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A b s tra c t. This paper reports on investigations into the Java C ard  
transaction mechanism, especially on the interaction with so-called non- 
atomic methods in the Java C ard  API. This work started with efforts 
to develop a formalisation of the transaction mechanism that could be 
used to formally verify the correctness of applications that use these 
mechanisms to protect themselves from card tears—the sudden loss of 
power caused by removing a smart card from a terminal. During work to 
formalise the Java C ard  platform we came across ambiguities in the of­
ficial specification, and subsequent experiments with real cards revealed 
that behaviour of cards varies a lot, and some Java C ards fail to meet 
the official specification. We will discuss the outcome of our experiments 
with real cards and attempts to formalise the official specifications. In 
particular, we show how we can break the security of the reference im­
plementation of PIN objects on some smart cards, and how our formal 
specification can be used to verify the behaviour of Java C ard  code, 
even in the presence of card tears, using the KeY program verifier or 
using model checking.

1 O verview

One of the  more com plicated features of the Jav a  C a rd  platform  is the  trans­
action mechanism , which is provided to  pro tect applications from the effect of 
card tears— the sudden loss of power due to  removing the card from a term inal, 
which m ay occur a t any m om ent. The transaction  m echanism  allows the pro­
gram m er to  enforce the atom icity  of a rb itra ry  Jav a  C a rd  code blocks, which in 
tu rn  guarantees d a ta  consistency on the card. On top  of th a t, two non-atom ic  
A PI m ethods are provided (arrayCopyNonAtomic and a rray F illN o n A to m ic) 
th a t allow the program m er to  by-pass the transaction  mechanism. A possibil­
ity  to  by-pass the transaction  m echanism  can be im portan t from the  security 
point of view, as will be explained later using the standard  example of a PIN 
try  counter.

During our research in formal program  verification [13,1] we m ade an a ttem p t 
to  form ally specify the  behaviour of the  J ava Card transaction  m echanism  [3,
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18,11]. A careful study  of different versions (2.1.1 and 2.2.2) of the official Sun1 
Java Card  specification [20, 22] lead us to  the following observations:

— some very specific transaction  use scenarios involving non-atom ic m ethods 
are not covered in the  specification,

— recent versions of the  Jav a  C a r d  specification introduce deliberate under­
specification—non-determ inistic behaviour of the transaction  m echanism  in 
com bination w ith non-atom ic m ethods and card tears is officially allowed.

Thus we perform ed an experim ental study  on a few cards (7 cards from 4 different 
m anufactures) to  see how the reality  relates to  the official specification. The 
result of the study  clarified the missing p arts  of the  specification, bu t, more 
im portantly, also showed th a t the  behaviour of the  cards varies a lot when non- 
atom ic m ethods are considered, and th a t some cards fail to  m eet the  official 
specification, despite the freedom introduced by the  under-specification.

For us, the results of the experim ental s tudy  have two m ajor consequences:

— clarified sem antics of the  transaction  m echanism  allowed us to  fully formalise 
transactions and non-atom ic m ethods in the KeY system — a formal program  
verifier for J ava and J ava Card program s. This allows us to  formally verify 
behavioural properties of program s th a t involve the transaction  m echanism 
and non-atom ic m ethods,

— the non-determ inism  allowed by the official J ava Card  specification and non- 
com pliant behaviour of some of the cards opens possibilities for cheap fault 
injection attacks. In particular, it is possible to  break the  (naive version of) 
reference im plem entation of the OwnerPIN class, as we will dem onstrate. To 
prevent such attacks, more defensive program m ing techniques are needed. To 
prove the correctness of such defensive program s w ith respect to  card  tears, 
we use the well-established formal verification technique of model checking.

The rest of this papers is organised as follows. Section 2 gives an overview of 
the J ava Card transaction  m echanism  and quotes the official J ava Card speci­
fication on the  m ost im portan t issues. Section 3 elaborates on the questions left 
open by the  official specification. Section 4 describes our experim ental study  and 
its results. Section 5 discusses the  PIN  try  counter example and the verification 
of behavioural properties of the  OwnerPIN reference im plem entation. Section 6 
elaborates on the  possible fault injection attacks, counterm easures in the form 
of defensive program m ing against such attacks, and shows how model check­
ing tools can be used to  check the adequacy of such counterm easures. Finally, 
Section 7 sum m arises the paper.

2 J a v a  C a r d  T ransaction M echanism

The m em ory model of J ava Card  [7, 22] differs slightly from Java’s model. In 
sm art cards there are two kinds of w ritable memory: persistent (storage) mem­
ory (EEPR O M ), which holds its contents between card sessions, and transient

1 h ttp ://ja v a .su n .c o m
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(scratch-pad) m em ory (RAM ), whose contents d isappear when power loss oc­
curs, in particu lar when the card is removed from the card reader (card tear). 
Thus every m em ory elem ent in Jav a  C a rd  (variable or object field) is either 
persistent or transien t. By default, all objects are created in persistent memory. 
Thus, in Jav a  C a rd  all assignm ents like o . a t t r  = 2, t h i s . a  = 3, and a r r [ i ]  
= 4 have perm anent character, i.e. the  assigned values will be kept after the 
card loses power. Additionally, an array  (its contents) can also be a allocated 
in transien t m em ory by calling a certain  m ethod from the Jav a  C a rd  API (e.g. 
m ak eT ransien tB y teA rray ) to  create the array. Finally, all local variables and 
some of the system  owned arrays (such as the APDU buffer) are transient.

