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ABSTRACT

We review the nature of the oscillations of main-sequence 
and supergiant stars of spectral type B. Seismic tuning of 
the interior structure parameters of the ß  Cep stars has 
been achieved since three years. The results are based 
on frequencies derived from long-term monitoring and 
progress in this area is rapid. Oscillations in mid-B stars 
as well as Be stars are well established by now, but we 
lack good mode identification to achieve seismic mod
elling. We provide recent evidence of g-mode pulsa
tions in supergiant B stars. The spherical wavenumbers 
of their modes are yet unidentified, preventing seismic 
probing of such evolved hot stars at present. Improving 
the situation for the three groups of g-mode oscillators re
quires multi-site long-term high-resolution spectroscopy 
in combination with either space photometry or ground- 
based multicolour photometry. The CoRoT programme 
and its ground-based programme will deliver such data 
in the very near future.

Key words: stars: oscillations; techniques: spectroscopy; 
techniques: photometry; Lines: profiles.

1. INTRODUCTION

A large fraction of the stars of spectral type B is known 
to be variable. Since more than a century now, these vari
ables have been divided in different classes, according 
to their periods and morphology of the lightcurves. In 
this review, we concentrate on those classes of variable B 
stars with established periodic variability resulting from 
stellar oscillations and situated near or above the main 
sequence. This concerns the classes of the ß  Cep stars, 
the slowly pulsating B stars, the pulsating Be stars and 
the pulsating supergiant B stars. For a review on the os
cillations of subdwarf B stars, we refer to the paper by 
Fontaine (these proceedings).
Large inventories of pulsating B stars were established 
during the first part of the 20th century. These were 
mainly based on photographic spectroscopy (see [1] for 
one of the earliest review papers). The introduction

of photo-electric photometry in the second half of the 
20th century allowed much larger systematic survey cam
paigns, resulting in fainter class members among them 
cluster stars. The Hipparcos mission subsequently al
lowed the discovery of more than 100 bright periodic B 
stars [2]. Still today, new pulsating B stars are found, 
mainly from large-scale surveys, as we will discuss be
low for each class separately. These early survey works 
resulted in a fairly good statistics of the frequencies and 
amplitudes of the oscillations, but not beyond that.
As of the 1970s, the research of pulsating B stars ex
tended towards the area of mode identification from ob
servations. The motivation for this was that, at that time, 
the samples of pulsating B stars were large enough to 
delineate the observational instability strips, but no in
stability mechanism was known to explain the oscilla
tions. Identification of the mode wavenumbers (I, m) 
could therefore help to discover such a mechanism and 
to understand the mode selection. Mode identification 
was first mainly attempted from multicolour photometry 
using the method introduced by [3] and based on pre
vious theoretical works by [4] and [5], [6]. The degree 
of the oscillation modes can be identified from ampli
tude ratios and/or phase differences (see, e.g., [7] for a 
review of this method and [8] for a recent improvement). 
Later on, from the mid 1980s, the possibility of perform
ing high-resolution spectroscopy emerged from improved 
instrumental technology. This, in combination with the 
suggestion of [9] that one can compute theoretical line 
profiles for various kinds of nonradial oscillations, initi
ated a series of still ongoing efforts to obtain high spatial- 
and time-resolution spectroscopic observations of pulsat
ing stars B with the specific aim to perform mode identi
fication.
Meanwhile, the instability mechanism is well known. It 
is the k-mechanism acting in the partial ionisation zones 
of the iron-like elements (see [10] for an excellent re
view). The mode selection, however, is still totally un
known to us.
It was only a few years ago that accurate enough frequen
cies, combined with unambiguous mode identification, 
became available for several nonradial modes in a few 
selected B stars which had been monitoring since many 
years. In this paper, we report on the current status of B
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star asteroseismology, highlighting the recent successes 
in the seismic interpretation of the interior structure pa
rameters of the ß  Cep stars, and pointing out the difficul
ties yet to overcome to achieve the same success for other 
B-type pulsators.

