
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The version of the following full text has not yet been defined or was untraceable and may

differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/35194

 

 

 

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16122325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/35194


The Im plem entation  of iD ata
A  C ase S tu d y  in G eneric Program m ing

Rinus Plasm eijer and Peter Achten

Software Technology, Nijmegen Institute for Computing and Information Sciences, 
Radboud University Nijmegen { rin u s, P.Achten}@ cs.ru.nl

A b s tra c t. The iData Toolkit is a toolkit that allows programmers to 
create interactive, dynamic web applications with state on a high level of 
abstraction. The key element of this toolkit is the iData element. An iData 
element is a form that is generated automatically from a type definition 
and that can be plugged in in the web page of a web application. In 
this paper we show how this automatic generation of forms has been 
implemented. The technique relies essentially on generic programming.
It has resulted in a concise and flexible implementation. The iData Toolkit 
is an excellent demonstration of the expressive power of modern generic 
(poly-typical) programming techniques.

1 In trodu ction

In th is paper we present a novel approach to  program m ing fo r m s  in dynam ic 
web applications. The low level view, and stan d ard  definition, of a form is th a t 
of a collection of (prim itive) interactive elements, such as tex t inpu t fields, check 
boxes, radio bu ttons, pull down menus, and so on, th a t provide the application 
user w ith a m eans to  exchange structu red  inform ation w ith the  web application. 
Seen from this point of view, and if program m ed th a t way, creating forms results 
in a lot of low level HTML coding. A high level view of forms is to  th ink  of them  
as being editors of struc tu red  values of appropriate type. From  the type, the 
low level realization can be derived autom atically. This can be done once by the 
toolkit developer. Seen from th a t po in t of view, and if program m ed th a t way, 
creating forms is all about creating d a ta  types. This results in a lot less code 
plum bing and no HTML-coding a t all.

In the iData Toolkit project, we have adopted the high level view of forms 
described above. We call these high level forms iData. An iData allows the web 
application user to  edit d a ta  of some specified d a ta  type. The current value of 
th a t d a ta  type is the s ta te  of the  iData. The rendering of an iData is a form in the 
low level view. R endering is determ ined com pletely by the  type of the s ta te  of 
the iData. Having an explicit concept of s ta te  allows us to  provide the program 
m er w ith fine grained control over its p e rs is te n c y . The way a web application 
works and looks is not exclusively determ ined by its iData. I t also contains non
interactive web elements, such as tex t, headers, tables, and so on. In the iData 
Toolkit these are created  by the program m er by m eans of a set of da ta  types th a t



serve as a typed HTML program m ing language. In summary, the iData Toolkit 
has the following m ain features:

— An iData is a typed  interactive unit th a t can be plugged in a web page.
— An iData has typed sta te . The program m er controls its persistence.
— Web pages are program m ed w ith d a ta  types.

An approach as sketched above can be im plem ented in any program m ing lan
guage w ith good support for d a ta  types and type-driven program m ing. M od
ern functional program m ing languages such as Clean [21,3] and Haskell [20] 
come w ith highly expressive type systems. One example of type-driven pro
gram m ing is generic p rogram m ing [13,14,2], which has been built in in Clean 
and GenericHVskell [17]. In th is paper we use Clean. We assume the reader is fa
m iliar w ith functional and generic program m ing. Clean specific language features 
are explained in the tex t.

Server side web applications are launched by the web server as soon as a 
request is received from a web browser. The application produces the requested 
web page, and then  term inates. Because of th is behavior, every web application 
needs to  create a solution to  store, reload, and update  its in term ed ia te  state. 
M any solutions to  this problem  have been invented. Two of them  are server side 
storage, and enhancing the  web page w ith s ta te  inform ation th a t is invisible to  
the application user. We adopt a com bination of these two solutions.

We show th a t generic program m ing provides us w ith concise and flexible 
solutions for m ost of the  m ajor aspects of web program m ing: serialization and 
deserialization, storage and retrieval of in term ediate application states, printing 
and parsing of the HTML d a ta  type language, tracking down and fixing edited 
d a ta  structures of a rb itra ry  type. In all, the  iData Toolkit project is an excellent 
case study  in generic program m ing.

This paper is s truc tu red  as follows. We first present the HTML program m ing 
language in Sect. 2. W ith  th is language, the  application developer can create 
a rb itra ry  HTML pages. Next, we show how the iData Toolkit can autom atically  
generate forms out of iData elem ents in Sect. 3. These iData elements have a 
sta te  and a visualization th a t can be used by the  application developer in the 
HTML pages. W hen a user m anipulates a page w ith iData, the action of the user 
needs to  be recovered, as well as the  sta tes of the iData elements, and a new 
collection of iData elements w ith possibly modified sta te  need to  be created. We 
show in Sect. 4 how this can be done generically. The last step is to  obtain  a 
good separation of the  iData logic and its visualization in Sect. 5. Sect. 6 gives 
a small example to  give an im pression of the  expressiveness of the  iData Toolkit. 
We discuss related  work in Sect. 7 and conclude in Sect. 8.

2 Program m ing S ta tic  W eb Pages

A server side web application is s ta rted  by the web server as soon as a request 
is received from a client web browser. The web application receives its input 
d a ta  on std in  and sends its ou tp u t d a ta  on std o u t . The ou tp u t d a ta  contains the



web page th a t is sent back by the  web server to  the client web browser. Hence, 
the purpose of every web application is to  produce a web page th a t reflects the 
application’s response to  the given input. In addition, it has to  retrieve sta te  
inform ation th a t is either encoded in the inpu t date, or has been stored on disk. 
These standard  actions are perform ed by the  library  function

doHtml :: (*HSt ^  (Html,*HSt)) *World^  *World

(In Clean, function argum ents are separated  by whitespace instead of ^ .  The 
m ain function S ta r t  of an interactive application has type *World ^  *World. Clean 
uses explicit m ultiple environm ent passing for handling pure effects. The World 
value represents the external environm ent of an application. The uniqueness 
a ttrib u te  * in front of the  type constructor guarantees single-threaded  access to  
values of th is type [6, 7].)