Java Card provides a transaction  m echanism  to  perform  atom ic updates to  
persistent m em ory even in the case of a card  tear, so th a t the consistency of 
the persistent d a ta  can be preserved. The J ava Card API provides three na­
tive m ethods to  achieve this, nam ely b e g in T ra n sa c tio n , co m m itT ransac tion , 
and a b o r tT ra n s a c t io n  in the  class JCSystem. Any updates to  persistent mem­
ory between b e g in T ra n s a c tio n  and co m m itT ran sac tio n  are guaranteed to  be 
atomic. So after invoking b e g in T ra n s a c tio n  any updates to  persistent m em ory 
are conditional, in the  sense th a t if there is a card  tea r before the  subsequent in­
vocation of com m itT ran sac tio n , these updates will be rolled back. Any updates 
to  persistent m em ory are also rolled back if after a call to  b e g in T ra n s a c tio n  
the m ethod a b o r tT ra n s a c t io n  is called explicitly. To quote Sun’s JC R E  speci­
fication, version 2.2.2 [22, Section 7.5]:

“If power is lost (tear) or the  card  is reset or some other system  failure 
occurs while a transaction  is in progress, then  the JC R E  shall restore to  
their previous values all [persistent] fields and array  com ponents condi­
tionally  u pda ted  since the  previous call to  b e g in T ra n s a c tio n .”

The situation  is com plicated by the fact th a t there are two non-atom ic  m eth­
ods in the  Jav a  C a rd  API which by-pass the transaction  mechanism, nam ely 
arrayCopyNonAtomic and a rray F illN o n A to m ic  in the class U t i l .  To quote 
Sun’s Jav a  C a rd  A PI specification [21] for these m ethods:

“This m ethod does not use the  transaction  facility during the copy [fill] 
operation even if a transaction  is in progress. Thus, this m ethod is su it­
able for use only when the contents of the  destination  array  can be left 
in a partia lly  modified sta te  in the  event of a power loss in the  middle 
of the  copy [fill] operation .”

Not surprisingly, bo th  arrayCopyNonAtomic and a rray F illN o n A to m ic  are na­
tive; it would be impossible to  im plem ent th is behaviour d irectly  in the J ava 
Card  language.

There are two reasons why one m ight w ant to  use the  non-atom ic m eth­
ods: efficiency and security. Regarding efficiency, if an array can be left in a 
partia lly  modified s ta te  (in particular, all transien t arrays), updating  it w ith­
out involving the transaction  m echanism  will result in a faster operation of 
the applet. Regarding security, because the non-atom ic m ethods by-pass the
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transaction  mechanism, they  should be used for operations th a t— for security 
reasons—should never be rolled back. In some applications, certain  d a ta  has to  
be u pda ted  unconditionally even when a transaction  is in progress. The typical 
example concerns PIN  try  counters. Such a counter, associated w ith a PIN  code, 
is decrem ented each tim e the user enters an incorrect guess of the  PIN  code, so 
th a t the  card can “shut down” if too  m any incorrect guesses are done. B y calling 
the PIN  verification routine inside a transaction  and deliberately aborting  th a t 
transaction, the  update  to  the  try  counter would be rolled back. This would be 
a m ajor security breach, as it gives an attacker an infinite num ber of tries to  
guess the PIN  code— the try  counter would never be decrem ented. To avoid this 
s ituation  a non-atom ic m ethod should be used to  exclude any changes to  try  
counter from any transaction  th a t m ay be in progress..

In fact, one of the  early reference im plem entations (included in the Sun J ava 
Card  Development K it 2.0) of the  OwnerPIN class did not take the possibility of 
a transaction  into account: the counter was decreased in a conditional way and 
subjected  to  a transaction  roll-back:2

p u b l ic  c l a s s  OwnerPIN im plem ents PIN { 
b y te  t r i e s L e f t ;

b o o lean  c h e c k ( . . . )  {

t r i e s L e f t — ;

}
}

This was corrected in the J ava Card 2.1.1 reference im plem entation as follows:3

p u b l ic  c l a s s  OwnerPIN im plem ents PIN { 
b y te [ ]  t r i e s L e f t  = new b y te [ 1 ] ;  
b y te [ ]  tem ps =

JC S y stem .m ak eT ran sien tB y teA rray (1 , JCSystem.CLEAR_ON_RESET);

b o o lean  c h e c k ( . . . )  {

tem ps[0] = t r i e s L e f t [ 0 ]  -  1;
/ /  u p d a te  th e  t r y  c o u n te r  n o n -a to m ic a lly :  
U til.a rray C o p y N o n A to m ic(tem p s, 0 , t r i e s L e f t ,  0 , 1 );

}
}

2 In most examples in this paper we skip some details to improve readability. In 
particular, we omit the sh o rt/b y te  casts required in Java Card programs.

3 Again, this is not an exact quote from the reference implementation (for example, 
here some methods are in-lined), but the code is equivalent.
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Moreover, newer versions (2.2 onwards) of the J ava Card specification, in­
troduced a disclaimer sta ting  th a t the com bination of the  transaction  m echanism 
and non-atom ic m ethods m ay give unpredictable results in the  case the tran s­
action is aborted:

“N o te  -  The contents of an array  com ponent which is upda ted  using 
the arrayCopyNonAtomic m ethod or the a rray F illN o n A to m ic  m ethod 
while a transaction  is in progress, is not predictable, following the  abor­
tion  of the  transaction . [caused by a card tear or a call to a b o r t­
T ra n sa c tio n ]”

Note, th a t th is sta tem ent by itself already has far-reaching consequences. It 
means th a t using a non-atom ic m ethod to  by-pass the transaction  m echanism  is 
in general not safe! In particular, a card  tea r during the arrayCopyNonAtomic 
call in the example im plem entation of the  check m ethod in OwnerPIN above 
could leave the try  counter w ith a random , possibly large, value. We will con­
centrate  on this issue la ter in Section 6 and show how such problem s can be 
avoided by defensive program m ing.

