, 
Shectm an & Beers (1991) at a distance of 100-150kpc from 
the Galactic Centre.

By using the floating mean periodogram, we have deter
mined the most likely periods and am plitudes of a fraction 
of the variables found in the FSVS. We find th a t we are 
complete down to V =  22 for CVs in the minimum period 
(80 min) as long as they show variability am plitudes of the

order of 0.4 mag. We are complete down to V =  22 for pe
riods between 80 min and 1 day in a 17.82 deg2 area of the 
survey as long as the am plitude of the variability is a t least 
0.7 mag. This includes most RR  Lyr stars. We will be able 
to  detect RR  Lyr also down to V =  23 when their variability 
am plitudes are at least 1.5 mag.
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