The application specific behavior is provided by the program m er w ith the 
function of type

(*HSt ^  (Html,*HSt))

The abstrac t type HSt collects all sta tes during the construction of an HTML 
page. We defer its discussion until Sect. 3.2. Here, we focus on the Html type, 
which is the  root type of a collection of algebraic d a ta  types th a t cap ture  HTML.

Html =  Html Head Rest
Head =  Head [HeadAttr] [HeadTag]
Rest =  Body [BodyAttr] [BodyTag] | Frameset [Fram esetA ttr] [Frame]
Frame =  Frame [FrameAttr] | NoFrames [Std_A ttr] [BodyTag]
BodyTag =  A [A_Attr] [BodyTag] | . . .  | Var [ S td_A ttr] S tring

| STable [Table_A ttr] [[ BodyTag ]]
| BodyTag [BodyTag]
| EmptyBody

BodyTag contains the familiar HTML tags, s ta rtin g  w ith anchors  (a) and ending 
w ith variables (Var) (in to ta l there are 76 HTML tags). The la tte r three a lter
natives are for easy HTML generation: STable generates a 2-dimensional table 
of elements, BodyTag tu rn s  lists of elem ents into a single element, and EmptyBody 
can be used as a zero element. A ttribu tes are encoded as FooAttr d a ta  types.

The lib rary  function mkHtml :: S tring  [BodyTag] *HSt ^  (Html, *HSt) creates 
a simple HTML page w ith given title  and content.

mkHtml :: S tring  [BodyTag] *HSt ^  (Html,*HSt) 
mkHtml t i t l e  tags h st

=  (Html (Head [ ‘Hd_Std [S td_T itle  t i t l e ]] []) (Body [] ta g s ) , h st)

Consider the  following example of a tiny  “Hello world” page.

S ta r t  :: *World ^  *World
S ta r t  world =  doHtml (mkHtml "Hello World Example" [Txt "Hello World!"]) world

The corresponding HTML code is

<head t i t l e  =  Hello World Example></head><body>Hello World!</body>



Basically, HTML can be encoded straightforw ardly into a set of algebraic d a ta  
type. There are some m inor complications. In Clean, as well as in Haskell, all d a ta  
constructors have to  be different. In HTML, the  same a ttrib u te  nam es can appear 
in different tags. Furtherm ore, certain  a ttribu tes, such as the standard  attribu tes, 
can be used by m any tags. We do not want to  repeat all these a ttrib u tes  for 
every tag, bu t group them  in a convenient way. To overcome these issues, we 
use the  following nam ing conventions. (1 ) The d a ta  constructor nam e represents 
the corresponding HTML language element. (2) D ata  constructors need to  s ta rt 
w ith an uppercase character and m ay contain o ther uppercase characters, bu t 
the corresponding HTML nam e is prin ted  in lower-case form at. (3 ) To obtain  
unique names, every d a ta  constructor nam e is prefixed in a consistent way with 
Foo_. W hen the nam e is prin ted  we skip th is prefix. (4 ) A constructor nam e is 
prefixed w ith ‘ in case its nam e has to  be com pletely ignored when printed. In 
this way any indirection to  any collection of commonly used a ttrib u tes  can be 
m ade in the d a ta  type w ithout causing any side effects when printed.

This approach has the following advantages. (1) One obtains a gram m ar for 
HTML which is convenient for the program m er. (2) The type system  elim inates 
type and typing errors th a t can occur when working in plain HTML. (3 ) We 
can define a type driven generic function for generating HTML code. (4 ) Future 
changes of HTML are likely to  change the  algebraic d a ta  types only.

The generic prin ting  routine gHpr im plem ents the nam ing conventions dis
cussed above, and p rin ts the correct HTML code.

generic gHpr a :: *F ile a ^  *File

(g e n e ric  g a :: T  a declares a kind indexed family of functions g th a t are over
loaded in a w ith  type scheme T  a. *F ile represents a file on disk th a t can be 
updated  in place, guarded by the uniqueness a ttrib u te .) Its definition is stra igh t
forward polytypical code; only the CONS instance is special since it has to  handle 
the conventions m entioned above. This results in a universal HTML prin ter in 
less th an  20 loc. For completeness we show its code.

gHpr{|String|} f i l e  s =  f i l e  < <  s
/ /  Other basic type instances proceed analogously 
gHpr{[]} gx f i l e  xs =  fo ld l gx f i l e  xs
gHpr{UnIT} f i l e  _ =  f i l e
gHpr{pAlR} ga gb f i l e  (PAIR a b) =  gb (ga f i l e  a) b 
gHpr{EITHER} g l g r f i l e  (lEFT l )  =  g l f i l e  l  
gHpr{ElTHER} g l g r f i l e  (RIGHT r)  =  gr f i l e  r  
gHpr{OBJECT} go f i l e  (OBJECT o) =  go f i l e  o 
gHpr{CONS of t} gc f i l e  (cONS c)
| t.gcd_name.[0] == =  gc f i l e  c
| t.g c d _ a rity  == 0 =  f i l e  <+ " " <+ p r in t  t.gcd_name
| t.g c d _ a rity  == 1 =  gc ( f i l e  <+ " " <+ p r in t  t.gcd_name <+
| otherwise =  gc ( f i l e  <+ " " <+ p r in t  t.gcd_name

where p r in t  =  toLower o s tr ip p re f ix

<<< is an overloaded operator th a t w rites its second argum ent to  the  first argu
m ent of type *File. o is function com position. <+ is a shorthand  for gHpr{*}.