3 O pen Q uestions in th e  J a v a  C a r d  Spécification

In the course of try ing  to  give a formal description of the  Jav a  C a rd  tran s­
action m echanism  [3,11,18], we came across one issue th a t is not clear in the 
official Jav a  C a rd  specification. Namely, it does not s ta te  w hat should happen 
if a persistent array is updated  w ith a regular assignm ent (conditionally) and 
w ith a non-atom ic m ethod (unconditionally) w ithin the same transaction , and 
th a t transaction  is aborted. For example, w hat is the value of a [0 ]  a t the end 
of execution of the two program  blocks presented in Figure 1? Adm ittedly, such 
examples are very contrived; using b o th  norm al updates and the non-atom ic 
m ethods to  update  the  same array  inside a transaction  is not som ething one 
would expect to  happen  in norm al Jav a  C a rd  code. Still, the  language spec­
ification should be unam biguous for any legal Jav a  C a rd  program . After all, 
there are no guarantees th a t malicious or sim ply badly-w ritten  applets will not 
contain strange coding patterns.

a[0] = 0;
JCSystem .beginTransaction();

/ /  cond itio n a l update: 
a[0] = 1;
/ /  unconditional update a[0] = 2: 
U til.a rray F illN o n A to m ic(a ,0 ,1 ,2 ); 

JC System .abortT ransaction();
/ /  a[0] == ?

a[0] = 0;
JCSystem .beginTransaction();

/ /  unconditional update a[0] = 2: 
U til.a rray F illN o n A to m ic(a ,0 ,1 ,2 ); 
/ /  cond itio n a l update: 
a[0] = 1; 

JC System .abortT ransaction();
/ /  a[0] == ?

Fig. 1. Mixing conditional and unconditional updates within one transaction.
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Some other questions th a t we would like to  be able to  answer are the fol­
lowing. Does the  unpredictability  im plied by non-atom ic m ethod calls inside a 
transaction  indeed take place on real cards? If so, does it happen for all the  cards, 
or only some? How unpred ictab le/random  array  elem ents can get? Possibly, do 
the cards reveal some other problem s associated w ith non-atom ic m ethods? If 
so, w hat are the  consequences? Finally, we also find the phrase “contents of an 
array  com ponent” unclear. Does th is m ean th a t only one array  element (compo­
nent) associated w ith one array  index can be left in an undefined sta te , or can 
the whole array  be random ised?

4 E xperim en ts

Given the questions about the  transaction  m echanism  and non-atom ic m eth­
ods raised in the  previous section, we carried out experim ents w ith test applet 
executing on sm art cards from different m anufacturers. The experim ents are de­
scribed a t length in [12]. During the course of further research we tested  some 
more cards—curren tly  7 cards from 4 different m anufacturers have been tested.

The test applet sim ply runs all sorts of com binations of the  transaction  mech­
anism and non-atom ic m ethods: first conditional, then  unconditional updates 
inside a transaction , vice-versa, only unconditional updates inside a transaction  
followed by a card tear, etc. The test array  th a t is modified w ith a non-atom ic 
m ethod is always persistent. To generate a transaction  abort at specific pro­
gram  points we either used the m ethod a b o r tT ra n s a c t io n  or we inserted a 
non-term inating  loop (w h ile ( t ru e ){ } )  a t a certain  program  point, and did a 
physical card tear.

P a rt of the  test was to  find out w hat actually  happens to  array  contents 
if a card tear occurs during an invocation of the  non-atom ic m ethods. Clearly, 
tim ing card  tears to  do th is is more com plicated, as the trick used above no 
longer works. One possibility would be to  use special hardw are, which in terrup ts 
the power supply at a precise m om ent in time, e.g. after a given num ber of 
CPU  cycles or when detecting a certain  behaviour on a side channel. Instead, we 
used the sim pler trick  of having applets th a t execute an infinite loop containing 
only calls to  non-atom ic m ethods, so th a t a physical card tea r is very likely to  
occur during the execution of such a m ethod. By repeating  the experim ents and 
collecting the results we were sure to  include observations of in terruptions during 
the invocation of the non-atom ic m ethods.

4 .1  T est R e su lts

Over one hundred test com binations were run  on each card  giving large am ounts 
of test data . Describing all the fine details of these results is beyond the scope 
of th is paper, however the  interesting results can be divided into four main 
categories:

(a) a transaction  abort, either by an invocation of a b o r tT ra n s a c t io n  or by a
physical card tear, after conditional and unconditional (non-atom ic) updates
inside a transaction;
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(b) a transaction  abort, either by an invocation of a b o r tT ra n s a c t io n  or by a 
physical card tear, after a call of a non-atom ic m ethod inside a transaction;

(c) a transaction  abort by a physical card tea r during a call of a non-atom ic 
m ethod inside a transaction;

(d) finally, a transaction  abort by a physical card  tea r during a call of a non- 
atom ic m ethod outside of a transaction.

We discuss these categories in more detail below.

(a) A b o r t A fter  C o n d itio n a l & U n c o n d itio n a l U p d a te  In  T ran saction .
The result of th is test was supposed to  tell us w hat happens to  the  value of 
a [0 ]  in program s from Figure 1. I t tu rns out th a t the  value of a [0 ]  is rolled 
back to  0 for the program  on the  left, and for the program  on the right the 
value of a [0 ]  is rolled back to  2. This behaviour is consistent for all the  tested  
cards. The explanation for th is behaviour would be the  following. Im plem enting 
a transaction  m echanism  involves some shadow bookkeeping: for any persistent 
d a ta  th a t is altered  during a transaction , bo th  the new and the old value have 
to  be recorded. The former is needed in case the transaction  is successfully 
completed, the la tte r is needed in case of a roll-back. O ur experim ents suggest 
th a t back-up copies of old values of d a ta  are m ade directly  prior to  the  first 
conditional update  in the  transaction .

This would suggest th a t the official J ava Card  specification could be refined 
to  elim inate the  am biguity as follows:

“If power is lost (tear) or the  card  is reset or some other system  fail­
ure occurs while a transaction  is in progress, then  the JC R E  shall re­
store all persistent fields and array  elem ents conditionally u pda ted  since 
the previous call to  b e g in T ra n s a c tio n  to  the values th ey  had directly  
prior to their first conditional update after the previous call to b e g in ­
T ra n sa c tio n .

