
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is an author's version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/35333

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

http://hdl.handle.net/2066/35333

Systematic Synthesis of Functions

Pieter Koopman and Rinus Plasmeijer

Nijmegen Institute for Computer and Information Science, The Netherlands
{ p ie t e r , r in u s } @ c s . r u .n l

Abstract

In this paper we introduce a new technique to synthesize functions matching a given
set of input output pairs. Using techniques similar to defunctionalisation one can
specify the abstract syntax tree of the candidate functions at a high level of abstrac
tion. We use the test system Gvst for the systematic synthesis of candidate functions
and the selection of functions matching the given condition. The generation of can
didate functions is controlled by the types representing them. Instances are generated
by a generic algorithm that can be tailored to specific needs. This yields a very flexi
ble system to synthesize clear primitive recursive function definitions efficiently.

1 INTRODUCTION

At TFP’05 Susumu Katayama [5] presented an intriguing system that was able to
synthesize a general function that fits a number of argument result pairs. For in
stance, if we state f 2 = 2, f 4 = 24, and f 6 = 720. we expect a factorial function
like f x = if (x<0) 1 (x*f (x-1)). There are of course thousands of functions
that match the given condition, but by generating candidate functions in an appro
priate order and form, the system should find the shown recursive solution first.
Katayama’s work is a step in a long research effort to synthesize pure functional
programs from examples. Some key steps are Summers 1977 [14], Banerjee 1987
[1], and Cypher 1993 [2]. Programming by example is not only a curious toy,
but it is used within some restricted areas like adaptive user interfaces [2, 10] and
branches of AI like rule learning for planning [8, 15]. Using proof checkers one
has sometimes to invent a function matching given conditions. We will investigate
of our techniques can be used there.

There are various approaches in the generation of functions matching the given
input result pairs. The research based on computations traces [14, 2] orders the
examples in a lattice and synthesizes the desired function by folding the steps in
this computational trace. Main problem with this approach is the construction of
the lattice from individual examples. It is far from easy to generate a usable lattice
for the example above. The genetic programming approach [13, 16] maintains a
set of ’’promising Programs”. By heuristic exchange and variation of subexpres
sions one tries to synthesize a matching function. The main topics in this approach
are sensible variations of the candidate functions and the determination of their
fitness. A third approach uses the exhaustive enumeration of candidate functions.
The challenge here is to generate a candidate function matching the given exam
ples in reasonable time. Katayama [5] generates expressions as ^-expressions of

the desired type. Apart from the usual abstraction, application and variables, his
anonymous ^-expressions contain a small number of predefined functions. These
functions from the component library provide also the needed recursion patterns.
A dynamic type systems generates ^-expressions with the desired type.

In this paper we show how the exhaustive generation of candidate functions
can be improved. Instead of ^-expressions, we generate functions that are direct
primitive recursive, or not recursive at all. These functions are not composed of
^-expressions, but their structure is determined by the type of their abstract syntax
trees. This syntax tree is represented as data structure in a functional programming
language. The test system Gvst [6] is used to generate instances of this data type
in a systematic way [7]. The main differences with Katayama’s approach are:

• The type system selects statically the grammar used to generate values of the
desired function result, instead of dynamic system that controls the genera
tion of ^-expressions.

• The direct definition of primitive recursive functions, instead of searching X-
expressions containing an instance of a paramorphism as recursion builder.
By including a clause for a recursion builder, like fold, in the grammar, the
corresponding recursion pattern will be generated.

• We use data types to control the generation of candidate functions. Using
these types, the system becomes more open and much easier to adept to
special wishes. The generation of instances of these types is done by our
general generic algorithm [7] instead of an ad-hoc algorithm.

• A general test system is used to generate candidate functions, and to select
and print matching functions.

Existing test systems like Q u ic k C h e c k [3] and G vst have limited capabil
ities for the generation of functions. The generation of a function of type a ^ T
is done in two steps. First the argument of type a is transformed to an integer. In
the second step this integer is used to select an element of type T. Either a value is
selected from a list of values, or the integer is used as seed for a the pseudo random
generater. In Q u ic k C h e c k the function a ^ i n t has to be provided by the user
as instance of the class coarb itrary , in G vst it was derived automatically by the
generic generation algorithm. A multi-argument function of type a ^ T ^ u is
transformed to a function T ^ u by providing a pseudo randomly generated ele
ment of type a . In this way all information of all arguments is encoded in a single
integer. This approach is not powerful enough for more complex functions, and
has as drawback that it is impossible to print these functions in a descent way. By
its nature the system will never generate a descent (recursive) algorithm. Due to
these limitations this generic generation is is not suitable for the problem treated in
this paper and it is removed from Gvst.

In this paper we show how we the generation and print problems are solved
by defining a grammar as data type and a simple translation from instances of this
data type to the corresponding functions. For the generation of instances of the
data type the existing generic capabilities of our test system Gvst are used.

