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Sym m etric Causal Independence M odels 
for C lassification
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Toernooiveld 1, 6525 ED  Nijmegen, The Netherlands

A b s tra c t
Causal independence modelling is a well-known method both for reducing the size of prob
ability tables and for explaining the underlying mechanisms in Bayesian networks. In  this 
paper, we propose an application of an extended class of causal independence models, 
causal independence models based on the symmetric Boolean function, for classification. 
W e present an E M  algorithm to learn the parameters of these models, and study con
vergence of the algorithm. Experimental results on the Reuters data collection show the 
competitive classification performance of causal independence models based on the sym
metric Boolean function in comparison to noisy O R  model and, consequently, w ith other 
state-of-the-art classifiers.

1 In tro d u c t io n

Bayesian networks (Pearl, 1988) are well- 
established as a sound formalism for represent
ing and reasoning with probabilistic knowledge. 
However, because the number of conditional 
probabilities for the node grows exponentially 
w ith the number of its parents, it is usually 
unreliable if not infeasible to specify the con
ditional probabilities for the node that has a 
large number number of parents. The task of as
sessing conditional probability distributions be
comes even more complex if the model has to in
tegrate expert knowledge. W hile learning algo
rithms can be forced to take into account an ex
pert’s view, for the best possible results the ex
perts must be willing to reconsider their ideas in 
light of the model’s ‘discovered’ structure. This 
requires a clear understanding of the model by 
the domain expert. Causal independence mod
els (Diez, 1993; Heckerman and Breese, 1994; 
Srinivas, 1993; Zhang and Poole, 1996) can both 
lim it the number of conditional probabilities to 
be assessed and provide the ability for models to 
be understood by domain experts in the field. 
The main idea of causal independence models 
is that causes influence a given common effect

through intermediate variables and interaction 
function.

Causal independence assumptions are of
ten used in practical Bayesian network mod
els (Kappen and Neijt, 2002; Shwe et al., 
1991). However, most researchers restrict them
selves to using only the logical O R  and log
ical AND  operators to define the interaction 
among causes. The resulting probabilistic sub
models are called noisy OR and noisy AND  ; 
their underlying assumption is that the pres
ence of either at least one cause or all causes 
at the same time give rise to the effect. Sev
eral authors proposed to expand the space of in
teraction functions by other symmetric Boolean 
functions: the idea was already mentioned but 
not developed further in (Meek and Heckerman, 
1997), analysis of the qualitative patterns was 
presented in (Lucas, 2005), and assessment of 
conditional probabilities was studied in (Jurge- 
lenaite et al., 2006).

Even though for some real-world problems 
the intermediate variables are observable (see 
Visscher et al. (2005)), in many problems these 
variables are latent. Therefore, conditional 
probability distributions depend on unknown 
parameters which must be estimated from data,



using maximum likelihood (M L ) or maximum a 
posteriori (M A P ). One of the most widespread 
techniques for finding M L or M A P  estimates is 
the expectation-maximization (E M ) algorithm. 
Meek and Heckerman (1997) provided a gen
eral scheme how to use the EM  algorithm to 
compute the maximum likelihood estimates of 
the parameters in causal independence mod
els assumed that each local distribution func
tion is collection of multinomial distributions. 
Vomlel (2006) described the application of the 
EM  algorithm to learn the parameters in the 
noisy O R  model for classification.

The application of an extended class of causal 
independence models, namely causal indepen
dence models w ith a symmetric Boolean func
tion as an interaction function, to classification 
is the main topic of this paper. These mod
els w ill further be referred to as the symmetric 
causal independence models. W e present an EM  
algorithm to learn the parameters in symmet
ric causal independence models, and study con
vergence of the algorithm. Experimental results 
show the competitive classification performance 
of the symmetric causal independence models 
in comparison with the noisy O R  classifier and, 
consequently, w ith other widely-used classifiers.

The remainder of this paper is organised as 
follows. In  the following section, we review 
Bayesian networks and discuss the semantics of 
symmetric causal independence models. In  Sec
tion 3, we state the EM  algorithm for finding 
the parameters in symmetric causal indepen
dence models. The maxima of the log-likelihood 
function for the symmetric causal independence 
models are examined in Section 4. Finally, Sec
tion 5 presents the experimental results, and 
conclusions are drawn in Section 6.