Adm ittedly, th is contradicts the o ther p a rt of the specification sta ting  th a t any 
unconditional (non-atom ic) update  inside a transaction  followed by an abort can 
give unpredictable results, in which case we cannot really ta lk  about a tran s­
action roll-back— the contents of m em ory in question would neither be the old 
value (roll-back), nor the new value (no roll-back), it should sim ply be considered 
random . B ut let us first see w hat were the  o ther test results.

Finally, the  result of this test also m eans th a t a non-atom ic m ethod exhibits 
its non-atom ic feature only if the array  it modifies have not yet been condition­
ally updated  w ithin the same transaction . T h a t is, non-atom ic m ethods do not 
override any conditional updates already perform ed inside a transaction.

(b ) A b o r t A fter  N o n -A to m ic  M e th o d  In sid e  T ran saction . This test 
answers the question w hat happens if a transaction  is started , then  the persistent 
d a ta  is u pda ted  w ith a non-atom ic m ethod, and then, after the com pletion of 
the non-atom ic call, any kind of transaction  abort happens. I t tu rn s  out th a t
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the m em ory contents th a t were modified w ith the non-atom ic m ethod call is 
preserved, th a t is, the  changes caused by the non-atom ic call are kept. This 
result is also consistent for all the  cards. This would suggest th a t, as far as this 
test is considered, the  “unpredictable” results allowed by the official Jav a  C a rd  
specification do not take place—com pleted calls to  non-atom ic m ethods, even 
followed by an abort, do not cause unpredictable results.

(c) A b o r t D u r in g  N o n -A to m ic  M e th o d  In sid e  T ra n sa ctio n . The previ­
ous test allowed all the  non-atom ic m ethod calls to  com plete before the transac­
tion was aborted. So w hat happens when the  abort happens in  the middle of a 
non-atom ic m ethod call? Here the results differ from card to  card. Assume th a t 
a contents of an array  before the test is all 2 ’s, and th a t the  non-atom ic m ethod 
call tries to  update  all the  elem ents to  7 when the card is teared . The following 
three categories of the test results can be given:

— The test array  contains some 2’s and some 7’s, or only 2’s, or only 7’s. No 
unpredictable array  contents here. Only one card gave such a result.

— Like the first one, bu t the  array  can also contain 0 ’s. This 0 value here 
represents the “unpredictable” array  contents. Three cards gave a result like 
this.

— Like the first one, b u t the array  can also end up  w ith “random ” values. The 
values are random  only seemingly, because the repetition  of the test gives 
always the same byte sequence, for example, for one of the cards the test 
array  contained the following data:

DB 8C 07 89 AC 02 F8 07 C1 02 46 4D 47 E0 88 02 D3 DD C7 9B

The rem aining three out of the seven cards exhibited such behaviour.

This last result exemplifies the  unpredictable behaviour m entioned in the official 
specification in “full flavour” . W hat is worrying is the  pseudo-random ness of 
the data , which would suggest th a t the  test array actually  contains a m em ory 
footprint of the  card.

Furtherm ore, after this test it is still not clear w hat “contents of an array 
com ponent” means. If the  specification actually  allows only for one array  ele­
m ent to  have an unpredictable value, then  th is result suggests non-compliance 
of some of the cards to  the standard . B ut, as said, this issue is subject to  the 
in terp re ta tion  of the m entioned phrase and it as well m ay sim ply m ean “whole 
contents of an array” .

This behaviour suggests th a t card tears m ay be a way to  a ttack  Java Card 
code th a t uses the  non-atom ic m ethods, as card tears can then  pollute the  per­
sistent memory, effectively providing a fault injection. Section 6 discusses such 
experim ents on im plem entations of the  OwnerPIN class.

(d ) A b o r t Tear D u r in g  N o n -A to m ic  M e th o d  O u ts id e  T ran saction . Fi­
nally, we also w anted to  test w hat happens if a card  tea r occurs during a non- 
atom ic m ethod call on a persistent array  when there is no transaction  in progress.
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To our surprise, the results, for each of the cards, are exactly the same as corre­
sponding results in the previous test. It means tha t the implementation of non- 
atomic methods does not differentiate between transaction and non-transaction 
context. More importantly, this behaviour should be considered to be a bug. 
The official specification does not mention anywhere the possibility of an unpre­
dictable array contents when there is no transaction in progress and a tear occurs 
during a non-atomic method call. It does allow an array to be left in a partially 
modified state, but we do not believe tha t an array full of random data (card 
memory footprint) qualifies as “partially modified” . Neither we can agree that 
an array filled with 0’s should be considered as partially modified. As explained 
in the previous result, 0 is neither the previous value of an array element, nor 
the new value. Depending on the application, a persistent array tha t is left with
0 values may lead to a security breaching state.

This suggest tha t the disclaimer added in the specification of Java Card ver­
sion 2.2 tha t we mentioned on page 2 should be generalised further by removing 
the restriction “while a transaction is in progress” , i.e.

“N o te  -  The contents of an array component which is updated using 
the arrayCopyNonAtomic method or the arrayFillN onA tom ic method
/w //h//i/l/e//a///t/r//a//n/s//a/c//t/i/o//n///is///i/n///p//r/o//g/r/e//s/s//, is not predictable, following the abor­
tion of the transaction. [caused by a card tear or a call to a b o r t­
T ra n sa c tio n ]”

N o n -A to m ic  C an  B e  A to m ic . The tests just described revealed an interest­
ing fact: on some cards, non-atomic methods are in fact atomic! They do by-pass 
the transaction mechanism, so th a t the updates they make are not subject to 
transaction roll-backs. However the array update they perform unconditionally 
is in itself atomic—either all elements are updated or none. This suggests the 
term  “non-atomic” may be a bit misleading, and calling these methods “un- 
rollbackable” would be much better. A correct but somewhat impractical name 
for arrayCopyNonAtomic would be arrayC opyPossib lyN onA tom icD efinitely- 
UnRollbackable.