2

It turns out that a similar representation of functions by data types is used at
different places in the literature. The technique is called defunctionalisation, and
the function transforming the data type is usually called apply. This technique was
introduced by Reynolds [12], and repopularized by Danvy [4]. Defunctionalisation
is usually applied as a program transformation technique to replace higher order
functions by an instance of a data structure. Here we will generate a list of instances
of a recursive type representing the grammar of the candidate functions.

In the next section we will show how such a function is found by our test sys
tem. First we will limit our system to functions of type In t ^ In t. We illustrate
the power of our approach with a number of examples. In section 4 we illustrate
how this approach can handle multi argument functions. The generation of func
tions with handling other types, like lists, is covered in section 5. The next section
illustrates that this approach enables more powerful properties than just matching
input output pairs. Finally we draw some conclusions.

2 FUNCTION GENERATION

In this section we will show how functions of type In t ^ In t can be generated
using a grammar. The grammar specifies the syntax tree of the candidate functions.
Our test system uses the type to generate candidate functions. The restriction to
functions of type In t ^ In t in this section is by no means a conceptual restriction
of the described approach. We use it here just to keep the explanations simple, a
similar approach can be used for any type.

In section 2.1 we review the basic operations of the automatic test system Gvst.
In 2.2 we state the function synthesis problem as a test problem. The rest of this
section covers the generation and manipulation of the data structures used to rep
resent the syntax tree of the candidate functions synthesized.

2.1 Basic verification by autom atic testing

First we explain the basic architecture of the logical part our test system Gvst.
The logical expression Vt : T . P (t) is tested by evaluating P (t) for a large number
of values of type T . In G vst the predicate P is represented by a function of type
t ^ Bool. The potentially infinite list of all possible values of type t is used as
test suite. In order to obtain a test result in finite time at most N , some given fixed
number (say 1000), tests are done. There are three possible test results. Proof
indicates that the test succeeded for all values in the test suite. This can only
be achieved for type with less than N values. The result Pass indicates that no
counterexamples are found in the first N tests. The result Fail indicates that a
counterexample was found during the first N tests.

The result of testing in Gvst will be represented by the data type Verdict:

:: V erdict = Proof | Pass | F a il

The function te s tA ll implements the testing of universal quantified predicates:

3

te s tA ll :: In t (t^ B o o l) [t] ^ V erdict
te s tA ll n p [] = Proof
te s tA ll 0 p l i s t = Pass
te s tA ll n p [x :r]

| p x = te s tA ll (n-1) p r
| otherwise = F a il

The list of values of type t is the test suite. It can be specified manually, but is
usually derived fully automatically from the type T by the generic algorithm de
scribed in [7]. The actual implementation of G vst also reports the counterexample
found and handles properties over multiple variables and a complete set of logical
operators.

A similar test function exists for existential quantified logical expression of the
form 3 t : T . P (t). The test system returns Proof if a test value is found that makes
P (t) true. The result is Fail if none of the values of type T makes the predicates
true. If non of the first N values makes the predicate true, the result is Undef.

A typical example is the rule that the absolute value of any number is greater
or equal to zero, V i. abs(i) > 0. In G vst we have to choose a type for the number
in order to allow the system to generate an appropriate test suite. Using integers as
test suite this property reads:

propAbs :: In t ^ Bool
propAbs i = abs i > 0

This property can be tested by executing the start rule S ta r t = t e s t propAbs. The
function t e s t provides the number of tests and the test suite as addinitonal argu
ments to te s tA ll. The test suite is obtained as instance of the generic class ggen
[7]. Gvst almost immediately finds the counterexample -2147483648, which is
the minimal integer that can be represented in 32 bit numbers.

2.2 The function selection problem as a predicate

In this section we show how G vst can be used to synthesize candidate functions
and select to functions obeying the desired properties. It is not difficult to state a
property about functions that expresses that it should obey the given input output
pairs. For our running example, f 2 = 2, f 4 = 24 and f 6 = 720, we state P(f) =
f (2) = 4 A f (4) = 24 A f (6) = 720. Using a straight forward approach, the property
to test becomes 3 f . P (f) . Test systems like Q u ic k C h e c k and G vst are geared
towards finding counterexamples. This implies that testing yields just Proof if
such a f is found, and yields Undefined if such a function is not found in the given
number of tests. Here we want a function that makes the predicate true. changing
the test system such that is reports successes in an existentially quantified predicate
is not very difficult, but undesirable for a software engineering point of view.