" =  " ) c
) c



g { k } selects the  overloaded function of kind k of the  generic function family g.) 
Derived instances can be created for m ost of the HTML types (73). Types such 
as HeadTag and BodyTag are not quite regular and require specialization (requiring 
8 loc and 90 loc respectively).

3 R endering iData

In the previous section we have shown how an iData Toolkit application developer 
can program  ‘raw ’ HTML code. This HTML code m ay contain forms, bu t as we 
have explained, we propose to  create forms autom atically  from the type of the 
d a ta  th a t they  are supposed to  represent. In this section we show how to  render 
forms from the sta te  of iData. We first show how HTML rendering of iData is 
taken care of in Sect. 3.1, and then  explain w hat sta te  handling is required for 
this in Sect. 3.2.

3 .1  G e n e r a t in g  F o rm s  f ro m  T y p e s

Given a model value of type m, then  a form is generated by gForm: 

generic gForm m : : Formld m *HSt ^  (Form m, *HSt)

The form is represented by the  record type (Form m). The changed field of this 
record holds if the user has edited the  form. The value field is its current value. 
The form field is the actual HTML rendering of the  form.

:: Form m =  { changed::Bool, va lue::m , form :: [ BodyTag] }

Because the sta te  of forms need to  be stored (either in the  web page or on disk), 
they  have to  be identified unambiguously. This is w hat Formld values are for. 
I t is the  task  of the application developer to  use unam biguous nam es (Strings). 
Formld values are created  w ith one of the functions {n, s, p}[d]FormId :: S t r in g ^  
Formld. In addition to  the name, the program m er has control over the  life span 
and edit mode of the  iData element.

:: Formld =  { id : :S t r in g , life sp a n ::L ife sp a n , mode::Mode }
:: Lifespan =  Page | Session | P e rs is te n t 
:: Mode =  E dit | Display

The life span of an iData elem ent is determ ined by {n, s, p}: its value is garbage 
collected autom atically  after each page creation (n), is stored persistently  during 
a session (s), or independent of sessions (p). By default, values can be edited in 
the browser. If they  should be displayed only, then  one of the {n, s, p}dFormId 
functions can be used.

For basic types, gForm creates basic forms. We show the code for integers, for 
o ther basic types the code is analogous. (Value is used as a union type for basic 
types. UpdValue also includes selected constructor nam es -  last alternative.)

gForm {|lnt|} formid i  hSt
$ (form,hSt) =  mklnput formid (IV i)  (Updl i)  hSt



: : UpdValue =  Updl In t | UpdR Real | UpdB Bool | UpdS S tring  | UpdC S tring  
: : Value =  IV In t | RV Real | BV Bool | SV S tring  | NQV S tring

mklnput :: FormId Value UpdValue *HSt ^  (BodyTag,*HSt) 
mklnput formid val updval hSt=:{cntr}

=  ( Input [ Inp_Type Inp_Text, Inp_Value v a l , Inp_Size d efsize  
: case mode of Edit =  [ Inp_Name id e n tify

, ‘Inp_Std [EditBoxStyle]
, ‘Inp_Events [OnChange ca llC lean ]] 

Display =  [ Inp_ReadOnly ReadOnly
, ‘Inp_Std [DisplayBoxStyle] ]] ""

, {hSt & cntr=cntr+ l} ) 
where id e n tify  =  encodeInfo (fo rm id .id , c n t r ,updval)

($ is a non recursive let definition which scope extends downwards, bu t not to  its 
right hand  side. e=:p  binds variable e to  p a tte rn  p; [e1: . . . ,  en :l] (with n  > 0) 
denotes a list th a t s ta rts  w ith elem ents ei up to  en and th a t has a rem aining list 
l; { r  & f i  =  Vi} is a record equal to  r , bu t w ith fields f  having values v*; r . f  
selects field f  of record r .) Basic forms in Display mode are read-only, and show 
this to  the user. Basic forms in E dit m ode need to  ressurect the  web applica
tion on the server side, and provide it w ith the proper inform ation. W henever 
the user edits the value (OnChange), the script callC lean =: " to c le a n (th is )  " is 
called. This script sends the  sta tes of all forms and an iden tifica tion  tr ip le t of 
the edited elem ent back to  the server, causing the application to  be s ta rted  w ith 
the new data . The identification trip le t consists of the  unam biguous form iden
tifier (form id.id), the position of the  value in the  generic representation  (cn tr), 
and the value th a t is edited (updval). Together w ith the collection of all states, 
this is sufficient to  recover the  old sta te  and com pute the  next s ta te  of the  web 
application (Sect. 4).

For the  generic constructors (UNIT, PAIR, EITHER, FIELD, OBJECT, and CONS) 
gForm proceeds polytypically. UNIT values are displayed as EmptyBody. (PAIR a b) 
values are placed below each other. (EITHER a b) values proceed recursively and 
display either their left or right value. (OBJECT o) values proceed recursively. The 
form th a t corresponds w ith (CONS c) values requires more HTML program m ing.

gForm{CONS of t} gc formid (CONS c) hst= :{cn tr}
$ (nc,h s t)  =  gc formid c {hst & cntr=cntr+ l}
=  ( { changed =  n c . changed

, value =  CONS n c .value
, form =  [ STable [Tbl_CellPadding (P ixels 0)

,Tbl_CellSpacing (P ixels 0)]
[[s e le c to r ,BodyTag nc.form ]]]

