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The aggregation behavior in water of three iron (II) complexes with alkylated 

derivatives of 2,2'-bipyridine was studied by electron microscopy (SEM, cryo-SEM, 

TEM) and AFM. The results show that minor changes in the length of the ligand alkyl
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chains induce remarkable changes in the morphology of the self-assembled aggregates 

in aqueous solution, viz. from rod-like to spherical aggregates.

Introduction

The attachment of lipophilic carbon chains to ligands followed by complexation with 

transition metals provides a means of combining amphiphilic properties, such as surface 

activity and self assembly, with the physicochemical properties of metal complexes, 

namely rich spectroscopic properties, acid-base and redox activity, magnetic properties, 

etc. Several applications have been proposed for metallosurfactants such as use as

1 2 3probes for magnetic resonance imaging, templates for mesoporous materials, 

metallomesogens,4, 5 sensitizers for optoelectronic devices, 6-10 homogeneous 

catalysts, 11-13 and as antihelmintic therapeutics. 14 The affinity of transition metal ions 

for certain amphiphilic chelating compounds has also been used to promote vesicle 

formation,15, 16 and layer-by-layer film formation. 17 In particular, lipophilic derivatives 

of 2 ,2 ’-bipyridine have been widely used to confer amphiphilic properties on metal

2 3 6 7 Q 10 18-24complexes, with possible catalytic and photophysical applications.

Nevertheless, the aggregation behavior of bipyridine-based metallosurfactants is still 

poorly explored. Many of the studies in the literature report the formation of micelles 

from metallosurfactants in solution,25-28 although evidence for inverted vesicles has also 

been reported.22

In order to evaluate the ability of lipophilic derivatives of 2,2'-bipyridine as building 

blocks for metal-containing nanoassemblies we have synthesized and studied the 

aggregation behavior in water of the complexes [FeL2(CN)2] 1-5 (1, L= 4,4'-dipentyl- 

2,2'-bipyridine; 2, L= 4,4'-diheptyl-2,2'-bipyridine; 3, L= 4-heptyl-4’methyl-2,2'- 

bipyridine; 4, L= 4,4'-dinonyl-2,2'-bipyridine, 5, L= 4,4'-bis(tridecyl)-2,2'-bipyridine; 

Scheme 1). Aggregation of complexes 1-5 was first detected in water-methanol, water-
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acetone and water-acetonitrile solutions, where a sharp decrease in Xmax of the MLCT 

band in conjunction with an increase in light scattering was observed for water-rich 

solutions.2Q These complexes are known to be strongly solvatochromic, and the spectral 

changes observed can be related to the existence of a lipophilic microenvironment 

around the metal center.29, 30 The lipophilic micro-environment is a strong indication 

that the compounds aggregate in water-rich solutions. In all cases, these aggregates were 

stable for at least several months without any evidence of precipitation. In a preliminary 

communication we reported the results obtained by TEM and dynamic light-scattering 

for compound 4, that revealed the formation of spherical aggregates with diameters 

ranging from 200-500 nm . 19

In the present paper we report a TEM, SEM and AFM study on the morphology of the 

aggregates of the complexes [FeL2(CN)2] 1-5, in water and in water-methanol mixtures.

Experim ental

The complexes were prepared using a published procedure with minor modifications, 19,

29, 31 affording 1-5 in the cis-configuration. The aggregates were obtained by injecting

-350 ^L of a methanol solution of the desired compound (10 M) into 10 mL of an 

aqueous solution at 65 °C, under Ar bubbling. After injection, the solution was 

maintained at 65 °C for at least 5 min with Ar bubbling for organic solvent elimination. 