We search for a function by stating that a function matching the given examples
does not exists - 3 f . P(f) or more convenient for testing Vf . - P (f) . Counterex
amples found by G vst are exactly the desired functions. Now these functions are
counterexamples and will be shown by the test system. We state in Gvst:

4

prop0 : : (I n t^ I n t) ^ Bool
prop0 f = - (f 2 == 2 && f 6 == 720 && f 4 = 24)

Where — is the negation operator. Any counterexample found by Gvst is a func
tion that matches the given input output pairs. As outlined in the introduction,
functional test systems like Qu ic kC heck and Gvst are not very good in gener
ating functions and printing them. Instead of prop0 we will use a property over
the data type Fun. The type Fun represents the grammar of candidate functions, see
2.3. The function apply, see 2.5 turns an instance of this data type in the actual
function.
prop1 :: Fun ^ Bool
prop1 d = —(f 2 == 2 && f 6 == 720 && f 4 == 24) where f = apply d

This predicate can be tested by executing a program with S ta r t = t e s t prop1 as
starting point. Our system yields the following result:

Counterexample 1 found a f te r 30808 t e s t s : f x = if (x<0) 1 (x*f (x-1))
Execution: 1.02 Garbage c o lle c tio n : 0.15 T o ta l: 1.17

This counterexample is exactly the general primitive recursive we are looking for,
the well-known factorial function. More examples will be given below.

2.3 A gram m ar for candidate functions

In the generation of candidate functions we have to be very careful to generate
only terminating functions. If one of the generated functions happens to be non
terminating for one of the examples, testing becomes nonterminating as well. This
termination can either be guaranteed by carrying the number of recursive call done
around in the function and put an upper limit on the number of recursive calls, or
by only generating functions that are terminating by construction.

We will construct only terminating (primitive recursive) functions. For the
integer domain, these functions are either not recursive, or use as stop criterion
a conditional of the form x<c, where x is the function argument and c is some
small integer constant. The then-part is an expression containing no recursive calls.
The else-part contains only recursive calls of the form f (x-d), where d is a small
positive number. since we want to generate only primitive recursive functions,
recursive calls are not nested.

The body of a function is either a non-recursive expression, or a recursive ex
pression of the described form. Expressions are either a variable, an integer con
stant or a binary operator applied to expressions. This is captured by the following
grammar.

Fun = f x = (Expr | RFun)

RFUN = if (x -IC o n st) Expr Expr2
IConst = positive_integer

Expr = Variable | integer | BinOp Expr

BinOp e = e + e | e — e | e * e

5

The expressions in an else-part are either a variable, a constant, or a binary operator
over a variable, a constant of a recursive function application:

Expr2 = Variable | integer | BinOp (Variable |integer | f (x - integer))

This grammar is directly mapped to a data type in C lean [11]. We use the type or
to mimic the choice operator, |, used in the grammar.

: : ORs t = L s | R t

This composition of types allow us to use a choice between types. This saves
us the burden of defining a tailor made type for each choice.

In the definition of the data types representing the grammar we represent only
the variable parts of the grammar. Literal parts of the grammar (like f x =) are
omitted (as in any syntax tree). Constructors like IConst are introduced in order to
make the associated integer a separate type, this is necessary in order to generate
values of this type in a different way than standard integers.

Constructs that behave similar are placed in the same type (like BinOp). A
separate type is used for recursive parts in the grammar, parts that are used at
several places, or for clarity.

: : IConst = IConst In t
: : BinOp x = OpPlus x x | OpMinus x x | OpTimes x x
: : Var = X
: : Expr = Expr (OR (OR Var IConst) (BinOp Expr))
: : FunAp = FunAp In t
: : TermVal = TermVal In t
:: RFun = RFun TermVal Expr

(OR (OR Var IConst) (BinOp (OR (OR Var IConst) FunAp)))
:: Fun = Fun (OR Expr RFun)

These data types are used to represent recursive functions as illustrated above. The
design of these types controls the shape of the candidate functions. It is very easy
to add additional operators like division or power.

2.4 Generating candidate functions

The generic algorithm ggen used by Gvst generates a list of all instances of a
(recursive) type from small to large. The only thing to be done is to order CLEAN
to derive the generic generation for these types.

derive ggen OR, BinOp, Var, Expr, RFun, Fun

For the constants we do not use the ordinary generation of integers. A much smaller
sets of values is used to speed up the synthesis of matching candidates functions.
After studying many examples of recursive functions in text books and libraries the
values 0..2 appear to be used as termination value. The occurring recursive calls
for integer functions are usually of the form f (x — 1) or f (x — 2). The occurring
integer constants are in the range 0..5. These values are used in the following tailor

6

defined instances of the corresponding types in C lea n . The variables n and r can
be used to make a pseudo random change in the order of the values. This is not
needed nor wanted here.

ggen { | TermVal | } n r = map TermVal [0 ..2]
ggen { | FunAp | } n r = map FunAp [1 ..2]
ggen {| IConst} n r = map IConst [0 ..5]

Neither of these upper limits is critical. Making the maximum IConst 50 (or even
unbounded) instead of 5 slows the discovery of most functions down by a factor of
2. Using 3 as maximum, instead of 5, usually gives a speedup of a factor of 2.