5 Form al M odel and V erification o f B ehavioural 
P roperties

The results of the first test allowed us to clarify the ambiguity in the official 
Java Card specification regarding the use of conditional and unconditional up­
dates within one transaction. This clarification was necessary to finalise the 
behavioural formalisation of the transaction mechanism in the KeY system. The 
KeY system [1] is a highly autom ated interactive program verifier for Java and 
Java Card programs. By employing mathematical rigour and different kinds 
of logics formal verification techniques can provide very high level of assurance 
with respect to absence of bugs. In case of the KeY system, the logical basis is a 
special version of Dynamic Logic [2]. The specification front-end of KeY is either



10 E. Hubbers, W. Mostowski, and E. Poll

Java Modeling Language (JML) [14], Object Constraint Language (OCL) [23], 
or simply Dynamic Logic.

The full formalisation of the Java Card transaction mechanism [3,18] allows 
us to  prove behavioural properties of J ava Card programs in the context of 
transactions [10]. Take, for example the reference implementation of the check 
method in the OwnerPIN class:

p u b lic  boolean ch eck (b y te[] p in , sh o r t  o f f s e t ,  by te  len g th )  {
s e tV a lid a te d F la g ( fa ls e ) ;
if(g e tT rie sR em a in in g ()  == 0) 

r e tu r n  f a ls e ;
tem ps[0] = t r ie s L e f t [ 0 ]  -  1;
U til.arrayC opyN onA tom ic(tem ps, 0 , t r i e s L e f t ,  0, 1);
i f ( l e n g th  != p in S ize) 

r e tu r n  f a ls e ;
if (U ti l .a r ra y C o m p a re ( th is .p in ,  0 , p in , o f f s e t ,  len g th )  == 0) { 

s e tV a lid a te d F la g ( tru e ) ; 
t r i e s L e f t [ 0 ]  = try L im it;  
r e tu r n  t ru e ;

}
re tu r n  f a ls e ;

}

W hat we would like to prove is tha t this implementation indeed satisfies the 
strong security requirement from the Java Card API documentation, namely, 
that the value of the try  counter is decreased despite any transaction tha t may 
be in progress. Constructing an appropriate Dynamic Logic formula expressing 
this property is fairly simple, and the KeY system can prove it automatically 
in less than one minute time. A similar attem pt to prove this result for the 
old reference implementation fails, as it should, because it does not by-pass the 
transaction mechanism, as discussed in Section 2.

Our formal model is only correct under the assumption tha t a direct call 
to ab o r tT ra n sa c tio n  will not leave any arrays in an unpredictable state. Even 
though this is not guaranteed by the Java Card specification, the test results 
described in the previous section suggest tha t this indeed is the case, at least for 
the seven cards tha t we tested.

When an abort by a card tear is considered, our formal model can also 
be used, but under much stronger assumption, namely, th a t a card tear that 
occurs during a non-atomic method call can leave the array in a strictly  partially 
modified state (either old values or new values in the array, no zero or random 
values), but not in an unpredictable state. We consider this assumption strong, 
because in reality only one card exhibited such behaviour. Under this assumption 
we can also formally reason about card tears with the KeY system, tha t is, prove 
properties about the program behaviour in cases when an unexpected transaction 
abort caused by a card tear occurs.

However, if we assume the unpredictable behaviour exhibited by some of 
the cards, the KeY system cannot formally reason about card tears. Moreover,
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the quoted implementation of the check method is highly insecure. To make 
it secure, defensive programming techniques are needed, and a different formal 
verification technique (model checking) can be used to  verify the robustness of 
the implementation in the context of interm ittent card tears and unpredictability 
of the arrays modified by non-atomic methods. The next section is devoted to 
this subject.

6 Fault Injection  A ttacks by Card Tearing: P reven tion  
and V erification

The unpredictability and faulty behaviour of some of the cards open possibilities 
for easy fault injection attacks. A properly timed card tear during a non-atomic 
method call can leave random values in card’s persistent memory. For example, if 
a card tear occurs during the call to arrayCopyNonAtomic in the implementation 
of the check method, the OwnerPIN object may be left with a large value of 
the try  counter. To put this theory to test, we wrote a simple test applet that 
included the reference implementation of the OwnerPIN class given earlier. By 
performing physical card tears during invocations of the check method on PIN 
objects of this class, it did not take long before we ended up with PIN objects 
containing a try  counter value over 100, meaning we could try  the check method 
on tha t object over 100 times.4

That convinced us th a t the faulty implementation of the non-atomic methods 
is indeed an issue. But what about the (possibly native) implementation of the 
OwnerPIN class provided as part of the card’s built-in implementation of the Java 
Card API, in card’s ROM? It definitely has to use some mechanism similar to 
the non-atomic methods to by-pass the transaction mechanism. Can it also be 
exploited in a similar way? We ran the same test applet, but this time we used 
the built-in implementation of the OwnerPIN class. So far, we did not manage to 
succeed in breaking the built-in implementation5. That can mean two things:

— most likely, the built-in implementation is indeed secure—either has its own 
(native), safe way of by-passing the transaction mechanism, or it does use a 
non-atomic method in a defensive way;

— less likely, we simply did not (yet) succeed in our attack attem pts. After all, 
the card tear has to  be properly timed, and our card tears are simply timed 
randomly.

While exploring different implementations of the OwnerPIN class one more 
issue came up. The Java C a rd  API specification of OwnerPIN requires all oper­
ations performed by the check method on the state of the OwnerPIN object to be 
excluded from any transaction tha t may be in progress. However, the reference

4 Of course, any properly defensive implementation of PIN object would detect such 
illegal values of the try counter and block further operations on the card!