}, h s t )
where

allConses= map (An ^  n.gcd_name) t.gcd_type_def.gtd_conses
consIndex= allConses??t.gcd_name
se le c to r  =  Select [Sel_Name "CS" : c s ty le ]

=  ({changed=False , value=i , forn=[form] } ,hSt)



[Option
[ Opt_Value (encodelnfo (fo rm id .id , c n t r ,UpdC cons))
: if  (j == conslndex) [Opt_Selected S e le c te d :o s ty le ] o s ty le ] 
cons \ \  cons ^  allConses & j ^  [0 .. ]]

(c s ty le ,osty le)
=  case formid.mode of

Edit ^  ([ ‘Sel_Std [Std_Style w id th , EditBoxStyle]
, ‘Sel_Events [OnChange ca llC lean ]] , [] )

Display ^  ([ ‘Sel_Std [Std_Style w id th , DisplayBoxStyle]
, Sel_Disabled D isabled] , [ ‘Opt_Std [DisplayBoxStyle]]) 

width =  "width:" +++ to S trin g  defp ixel +++ "px"

It generates a pull down menu which entries correspond w ith all d a ta  construc
tors. In E dit mode, the  user can select one of these d a ta  constructors. Changes 
are handled in the same way as w ith basic types, except th a t the  selected con
structo r nam e is passed as argum ent. All in all, gForm’s im plem entation requires 
140 he.

Finally, gForm has been specialized for several standard  form elements. We 
do not discuss their im plem entation. It is basically in the  same style as the  In t 
instance defined above.

3 .2  S to r in g  F o rm  S ta te s

In the iData Toolkit, the s ta te  of a web application is the  set of the sta tes of 
all iData. W hile a page is generated, these sta tes are collected in the abstract 
type HSt. I t extends the  Clean environm ent world :: World w ith a global counter 
cn tr  :: Inputld  to  generate position values in the  generic representation  of the 
states, and the form s ta te s  :: *FormStates th a t are constructed  for a page.

:: *HSt =  { c n tr : : ln p u t ld , s ta te s ::* F o rm S ta tes , world::*World }
: : Inputld  :== In t

( : :  T  i t  :== T ' i t  declares th a t type T  i t  is a synonym  for type T ' i t .) 
FormStates stores the  serialized sta tes of forms together w ith their Formld value 
and if they  have been changed (either by the user or by the web application). 
FormStates is basically an association list w ith a look up function fin d S ta te  and 
update  function rep laceS ta te . These require the World environm ent in case of 
P e rs is te n t forms. The boolean result of fin d S ta te  is true  iff a previous sta te  
was present. Finally, these functions are overloaded because of their use of the 
generic serialization functions gParse and gPrin t.

fin d S ta te  :: Formld *FormStates *World
^  (Bool, Maybe a , *FormStates , *World) | gParse{|*|} a 

rep laceS ta te  :: Formld a *FormStates *World
^  ( *FormStates , *World) | gPrint{|*|} a

( | appends overloading class restrictions to  a function type.)
In addition, FormStates stores the  edit operation of the  user th a t caused the 

application to  be launched. The edit operation  is determ ined by the element 
th a t has been changed (the identification trip le t discussed in Sect. 3.1), and the



new value th a t has been entered by the user. This inform ation is retrieved from 
FormStates by the function

getUserEdit :: *FormStates ^  ((Maybe a ,Maybe b ) , *FormStates)
| gParse{|*|} a & gParse{|*|} b

This function is overloaded in its first result because the d a ta  is stored in seri
alized form. For convenience, the identification string  of the form th a t has been 
edited by the user is stored separately. I t is retrieved by

getUpdateld :: *FormStates ^  (S tr in g ,*FormStates)

4 C reating iData

In the previous section we have shown th a t the rendering of an iData is a form. If 
the application program m er plugs these forms in the  web page of the  application, 
then  they  become available to  the application user, who can s ta rt m anipulating 
them . Every m anipulation  th a t changes the current value of a form triggers the 
execution of the application on the server side. The application has to  figure out 
why it has been launched. There can be only three reasons:

1. N o fo rm  was edited, and  there was no previous state. Initialize all forms.
2. N o fo rm  was edited, and there are previous states. Recover all previous states.
3. One fo rm  was edited, and  i t  had a previous state. C alculate the new state, 

given the  update  inform ation and the recovered previous state.

It is not the  task  of the program m er to  determ ine these actions. This is delegated 
to  each application of the  pivotal iData creation function, mkViewForm. The pro
gram m er uses th is function to  create all of his iData. Because of the com plexity of 
mkViewForm, we first present a slightly simplified version, viz. simplified_mkView- 
Form. The full im plem entation of mkViewForm follows in Sect. 5.

In Sect. 4.1 we first show the  generic function gUpd th a t can update  a selected 
p a rt of any d a ta  struc tu re  w ith a new value of the correct type. This essential 
tool is used by simplified_mkViewForm in Sect. 4.2 to  com pute a new sta te  of a 
form in case it has been edited by the user.

4 .1  U p d a t in g  th e  S ta te  o f  iData

The function gUpd constructs the  new model value of type m of a form. It m ust be 
a generic function because it needs to  traverse the generic d a ta  representation of 
the old model value in order to  locate the generic element th a t has been changed. 
This location has been passed to  the  application w ith the identification trip let, 
as explained in Sect. 3.1.

g e n e r ic  gUpd m :: UpdMode m ^  (UpdMode, m)

:: UpdMode =  UpdSearch UpdValue Inpu tld  | UpdCreate [ConsPos] | UpdDone



The UpdMode type represents the  two passes gUpd goes through: (UpdSearch newv 
cnt) represents the search for the  generic element at location cnt w ith new value 
newv, and (UpdCreate path) represents the creation of new values for a selected 
d a ta  constructor th a t can be found at path (: : ConsPos =  ConsLeft | ConsRight).