2.5 Transform ing data structures into functions

Until now we generate the syntax trees representing candidate functions, but for
the determination of the fitness of a candidate function we need the function cor
responding to this syntax tree. The class apply will be used to transform a syntax
tree into the corresponding actual function. Although apply can also be defined
in a generic way, we prefer an ordinary class here. The generic definition is not
shorter, and the ordinary class is more efficient. The class apply contains only the
function apply. The class is parameterized by the data type d to be transformed, the
environment e used to determine its value, and the type of value v to be generated.

class apply d e v : : d ^ e ^ v

We will use two different environments. The first type of environment contains
only the integer used as function argument. The second type of environment is a
tuple containing the recursive function and the function argument.

The interesting cases using the environment are:

instance apply Var In t In t where apply x = X i.i
instance apply Var (x ,In t) In t where apply x = X(_ ,i) . i
instance apply FunAp (I n t^ I n t , I n t) In t
where apply (FunAp d) = X (f,i) . f (i-d)

In the definition of a recursive function, RFun, an environment containing the inte
ger argument is transformed in an environment containg the recursive function and
the argument. The recursion is constructed by the cycle in the definition of f .

instance apply RFun In t In t
where apply rf= : (RFun (TermVal c) then e lse) = f

where f i = if (i<c) (apply then i) (apply e lse (f , i))

The definition of the apply for expressions of type Expr is somewhat smart. Ex
pressions do not contain calls of the recursive function. Hence it is superfluous to
pass it to all nodes of the syntax tree.

instance apply Expr In t In t where apply (Expr f) = apply f
instance apply Expr (x ,In t) In t where apply (Expr f) = X(_ ,i) .a p p ly f i

7

The instance of apply for binary operators takes care of the computations. The
instance of apply for BinOp x requires that there is an instance of apply for x this
environment e and result of type v. Moreover it is required that the operators +, -,
and * are defined for type v.

instance apply (BinOp x) e v | apply x e v & +, - , * v
where apply (OpPlus x y) = Ae. apply x e + apply y e

apply (OpMinus x y) = Ae.apply x e - apply y e
apply (OpTimes x y) = Ae.apply x e * apply y e

The other instances of apply just pass the environment to their children, e.g:

instance apply (OR x y) b c | apply x b c & apply y b c
where apply (L x) = apply x

apply (R y) = apply y

2.6 Pretty printing generated functions

When we derive showing of candidate functions in the generic way, we would
obtain the following representation for the factorial function from section 2.2.

Fun (R (RFun (TermVal 0) (Expr (L (R (IConst 1))))
(R (OpTimes (L (L X)) (R (FunAp 1))))))

Although this data structure represents exactly the recursive factorial function listed
above, it is harder to read. Instead of deriving the generic print routines for the data
types representing the grammar, we use tailor made definitions in order to obtain
nicely printed functions instead of the data structures representing them. see sec
tion 2.2.

The generic function GenShow yields a list of strings to be printed. It has a
separator sep as argument that is used between constructors. The second argument,
p, is a boolean indicating whether parenthesis around compound expressions are
needed. The third argument is the object to be printed. The last argument, re s t , is
a continuation. This list of strings represents the rest of the result of genShow.

The dull code below just takes care of the pretty printing of candidate functions.
It just adds the constant parts of the grammar not represented in the syntax tree and
removes some constructors. We list some typical examples.

genShow { | OR | } f g sep p (L x) r e s t = f sep p x r e s t
genShow { | OR | } f g sep p (R y) r e s t = g sep p y r e s t
genShow { | IConst | } sep p (IConst c) r e s t = [toS tring c :re s t]
genShow {|Var|} sep p v r e s t = ["x":rest]
genShow {|Expr|} sep p (Expr e) r e s t = genShow{|*|} sep p e r e s t
genShow {|RFun|} sep p (RFun c t e) r e s t
= [" if (x<":genShow{|*|} sep False c

[") " :genShow{|*|} sep True t [" ": genShow{|*|} sep True e r e s t]]]
genShow {| BinOp |} f sep p (OpPlus x y) r e s t
= [if p "(" "": f sep True x ["+": f sep True y [if p ")" " " :re s t]]]

8

2.7 Exam ples

In order to demonstrate the power o f our approach we list some examples. The
first column o f the table contains the input/output pairs the function has to obey.
The next columns contain the first matching function found, the number o f test and
the time needed (in seconds) to generate generate this function. We used a 1 GHz
AMD PC running Windows XP and the latest versions of CLEAN and GvST.

given examples generated function tests time
f 1 = 1
f 1 = 1, f 2 = 4
f 1 = 1, f 2 = 5
f 2 = 2, f 6 = 720, f 4 = 24
f 4 = 5 , f 5 = 8
f (-2) = 2, f 5 = 5, f (-4) = 4

f x = 1
f x = x*x
f x = if (x< 1) 1 5
f x = if (x< 0) 1 (x*f(x-1))
f x = if (x< 1) 1 (f (x-2)+f (x-1))
f x = if (x< 0) (0-x) x

1
69

160
30808

2791
678

0.01
0.02
0.02
1.17
0.16
0.05

These examples show that a small number of examples are sufficient to gener
ate many well-known functions. From top to bottom these functions are known as:
the constant one, square, a simple choice, factorial, fibonacci, and absolute value.