TEM was carried out in a JEOL-TEM 1010 microscope, operating at 60 KeV, on 

samples dried on formvar-coated copper grids ( 2 0 0  mesh), without the addition of 

contrast agent, since the presence of the metal ion provides enough contrast. SEM was 

carried out in a JEOL FEG-SEM (JSM-6330F) microscope, operating at 3 KeV, WD= 8  

mm, on samples dried on glass slides coated with Au/Pd by sputtering. Cryo-SEM was 

carried out on the same instrument used for conventional SEM with an Oxford Cryo 

transfer system CT1500 HF; the sample was rapidly frozen in nitrogen slush at -220 °C,
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fractured in the cooling pre-chamber of the microscope at -120 °C, subjected to Au/Pd 

sputtering (1.5 nm), and transferred to the microscope chamber, where it was kept at - 

120 °C. Samples were prepared for AFM by depositing the vesicles onto freshly cleaved 

mica sheets, followed by drying, either under ambient conditions, or by extended 

vacuum drying followed by storage in the vacuum desiccator. All solutions for AFM 

were prepared using ultrapure pre-filtered water (18MQ water for molecular biology, 

Sigma), to avoid contamination. Samples were examined using a Molecular Imaging 

PicoLE atomic force microscope in tapping mode. Rectangular silicon cantilevers of 

resonant frequency of 75-155kHz and nominal tip radius <10nm (MikroMasch, Tallinn, 

Estonia) were used.

Results

Electron microscopy study o f freshly prepared samples. The compounds studied are 

insoluble in water, even at high temperature, with stirring and sonication. Nevertheless, 

stable colloidal solutions are obtained by addition of water to a methanol solution of the 

compound or by injection of a small volume of a methanol solution of the desired 

compound, into water at 65 °C, with stirring and under argon. This injection method is 

commonly used in the preparation of phospholipid vesicles.32, 33 Formation of 

aggregates was immediately perceived by a color change from red (monomer) to blue 

(aggregates).

The morphological properties of the aggregates formed by the present complexes 

were studied by SEM, TEM, and cryo-SEM. In all cases, the results obtained by the 

three techniques were similar, which shows that the aggregates observed by SEM and 

TEM are present in solution, and no drying artifacts were observed by these techniques. 

SEM images of freshly prepared samples of the complexes studied are shown in Figure 

1. The length of the alkyl chains in 2,2'-bipyridine seems to be a key structural factor for
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the morphology of the aggregates. Compound 1 (Figure 1A), with four 5-carbon chains, 

formed rod-like aggregates with average lengths that varied considerably from sample 

to sample, viz. from 650 to 3500 nm and widths that varied within the range 60-150 nm. 

Cryo-SEM images showed the same type of rod-like aggregates, some of them 

protruding from the surface (Figure 2A, black arrows). In addition to the rod-like 

structures, cryo-SEM images showed some large sheet-like aggregates (Figure 2A, grey 

arrow) and some disrupted films lying on the surface (Figure 2A, white arrow), possibly 

resulting from compound that remained after solvent evaporation.

SEM images for compound 2 (Figure 1B) with four 7-carbon chains also showed rod­

like aggregates, although with lower average aspect ratio (length range 65-430 nm, 

width range 45-170 nm), as well as spherical aggregates (diameter range 20-220 nm). In 

this case, the individual structures were clustered in a three-dimensional network both in 

frozen solution (cryo-SEM, Figure 2B) and in dehydrated samples (SEM, Figure 1B).

Compound 3, with one 7-carbon chain and one methyl group on each ligand, (Figure 

1C) showed a homogeneous population of elongated aggregates, but in this case the 

structures are wider in the middle than at the ends, resembling rice-grains (length range 

65-430 nm; range of widths at the middle 40-170 nm).

Compound 4, (Figure 1D, 2C), with four 9-carbon chains, showed only spherical 

aggregates with diameters in the range of 30-270 nm. These aggregates were partially 

clustered in the SEM samples probably due to the dehydrating conditions of the sample, 

since in freshly prepared frozen samples studied by cryo-SEM no clusters were 

observed.