2. ß CEP STARS

The ß  Cep stars are a well-established group of near- 
main sequence pulsating stars. They have masses be
tween 8 and about 18 M0 and oscillate in low-order p 
and g modes with periods between about 2 and 8 h ex
cited by the k mechanism acting in the partial ionisation 
zones of iron-group elements [11]. The agreement be
tween observed ß  Cep stars and the theoretical instability 
strip is very satisfactory for the class as a whole, although 
the blue part of the strip is not well populated [12]. Most 
of the ß  Cep stars show multiperiodic light and line pro
file variations. The majority of the ß  Cep stars rotate at 
only a small fraction of their critical velocity. An recent 
overview of the observational properties of the class is 
available in [13].
Recently, numerous new candidate members have been 
found from large-scale surveys, in the LMC and SMC
[14] as well as in our own Galaxy [15], [16]. Assum
ing that all these faint variable stars are indeed ß  Cep 
stars more than doubles the number of class members to 
over 200. The occurrence of so many ß  Cep stars in en
vironments with very low metallicity implies new unan
ticipated challenges to the details of the mode excitation, 
which relies heavily on the iron opacity.
The amplitudes and frequencies of the ß  Cep stars seem 
quite stable, although very few dedicated long-term stud
ies are available. The B2III star 12Lac, e.g., was 
known to have six oscillation modes from photometry
[17] and these same modes were recovered in high
resolution spectroscopy more than a decade later [18] and 
yet again, together with many more modes, in a recent 
multisite campaign [19]. The B3V star HD 129929, on 
the other hand, was monitored during 21 years in 3-week 
campaigns from La Silla with one and the same high- 
precision photometer attached to the 0.70-m Swiss tele
scope [20]. This also led to the detection of six indepen
dent oscillation modes, with very small amplitude vari
ability for the triplet frequencies only, if any. Suggestions 
for evolutionary frequency changes from O-C diagrams 
have been made, but we regard these as premature.
Significant progress in the detailed seismic modelling of 
the ß  Cep stars has occurred since a few years. While 
such modelling was already attempted a decade ago for 
the stars 16 Lac [21] and 12 Lac [22], doubtful mode 
identification prevented quantitative results. It took un
til the exploitation of the 21-yr single-site multi-colour 
data set of the star HD 129929 to discover that standard 
stellar models are unable to explain that star's oscillation 
behaviour. Indeed, from the modelling of three identified 
m =  0 modes, [20] derived a core overshoot parameter of

0.10 ±  0.05Hp (with Hp the local pressure scale height) 
and proved the star to undergo non-rigid internal rotation 
from the splitting within an I  = 2  and an I  = 1  mode, 
with the core rotating four times faster than the envelope. 
For details, we refer to [23] and [24].

This modelling result was soon followed by the one de
rived for the B2III star v Eri, which was the target of 
a 5-month multisite photometric and spectroscopic cam
paign. Numerous new frequencies were found and iden
tified compared to the four known before the start of 
the campaign [25], [26], [27]. The modelling was done 
by two independent teams using different evolution and 
oscillation codes. This led to different results depend
ing on the number of fitted m =  0 components (three 
m =  0 modes were fitted by [28] while four by [29]). 
The main and far most important conclusion was, how
ever, the same for both studies: current seismic models 
do not predict all the observed modes of v Eri to be ex
cited. One needs a factor four enhancement in the iron 
opacity, either locally in the driving region, or globally in 
the star, to solve this excitation problem. This led to the 
suggestion to include radiative diffusion in the models to 
solve this outstanding issue, in analogy to the subdwarf B 
pulsators [30]. Promising first attempts to compute main- 
sequence B-star models including diffusion were made 
by [31]. They found that the diffusion effects do not alter 
the frequency values in a significant way, but have indeed 
the potential to solve v Eri’s excitation problem (or, better 
phrased: our inability to explain its mode excitation... ).

Meanwhile, two more ß  Cep stars were modelled seismi- 
cally, each of them having two well-identified frequen
cies. The example of ß  CMa is illustrative of the power 
of asteroseismology: having two well-identified oscilla
tion modes in a slow rotator is sufficient to derive a quan
titative estimate of the core overshoot parameter, which 
was found to be dov =  0.15 ±  0.05 Hp for this somewhat 
evolved B2III ß  Cep star. The way this is achieved, is 
illustrated nicely in Fig. 1, taken from the paper by [32]. 
Because the frequency spectra of ß  Cep stars are so sparse 
for low-order p and g modes, one does not have many de
grees of freedom to fit the well-identified modes. This is 
why we can put limits on internal structure parameters as 
shown in Fig. 1, of course assuming that the input physics 
of the models is the correct one. A similar, but less strin
gent constraint was derived for the B2IV star S Ceti from 
a combination of MOST space photometry and archival 
ground-based spectroscopy [33].

Additional multisite campaigns have been done for the 
stars e Oph [34], [35], 12Lac [19] and V20520ph(Han- 
dler, unpublished). These have a somewhat higher pro
jected rotation velocity, and it would be interesting to 
know if the range of values found so far for the core over
shoot parameter and the level of non-rigidity of the in
ternal rotation remains valid for them. The modelling is 
ongoing at present.