Depending on the amount o f memory (32 - 64 M) and the details of the gen
erated functions, our implementation generates 10 to 25 thousand candidate func
tions per second. Private communication with Katayama indicates that our im ple
mentation is more than one order of magnitude faster. W hen lists are excluded
from his implementation it needs 25 seconds on Katayam a’s faster (3 GHz Pen
tium 4) machine for the factorial function. His solution for1 f 0 = 1, f 1 = 1, f 2 =
2, f 3 = 6, f 4 = 24 is

A a.nat_para a (Ab.inc b) (Ab c d .c (nat_para b d (Ae f . c f))) zero

Using the paramorphism [9] nat_para, twice, as recursion pattern.

n at_ p ara : : I n t a (I n t a ^ a) ^ a
n at_ p ara 0 x f = x
n at_ p ara i x f = f (i -1) (nat_para (i -1) x f)

Comparison with our running example, repeated as example 4 in the table above,
indicates that our system generates functions that are better readable for most peo
ple, that our approach synthesizes a matching function faster, and the generated
function is more efficient.

3 C O N T R O L L IN G T H E CANDIDATE FU N C TIO N S

The generation of candidate functions can be controlled in three ways. In this
section we will discuss these ways, and show their effect by searching for functions
matching f 1 = 3, f 2 = 6, and f 3 = 6. The three different ways to control the
synthesis o f functions are:---------

1 Katayama’s system needs more input output pairs to find the factorial functions. With the pairs
used as running example his system finds another function. This is just an effect of the order of
generation of candidate functions.

9

D esigning types By far the most im portant way to control the synthesis o f candi
date functions is the design o f the data types used to represent the candidate
functions. Only candidate functions that can be represented can be generated
and will be considered.

In this paper we used this to guarantee that candidate functions are either
nonrecursive, i.e. the function body is an arithmetic expression, or the candi
date function is primitive recursive containing an appropriate stop condition.

G enerating instances of types The test system Gvst generates instances of these
types in its struggle to approve or falsify the statement that there is no func
tion obeying the given input output pairs. One o f the advantages o f Gvst
is that the generation o f instances for types can be done by the generic al
gorithm ggen. The instance of ggen for a specific type just yields the list of
candidate values. This implies that one can decide to specify a list o f values
by hand instead o f deriving them by the generic algorithm.

We used this in the generation o f constants. Although there is no conceptual
limitation to leaves of the syntax trees to be generated, it is convenient to use
it only there. One can use a general type for constants and easily control the
actual constants used. It is possible to use this also for types with arguments,
but that brings the burden o f controlling the order o f generating instance back
to the user.

Selection of generated instances Finaly, Gvst has the possibility to apply ap red
icate to candidate functions, or actually their syntax tree, before they are
used. If the predicate does not hold, the test value is not used. In fact it is not
even counted as a test.

This is often used for partial functions. A typical example is the square root
function that is only defined for nonnegative numbers. For these numbers
we can state that the square o f the square root of any nonnegative rational
number should be equal to that number: V r. r > 0 ^ sqrt(r)2 = r. This can
be expressed directly in G v s t as:

p S qrt : : Real ^ P roperty
p S qrt r = r > 0 .0 = ^ (s q r t r)~ 2 .0 == r

Using this mechanism we can eliminate undesirable candidate functions from
the tests, and hence from the synthesis o f matching functions.

In order to demonstrate the effects o f these techniques we introduce four variants
o f the property searching for functions matching the input output pairs f 1 = 3,
f 2 = 6, and f 3 = 6. Some functions matching these pairs are f x = 3*x and
f x = x+x+x. The first ten functions synthesized are listed in table 1. The time
needed and the number o f candidates tried and rejected are given in table 2.

The first version o f this property looks only for nonrecursive functions. This is
achieved by using syntax trees o f type Expr, rather than Fun.

pExpr : : Expr ^ Bool
pExpr d = ~ (f 1 == 3 && f 2 == 6 && f 3 == 9) where f = apply d

10

TABLE 1. First 10 functions synthesized for variants of properties requiring the
input output pairs f 1 = 3, f 2 = 6, and f 3 = 6.