Compound 5 showed only spherical aggregates, but two different populations were 

observed: aggregates with diameters in the range of 5-10 nm (Figure 1E, inset) and 

aggregates with a mean diameter of ~ 120 nm (Fig 1 E).
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Except for the 5-10 nm aggregates observed for 5, all the other aggregates detected 

have dimensions that exclude the possibility of micellar structures, since such structures 

usually have radii of the order of magnitude of the length of the extended molecule.33, 34 

The range of sizes observed is typical for vesicle-like aggregates. This means that they 

should have an aqueous core, which can be easily detected by simple encapsulation 

experiments using a strongly hydrophilic fluorescent probe, such as 5(6)- 

carboxyfluorescein.33 This assay is commonly used to probe the formation of vesicles in 

phospholipid suspensions, and is based on the strong auto-quenching effect of the probe. 

Samples were prepared as usual, but using a 1 M aqueous solution of 5(6)- 

carboxyfluorescein instead of pure water. At this concentration, fluorescence of the 

probe is low due to auto-quenching. After checking the formation of the aggregates by 

UV/vis spectroscopy, the aggregates were separated from free probe by size exclusion 

chromatography (Sephadex G50). The presence of an aqueous core in the aggregates 

may be ascertained by checking the fluorescence intensity of the sample after 

separation, with and without addition of a vesicle disruption agent, e.g. Triton X100. If 

the fluorescence intensity increases drastically after the addition of Triton X100, then an 

aqueous core must have been present in the aggregates, since the addition of Triton 

X100 releases the fluorescent probe to the bulk solution, decreasing its concentration 

and thus the auto-quenching effect. For all the complexes studied, a strong increase in 

fluorescence was observed after adding Triton X100 (increase of 2-20 times), showing 

that the hydrophilic probe remained trapped inside an aqueous core. It should be noted 

that for compound 5, like for the other complexes, only one fraction was detected that 

displayed fluorescence after treatment with Triton X100, in spite of the observation by 

microscopy of two different populations of very different size. Since the elution
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volumes of the fractions for compounds 4 and 5 were very similar, the fluorescent 

fraction for compound 5 was ascribed to the 120 nm aggregates.

Electron microscopy study o f aged samples. In all cases, the individual aggregates, 

once formed, showed a strong tendency towards clustering or fusion in solution at room 

temperature, and after a few days at room temperature, larger fused or clustered 

structures were observed, depending on the complex. Fusion was the main process for 

compound 1 while clustering seemed to be the prevailing process for all the other 

compounds studied. Figure 3A shows an SEM image obtained for a sample of 

compound 1, 1 day after preparation. The morphology of the aggregates in the sample is 

similar to that observed for freshly prepared samples, but there is a marked increase in 

the average length and in the average width, showing that fusion is a non-directional 

process. In contrast, compounds 2 and 4 displayed mainly clustering of the formed 

aggregates. Cryo-SEM images of samples of compound 2, 9 days after preparation, 

showed the formation of micro-domains formed by aggregation of rod-like structures 

(Figure 3B, 3C), that in some cases were surrounded by a film. Some of these latter 

structures were broken (probably as a result from the cryo-fracturing of the samples) 

showing a core containing rod-like aggregates (Figure 3C). In both types of structures 

the individual rod-like aggregates showed a marked increase in their length (length 

determined by SEM of 200 nm - 1 ^m), indicating that fusion also contributed to the 

ageing process of the aggregates. Studies on aged samples of compound 4 showed that 

the formation of clusters of spherical particles was a faster process, and after 1 day in 

solution the majority of the spherical aggregates had become clustered in solution. After 

9 days in solution the only structures detected by cryo-SEM (Figure 3D) were 

microdomains with average length of ~ 4 ^m surrounded by a film. Some of these
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spherical or oval-shape micro-domains were broken and revealed a core made up of 

individual spherical aggregates.

Effect o f incubation time and solvent. The incubation time at 65 °C and the amount of 

methanol are also important factors that influence the properties of the aggregates. SEM 

images of samples prepared by the same method at room temperature and at 65 °C but 

limiting the incubation period at the latter temperature to less than 2  min, showed only 

irregular structures with diameters of 100-200 nm for all the compounds studied. For 

incubation periods at 65 °C of 5-15 min formation of rod-like structures was observed 

for 1, 2, and 3, while for the other compounds studied the aggregates maintained their 

spherical morphology but became much more regular and attained smoother surfaces. 