Figure 1. The variation o f theoretical frequencies, computed for models appropriate for the ß Cep star ß  CMa, with the 
stellar parameters M  (left), dov (middle) and Z  (right). In each panel, two o f the parameters are fixed to visualise the 
effect o f the other remaining parameter on the frequencies. The first radial overtone frequencies are plotted as abcissae 
and the I  =  2 g\ mode frequency, corrected for the rotational splitting, are plotted as ordinates. The dashed lines indicate 
the two observed frequencies, i.e. the point where they interset indicates a perfect match o f theoretical and observed 
frequencies. Each area represents an evolutionary track whose width is due to the uncertainty in the measured rotational 
splitting. Figure reproduced from [32] with permission from A&A and from the authors.

3. SLOWLY PULSATING B STARS

The term “slowly pulsating B stars” (SPB stars) was in
troduced by [36], after years of photometric monitoring 
of variable mid-B stars with multiperiodic brightness and 
colour variations. After a few years, the Hipparcos mis
sion led to a tenfold increase in the number of class mem
bers [2]. Subsequent huge long-term multicolour photo
metric and high-resolution spectroscopic follow-up cam
paigns concentrated on the brightest new class members 
found from Hipparcos [37], [38] and resulted in a much 
better understanding of the pulsational and rotational be
haviour of the class members [39]. Accurate frequencies 
and mode identification are available for some 15 mem
bers [40], [41]. The mode identification results are in ex
cellent agreement with theoretical computations made by
[42] predicting mainly dipole modes to be excited. All 
confirmed SPB stars are slow rotators [39].
In Fig. 2 we show as an illustration the frequency spec
trum of the Geneva B and Hipparcos light, and radial 
velocity variations of the brightest among the SPB stars,
o Vel (B3IV). Despite the long-term monitoring of almost 
two decades in photometry, [40] found only four indepen
dent frequencies for this star. This is typical for single
site ground-based data of main-sequence stars with grav
ity modes, because the latter have periodicities ranging 
from 0.8 to 3 d. This leads to severe alias problems, as il
lustrated in Fig. 2 where the confusion between frequen
cies f  and 1 -  f  is prominent. Only with multisite data, 
or, even better, with uninterrupted data from space, can 
one avoid such confusion. This is illustrated nicely by 
the MOST light curve (reproduced in Fig. 3) of the new 
SPB star HD 163830 discovered by that mission [43]. 
This lightcurve implied a five-fold of the number of grav
ity modes in one star compared to the best ground-based 
datasets for such pulsators.

As for the ß  Cep stars, numerous new SPB stars (some 
70) were discovered in the Magellanic Clouds from 
o Gl E and MACHO data [14]. The number of class 
members is therefore about 200 at the time of writing (as
suming all the Magellanic Clouds variables to have been 
classified correctly). Trustworthy mode identification is 
only available for the highest-amplitude frequency of a 
handful of SPB stars, however, and it concerns only the 
spherical wavenumbers of the dominant mode [41]. This 
is why seismic tuning of the interior structure of SPB 
stars has not been achieved so far.

4. PULSATING BE STARS

Be stars are Population I B stars close to the main se
quence that show, or have shown in the past, Balmer line 
emission in their photospheric spectrum. This excess is 
attributed to the presence of a circumstellar equatorial 
disk. See the review on Be stars by [44] for general infor
mation on this rather inhomogeneous class of stars. Mag
netic fields [45] and nonradial oscillations [46] have been 
detected in some Be stars. It is unclear at present if these 
mechanisms are able to explain a disk for the whole class 
of Be stars.
Be stars show variability on very different time scales and 
with a broad range of amplitudes. [47] studied a sub
class of the Be stars showing one dominant period be
tween 0.5 and 2 d in their photometric variability, with 
amplitudes of a few tens of a mmag which he termed 
the A Eri variables. He provided extensive evidence of 
a clear correlation between the photometric period and 
the rotational period of the A Eri stars and interpreted that 
correlation in terms of rotational modulation. When ob
served spectroscopically, several of the A Eri stars turn
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Figure 2. The frequency spectra o f Geneva B, Hipparcos, and radial velocity data derived from the Si II 4128 A line o f 
the SPB star HD 74195. The horizontal dashed line indicates the 1 % false-alarm probability and the dotted one the 3.7 
S/N ratio level. Figure reproduced from [40] with permission from A&A and from the authors.