2 S y m m e tr ic  B o o le a n  F u n c tio n s  fo r 
M o d e llin g  C a u s a l In d e p e n d e n ce

2.1 B ayes ian  N etw o rks

A Bayesian network B = (G , P r) represents a 
factorised joint probability distribution on a set 
of random variables V . It  consists of two parts: 
(1) a qualitative part, represented as an acyclic 
directed graph (A D G ) G  = (V (G ), A (G )),

Figure 1: Causal independence model

where there is a 1-1 correspondence between 
the vertices V (G ) and the random variables 
in V , and arcs A (G ) represent the conditional 
(in)dependencies between the variables; (2) a 
quantitative part P r consisting of local proba
bility distributions P r (V  | n (V )), for each vari
able V  G V  given the parents n (V ) of the corre
sponding vertex (interpreted as variables). The 
joint probability distribution P r is factorised ac
cording to the structure of the graph, as follows:

P r (V ) = H  P r (V  | n (V )).
V ev

Each variable V  G V  has a finite set of m utually 
exclusive states. In  this paper, we assume all 
variables to be binary; as an abbreviation, we 
w ill often use v+ to denote V  = T  (true) and 
v- to denote V  = ± (false). W e interpret T  
as 1 and ± as 0 in an arithmetic context. An 
expression such as

£  g(H1, . . . , H n)

stands for summing g(H1, . . . ,  Hn) over all pos
sible values of the variables Hk for which the 
constraint ÿ ( H 1, . . . ,  Hn) = T  holds.

2.2 Sem antics o f S ym m etric  C au sa l 
Independ ence M o dels

Causal independence is a popular way to spec
ify interactions among cause variables. The 
global structure of a causal independence model 
is shown in Figure 1; it expresses the idea that 
causes C1, . . . ,  Cn influence a given common ef
fect E  through hidden variables H 1, . . . ,  H n and 
a deterministic function f , called the interac
tion function. The impact of each cause Cj 
on the common effect E  is independent of each



other cause C j , j  = i. The hidden variable Hi 
is considered to be a contribution of the cause 
variable Ci to the common effect E . The func
tion f  represents in which way the hidden ef
fects Hi, and indirectly also the causes C i , in
teract to yield the final effect E . Hence, the 
function f  is defined in such a way that when 
a relationship, as modelled by the function f , 
between H i ; i = 1 ,...,n , and E  = T  is sat
isfied, then it holds that f  (H1, . . . ,  Hn) = T . 
It  is assumed that Pr(e+ | H 1, . . . ,  Hn) = 1 if 
f  (H 1 , . . . ,  Hn) = T , and Pr(e+ | H u . . . , H n) =
0 if f  (H 1 ,...,H n ) = ±.

A causal independence model is defined in 
terms of the causal parameters P r (H i | C i ), for
1 = 1 ,.. . ,n  and the function f  (H1, . . . ,  Hn). 
Most papers on causal independence models as
sume that absent causes do not contribute to 
the effect (Heckerman and Breese, 1994; Pearl, 
1988). In  terms of probability theory this im
plies that it holds that Pr(h+  | c-) = 0; as a 
consequence, it holds that P r(h -  | c-) = 1. In 
this paper we make the same assumption.

In  situations in which the model does not cap
ture all possible causes, it is useful to introduce 
a leaky cause which summarizes the unidentified 
causes contributing to the effect and is assumed 
to be always present (Henrion, 1989). W e model 
this leak term by adding an additional input 
Cn+1 = 1 to the data; in an arithmetic context 
the leaky cause is treated in the same way as 
identified causes.

The conditional probability of the occurrence 
of the effect E  given the causes C1, . . . ,  Cn , i.e., 
Pr(e+  | C1, . . . ,  Cn), can be obtained from the 
causal parameters Pr(Hl | Ci ) as follows (Zhang 
and Poole, 1996):

Pr(e+  | C 1 , . . . ,C n )
n

= E  H  P r (H j | C i). (1)
f  (Hl,...,Hn)=T i=1

In  this paper, we assume that the function f  in 
Equation (1) is a Boolean function. However, 
there are 22" different n-ary Boolean functions 
(Enderton, 1972; Wegener, 1987); thus, the po
tential number of causal interaction models is 
huge. However, if we assume that the order of

the cause variables does not matter, the Boolean 
functions become symmetric (Wegener, 1987) 
and the number reduces to 2n+1.