For the compounds that formed rod-like structures the average length of the rods 

increased with the incubation time. For the 15 min incubation samples some clustering 

of the structures was detected, but for longer incubation periods the number of 

aggregates detected in the sample decreased and most of the sample was composed of 

irregular films.

The effect of adding methanol was studied for methanol concentrations of 0.5-25 % 

(v:v). The addition of this solvent was done both before and after incubation at high 

temperature, and the results were similar. For all the compounds studied, increasing 

amounts of methanol caused a decrease of the stability of the aggregates relative to the 

dehydrating conditions of the SEM experiments. Figure 4A shows a typical picture of a 

sample of 1 containing 5 % of methanol, where clearly some of the aggregates are 

partially collapsed. For larger amounts of methanol more collapsed structures were 

observed. In addition, the remaining aggregates showed an irregular surface, in contrast 

to what was observed in water where all the aggregates showed a smooth surface. With 

10-75 % methanol present in solution, the samples in all cases showed large round films
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with average diameters of 2-5 ^m (Figure 4B). These films showed a darker exterior 

boundary, indicating that they were probably formed by the collapse of large vesicle- 

type structures. Similar structures were also seen for those compounds that formed rod­

like aggregates in water. The amount of methanol necessary to induce these changes 

was found to be lower for the longer alkyl chain samples. For example, complex 4 in 

methanol/water 1 % v:v (or higher amounts of methanol) formed mainly large vesicles 

with diameters of 0.5-3 ^m, in agreement with our previously reported TEM images. 19

AFM  study. In order to gain insight into the 3-dimensional structure of the aggregates, 

atomic force microscopy was carried out. Compounds 1 and 4 were selected for this 

study because they were representative of the different morphologies observed (i.e. rod­

like and spherical, respectively). AFM images of aggregates prepared from compounds 

1 and 4 are shown in Figure 5A and 5C, respectively. Both samples were dried under 

ambient conditions. The structures of the aggregates were quite similar to those 

observed by SEM and TEM. Table 1 shows that the dimensions of the aggregates as 

measured by the TEM, SEM, and AFM techniques are quite similar, although the 

variation between batches was quite large. In general, the height as measured by AFM 

was somewhat smaller than the width as measured by TEM or SEM. TEM shadowing 

experiments (not shown) showed that the rod width and rod heights were the same for 

individual rods. Quantitative measurement of the width of such high-aspect ratio 

features by AFM is not possible, however, due to convolution of the sample topography 

with the shape of the tip .35

In some, but not all cases, further dehydration of the samples of 1 and 4 by vacuum 

desiccation led to aggregates with a considerably different morphology. Two such 

images of dehydrated aggregates are shown in Figures 5B ( compound 1 ) and 5D 

(compound 4). Figure 5B shows the typical rods of the pentyl modified compound, but
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with a distinctive “flattened” morphology. In addition, the rods are surrounded by some 

collapsed material. This effect was seen several times for dehydrated aggregates, 

although it did not always occur. In addition, it was possible to observe intact 

aggregates, as well as flattened aggregates in the same sample. However, this flattened 

morphology was never seen unless the samples had been vacuum dried. Figure 5D 

shows that the aggregates of compound 4 were also strongly affected by drying. These 

vacuum-dried aggregates appeared broader and flatter than those dried under ambient 

conditions (5C). Furthermore each aggregate was surrounded by a broad plateau, which 

was 2.6 nm (standard deviation 0.2 nm) high. Again, this effect was only seen for some 

aggregates after vacuum drying, but never for aggregates prepared under ambient 

conditions.