5 We would not be publishing these results if we had been able break any built-in 
implementation of OwnerPIN classes!
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implementation of the check method given earlier (note again, this is an equiv­
alent of Sun’s official reference implementation for Java C a rd  2.1.1) updates 
the try  counter conditionally ( t r ie s L e f t [0 ]  = t r y L im it ; ). To see whether the 
cards adhere to the specification in this respect we wrote yet another simple test:

p in .rese tA ndU nblock();
by te  t r ie s B e fo re  = p in .g e tT rie sR em ain in g ();
JC S ystem .beg inT ransac tion (); 

p in .c h e c k (c o rre c t_ p in , . . . ) ;
JC S y stem .ab o rtT ran sac tio n ();
if (p in .g e tT rie sR e m a in in g ()  == t r ie s B e fo re  -  1) {

/ /  r e p o r t :  maxing i s  c o n d itio n a l
}e lse{

/ /  r e p o r t :  maxing i s  u n co n d itio n a l
}

It turns out tha t most of the cards do the ‘maxing’ of the try  counter when a 
correct PIN is entered unconditionally, following the specification. Only one card 
maxed the counter conditionally. Thus, we discovered another inconsistency of 
a card implementation with respect to the Java Card specification.

Conditionally changing the try  counter when the correct PIN is entered may 
seem a smaller security risk than conditionally changing the try  counter when 
an incorrect PIN is entered, or not seem a security risk at all. After all, only the 
latter might be exploited by an attacker to get additional guesses of the PIN 
code. However, the former could lead to Denial-of-Service attack where the card 
blocks even though the correct PIN is entered.

6.1  P r e v e n tin g  “N o n -A to m ic ” F au lt In jec tio n s

The natural next step after breaking the reference implementation of OwnerPIN 
is to try  to give a non-native implementation of a secure try  counter despite 
the possible non-deterministic behaviour of non-atomic methods allowed by the 
Java Card specification. Our implementation would still have to  rely on the 
arrayCopyNonAtomic method to provide unconditional updates of the counter, 
and, at the same time, provide a mechanism to neutralise possible faults caused 
by card tears. Our experiments with the non-atomic methods suggest th a t once 
a call to a non-atomic method is completed, the data that was modified by the 
method is stable, tha t is, a card tear does not affect the already modified value. 
Thus, the main idea to implement a secure try  counter is to keep three copies 
of the counter and update them  one after another. If a card tear occurs we can 
assume that two of the three copies will have a correct value-either the old one or 
the new one. After the card tear, by analysing the differences in the three copies 
we can establish what the correct value of the try  counter should be. Each time 
a read or a write operation on the try  counter is invoked, we first perform such 
analysis of the three copies to see if they represent a stable state (all three copies 
are equal) of the try  counter. If not, we restore the values of the three copies
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back to a stable state. This way we correct the faults tha t were caused by a card 
tear. The actual code implementing this scheme is given below:

p u b lic  c la s s  TryCounter {

p r iv a te  b y te []  temp; 
p r iv a te  by te  max; 
p r iv a te  b y te []  c l ;  
p r iv a te  b y te []  c2; 
p r iv a te  b y te []  c3;

p u b lic  T ryC ounter(byte max) { 
temp =

JC System .m akeTransientByteA rray(1, JCSystem.CLEAR_ON_RESET); 
c l = new b y te [ 1 ] : 
c2 = new b y te[1 ] 
c3 = new b y te[1 ] 
th is .m ax  = max; 
setNA(max);

}

p r iv a te  vo id  setNA(byte v a lu e) { 
temp[0] = v a lu e ;
U til.arrayC opyN onA tom ic(tem p, 0 , c1, 0 , 1) 
U til.arrayC opyN onA tom ic(tem p, 0 , c2, 0 , 1) 
U til.arrayC opyN onA tom ic(tem p, 0 , c3, 0 , 1)

}

p r iv a te  vo id  r e s to r e ( )  {
if (c 1 [0 ]  == c2[0] && c2[0] == c3 [0 ]) { 

re tu rn ;
}
if (c 2 [0 ]  == c3 [0 ]) {

/ /  Tear occu rred  d u rin g  th e  update of th e  f i r s t  copy: 
temp[0] = c3 [0 ];
U til.arrayC opyN onA tom ic(tem p, 0 , c1 , 0, 1); 
r e tu rn ;

}
if (c 1 [0 ]  == c2 [0 ]) {

/ /  Tear occu rred  d u rin g  th e  update of th e  l a s t  copy: 
temp[0] = c1 [0 ];
U til.arrayC opyN onA tom ic(tem p, 0 , c3 , 0, 1); 
r e tu rn ;

}
/ /  A ll th re e  d i f f e r e n t ,  t e a r  occu rred  d u rin g  th e  
/ /  update of th e  second copy, th e  t h i r d  copy should
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/ /  be co n sid ered  to  be th e  s ta b le  one: 
temp[0] = c3 [0 ];
U til.arrayC opyN onA tom ic(tem p, 0 , c2, 0 , 1); 
U til.arrayC opyN onA tom ic(tem p, 0 , c1, 0 , 1);

}

p u b lic  by te  getV alu e() { 
r e s to r e ( ) ;
/ /  Double check, i f  som ething i s  am iss, r e tu r n  0 
i f  (c1[0] == c2[0] && c2[0] == c3 [0 ]) 

r e tu r n  c1 [0 ]; 
r e tu r n  0;

}

p u b lic  vo id  d e c re a se ()  { 
r e s to r e ( ) ;
/ / I f  no t a lre ad y  0 , d ec rease  th e  co u n ter by 0 
if (c 1 [0 ]  == (b y te )0 ) { 

re tu rn ;
}
se tN A (c1[0]-1 );

}

p u b lic  vo id  max() { 
r e s to r e ( ) ;  
setNA(max);

}
}

This should provide a secure implementation of a try  counter, which can then be 
used in a secure, non-native, implementation of the OwnerPIN class. We changed 
the insecure reference implementation of OwnerPIN discussed in Section 5 to  use 
this implementation of a try  counter, and then repeated our card tear attacks on 
this new implementation of OwnerPIN. As we expected, with the new try  counter 
implementation, the OwnerPIN could not be exploited.