An important symmetric Boolean function is 
the exact Boolean function ei, which has func
tion value true, i.e. ei (H1, . . . , H n) = T , if 
Sn=1 v (H i ) = l w ith v (H i ) equal to 1, if H i 
is equal to true and 0 otherwise. A  symmetric 
Boolean function can be decomposed in terms 
of the exact functions ei as (Wegener, 1987):

n
f  (H 1 , . . . ,  Hn) = V  ei(H1,. . . , Hn)  A Yi (2)

i=0

where Yi are Boolean constants depending only 
on the function f . For example, for the Boolean 
function defined in terms of the O R  operator we 
have y 0 = ^  and y 1 = ... = Yn = T .

Another useful symmetric Boolean function is 
the threshold function Tk, which simply checks 
whether there are at least k trues among the ar
guments, i.e. Tk (I1 , . . . , I n )  = T , i f E  n= 1  v(Ij  ) > 
k w ith v (Ij ) equal to 1, if I j  is equal to true 
and 0 otherwise. To express it in the Boolean 
constants we have: y0 = • • • = Yk-1 = ^  and 
Yk = • • • = Yn = T . Causal independence model 
based on the Boolean threshold function further 
w ill be referred to as the noisy threshold models.

2.3 T h e  Po isson  B in o m ia l D is tr ib u tio n

Using the property of Equation (2) of the sym
metric Boolean functions, the conditional prob
ability of the occurrence of the effect E  given the 
causes C 1 , . . . , Cn can be decomposed in terms 
of probabilities that exactly l hidden variables 
H 1, . . . ,  H n are true as follows:

Pr(e+  | C 1 ,. . . ,C n )
n

= £  £  H P r (H i | C i)*
0 < I < n e;(Hi,...,Hn) i=1

Y i

Let l denote the number of successes in n 
independent trials, where pi is a probability 
of success in the ith  trial, i = 1, . . . , n; let 
p = (p1, . . .  ,pn), then B (l; p) denotes the Pois
son binomial distribution (Le Cam, 1960; Dar-



roch, 1964): Let us define
i

Pjz
B ( i ;p ) = n (1 - Pi) e  n 1 -  p . ■

i=1 1<jl<---<ji<n z=1 Pjz

Let us define a vector of probabilistic param
eters p (C 1 , . . . ,C,n) = (P1 , . . .  ,Pn ) w ith pi = 
Pr(h+  | C i). Then the connection between the 
Poisson binomial distribution and the class of 
symmetric causal independence models is as fol
lows.
P ro p o s itio n  1. It holds that:

n
Pr(e+  | C 1 , . . . ,C n ) = £ B ( i ;  p (C 1 ,...,C n ))Y i.

i=0

3 E M  A lg o r ith m

Let D  = {x 1, . . . ,  xN }  be a data set of indepen
dent and identically distributed settings of the 
observed variables in a symmetric causal inde
pendence model, where

xj (cj ,ej ) = (c1 ,...,cn ,e j ).

W e assume that no additional information 
about the model is available. Therefore, to learn 
the parameters of the model we maximize the 
conditional log-likelihood

N
C L L (0 ) = ^ ln P r ( e j | cj ,0 ).

j=1

The expectation-maximization (E M ) algo
rithm  (Dempster et al., 1977) is a general 
method to find the maximum likelihood esti
mate of the parameters in probabilistic models, 
where the data is incomplete or the model has 
hidden variables.

Let 0 = (01;. . . ,  0n) be the parameters of the 
symmetric causal independence model where
0i = Pr(h+  | c+). Then, after some calcula
tions, the (z + 1)-th iteration of the EM  algo
rithm  for symmetric causal independence mod
els is given by:

E x p e c ta tio n  step: For every data sample 
xj = (cj , ej  ) w ith j  = 1 ,..., N , we form

p (zj) = (P(z j) P(z j) P(zj) P(z,j))p\k = (P1 , . . . , Pk-1 , Pk+1 , . . . , Pn ) .

