
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/35136

Please be advised that this information was generated on 2020-09-09 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16122267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/35136

Approximate Inference in Graphical Models

using Tensor Decompositions

Marcel van Gerven

Institute for Computing and Information Sciences

Radboud University Nijmegen

Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

marcelge@cs.ru.nl

1

Abstract

We demonstrate that tensor decompositions can be used to trans-
form graphical models into structurally simpler graphical models that
approximate the same joint probability distribution. In this way, stan-
dard inference algorithms such as the junction tree algorithm, can be
used in order to use the transformed graphical model for approximate
inference. The usefulness of the technique is demonstrated by means
of its application to thirty randomly generated small-world Markov
networks.

Key words: graphical models; approximate inference, tensor de-
compositions

2

1 Introduction

Graphical models such as Bayesian networks and Markov networks allow for
probabilistic inference using a graph representation that factorizes a joint
probability distribution. In case the graph structure becomes too dense,
exact inference becomes intractable, and in those cases we may resort to
approximate inference algorithms. These algorithms can be distinguished
into stochastic and deterministic methods. Examples of stochastic approx-
imate inference methods are importance sampling and Gibbs sampling [7].
Examples of deterministic approximate inference methods are loopy belief
propagation [16], which is the application of belief propagation [17] to acyclic
directed graphs, and variational methods [10], which transform a graphical
model into a less complex model in order to compute bounds on probabilities
of interest.

In this paper, we follow an approach that is reminiscent of variational
methods in the sense that we transform a graphical model into a less complex
model. However, in our case, this transformation is not done analytically
by means of computing bounds on quantities of interest, but proceeds by
transforming graphs into less complex graphs using the machinery of tensor
decompositions [21, 3, 8]. Using these tensor decompositions, approximate
inference can be realized by means of marginalization over additional hidden
variables. Since the approximation is accomplished by means of a structural
transformation it allows the subsequent use of exact inference algorithms
such as the junction tree algorithm and variants thereof [12, 19, 13].

This approach to approximate inference in arbitrary graphical models
expands on earlier work [18], which has demonstrated the application of
tensor decompositions for graphical models that employ the concept of in-
dependence of causal influence [6], such as the well-known noisy-or model
[17].

This paper proceeds as follows. We begin by introducing tensors, ten-
sor operations, and tensor decompositions in Section 2. Subsequently, we
move on to discuss probabilistic inference in graphical models in Section 3,
where we focus on the well-known junction tree algorithm. The main con-
tribution of this paper is formed by Section 4, where we show how tensor
decompositions allow for approximate inference in graphical models. This is
demonstrated by means of the decomposition of thirty randomly generated
Markov networks whose underlying graph structure resembles that of real-
world graphs in Section 5. We end this paper in Section 6 with a discussion
of the proposed technique.

3

2 Tensors: Operations and Decompositions

In the following, we use calligraphic characters A to denote tensors, up-
percase boldface characters A to denote matrices, and lowercase boldface
characters a to denote vectors. Lowercase standard characters are used to
indicate elements of tensors, matrices, or vectors.

2.1 Tensors

A tensor is a concept taken from multi-linear algebra which generalizes the
concepts of vectors and matrices, and is defined as follows.

Definition 2.1. Let I1, . . . , IN ∈ N denote index upper bounds. A tensor
A ∈ R

I1×···×IN of order N is an N -way array where elements ai1···in are
indexed by ij ∈ {1, . . . , Ij} for 1 ≤ j ≤ N .

Hence, a tensor of order one denotes a vector a ∈ R
I1, and a tensor of

order two denotes a matrix A ∈ R
I1×I2 . In the following we introducing

the theoretical background that is required to understand the concept of a
tensor decomposition.

2.2 Tensor operations

A tensor can be expressed in terms of a matrix using the concept of a matrix
unfolding.

Definition 2.2. The matrix unfolding A(j) ∈ R
Ij×(Ij+1Ij+2···IN I1I2···Ij−1) of

an N th order tensor A ∈ R
I1×···×IN is the matrix that has element ai1···iN

at row number ij and column number

1 +
∑

1≤k≤N
k 6=j

(ik − 1)
∏

k+1≤m≤N
m6=j

Im .

Example 2.1. The matrix unfolding A(2) of a third-order tensor

A =

(

(a, b)T (c, d)T

(e, f)T (g, h)T

)

is given by A(2) =

(

a b e f
c d g h

)

.

The nth mode of a tensor refers to the nth dimension of a tensor. A
tensor may be multiplied by a matrix by means of the n-mode product.

4

Definition 2.3. The n-mode product A ×n B of a tensor A ∈ R
I1×···×IN

and a matrix B ∈ R
JN×IN , is a tensor C ∈ R

I1×···×In−1×Jn×In+1×···×IN with
elements:

ci1···in−1jnin+1···iN =
∑

in

ai1···iN bjnin .

Example 2.2. Let A be a third-order tensor as in example 2.1 and let B

denote a square matrix with b11 = u, b12 = v, b21 = w, b22 = x. The 2-mode
product A×2 B is then given by

(

(a(u+ v), b(u + v))T (c(w + x), d(w + x))T

(e(u+ v), f(u+ v))T (g(w + x), h(w + x))T

)

.