Of course, such experiments attacking an implementation can only reveal the 
presence of security vulnerabilities, but cannot prove their absence. How we can 
guarantee the absence of any security vulnerabilities caused by card tearing in a 
supposedly defensive implementation such as the TryCounter class above is the 
topic of the next section. For this we turn  to formal methods, more specifically, 
model checking.

6.2  V er ify in g  th e  A b se n c e  o f  F au lts

The correctness of the TryCounter class above, and its security even in the 
presence of card tears, is quite a subtle issue. For instance, the order of updates
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to the three registers in the r e s to r e  method is crucial. If the order would be 
changed, repeated card tears could manipulate the three copies in such a way 
that an inconsistent value of the try  counter would be reached. Performing the 
card tear tests repeatedly on this implementation did not reveal any problems 
of this kind—a call to getV alue always returned either the value the counter 
had before or the value it was supposed to have after the interrupted update 
operation.

However, such repeated random tests do not prove tha t this is always going 
to be the case. W hat we would like to establish is tha t all possible card tears 
during calls to TryCounter methods will never cause the try  counter value to 
be inconsistent. To prove this formally we turn  to model checking. We used the 
model checking tool Uppaal6 [4], simply because we have experience with this 
tool—other model checking tools could be used too.

S ta te  M ach in e. The first necessary thing to perform model checking is to 
define a state machine tha t models the behaviour of the TryCounter class.

This state machine not only models the normal behaviour, but also the be­
haviour in case a card tear occurs. This behaviour includes the simple interrup­
tion of execution and the subsequent clearing of transient data tha t happens 
when poser is lost. It also includes the behaviour in case a card tear happens 
during a call of arrayCopyNonAtomic, which will not only interrupts the execu­
tion and clear all transient data, but will also set the contents of the array being 
modified to (possibly) random values.

The initial state of the model represents the “entry point” of the TryCounter 
class—in this state any of the three public methods of the class can be called. 
From this initial state there are three outgoing sequences of transitions, one for 
each of the three public methods. (In fact, because each of the public methods 
start with a call to  r e s to r e ( ) ,  the transitions modelling the body of r e s to r e ( )  
can be joined.) At any point in the execution a card tear may occur, which is 
modelled by transitions back to the initial state. Here we trea t the individual 
Java Card byte-code instructions as atomic, i.e. every byte-code instruction 
is a transition between two program points, and card tears can happen in the 
state before or after any individual byte-code instruction. At any program point 
where arrayCopyNonAtomic is invoked, there is not only an outgoing transition 
to the next program point tha t models the successful completion of the method 
call, but also an outgoing transition back to the initial state tha t models the 
interruption of the method call, and which resets the array contents to random 
values.

So the state machine models all possible lifetimes of a TryCounter object: 
it models all possible sequences of method invocations, with all possible inter­
ruptions by card tears. The resulting model is highly non-deterministic, but it is 
finite, because the state of a try  counter object—consisting of only five instance 
fields—is finite.

6 http://www.uppaal.com

http://www.uppaal.com
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P r o p e r tie s . We specified two properties about the state machine:

— in the final “stable” state the values of the three copies of the try  counter 
are always the same;

— in the final state, the stable value of the try  counter is always equal either to 
the old stable value of the counter, recorded just after a call to re s to r e ,  or 
the new value tha t it was supposed to be updated to—the old value minus 
one, or the maximum try  counter value.

M o d e l C h eck in g . We constructed the state machine and specified the two 
properties in the Uppaal model checker [4]. Uppaal has a graphical interface 
for the editing state machines, making it very easy to use. Unfortunately, the 
state machine for TryCounter is too large to be included as a picture in the 
report here. Both properties were quickly verified. That provides a proof that 
the implementation of TryCounter is indeed secure with respect to faults caused 
by card tears and any unpredictable behaviour this may cause during invocations 
of non-atomic methods.

Of course, the whole formalisation and the proof are only valid under the 
assumptions we made about the possible effect of card tears on the execution. 
Here we took into account the official J ava Card but also all behaviour of 
cards tha t we observed in our experiments tha t violated this specification. So 
the results are valid for any card tha t correctly implements the J ava Card 
specification and all the cards tha t we actually tested, assuming tha t these cards 
do not have bugs tha t our testing did not reveal. For other cards that we did 
not test, and which may violate the J ava Card specification in other ways, 
the behaviour of non-atomic methods in the context of card tears may differ 
substantially and possibly invalidate this correctness proof.

V erifica tion  o f  T ryC ou n ter  w ith  K eY . The correctness of TryCounter as­
suming there are no card tears can also be verified with the KeY system. In 
fact, we gave full behavioural specification of the TryCounter class in JML and 
verified it with the KeY system. For example, we specified and proved tha t the 
complete execution, without intermediate card tears, of the r e s to r e  method 
indeed results in the three copies of the try  counter equal to each other. This 
correctness result proved with KeY is subsumed by the correctness result proved 
with the model checker.

7 Sum m ary and D iscussion

The main conclusions of our work are:

— The transaction mechanism is one of the most complex parts of the Java 
Card technology. The ambiguities and under-specifications in the official 
specification show tha t it is difficult to  formalise. The behaviour of the actual 
sm art cards shows tha t it is also quite difficult to implement.
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— Despite the under-specifications allowing “liberal” implementation some 
cards still have faulty (non-compliant) implementation of non-atomic m eth­
ods. In particular, some cards also produce unpredictable results if non- 
atomic methods are interrupted while no transaction is in progress.

— Extreme care has to be taken when using non-atomic methods for security­
sensitive operations. However, despite the possible faults it is still possible 
to utilise non-atomic methods by defensive programming.

— Finally, we showed how two different formal verification techniques—pro­
gram verification and model checking—can be used to provide rigorous proof 
of absence of bugs, even in the presence of possible faults.