Time (days)

Figure 3. The MOST light curve o f the SPB HD 163830 (upper panel, dots) and the best fit based on the 21 significant 
frequencies (upper panel, full line). The residuals after subtraction o f the fit are shown in the lower panel. Figure 
reproduced from [43] with permission from the ApJ and from the authors.



Figure 4. Line profile variations in Be stars, with increasing v sin i for FWCMa (top left, v sin i =  40 kms-1), 
u CMa (bottom left, v sin i =  100 kms-1), ^  Cen (top middle, v sin i =  155 kms-1), DX Eri (bottom middle, 
v sin i =  180 kms-1), a Eri (top right, v sin i =  225 kms-1), n Cen (bottom right, v sin i =  350 kms-1). Data taken 
from [46].

out to have complex line profile variations with travelling 
sub-features similar to those observed in the rapidly rotat
ing ß  Cep stars, except for the much longer periods (days 
versus hours). This rather seems to suggest oscillations 
as origin of this complex spectroscopic variability.
Nonradial oscillations were already discovered in the Be 
star u  CMa [48], a star listed among the A Eri variables 
in [47]’s list. An extensive summary of the detection 
of short-period line profile variations due to oscillations 
in hot Be stars is provided in [46]. They monitored 27 
early-type Be stars spectroscopically during six years and 
found 25 of them to be line profile variables at some 
level. Some of their data are shown in a grey-scale 
plot in Fig. 4. For several of their targets the variabil
ity was interpreted in terms of nonradial oscillations with
I =  m =  +2. Almost all stars in the sample also show 
traces of outburst-like variability rather than a steady star- 
to-disk mass transfer. The authors interpreted the disk 
formation in terms of multimode beating in combination 
with fast rotation.
The view on pulsating Be stars became more complicated 
when [49] introduced the class of Z Oph variables. These 
are late-O type stars with clear complex multiperiodic 
line profile variations which he attributed to high-degree 
nonradial oscillations. They are named after the proto
typical O9.5V star Z Oph, whose rotation is very close to 
critical and whose photometric variability was recently 
firmly established by the MOST space mission. [50] dis
entangled a dozen significant oscillation frequencies in 
the 24-d photometric light curve assembled from space. 
These frequencies range from 1 to 10 d-1 and clearly in
dicate the star’s relationship to the ß  Cep stars.
Multiperiodic oscillations were recently also reported in 
the rapidly rotating B5Ve star HD 163868 from a 37-d 
MOST light curve. [51] derived a rich frequency spec
trum, with more than 60 significant peaks, resembling 
that of an SPB star and termed the star an SPBe star 
in view of its Be nature. They interpreted the oscilla
tion periods between 7 and 14 h as high-order prograde 
sectorial g modes and those of several days as Rossby 
modes (e.g. [52] for a good description of such modes). 
There is remaining periodicity above 10 d which cannot 
be explained at present. Finally, nonradial oscillations at 
low amplitude were also detected in the bright B8Ve star 
ß  CMi [53].
As for the SPB stars, seismic modelling of the interior 
structure of Be stars has not yet been achieved, in this 
case by lack of enough frequencies, of frequency accu
racy, of unambiguous mode identification and of appro
priate stellar models for rapid rotators.

5. PULSATING B SUPERGIANTS

Oscillations have not yet been firmly established in lu
minous stars with log L /L q > 5 and M  > 20 M0 , al
though they are predicted in that part of the HR diagram.
[12] and [54] predicted SPB-type g modes to be unstable 
at such high luminosities for respectively pre- and post- 
TAMS models (Fig. 5).
[2] discovered a sample of B supergiants to be period
ically variable with SPB-type periods from the Hippar
cos mission. These stars, and additional similar ones, 
were subjected to detailed spectroscopic and frequency 
analyses by [55], who found their masses to be below 
40 Mq and photometric periods between 1 and 25 d. The 
stars were found to be situated at the high-gravity limit 
of k-driven pre-TAMS g-mode instability strip ([12], see 
Fig. 5). This implies that the interpretation of their vari
ability in terms of nonradial g-mode oscillations excited 
by the k mechanism, as first suggested by [2], is plausi
ble.
A new step ahead in the understanding of these stars 
was achieved by [54], who detected both p and g modes 
in the B2Ib/II star HD 163899 from MOST space-based 
photometry. The authors deduced 48 frequencies below 
2.8 d-1 with amplitudes below 4mmag and computed 
post-TAMS stellar models and their oscillation frequen
cies which turn out to be compatible with the observed 
ones.
Further research is needed to evaluate if seismic mod
elling in terms of internal physics evaluation of these SPB 
supergiants, as [54] termed their target, is feasible.