pExpr: synthesize expressions pFun: synthesize functions
f x = 0+((x+x)+x)
f x = (x-x)+((x+x)+x)
f x = x+(x+x)
f x = ((x+((x+0)+x))+x)-x
f x = x+((x+x)+0)
f x = (x+x)+x
f x = ((x+((x+0)+x))+x)-(0+x))
f x = ((x+((x+0)+x))+0)-0
f x = (x+x)+(0+x)
f x = (0*x)+((x+x)+x)

f x = (x+(x+x))+0
f x = x+(x+x)
f x = 0+((0+(x+x))+x)
f x = 3*x
f x = (x+x)+x
f x = x+((0+(x+x))+0)
f x = (0+(x+x))+x
f x = ((x+x)+x)+0
f x = x*3
f x = (x-x)+((0+(x+x))+x)

pFit: use only fit functions pExpr2: new type for expressions
f x = x+(x+x)
f x = 3*x
f x = (x+x)+x
f x = x*3
f x = ((x+x)+(x+x))+(0-x)
f x = x-(0-(x+x))
f x = (x+x)+((x+x)-x)
f x = if (x<1) 3 (f (x-1)+f (x-2))
f x = (x+x)-(x-(x+x))
f x = if (x<0) x (f (x-1)+3)

f x = 3*x
f x = x+(2*x)
f x = 3*(1+(x-1))
f x = 3*((x+1)-1)
f x = 3*(2+(x-2))
f x = 3+(3*(x-1))
f x = 3*(3+(x-3))
f x = 3*(4+(x-4))
f x = 3*(5+(x-5))
f x = x*((x+3)-x)

GvST quickly synthesizes functions matching these conditions, but many generated
functions contain redundant subexpressions of forms like 0+x or (x-x)+y where we
would prefer the expressions x and y respectively.

By changing the data type o f syntax trees to Fun, GvST also synthesizes prim i
tive recursive functions. From the tables we see that more candidates are needed in
order to find ten matching functions. Non o f the first ten matching functions syn
thesized is recursive. This illustrates the first possibility to control the candidate
functions mentioned above: using different data types, the system will generate
different candidate functions. Since we use different data types the order o f candi
date functions synthesized is somewhat different than for the previous case. This
explains why the functions synthesized are not exactly equal.

pFun : : Fun ^ Bool
pFun d = ~ (f 1 == 3 && f 2 == 6 && f 3 == 9) where f = apply d

The third version o f the property used also generates candidates from the type
Fun. However, only those instances from that type that obey the predicate f i t are
used in the tests. Generated instances of Fun that do not obey the predicate f i t are

11

TABLE 2. Execution time, number of tests and rejections needed to synthesize the
results from table 1.

property execution
time (S)

number
o f tests

candidates
rejected

pExpr 0.02 180 0
pFun 0.03 429 0
pFit 0.21 1525 2860

pExpr2 0.12 2126 0

rejected instead o f tested.

p F it : : Fun ^ P roperty
p F it d = f i t d = ^ ~ (f 1 == 3 && f 2 == 6 && f 3 == 9) where f = apply d

The predicate f i t is implemented as a class. The default instance yields true for all
arguments. A typical instance of this class for the type of binary operators is given.
A subtraction is fit is the arguments are not equal and each o f the arguments is fit.
An addition is fit i f both arguments are not equal to the constant zero, checked by
is0 , and fit.

class f i t a : : a ^ Bool

instance f i t (BinOp x) | gEq ||*|j x & isC onst, f i t x
where f i t (OpMinus x y) = x = != y && f i t x && f i t y

f i t (OpPlus x y) = ~ (is 0 x) && ~ (is 0 y) && f i t x && f i t y
f i t (OpTimes x y) = ~ (is0 1 x) && ~ (is0 1 y) && f i t x && f i t y

instance f i t a where f i t a = True / / default instance

From the tables we see that this does indeed remove many undesirable function
definitions. Removing additional undesirable expressions is achieved by improving
the associated instances of f i t . As a result o f removing undesirable candidates,
there are now two recursive definitions found matching the examples. The first one
is similar to the Fibonacci function and might be somewhat surprising. The second
one implements multiplication by repeated addition.

Instead o f filtering undesirable function candidates, one can also prevent their
synthesis. Doing this in the instance o f ggen is quite tricky since expressions are
recursive. A better way is to use a new data type E for expressions.

pExpr2 : : E ^ Bool
pExpr d = ~ (f 1 == 3 && f 2 == 6 && f 3 == 9) where f = apply d

In the data type e we prevent undesirable expressions of the form x-0, x*1, 0+x,
1+1, and x -x by removing them from the data types.

: : Mul x y = Mul x y
: : Add x y = Add x y
: : Sub x y = Sub x y

12

: : E1 = E1 (OR (Mul MConst Var) (Mul (OR MConst Var) E23))
: : E2 = E2 (OR (Add Var NConst) (Add (OR NConst Var) E13))
: : E3 = E3 (OR (OR (Sub Var NConst) (Sub IConst V ar))

(OR (Sub (OR NConst Var) E23) (Sub E23 (OR NConst V ar))))
: : E12 :== OR E1 E2
: : E23 :== OR E2 E3
: : E13 :== OR E1 E3
: : E :== OR (OR Var IC onst) (OR E1 (OR E2 E3))

This techniques works, but makes the type definitions used larger. Ensuring that
all wanted instances are included in the type and nothing more is at least as tricky
as stating a predicate f i t that removes all candidates that might be considered
undesirable.