We illustra te  the working of gUpd for basic types w ith the case for integers 
(the o ther cases for basic types are analogous). An existing value is replaced 
w ith new somewhere in a generic value at position cnt if cnt =  0, otherwise it is 
not changed and the position is decreased (alternatives 1-2 of gUpd). The default 
value for new integers is 0 (alternative 3).

gUpd{|lnt} (UpdSearch (Updl new) 0) _ =  (UpdDone,new)
gUpd{|lnt} (UpdSearch val cnt) i  =  (UpdSearch val (c n t-1 ) , i)
gUpd{|lnt} (UpdCreate l )  _ =  (UpdCreate l  ,0)
gUpd{|lnt} mode i  =  (mode , i)

The rem aining code of gUpd proceeds polytypically except for OBJECTs:

gUpd{OBJECT of desc} gUpd_obj (UpdSearch (UpdC cname) 0) (OBJECT obj)
$ (mode,obj) =  gUpd_obj (UpdCreate path) obj 
=  (UpdDone,OBJECT obj) 

where path  =  getConsPath (hd [cons \ \  cons ^  desc.gtd_conses
| cons.gcd_name == cname ]

( [ f  v  \ \  v  ^  l | p  v  ] is the lis t com prehension  th a t creates a new list of values 
f  v  where each v  comes from a list l provided th a t predicate p  holds.) In this 
case its new value is determ ined by the  nam e of the selected d a ta  constructor 
(cname). At th a t point, gUpd switches from searching m ode into creation mode, 
in order to  create argum ents of the  d a ta  constructor. The function getConsPath 
: : GenericConsDescriptor ^  [ConsPos] yields the  route to  the desired d a ta  con
structor.

4 .2  U p d a t in g  th e  iData

In this section we define a simplified version of the mkViewForm function, viz. 
simplified_mkViewForm. At the beginning of Sect. 4, we m entioned the  three sit
uations in which forms need to  be updated . The function findFormlnfo performs 
this case analysis. I t m ust deserialize the inpu t d a ta  th a t has been passed to  
the web application and look for the form w ith the given identification. For this 
purpose it uses the function decodelnput:

:: FormUpdate :== (In p u tld ,UpdValue)

decodelnput :: Formld *FormStates *World
^  (Maybe FormUpdate , ( Bool,Maybe m ,*FormStates ,*World)) | gParse{|*|} m 

decodelnput formid fs  world
$ (update id ,fs )  =  getUpdateld fs  
| updateid == form id.id  

=  case getUserEdit fs  of
( ( Just ( s id ,pos ,Updl i ) ,newi) ,fs )  / /  case distinction on In t 

$ p rev_sta te  =  fin d S ta te  {formid & id=sid} fs  world



$ n i =  case newi of (Ju st n i)  ^  n i ; _ ^  i
=  (Just (pos,Updl n i ) ,p rev_sta te)

(_ ,fs )  =  . . .  / /  case distinction on other basic types 
| otherwise

=  (Nothing, fin d S ta te  formid fs  world)

This function checks w hether the  iData element th a t is identified by Formid has 
been edited by the user. If so, its exact location in the generic representation is 
re turned  (of type FormUpdate), as well as its current value (the result of using 
fin d S ta te  - see Sect. 3.2). For this reason, decodeinput requires the  FormStates 
and World environm ents. I t should be noted th a t fin d S ta te  m ay fail to  parse the 
input. This makes the system  type sa fe : if the user has entered incorrect d a ta  
(e.g. 42.0 instead of 42 for an integer form), then  parsing fails, and the  previous 
(correct) value is restored.

Given the  result of decodeinput, findFormlnfo is able to  determ ine the reason 
of executing the  application (the num bers to  the right coincide w ith the  cases in 
the beginning of this section):

findFormlnfo :: Formid *FormStates *World ^  (Bool,Maybe m,*FormStates,*World)
| gUpd{|*|} , gParse {|*|} m

findFormlnfo formid form States world
=  case decodeinput formid form States world of

(Just ( c n t , newv) , ( changed, Just m, form States , world)) (3.)
$ m =  if  changed (snd (gUpd-jj*} (UpdSearch newv cnt) m)) m 
=  (True, Ju st m, form States,world)

(_ ,(_ , Just m,form States ,world)) (2.)
=  (F a lse , Ju st m, form States,world)

(_ ,(_ ,_ , form States ,world)) (1.)
=  (F a lse , Nothing,form States,world)

The simplified_mkViewForm function brings everything together: 

c lass gHTML m | gForm, gUpd, g P r in t , gParse m

simplified_mkViewForm :: Formid m *HSt ^  (Form m, *HSt) | gHTML{|*|} m 
simplified_mkViewForm formid init_m { s ta te s ,world}

=  calcnextView init_m (findFormlnfo formid s ta te s  world) 
where

calcnextView :: m (Bool,Maybe m,*FormStates,*World) ^  (Form m,*HSt)
| gHTML{|*|} m

calcnextView init_m (isupdated ,maybe_m,s t a t e s ,world)
$ m =  case maybe_m of Nothing =  init_m

Just new_m =  new_m 
$ hSt =  { c n tr= 0 ,s ta te s= s ta te s ,world=world}
$ (m form ,{states,world})

=  gForm{|*|} formid m hSt 
$ ( s t a t e s ,world) =  rep laceS ta te  formid mform.value s ta te s  world 
$ mform =  {changed=isupdated,value=m ,form=mform.form}
$ hSt =  { c n tr= 0 ,s ta te s= s ta te s ,world=world}
=  (mform,hSt)



simplified_mkViewForm first determ ines the reason why the web application was 
s ta rted  using findFormlnfo. Given th is inform ation, it can generate the form for 
the correct value m, using gForm. Finally, the new value of the form is stored in 
the FormStates d a ta  structure , and the  form and the updated  adm inistration  are 
returned.