6. DISCUSSION AND FUTURE PROSPECTS

The classes of the ß  Cep and SPB stars are now well es
tablished, containing more than 200 members each. Four 
of the brightest and slowest rotators among the ß  Cep 
stars have been modelled seismically since 2003, result
ing in stringent constraints on the core overshoot param
eter of dov G [0.05 ±  0.05,0.20 ±  0.05]Hp. Note that 
this range is lower than the one found from a handful of 
eclipsing binaries with a B-type star [56], implying that 
the latter probably also experience rotational mixing near 
their core, which mimics additional core overshoot. In 
two stars (besides the Sun), seismic evidence for non
rigid internal rotation was established. Both these stars 
have a core spinning faster than the envelope, one with 
a factor three and the other one with a factor four. This
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Figure 5. The position o f B supergiants discovered to be periodically variable from the Hipparcos mission is compared 
with instability computations for p modes (full lines) and g  modes (dashed lines) o f main sequence models [12] and with 
post-TAMS model predictions for I = 1  (grey dotted) and I =  2 (black dotted) for B stars with masses up to 20Mq 
computed by [54]. Figure reproduced from Lefever et al. (2006) with permission from A&A and from the authors.

was derived from the computation of the Ledoux split
ting coefficients, after successful seismic modelling of 
the zonal components of observed frequency multiplets, 
and a confrontation with the high-precision observed val
ues of these coefficients. We conclude that asteroseis- 
mology of ß  Cep stars has been highly successful during 
the past few years, and its future looks very promising 
given that several multisite campaigns of moderate rota
tors have been done but are not yet exploited and CoRoT 
will be launched very soon.
Between one and five frequencies of g modes have been 
established in the brightest among the SPB stars, from 
long-term photometric and spectroscopic campaigns. 
This is rather disappointing, given the large observational 
effort that went into this result. The example of the SPB 
star HD 163830 observed by MOST makes it clear that 
one needs photometry from space with a high duty cycle 
to make efficient progress in the detection of frequencies 
for these stars. The same holds true for the g modes in 
Be stars and B supergiants. We are eagerly awaiting the 
results from CoRoT in this respect.
The oscillations detected in Be stars and very-late Oe 
stars show a multitude of different behaviour, which is 
in full accordance with the one of ß  Cep stars and SPB 
stars. It seems that pulsating Be stars are complicated 
analogues of the SPB stars, while the Z Oph stars undergo 
the same oscillations than ß  Cep stars, but the members 
of both these classes having emission lines in their spec
trum rotate typically above half of the critical velocity,

with some rotating very close to critical velocity. It re
mains to be studied what the role of the oscillations is in 
the disk formation for the class of Be stars as a whole.
Probing of B supergiant models has recently come within 
view, with the discovery of nonradial g modes in such 
a star by the MOST mission. This case study is com
plemented by the interpretation of the variability of the 
Hipparcos lightcurves of a sample of some 40 B super
giants in terms of g modes. These two entirely indepen
dent studies open the upper part of the HR diagram for 
seismic tuning of stellar evolution models of supergiant 
stars, which are the precursors of stellar black holes. At 
present, none of the existing analysis codes include the 
effects of a radiation-driven stellar wind, which would 
be the next step towards apropriate modelling of detected 
oscillation frequencies in such stars.
By far the largest stumbling block in the application of 
asteroseismology to g-mode pulsators among the B stars 
is the lack of unambiguous mode identification and good 
models including rotation in a consistent way. On the 
observational side, this can only be resolved from coordi
nated initiatives, because it requires long-term multisite 
multitechnique campaigns, including multicolour pho
tometry and high-resolution spectroscopy. Space pho
tometry has the potential of detecting a much higher num
ber of oscillations than ground-based photometry, as the 
MOST mission has shown us and will hopefully continue 
to do so. However, it cannot deliver the badly needed 
mode identification, because we do not have the comfort



of dealing with frequency spacings as in solar-like oscil
lators. Moreover, the rotational splitting is of the same 
order or even larger than the separation between zonal 
g-mode frequencies of subsequent radial order, implying 
that the measured frequency spectrum is insufficient to 
unravel the nature of the detected modes. On the theo
retical side, it is fair to state that we do not have appro
priate seismic models for stars rotating at a considerable 
fraction of their critical velocity. Moreover, it was re
cently discovered that half of the SPB stars turn out to 
have a magnetic field [57], such that not only the Coriolis 
is important for such pulsators, but likely also the Lorentz 
force.
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