These results bring up a number of very interesting discussion points. First 
of all, the usefulness of non-atomic methods should be questioned. As far as we 
can see the existence of non-atomic methods is justified by the following three 
goals:

— A possibility to by-pass the transaction mechanism. For security reasons one 
sometimes needs to by-pass the transaction mechanism. However, given the 
unpredictable results when non-atomic methods are interrupted by card 
tears, it is dangerous to rely on these methods to do so. Our TryCounter im­
plementation demonstrates tha t non-atomic methods can be used to safely 
by-pass the transaction, and moreover, tha t we can formally provide assur­
ance of its correctness. However, this relies on non-trivial defensive program­
ming techniques. Also, we cannot give any formal assurance of correctness 
for cards tha t have bugs th a t we have not discovered.

— A fa s t way to copy transient data. Since transient data is always reset after 
a card tear, it can be safely modified with a non-atomic method.

— Finally, a fa st way to copy persistent data outside o f a transaction, in  cases 
where the data can be left in  a partially modified state. Here, only if one can 
allow unpredictable contents of the modified array, the method can be used. 
If one would like to ensure that the array is “partially modified” (that is, the 
property suggested by the official specification, but not satisfied by some of 
the cards), the non-atomic method is not safe on all cards. So it seems the 
only option is to use the atomic version of the array copy method, a r ra y -  
Copy from the class U ti l .  The method arrayCopy, however, will not work 
for copying large amounts of data; because arrayCopy uses the transaction 
mechanism, the transaction commit buffer can be easily exhausted. We tried 
to copy an array of 1024 bytes with arrayCopy—a transaction exception 
was reported. Thus, to copy a large array one has to use either a non-atomic 
method (may result in unacceptable faults), or simply use a fo r  loop (but 
this will be considerably slower than using a native method).

The overall conclusion would be tha t non-atomic methods can only be used 
safely on transient data, when applying these methods to persistent data extreme 
care has to  be taken. In particular, using non-atomic methods to by-pass the 
transaction mechanism is possible but defensive programming techniques have 
to be used to ensure security in the presence of card tears.
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The second issue is Java Card interoperability. Disregarding the fact that 
some of the cards fail to actually meet the official specification, the fact is that 
cards tend to exhibit slightly different behaviour in the context of transactions. 
Apart from the results of the non-atomic methods test, we also discovered the 
different behaviour with respect to ‘maxing’ try  counter in the OwnerPIN im­
plementation. Some of the reasons for this situation lay in the official Java 
Card specification. Firstly, it contains some ambiguities leaving freedom of in­
terpretation to the implementors. Secondly, if not ambiguous, the specification 
is deliberately under-specified—it explicitly allows the card behaviour to  differ. 
The statem ent about the possible unpredictable result of calling a non-atomic 
method inside a transaction has been introduced to the J ava Card specification 
with the release of the 2.2 version of the specification. Although we are not cer­
tain, we suspect tha t this was done because some of the cards were discovered 
(as we did) to exhibit such an unpredictable behaviour. This would suggest that 
the behaviour of the cards influences the specification, and not the other way 
round. We leave this last statem ent without any more comments.

Finally, we demonstrated how formal verification techniques can be used to 
guarantee security in the presence of faults, providing a higher level of assurance 
than testing can. Here we used two techniques: program verification  with the 
KeY tool and model checking with Uppaal.

Program verification using the KeY tool can be used to verify properties of 
code under the assumption th a t no card tears happen. If we could assume there 
was no unpredictable behaviour of non-atomic methods, the KeY system could 
be used to also reason about Java Card programs in the presence of card tears. 
(W ithout this assumption, reasoning in the presence of card tears is in principle 
possible with KeY, but it would require further work.) Model checking using 
Uppaal, on the other hand, can also consider the non-deterministic behaviour of 
cards if card tears occur.

A drawback of the model checking approach was tha t we had to  rely on a 
model constructed by hard, which can be error-prone. Indeed, we did not get it 
right at the first try. (In principle, it is possible to autom ate this; indeed, the 
Bogor tool [19] can be used to model-check Java programs, but this tool is aimed 
at multi-threaded Java programs and is unaware of card tears as a source of non­
determinism in J ava Card .) Another drawback of the model checking approach 
is tha t because of the state explosion problem it can only cope with very small 
programs. Program verification tools can cope with programs the size of typical 
Java Card applets, model checkers cannot unless tricks are used to reduce the 
state space. Still, crucial program components such as implementation of an 
OwnerPIN class are within the reach of model checkers. An interesting research 
question for future work is to  see if the model-checking approach can be used to 
include other sources of fault injections, to check, for instance, if implementations 
of API classes such as OwnerPIN are resistant to other fault injection attacks 
besides card tears.

Program verification with the KeY tool does not require manual construction 
of a model, but works directly on the J ava Card source code. Properties can also
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be specified at the level of source code, in the specification language JML [14]. 
Because of this, users may find such a tool easier to use than a model checker, 
despite the fact th a t model checking has the advantage of being fully automated, 
and program verification requires more user interaction.

Program verification tools for J ava have been used for J ava Card applets 
in the past, e.g. see [5,17], and other program verification tools for Java than 
KeY have been used for this, for instance E S C /Java [9] and its successor tool 
E S C /Java2 [8], JACK [6], or Krakatoa [15]. However, none of these other tools 
model the special features of Java Card such as the transaction mechanism 
and the distinction between transient and persistent memory, although for the 
Krakatoa tool a work to  include support for the transaction mechanism has been 
recently reported [16].

The final question is whether the official Java Card specification could or 
should be made stricter, by removing the ambiguity discussed in Section 3 and, 
more importantly, not including the deliberate under-specification for the non- 
atomic methods in the event of a card tear. One of the cards tested demonstrates 
that it is technically possible to  meet such a stricter specification, where in par­
ticular the result of a card tear during calls to non-atomic methods is not unpre­
dictable. Such a stricter specification would improve portability of applications. 
Also, tricky defensive programming techniques would no longer be necessary 
to prevent faults injection attacks by card tearing, and (formal) verification of 
security properties in the event of card tears would be much easier.
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