5 iData A b straction

In the previous section we have shown how to  construct web pages w ith iData 
elements. W hen the user m anipulates these iData elements, the application re
sponds w ith the appropriate update  action and generates a new page. The iData 
in a web page present a direct visualization of their s ta te  values. Two final as
pects are lacking:

1. Applications usually impose restrictions on edited values th a t go beyond the 
expressiveness of the type system . For this reason they  need to  be able to  
inspect edited values themselves, and perhaps change them  into o ther values.

2. iData elements need to  be able to  present their values in any m anner th a t is 
suitable to  the application. In general this requires a different type th an  their 
s ta te  type. This implies th a t presentation concerns are not well separated  
from logic concerns.

Based on earlier work, we know th a t b o th  aspects can be dealt w ith by m eans of 
abstraction  [1]. We improve upon the  m ethod by providing a seamless integration 
of abstraction  w ith the iData Toolkit. W ith  abstraction , the application works 
w ith iData th a t have sta te  values of type m, bu t th a t are visualized  by means 
of values of type v. This is a variant of the  well-known m odel(-controller)-view 
paradigm  [16]. W hat is special about it in th is context, is th a t views are also 
defined by m eans of a d a ta  type, and hence can be handled generically in exactly 
the same way. This is a powerful concept, and we have used it successfully in 
the past.

The relation between a model m and its view v is given by the following 
collection of functions (iBimap m v):

: : IBimap m v =  { toView :: m ^  Maybe v ^  v
, updView : : Changed ^  v ^  v
, fromView : : Changed ^  v ^  m
, resetView :: Maybe (v ^  v) }

:: Changed =  { isChanged :: Bool
, changedid :: S tring  }

Model values are transform ed to  views w ith toView. It can use the previous view 
value if available. The local behavior of an iData elem ent is given by updView. 
Its first argum ent records if it has been changed (isChanged :: Bool), and the 
unam biguous nam e of the  iData elem ent th a t has been changed (changedid :: 
S tring). This argum ent of type Changed has the same role in the  function fromView 
which transform s view values back to  model values. Finally, resetView is an



optional separate norm alization a fter  the  local behavior function updView has 
been applied.

A bstraction is incorporated in the  iData Toolkit by generalizing sim plified_- 
mkViewForm into the  following real library  function, mkViewForm. Its type is:

mkViewForm :: FormId m (IBimap m v) »HSt ^  (Form m,»HSt) I gHTML{|*|} v

Its signature is alm ost identical to  th a t of simplified_mkViewForm. It has an ad
ditional argum ent of type (IBimap m v), and it assumes th a t all the generic m a
chinery is available for the view d a ta  type v instead of m. Its im plem entation 
has the same structu re  as simplified_mkViewForm. The function calcnextView is 
more verbose because it needs to  render the view  instead of the  m odel value. 
This also explains why it is in general possible th a t the  creation of an iData ele
m ent w ith model value m re tu rns an iData element w ith different ou tp u t value m‘. 
This is clearly illustrated  by the highlighted sections in the adapted  definition 
of calcnextView below.

mkViewForm : : FormId m (IBimap m  v) »HSt ^  (Form m, »HSt) I gHTML{|*|} v 
mkViewForm formid init_m bm { s ta te s ,world}

=  calcnextView init_m bm (findFormInfo formid s ta te s  world) 
where

calcnextView :: m (IBimap m  v) (Bool, Maybe v ,»FormStates , »World)
^  (Form m , »HSt) I gHTML{l̂ } v 

calcnextView init_m bm ( isupda ted ,maybe_v,s t a t e s ,world)
J v =  bm.toView in it-m  maybe jv
J v =  bm.updView isupdated v
J m  =  bm.fromView isupdated v
J v =  case bm.resetView  of

Nothing =  v 
Just reset =  reset v 

J hSt =  {cn tr= G ,s ta te s= sta te s ,world=world}
J (vform  ,{ s ta te s  ,world}) =  gForm{|*|} formid v hSt
J ( s ta te s  ,world) =  rep laceS ta te  formid vform.value s ta te s  world
J mform =  {changed=isupdated, value=m , form=vform .form}
J hSt =  {cn tr= G ,s ta te s= sta te s ,world=world}
=  (mform,hSt)

The function mkViewForm is a powerful tool to  create form abstractions with. 
Frequently occurring p a tte rn s  of this function have been cap tured  w ith w rapper 
functions. Consider mkEditForm below. It can be used as a ‘s to re ’ in Display mode, 
or as a stra igh t editor in E dit mode.

mkEditForm :: FormId m »HSt ^  (Form m, »HSt) I gHtml{|*|} m 
mkEditForm formid=: {mode} m h st 

=  mkViewForm formid m
{ toForm =  Anew old ^  case old of (Just v) ^  v ; _ ^  new 
, updForm =  case mode of E dit ^  A_ v ^  v ; Display ^  A_ _ ^  m 
, fromForm =  A_ v ^  v 
, resetForm =  Nothing } h s t



6 E xam ple

In order to  get an im pression of the  expressiveness of the  iData Toolkit, we give 
a small example of a web application w ith which the user can edit argum ents of 
type args th a t are applied to  a given function of type args ^  res. The application 
displays the  results of type res. The function (apply name args f) generates the 
page for function f  w ith given name and initial argum ents args:

apply :: S tring  args (args ^  re s) *HSt ^  (Html, *HSt) | gHtml{|*|} args
& gHtml{|*|} re s

apply name args f  hSt
$ (argsF ,hSt) =  mkEditForm (nFormld "args") args hSt
$ ( re sF , hSt) =  mkEditForm (ndFormld "res") (f argsF .value) hSt 
=  mkHtml "Function Application"

[ STable [] [[Txt name:argsF.form], [Txt " =  ":resF .fo rm ]] ] hSt

Two iData are created. The first is the args form (argsF) for editing argum ents. 
The second is the  res form (resF) for displaying the result, hence a display  Formid 
is used. It uses the value of the argsF form to  com pute the proper result. In the 
page, the  forms are placed in two subsequent rows w ith an additional label.