Subsequently, for all hidden variables H k with 
k = 1, . . . , n we compute the probability 
Pr(h+  | ej , cj ,0 (z)) where

Pr(h+  | ej , cj ,0 (z))
P(z,j) n-1 B  /• p (z>j A  Y .Pk Ei=0 B  (̂ i; p\k J Yi+1

En=o B  (i; p (z j)) Yi
if ej = 1 ,

and

Pr(h+  | ej , cj ,0 (z))

Pkz,j) ( 1  -  E “-  b(< ; p \ f )  Yi+1)

1 - E  ?= 0 B  (i; p (z’j ) ) Yi
if ej =  0.

M ax im iza tio n  step: Update the parameter 
estimates for all k = 1 ,..., n:

0k =
E 1<j<N jP r (h +  | ej , cj ,0 (z))

^1<j<N ck

p (z,j) = (P 1z’j ) , ,Pnz,j)) where P(z,j) = 0(z)cj .

4 A n a ly s is  o f th e  M a x im a  o f th e  
L o g - lik e lih o o d  F u n c tio n

Generally, there is no guarantee that the EM  
algorithm w ill converge to a global maximum of 
log-likelihood. In  this section, we investigate 
the maxima of the conditional log-likelihood 
function for symmetric causal independence 
models.

4.1 N o isy  O R  and  N o isy  A N D  M o dels

In  this section we w ill show that the conditional 
log-likelihood for the noisy O R  and the noisy 
AND  models has only one maximum. Since 
the conditional log-likelihood for these models 
is not necessarily concave we w ill use a mono
tonic transformation to prove the absence of the 
stationary points other than global maxima.

First, we establish a connection between the 
maxima of the log-likelihood function and the 
maxima of the corresponding composite func
tion.

n



P ro p o s itio n  2. (G lobal o p tim a lity  cond i
tio n  fo r  concave fu n c tio n s  (B o yd  and  
Vandenberghe, 2004))
Suppose h(q) : Q ^  ^  is concave and differen
tiable on Q. Then q* G Q is a global maximum  
i f  and only if

v „,(q * ) = (  d M q ü  )
V d<?1 dqn )

Further we consider the function

T
0.

C L L (0 ) = h (q (0 )).

Let C L L (0 ) and h (q (0 )) be twice differentiable 
functions, and let q(0) be a differentiable, in
jective function where 0(q) is its inverse. Then 
the following relationship between the station
ary points of the functions C L L  and h holds.
Lem m a 1. Suppose, 0* is a stationary point of 
C L L (0 ). Then there is a corresponding point 
q(0* ), which is a stationary point of h (q (0 )).

Proof. Since the function q(0) is differentiable 
and injective, its Jacobian m atrix ^ l ’" ' is 
positive definite. Therefore, from the chain 
rule it follows that if V C L L (0 * ) = 0, then 
V h (q (0 *)) = 0. □

P ro p o s itio n  3. I f  h (q (0 )) is concave and 0* 
is a stationary point of C L L (0 ), then 0* is a 
global maximum.

Proof. If  0* is a stationary point, then from 
Lemma 1 it follows that q (0*) is also station
ary. From the global optim ality condition for 
concave functions the stationary point q (0*) is 
a maximum of h (q (0 )), thus from the definition 
of global maximum we get that for all 0

C L L (0 ) = h (q (0 )) < h (q (0*)) = C L L (0 * ).

□
Given Proposition 3 the absence of the lo

cal optima can be proven by introducing such 
a monotonic transformation q(0) that the com
posite function h (q (0 )) would be concave. As

it is a known result that the Hessian matrix of 
the log-likelihood function for logistic regression 
is negative-semidefinite, and hence the problem 
has no local optima, we w ill use transformations 
that allow us to write the log-likelihood for the 
noisy O R  and noisy AND  models in a similar 
form as that of the logistic regression model.

The conditional probability of the effect in a 
noisy O R  model can be written:

n
Pr(e+ | c, 0) = 1 -  U  P r(h -  | Ci)

i=1
n n

= 1 — H  (1 — 0i )Ci = 1 — exp ( J 3 ln(1 — 0i )ci ).

Let us choose a monotonic transformation qi = 
— ln(1 — 0i ), i = 1 ,..., n. Then the conditional 
probability of the effect in a noisy O R  model 
equals

Pr(e+ | c, q) = 1 — e-qTc.