Discussion

The aggregation behavior observed for the compounds studied in this work is 

typically that of amphiphilic molecules, containing a hydrophilic headgroup and a 

hydrophobic tail. These molecules form self-assembled structures in water, in order to 

maximize the interactions of the hydrophilic part with the solvent, while minimizing the 

contact of the hydrophobic part with the solvent. In the case of compounds 1-5, the 

alkyl chains are obviously hydrophobic, as are also probably the bipyridine ligands,36 

which can also interact with each other by n- n stacking. The known solvatochromism 

of [Fe(bpy)2(CN)2] and related alkyl-substituted species, which is the result of hydrogen 

bonding of the cyanide ligands to protic solvents,29, 30 is evidence of the hydrophilicity 

of the highly polar Fe(II)(CN)2 moiety in the complexes 1-5 despite the fact that this 

moiety has no net charge and does not dissociate in ions. The absence of any charge 

repulsion combined with the overall high hydrophobicity, including both the alkyl and
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bipyridine moieties explains the self-assembly in water of compounds 1-3, despite the 

fact that they contain only short alkyl tails. Nevertheless, it should be noted that the 

difference in lipophilicity between 1, and the same compound with 4-methyl-4’-pentyl- 

2 ,2 ’-bipyridine ligands is sufficient to make the latter compound water soluble.30

In order to understand the self-assembly behavior of the present compounds, it is 

useful to compare their structural features and behavior with those of previously 

reported ruthenium complexes of general formula [Ru(bpy)2(4,4’-R2bpy)]2+, where R is 

12 or 19 carbon alkyl chains,25, 27 and [Ru(bpy)(4,4’-R2bpy)2]2+, where R is heptadecyl 

alkyl.22 The first type of ruthenium complexes forms spherical micelles in water with 

headgroup areas around 100 A , as shown by small-angle neutron scattering. The 

second type of ruthenium complexes yields spherical inverted micelles and spherical 

inverted vesicles in hexane and toluene, respectively.22 It should be noted that the 

molecular structure of this latter complex is more comparable to the present complexes, 

since the number of alkyl chains per molecule is in both cases 4, whereas for complexes 

[Ru(bpy)2(4,4’-R2bpy)]2+ the number of alkyl chains is 2. The difference in number of 

alkyl chains, and thus in the volume of the hydrophobic moiety, is expected to strongly 

influence the type of aggregate that is formed, based on the geometrical considerations 

proposed by Israelachvili37 for surfactant self-assembly. Since for the present 

compounds the number of alkyl chains is 4, but the number of carbon atoms in these 

chains is lower than for the ruthenium complexes, the packing parameter should be 

intermediate between those of [Ru(bpy)2(4 ,4 ’-R2bpy)]2+ and [Ru(bpy)(4 ,4 ’-R2bpy)2]2+,

i.e. in the range expected for bilayer formation.

The size exclusion experiments with the fluorescent probe show that in all cases the 

aggregates contain encapsulated solvent, and the AFM results indicate that extensive 

drying of the samples results in flattened structures. The presence of a solvent core is
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not apparent from the TEM images, but it is not expected to be detected there because 

of the strong scattering of the electrons by the metal ions in the surfactants. Thus it 

seems that water is present inside the aggregates, which is important in order to keep 

their spherical or rod-like morphology. The 2.6 nm plateau that surrounds the collapsed 

aggregates of compound 4 has a mean thickness commensurate with that expected for a 

bilayer structure (as based on a simple CPK model that predicts an extended length of 

1.7 nm for this compound). The difference between the measured value (2.6 nm) and 

the theoretical bilayer thickness (3.4 nm) may imply some interdigitation or tilting of 

the molecules in the bilayer. We undertook powder X-ray diffraction studies on the 

dried material, expecting not only to obtain further evidence for the formation of 

bilayers, but also to determine the bilayer thicknesses and relate them to the molecular 

structures. Unfortunately, the diffraction patterns showed only weak and broad peaks 

indicating a large disorder in the aggregated state; no set of peaks that could be assigned 

to a lamellar packing of stacked bilayers was observed. The failure to detect any 

lamellar packing suggests that compounds 1-5 do not have a large tendency to form 

regular stacked bilayers; this is in line with the observation of material with a thickness 

corresponding to only one single bilayer in the AFM experiment of compound 4. As 

bilayer thicknesses could not be obtained it was not possible to draw any conclusions 

with respect to the effect of the number and length of the alkyl tails on the molecular 

packing of the compounds.