In Fig. 1 two examples of th is application are shown. The first example tests

F ig . 1. (a ) Determine the prime index number. (b )  Summing vector values.

the function primeNr :: in t  ^  Maybe in t.  If its argum ent is a prim e num ber, then 
it tells you which one it is (first, second, etc., where 2 is the first prim e num ber). 
If it is not a prim e num ber, then  Nothing is returned.

S ta r t  world =  doHtml (apply "primeNr" 1 primeNr) world

The second example illustrates the  fact th a t forms are generated from types. In 
this example + is overloaded for a new type for 2-dimensional vectors, defined as 
:: V =  {vx: :R eal, vy: :Real}. The program  is generated with:

S ta r t  world =  doHtml (apply "+" ( z ,z) (A(a,b) ^  a+b)) world 
where z =  {vx=0. 0, vy=0. 0}



7 R elated  W ork

Lifting low-level Web program m ing has triggered a lot of research. M any authors 
have worked on tu rn ing  the generation and m anipulation of HTML (XML) pages 
into a typed discipline. E arly  work is by W allace and R uncim an [25] on XML 
transform ers in Haskell. The Haskell CGI library  by Meijer [18] frees the  program 
m er from dealing w ith CGI printing and parsing. Hanus uses sim ilar types [12] 
in Curry. Thiem ann constructs typed encodings of HTML in extended Haskell in 
an increasing level of precision for valid  docum ents [23,24]. XML transform ing 
program s w ith GenericHVskell has been investigated in UUXML [4]. Elsm an and 
Larsen [10] have worked on typed  representations of XML in ML [19]. O ur use of 
ADTs can be placed between the  single, generic type used by M eijer and Hanus, 
and the collection of types used by Thiem ann. It allows the HTML definition to  
be done com pletely w ith separate d a ta  types for separate HTML elements.

iData com ponents are form abstractions. A pioneer project to  experim ent 
w ith form-based services is Mawl [5]. I t has been im proved upon by m eans of 
Powerforms [8], used in the  <bigwig> project [9]. These projects provide te m 
p lates  which, roughly speaking, are HTML pages w ith holes in which scalar d a ta  
as well as lists can be plugged in (Mawl), bu t also o ther tem pla tes  (<bigwig>). 
They advocate compile-time system s, because th is allows one to  use type sys
tem s and o ther sta tic  analysis. Powerforms reside on the client-side of a web 
application. The type system  is used to  filter out illegal user input. The use of 
the type system  is w hat they  have in common w ith our approach. Because iData 
are encoded by ADTs, we get higher-order form s/pages for free.

Web applications can be structu red  w ith continuations. This has been done 
by Hughes, w ith his arrow framework [15]. Queinnec sta tes th a t “A browser is 
a device th a t can invoke continuations m ultip ly /sim ultaneously” [22]. Graunke 
et al [11] have explored continuations as (one of three) functional com pilation 
technique(s) to  transform  sequential interactive program s to  CGI program s. Our 
approach is sim pler because for every page we have a com plete (set of) model 
value(s) th a t can be stored and retrieved generically in a page. An application 
is resurrected sim ply by recovering its previous state.

8 C onclusions

There are m any tools and script languages for developing web pages. For in ter
active web services m any pages have to  be produced in sequence th a t in teract 
w ith the user in a consistent and reliable way. Defining such behavior is difficult.

W ith  the iData Toolkit interactive web applications can be specified on a high 
level of abstraction. Web applications consist of sta tic  HTML parts , usually for 
presentation  purposes, and interactive forms, for user interaction. This distinc
tion is explicit in the  toolkit. We provide an abstrac t version of forms, iData. 
Forms are generated from iData, and can be plugged in in a rb itra ry  HTML pages. 
The HTML pages are constructed  using a lib rary  of algebraic d a ta  types. This 
elim inates m any type errors, and provides good docum entation  for program 
mers. The program m er can create in tricate  relationships between iData, using



standard  functional program m ing techniques. A lthough the  im plem entation of 
the toolkit using advanced program m ing techniques, we have kept the API of 
the toolkit as simple as possible. Basic knowledge of functional program m ing is 
sufficient to  get s tarted .

A high level of abstraction  has to  be realized using the very low level web 
technology. Yet the im plem entation of the  iData Toolkit is concise, elegant, and 
efficient. This is m ainly due to  the support for generic program m ing in Clean. 
Generic functions are used for generating HTML code, for serialization and de
serialization of values of any Clean type, for the  conversion of Clean d a ta  into 
interactive HTML forms, and the au tom atic update  of values of any type when a 
form is changed. This makes the iData Toolkit an excellent case study  in generic 
program m ing for the real world.

A cknow ledgem ents

Jan  K uper coined the  nam e iData for our editor com ponents. P ieter Koopm an 
provided inpu t for the gUpd function. Paul de M ast kindly provided us w ith a 
web server application w ritten  in Clean which has allowed us to  readily test the 
iData Toolkit. Javier Pom er Tendillo, as an Erasm us guest, has been very helpful 
in setting  up  the iData Toolkit, and find out the n itty -g ritty  details of HTML 
program m ing.