4 G EN ERA TIO N O F M U LTI A R G U M EN T FU N C TIO N S

All generated functions above are o f type I n t ^ i n t . This was chosen deliberately
to keep things as simple as possible, but it is not an inherent limitation o f the
approach. To demonstrate this we show how to handle functions with A rity , e.g.
2, integers arguments. The type for variables is changed such that it represents a
numbered argument.

: : VarN = VarN In t

The environment in apply will now contain a list o f values.

instance apply VarN [In t] I n t where apply (VarN n) = X l . l ! ! n

The instance o f ggen takes care that only valid argument numbers are generted.

ggen {|VarN|} n r = map VarN [0. .A rity -1]

5 SY N TH ESIS O F FU N C TIO N S O VER O T H E R DATA TY PES

The manipulation o f other types than integers can be handle by defining a suitable
abstract syntax tree for these functions, and the associated instances o f ggen, apply
and genShow.

The synthesis o f functions of type R ea l^ R ea l with the same structure as the
functions o f type I n t ^ I n t used above is very simple, we only have to supply
suitable instances o f apply. As slightly more advanced example we show how
function over list of integers, type [In t] ̂ [I n t] , can be handled that are either the
identity function, or the map o f a function o f type I n t ^ I n t over the argument list.

: : LFun = ID | MAP Fun

instance apply LFun [In t] [In t]
where apply ID = X l . l

apply (MAP f) = map (apply f)

13

derive ggen LFun

Some examples o f its use are:
given example generated function tests time
f [1,2,3] = [1,2,3] yiiyg 1 0.01
f [1,2,3] = [1,4,9] g y = map f y where f x = x*x 34 0.05
f [1,2,5] = [1,2,120] g y = map f y

where f x = if (x<1) x (f (x-1)*x)
67573 3.89

6 O T H E R P R O PE R T IE S

Having the candidate function available as real function enables us to write also
other conditions, like tw ice f 1 == 4 or f 1 = 5.

However, there is no reason to stick to these simple predicates on the synthe
sized candidate functions. It is possible to search for nonrecursive functions that
obey the rule f = 0 and Vx. 2 f (x) = f (2x). This can directly be stated is G v s t as:

pfExpr : : Expr ^ P roperty
pfExpr d = f i t d = ^ ~ (f 0 == 0 A ForA ll (Xx.2*f x == f (2*x)))
where f = apply d

Note that we lim it the search to fit candidates. The system promptly synthesizes
functions like f x = 0, f x = x, f x = x+((x+x)+x), f x = 0-(x+x).

If we also includes recursive functions in the search space, we have to take
care that the integers tried as argument by Gvst are not too large. Computing
the result o f synthesized primitive recursive functions, like factorial and Fibonacci,
for a typical test value like maxint uses undesirable amounts o f time and space.
The numbers used in the tests can be limited by computing them modulo some
reasonable upper bound, like 15, or by stating a range o f values directly. A typical
example is:

pfFun : : Fun ^ P ro p erty
pfFun d = f i t d ~ (f 1 == 1 A ((X x .(f x) / x == f (x -1)) For [1. .1 0]))
where f = apply d

The factorial function f x = i f (x<0) 1 (f (x-1)*x) is synthesized quickly.
Since the syntax tree o f the candidate functions is available, it is easy to m a

nipulate the candidate functions. As example we show how we can obtain the
derivative of functions of type R ea l^ R ea l and how it is used in properties. The
derivative ddx of expressions is computed by the class ddx. The rules are taken
directly from high school mathematics:

class ddx t : : t ^ Expr

instance ddx Var where ddx v = toExpr (IConst 1)
instance ddx IConst where ddx v = toExpr (IConst 0)
instance ddx (BinOp t) | ddx t & toExpr t
where ddx (OpPlus s t) = toExpr (OpPlus (ddx s) (ddx t))

14

ddx (OpMinus s t) = toExpr (OpMinus (ddx s) (ddx t))
ddx (OpTimes s t)
= toExpr (OpPlus (toExpr (OpTimes (ddx s) (toExpr t)))

(toExpr (OpTimes (toExpr s) (ddx t))))

This can be used in properties over a function f and its derivative f ’ . For example
f (0) = 1 and Vx. f '(x) = 2x. In G v s t this is:

pddx : : Expr — P ro p erty
pddx d = ~ (f 0. 0 == 1 .0 A ForA ll (Ax. f ’ x == 2 . 0*x))
where f = apply d; f ’ = apply (ddx d)

After 145 test cases Gvst synthesizes the first matching function: f x = (x*x)+1.
These examples show that it pays to use a general test system for the synthesis

o f functions. The matching of given pairs nicely integrates with the general logical
expressions. Have the candidate functions available as data structure also enable
symbolic manipulations like computing the derivative.

7 C O N C LU SIO N

In this paper we show how functions matching given input-result pairs can be syn
thesized. In fact, we generate functions that are either not recursive, or primitive
recursive and are guaranteed to terminate by their structure.