In the AFM experiments we were able to study the effect of dehydration on the 

structure of the aggregates. Since the TEM and SEM pictures were taken under high 

vacuum, we could not perform such experiments. Nevertheless, the intriguing question 

remains, why the TEM and SEM images more closely resemble the AFM images of 

hydrated vesicles, than those of the dehydrated vesicles. That is, why were the vesicles
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as observed by SEM and TEM not surrounded by the material seen in the AFM images 

of dehydrated vesicles? One possible explanation is that the present compounds have a 

higher affinity for the support used in the AFM studies (mica) than for the support used 

in TEM and SEM studies (formvar and glass, respectively).

Another important experimental observation requiring an explanation is the unusual 

rod-like vesicle aggregation observed for the short chain amphiphiles 1, 2, and 3. Self­

assembly into tubules, rods and fibers is usually restricted to cases where the driving 

force for assembly is some directional intermolecular interaction, such as hydrogen 

bonding, and n-n stacking.38-43 Although for compounds 1-5 the existence of n-n 

stacking between bipyridine ligands on neighboring molecules may not be ruled out 

completely, the cis configuration around the metal center and the steric hindrance of the 

alkyl groups at the positions 4 and 4’ of these ligands make this type of interaction very 

unlikely. In addition, a question that remains open is why the directional interaction 

between molecules is not expressed in the case of the aggregates of the compounds with 

longer alkyl chains, i.e. compounds 4 and 5. The formation of rod-like vesicles may be 

related to the molecular structure imposed by the coordination center. In the most 

extended conformation of the alkyl chains, the overall shape of the molecules of this 

type of compounds resembles a see-saw or an octahedral molecule with two adjacent 

positions much shorter (cyanides) than the other four, as schematically represented in 

Fig. 6 . This shape creates void spaces that may be occupied by the alkyl chains of a 

neighbor molecule either in the same or in an opposite monolayer. As may be seen in 

Fig. 6 , the molecules are also very asymmetric in shape, and this asymmetry may lead to 

a preference for an elongated aggregate structure. Anisotropic aggregation induced by 

an anisotropic shape of the molecule has been described for gemini surfactants.44, 45 As 

the length of the alkyl chain increases this effect may be reduced because the longer
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chains may occupy the void space more effectively, and thus make the molecular shape 

more symmetric.

The results obtained of the experiments at different aggregation times show that all 

aggregates have a strong tendency to fuse into larger structures. This behavior is typical 

of neutral surfactants, but the presence of four alkyl chains per molecule may also play a 

role. In fact, simulation studies on the aggregation behavior of single- and double-tail 

surfactants indicate that, by increasing the number of lipophilic tails, the ability of the 

headgroup to shield the hydrophobic tails from the solvent becomes weaker.46 This 

inability to shield the tails introduces some disorder in the molecular aggregates because 

the solvent becomes inserted into the lipid cores, increasing the driving force for 

aggregation/fusion.

The behavior of the aggregates upon addition of increasing concentrations of 

methanol is also typical of amphiphilic compounds. It is well known from experimental 

and computational studies that the addition of methanol to amphiphilic aggregates 

decreases the bilayer thickness because it induces interdigitation of the tails, and hence 

fusion events.47. These effects have been attributed to the fact that the alcohol molecules 

become located at the hydrophilic/hydrophobic interface, which increases the average 

headgroup area, and to a decrease of the interfacial tension as a result of the increase in 

alcohol concentration in the bulk solvent.

Taken together, our results suggest that self-assembly of the compounds 1-5 is a 

kinetically driven process, and that the thermodynamically stable morphology of the 

aggregates in all cases is the bilayer structures observed in aged samples, either in the 

form of large vesicles and rod-like structures or as films.