R eferences

1. P. Achten, M. van Eekelen, and R. Plasmeijer. Compositional Model-Views with 
Generic Graphical User Interfaces. In Practical Aspects of Declarative Program
ming, PADL04, volume 3057 of LNCS, pages 39-55. Springer, 2004.

2. A. Alimarine. Generic Functional Programming - Conceptual Design, Implemen
tation and Applications. PhD thesis, University of Nijmegen, The Netherlands, 
2005. ISBN 3-540-67658-9.

3. A. Alimarine and R. Plasmeijer. A Generic Programming Extension for Clean. 
In T. Arts and M. Mohnen, editors, The 13th International workshop on the Im 
plementation o f Functional Languages, IF L ’01, Selected Papers, volume 2312 of 
LNCS, pages 168-186. Alvsjo, Sweden, Springer, Sept. 2002.

4. F. Atanassow, D. Clarke, and J. Jeuring. UUXML: A Type-Preserving XML 
Schema-Haskell Data Binding. In International Symposium  on Practical Aspects of 
Declarative Languages (P A D L ’04), volume 3057 of LNCS, pages 71-85. Springer
Verlag, June 2004.

5. D. Atkins, T. Ball, M. Benedikt, G. Bruns, K. Cox, P. Mataga, and K. Rehor. 
Experience with a Domain Specific Language for Form-based Services. In Usenix 
Conference on Domain Specific Languages, Oct. 1997.

6. E. Barendsen and S. Smetsers. Uniqueness typing for functional languages with 
graph rewriting semantics. In Mathematical Structures in  Computer Science, vol
ume 6, pages 579-612, 1996.

7. E. Barendsen and S. Smetsers. Graph Rewriting Aspects of Functional Program
ming, chapter 2, pages 63-102. World scientific, 1999.



8. C. Brabrand, A. M0ller, M. Ricky, and M. Schwartzbach. Powerforms: Declarative 
client-side form field validation. World Wide Web Journal, 3(4):205-314, 2000.

9. C. Brabrand, A. M0ller, and M. Schwartzbach. The <bigwig> Project. In A C M  
Transactions on Internet Technology (TO IT), 2002.

10. M. Elsman and K. F. Larsen. Typing XHTML Web applications in ML. In In 
ternational Symposium  on Practical Aspects of Declarative Languages (PADL ’04), 
volume 3057 of L N C S , pages 224-238. Springer-Verlag, June 2004.

11. P. Graunke, S. Krishnamurthi, R. Bruce Findler, and M. Felleisen. Automatically 
Restructuring Programs for the Web. In M. Feather and M. Goedicke, editors, Pro
ceedings 16th IE E E  International Conference on Automated Software Engineering 
(A S E ’01). IEEE CS Press, Sept. 2001.

12. M. Hanus. High-Level Server Side Web Scripting in Curry. In Proc. of the Third In 
ternational Symposium  on Practical Aspects of Declarative Languages (PADL ’01), 
pages 76-92. Springer LNCS 1990, 2001.

13. R. Hinze. A new approach to generic functional programming. In The 27th Annual 
A C M  SIG P L A N -SIG A C T  Symposium  on Principles of Programming Languages, 
pages 119-132. Boston, Massachusetts, January 2000.

14. R. Hinze and S. Peyton Jones. Derivable Type Classes. In G. Hutton, editor, 2000 
A C M  SIG P L A N  Haskell Workshop, volume 41(1) of ENTCS. Montreal, Canada, 
Elsevier Science, 2001.

15. J. Hughes. Generalising Monads to Arrows. Science o f Computer Programming, 
37:67-111, May 2000.

16. G. Krasner and S. Pope. A cookbook for using the Model-View-Controller user 
interface paradigm in Smalltalk-80. Journal o f Object-Oriented Programming, 
1(3):26-49, August 1988.

17. A. Loh, D. Clarke, and J. Jeuring. Dependency-style Generic Haskell. In Pro
ceedings of the eighth A C M  S IG P L A N  International Conference on Functional 
Programming (IC F P ’03), pages 141-152. ACM Press, 2003.

18. E. Meijer. Server Side Web Scripting in Haskell. Journal o f Functional Program
ming , 10(1):1-18, 2000.

19. R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition o f Standard  
M L (Revised). MIT Press, 1997.

20. S. Peyton Jones and Hughes J. et al. Report on the programming language Haskell 
98. University of Yale, 1999. http://www.haskell.org/definition/.

21. R. Plasmeijer and M. van Eekelen. Concurrent C LE A N  Language Report (version 
2.0), December 2001. http://w w w .cs.ru.nl/~clean/.

22. C. Queinnec. The influence of browsers on evaluators or, continuations to pro
gram web servers. In Proceedings Fifth International Conference on Functional 
Programming (IC F P ’00), Sept. 2000.

23. P. Thiemann. WASH/CGI: Server-side Web Scripting with Sessions and Typed, 
Compositional Forms. In S. Krishnamurthi and C. Ramakrishnan, editors, Prac
tical Aspects o f Declarative Languages: 4th International Symposium, PADL 2002, 
volume 2257 of L N C S , pages 192-208, Portland, OR, USA, January 19-20 2002. 
Springer-Verlag.

24. P. Thiemann. A Typed Representation for HTML and XML Documents in Haskell. 
Journal o f Functional Programming, 2005. Under consideration for publication.

25. M. Wallace and C. Runciman. Haskell and XML: Generic combinators or type- 
based translation? In Proc. of the Fourth A C M  SIG P L A N  Intnl. Conference 
on Functional Programming (IC F P ‘99), volume 34-9, pages 148-159, N.Y., 1999. 
ACM.

http://www.haskell.org/definition/
http://www.cs.ru.nl/~clean/