Let us define zj = qTcj and f (z j ) = Pr(e+  | 
cj , q), then the function h reads

N
h(q) = E  ej ln f  (zj ) + (1 — ej ) ln(1 — f  (zj )). (3) 

j=1

Since f ' (zj ) = 1 — f  (zj ), the first derivative of 
h is

dh(q)
Ôq

N
E f  (zj )(e j — f  (zj ))
= l f  (zj )(1 — f  (zj ))
N

= y -  ej — f  (zj ) cj
j= ì f (z j ) .

To prove that the function h is concave we need 
to prove that its Hessian matrix is negative 
semidefinite. The Hessian m atrix of h reads

d 2h(q) 
d qô q

N
T —

1 — f (z j)  . . .
=1 f (z j )2

ej cj cj T .

As the Hessian m atrix of h is negative semidefi
nite, the function h is concave. Therefore, from 
Proposition 3 it follows that every stationary 
point of the log-likelihood function for the noisy 
O R  model is a global maximum.

j



The conditional probability of the effect in a 
noisy AND  model can be written:

n
Pr(e j + | c,0 ) = []P r(h+ + I <*)

i=1
n n

= Ft 0Ci = exp E ln 0iCi .

Let us choose a monotonic transformation qi = 
ln 0i, i = 1 ,..., n. Then the conditional proba
b ility of the effect in a noisy AND  model equals

P r(e j + I c, q) = eqTc.

Let us define zj = qTcj and f (z j ) = Pr(e+  | 
cj , q). The function h is the same as for the 
noisy O R  model in Equation (3). Combined 
w ith f ' (zj ) = f  (zj ), it yields the first derivative 
of h

dh(q)
dq

*  f V ) ( e j — f  (zj )) , 
f  (zj )(1 — f  (zj ))

E  ej — f  ( j  cj 
j=1 1 — f  (zj )

and Hessian matrix

d 2h(q ) = — *  f  (zj ) 
dqd qT (1 — f  (zj ) )

(1 -  e j ) c j cj cj T

Hence, the function h is concave, and the log- 
likelihood for the noisy AN D  model has no other 
stationary points than the global maxima.

4.2 G en e ra l Case
The EM  algorithm is guaranteed to converge to 
the local maxima or saddle points. Thus, we 
can only be sure that the global maximum, i.e. 
a point 0* such that C L L (0 * ) > C L L (0 ) for all 
0* = 0, w ill be found if the log-likelihood has 
neither saddle points nor local maxima. How
ever, the log-likelihood function for a causal in
dependence model w ith any symmetric Boolean 
function does not always fulfill this requirement 
as it is shown in the following counterexample.
Ex am p le  1. Let us assume a data set D  = 
{(1 ,1 ,1 ,1 ), (1, 0,1, 0 )} and an interaction func
tion e1, i.e. y 1 = 1 and Yo = y 2 = 73 = 0. To

learn the hidden parameters of the model de
scribing this interaction we have to maximize 
the conditional log-likelihood function

C L L (0 ) = ln[01 (1 — 02 )(1 — 0 3 )
+ (1 — 01)02 (1 — 03 ) + (1 — 01 )(1 — 02)03]
+ ln[1 — 0 1 ( 1  — 0 3 ) — (1 — 0 1 ) 0 3 ].

Depending on a choice for in itial parameter 
settings 0(o), the EM  algorithm for symmetric 
causal independence models converges to one of 
the maxima:

C L L (0 )r
0 at 0 = (0,1,0),
—1.386 at 0 G {(01, 0, 2, 0,03) } .

Obviously, only the point 0 = (0,1, 0) is a global 
maximum of the log-likelihood function while 
the other obtained points are local maxima.

The discussed counterexample proves that in 
general case the EM  algorithm for symmetric 
causal independence models does not necessar
ily converge to the global maximum.

5 E x p e r im e n ta l R e s u lts

For our experiments we use Reuters data collec
tion, which allows us to evaluate the classifica
tion performance of large symmetric causal in
dependence models where the number of cause 
variables for some document classes is in the 
hundreds.

5.1 E va lu a tio n  Schem e

Since we do not have an efficient algorithm to 
perform a search in the space of symmetric 
Boolean functions, we chose to model the in
teraction among cause and effect variables by 
means of Boolean threshold functions, which 
seem to be the most probable interaction func
tions for the given domains.