Conclusion
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This study reports on the aggregation behavior of metallosurfactants derived from 

iron(II) complexes with lipophilic bipyridine ligands. The morphological 

characterization was performed by several microscopic techniques, namely SEM, cryo- 

SEM, TEM and AFM, and the results obtained show that in all cases the morphology of 

the aggregates greatly depends on the length of the alkyl chains attached to the 

bipyridine ligand. For shorter alkyl chains rod-like nanostructures were observed, 

whereas for longer alkyl chains only spherical nanostructures were found. The 

formation of aggregates of these complexes is noteworthy because they contain 

relatively short alkyl chains allowing only weak hydrophobic interactions between the 

lipophilic chains. The fact that aggregation nonetheless occurs, indicates that other 

interactions, in particular those involving the hydrophobic bipyridine ligands, or 

solvent-mediated hydrogen bonding between cyanide ligands from neighboring 

complex molecules, are also important. Nevertheless, it is likely that the poor 

hydrophobic interaction between the chains and the asymmetry of the molecular 

structure of the complexes with short alkyl tails determine the final relative orientation 

of the adjacent molecules in the aggregate. Increase of the alkyl chain attenuates this 

asymmetry effect, possibly because the space between the molecules becomes better 

filled, while interdigitation of lipophilic tails may also play a role. Further studies on the 

packing of the compounds are being carried out in order to elucidate this behavior.

Study of the effects of dehydration of the vesicles suggests that water is important for 

retaining the vesicle structure. It furthermore suggests that the internal structure of the 

vesicles is made up of (possibly concentric) bilayers of molecules.

In comparison with other amphiphilic metal bipyridine complexes reported so far in 

the literature, the present complexes exhibit a higher tendency to form bilayer structures 

that enclose an aqueous compartment. This stabilization of bilayer structures is probably
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due to the higher number of alkyl chains per molecule. The present compounds are thus 

promising candidates for the preparation of bilayer structures containing metal 

complexes, and to introduce metal complex reactivity and special physical properties in 

soft-materials.
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Scheme 1. Chemical structure of the compounds studied: compound 1: m=n=5; 

compound 2: m=n=7; compound 3: m=7, n=1; compound 4: m=n=9, compound 5: 

m=n=13.

N

H2m+lCm

H 2n+1C n

C n^2n+1
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Figure 1. SEM micrographs of freshly prepared samples of compounds 1 (A), 
compound 2 (B) compound 3 (C), compound 4 (D) and compound 5 (E). The inset of E 
is a higher magnification image showing the smaller features observed in this sample.
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Figure 2. Cryo-SEM micrographs of freshly prepared samples of compounds 1 (A), 
compound 2 (B), and compound 4 (C). For the meaning of the arrows, see text.

Figure 3. (A) SEM image of a sample of compound 1 after 1 day in solution; (B) and 
(C) cryo-SEM micrographs of a sample of compound 2 after 9 days in solution; (D) 
cryo-SEM micrograph of a sample of compound 4, after 9 days in solution.

Figure 4. SEM micrographs of samples of (A) compound 1 with addition of 5% (v:v) 
methanol; and (B) compound 4 with addition of 75% (v:v) methanol.
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Figure 5. AFM images of vesicles formed from compound 1 imaged after air drying on 

the mica substrate (A), and after vacuum drying (B) and compound 4 imaged after 

drying in air(C) and under vacuum (D)

Figure 6 : (A) Side views of the molecular structure of compound 1 obtained by 
minimization of steric energy (MM2 Chem3D 10.0). (B) Schematic representation of 
possible molecular aggregation.

Com pound 1 Com pound 4
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Length / 
nm

W idth /  nm Aspect
Ratio

W idth /  nm

AFM 380-700 60-80 6.0-9.0 40-55

TEM 660-940 70-125 5.0-10.0 50-100

SEM 1200-1700 120-150 9.0-12.0 80-130

Table 1: Average vesicle dimensions as measured by AFM, TEM and SEM, values are 
the range of averages for different batches (at least 20 measurements per batch). Widths 
as reported from AFM measurements were measured from vesicle heights (see text).
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