The syntax tree of the candidate functions is determined by a data type. Gen
erating the instances o f these data types and selecting the correct corresponding
functions can be done very well with our general test system Gvst. There are three
ways in which the synthesis of functions is controlled. The first and most impor
tant control mechanism is the type of the syntax tree representing the functions.
The second control mechanism is the generation o f instances of these types. It is
very convenient to derive the generation o f instances from the generic algorithm
o f Gvst, but that is not required. Any list of values can be used. We use this
in the generation of constants: the type is very general, but the used instances of
ggen generate only a small list of desired values. The third and final way to control
which functions are used in the test is by using a predicate in the property. In this
paper we used the predicate f i t to eliminate candidates representing undesirable
subexpressions (like x-x, and 0+x). By defining more sophisticated types, the other
ways to control the synthesis become superfluous. The user decides what is most
convenient and effective.

The test system does most o f the work and provides an excellent platform.
For the functions of type I n t —I n t only one page o f additional C l e a n code is
needed. This approach is more transparent, flexible and efficient than existing
systems like [5]. Just like [5] the system will not synthesize functions that does
not fit in the syntax tree, like f l i s t = [sum l i s t] for the very simple functions of
type [In t] — [In t] used in this paper. This can be fixed by extending the grammar
o f candidate functions. Although the described system works excellent for many
examples, synthesizing functions involving very large expressions or very large

15

constants will take very much time, e.g. hours or days. This is due to the size o f the
search space and the systematic search. Our system does not use any information
available in the predicate during synthesizing candidate functions.

R E FE R E N C E S

[1] Debasish Banerjee, A methodology for systhesis o f recursive functional programs.
ACM transactions on programming languages and Systems, 9(3) 441-462, 1987.

[2] Allen Cypher (editor) Watch What I Do: Programming by Demonstration MIT Press,
1993.

[3] K. Claessen, J. Hughes. QuickCheck: A lightweight Tool for Random Testing o f
Haskell Programs. ICFP, ACM, pp 268-279, 2000.

[4] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at Work. PPDP ’01 Pro
ceedings, 2001, pp 162-174.

[5] Susumu Katayama: Systematic search for lambda expressions Proceedings 6th
Symposium on Trends in Functional Programming TFP 2005, pp. 195-205,
www.cs.ioc.ee/tfp-icfp-gpce05/tfp-proc and privite communication.

[6] Pieter Koopman, Artem Alimarine, Jan Tretmans and Rinus Plasmeijer: Gast:
Generic Automated Software Testing, Pena: IFL’02, LNCS 2670, pp 84-100, 2002.

[7] Pieter Koopman, Rinus Plasmeijer: Generic Generation o f the Elements o f Types,
Proceedings 6th Symposium on Trends in Functional Programming TFP 2005, pp.
167-179, www.cs.ioc.ee/tfp-icfp-gpce05/tfp-proc.

[8] E. Kitzelmann, U. Schmid, M. Muhlpfordt, and F. Wysotzki Inductive Synthesis o f
Functional Programs In J. Calmet et al (Eds.), AISC 2002 and Calculemus 2002,
LNCS 2385, 26-37, 2002.

[9] Lambert Meertens. Paramorphisms, Formal Aspects of Computing, 4, pp 413-424,
1992.

[10] Henry Lieberman (editor) Your Wish is My Command: Programming by Example
The Morgan Kaufmann, ISBN 1-55860-688-2, 2001

[11] Rinus Plasmeijer and Marko van Eekelen: Concurrent Clean Language Report (ver
sion 2.1.1), 2005. www.cs.ru.nl/~clean.

[12] John C. Reynolds. Denitional interpreters for higher-order programming languages.
Higher-Order and Symbolic Computation, 11(4):363-397, 1998. Reprinted from the
proceedings of the 25th ACM National Conference (1972).

[13] Ute Schmid, Jens Waltermann. Automatic Synthesis o f XSL-Transformations from
Example Documents. In: M.H. Hamza: Artificial Intelligence and Applications Pro
ceedings (AIA 2004), pp 252-257, Acta Press, 2004.

[14] Philip Summers A methadology for LISP program construction from examples JACM
24(1) 161-175, 1977.

[15] Fritz Wysotzki, Ute Schmid Synthesis o f Recursive Programs from Finite Examples
By Detection o f Macro-Functions Forschungsberichte des Fachbereichs Informatik
der TU Berlin Nr. 2001-2, ISSN 1436-9915, 2001. http://ki.cs.tu-berlin.de/pubs.html

[16] T. Yu and C. Clack, Recursion, Lambda Abstractions and Genetic Programming,
Genetic Programming 1998: Proceedings of the Third Annual Conference, Pages
422-431, Morgan Kaufmann, 1998

16

http://www.cs.ioc.ee/tfp-icfp-gpce05/tfp-proc
http://www.cs.ioc.ee/tfp-icfp-gpce05/tfp-proc
http://www.cs.ru.nl/~clean
http://ki.cs.tu-berlin.de/pubs.html