Given the model parameters 0, the testing 
data D test and the classification threshold 2, the 
classifications and misclassifications for both 
classes are computed. Let tp (true positives) 
stand for the number of data samples (cj , ej +) G 
D íesí for which Pr(e+  | cj , 0) > 2 and fp (false

2



positives) stand for the number of data samples 
(cj , ej +) G D test for which Pr(e+  | cj , 0) < 2. 
Likewise, tn (true negatives) is the number of 
data samples (cj , ej- ) G D test for which Pr(e+  | 
cj , 0) < 1 and fp (false positives) is the num
ber of data samples (cj ,ej- ) G D test for which 
Pr(e+  I cj ,0) > 1. To evaluate the classifica
tion performance we use accuracy, which is a 
measure of correctly classified cases,

tp + tn
n = ---------------- ,tp + tn + f  n + f  p

and F-measure, which combines precision n = 
tp+fp and remM p = ¿ f ,

F  = ^ .  
n + p

5.2 R e u te rs  D a ta  Set
W e used the Reuters-21578 text categorization 
collection containing the Reuters new stories 
preprocessed by Karciauskas (2002). The train
ing set contained 7769 documents and the test
ing set contained 3018 documents. For every 
of the ten document classes the most informa
tive features were selected using the expected 
information gain as a feature selection criteria, 
and each document class was classified sepa
rately against all other classes. W e chose to 
use the same threshold for the expected infor
mation gain as in (Vomlel, 2006), the number 
of selected features varied from 23 for the corn 
document class to 307 for the earn document 
class. W hile learning the values of the hidden 
parameters the EM  algorithm was stopped af
ter 50 iterations. The accuracy and F-measure 
for causal independence models w ith the thresh
old interaction function k = 1, . . . ,  4 are given 
in tables 1 and 2. Even though the threshold 
to select the relevant features was tuned for the 
noisy O R  classifier, for 5 document classes the 
causal independence models w ith other interac
tion function than logical O R  provided better 
results.

The accuracy and F-measure of the noisy O R  
model and a few other classifiers on the Reuters 
data collection reported in (Vomlel, 2006) show 
the competitive performance of the noisy O R  
model.

Table 1: Classification accuracy for symmetric 
causal independence models w ith the interac
tion function Tk, k = 1 , . . . ,  4 for Reuters data 
set; is number of documents in the cor
responding class.______________________________

Class T1 T2 T3 T4

earn 1087 96.3 97.2 97.2 96.8
acq 719 93.1 93.2 93.2 93.0
crude 189 98.1 98.1 97.6 97.7
money-fx 179 95.8 95.8 95.9 96.0
grain 149 99.2 99.0 98.2 97.9
interest 131 96.5 96.8 96.7 96.7
trade 117 96.6 97.0 97.3 97.3
ship 89 98.9 98.8 98.7 98.6
wheat 71 99.5 99.2 98.8 98.5
corn 56 99.7 99.4 99.1 98.8

6 D iscu ss io n

In  this paper, we discussed the application of 
symmetric causal independence models for clas
sification. We developed the EM  algorithm to 
learn the parameters in symmetric causal inde
pendence models and studied its convergence. 
The reported experimental results indicate that 
it is unnecessary to restrict causal independence 
models to only two interaction functions, logical 
O R  and logical AND . Competitive classification 
performance of symmetric causal independence 
models present them as a potentially useful ad
ditional tool to the set of classifiers.

The current study has only examined the 
problem of learning conditional probabilities of 
hidden variables. The problem of learning an 
optimal interaction function has not been ad
dressed. Efficient search in symmetric Boolean 
function space is a possible direction for future 
research.
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Table 2: Classification F-measure for symmet
ric causal independence models w ith the inter
action function Tk, k = 1 , . . . ,  4 for Reuters data 
set; is number of documents in the cor
responding class.______________________________
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earn 1087 95.0 96.1 96.1 95.6
acq 719 85.3 84.3 84.5 83.8
crude 189 84.5 85.7 80.7 81.0
money-fx 179 60.9 62.1 62.6 62.7
grain 149 92.7 89.9 80.7 77.2
interest 131 40.2 55.0 53.3 54.0
trade 117 51.0 61.2 63.7 63.7
ship 89 79.5 77.7 74.5 71.5
wheat 71 90.3 81.8 71.4 66.2
corn 56 91.8 83.6 72.5 61.5
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