We also define for tensors A,B ∈ RI1×···×IN , the inner product

〈A,B〉 ≡
∑

i1,...,iN

ai1···iN bi1···iN

and Frobenius norm
|| A ||≡

√

〈A,A〉.

The outer product of two tensors is defined as follows.

Definition 2.4. The outer product A◦B of two tensors A ∈ R
I1×···×In and

B ∈ R
J1×···×Jn is defined as the tensor C ∈ R

I1×···×In×J1×···×Jn such that

ci1···inj1···jn = ai1···in · bj1···jn

for all elements of C.

Using the outer product, the rank of a tensor is defined as follows [9].

Definition 2.5. A tensor of order N has rank one if it can be written as an
outer product a(1) ◦ · · · ◦ a(N) of vectors. The rank of a tensor A is defined
as the minimal number of tensors A1, . . . ,AK of rank one such that

A =
K
∑

k=1

Ak . (1)

Example 2.3. The third-order tensor

A =

(

(6,−3)T (8,−4)T

(−12, 6)T (−16, 8)T

)

has rank one since it can be written as the outer product of (1,−2)T , (3, 4)T ,
and (2,−1)T .

5

2.3 Tensor decompositions

Equation (1) shows that a tensor may be written in terms of a sum of K
rank one tensors, which is essentially a rank-K decomposition of A. This
rank-K decomposition is a special case of the Tucker decomposition [21]:

TJ(A) = C ×1 B(1) ×2 · · · ×N B(N) (2)

with J = (J1, . . . , JN), a core tensor C = (cj1···jN
) and matrices B(n) ∈

R
In×Jn . Elements of the original tensor A are then computed as follows:

ai1···iN =

∑

j1,...,jN

cj1···jN
· b

(1)
i1j1

· · · b
(N)
iN jN

+ ri1···iN , (3)

where (ri1···iN) denotes a residual tensor R. When we assume that the core
tensor C is a super-diagonal tensor with cj1···jN

equal to one if j1 = j2 =
· · · = jN and zero otherwise, then we obtain:

ai1···iN =

(

K
∑

k=1

λk · b
(1)
i1k · · · b

(N)
iN k

)

+ ri1···iN (4)

which reduces to the rank-K decomposition for vanishing ri1···iN . Equation
(4) is also known as the canonical decomposition [3], or parallel factors de-
composition [8]. We will refer to it as a rank-K approximation of a tensor
A; also written as RK(A).

One way to find a rank-1 approximation is by means of the higher-
order power method (HOPM) [5], as shown in Algorithm 1. This alternating
least squares algorithm finds a tensor Â = λ · b(1) ◦ · · · ◦ b(N), with scalar
λ and unit-norm vectors b(n), 1 ≤ n ≤ N , minimizing the least-squares
cost function C(A, Â) ≡|| A − Â ||2 . In order to initialize matrices and
vectors in Algorithm 1, various schemes can be used. One approach is to
repeat the algorithm for several random initializations and to choose that
decomposition which maximizes the fit between the original tensor and the
approximation. Another approach that has been shown to give good results,
and which is used in this paper, is to choose the first dominant left singular
vector of the matrix unfolding A(j), as an initial estimate of b(j) [5, 4].

A greedy approach to finding a rank-K approximation is to apply the
higher-order power method to the residuals that remain after obtaining a
rank-1 approximation. This technique has been employed successfully in
Ref. [23] in order to achieve high compression rates for image sequences.

6

input: A
initialize b(1), . . . ,b(N)

repeat

for n = 1 to N do

b̃(n) = A×1 b(1)T
×2 · · · ×n−1 b(n−1)T

×n+1 b(n+1)T
×n+2 · · · ×N b(N)T

λn =|| b̃(n) ||
b(n) = b̃(n)/λn

end for

until convergence
return Â = λN · b(1) ◦ · · · ◦ b(N)

Algorithm 1: The higher-order power method for finding a rank-1 approximation
of a tensor.

By defining A1 ≡ A and Ak ≡ Ak−1 − HOPM(Ak−1) the following rank-K
approximation of a tensor A is obtained:

RK(A) ≡

K
∑

k=1

HOPM(Ak) . (5)

The rank-K approximation of Eq. (4) as computed from Eq. (5) has an
important interpretation in the context of approximate inference in graphical
models, as we will show in Section 4. First, however, we will turn towards
probabilistic inference in graphical models in general.

3 Probabilistic Inference in Graphical Models

Graphical models represent independence between random variables by means
of a graph. If the graph is directed and acyclic then the graphical model
is known as a Bayesian network, and if it is undirected then it is known
as a Markov network. Since a Bayesian network can be transformed into a
Markov network by means of a moralization operation that connects parents
and drops arc orientation, we will focus our attention on Markov networks.

Definition 3.1. A Markov network M = (G,Ψ) is a pair, where G is an
undirected graph with nodes corresponding to a set of random variables X

and Ψ = {ψi(ci) : Ci ∈ C} is a set of non-negative functions, known as
potentials, defined for the maximal cliques (maximally complete subgraphs)
C of G.

By representing a joint probability distribution (JPD) in terms of a prod-
uct of local factors, a Markov network with cliques C = {C1, . . . ,Cm} allows

7

the following factorization:

P (x) =
1

Z

m
∏

i=1

ψi(ci) (6)

where Z =
∑

x

∏m
i=1 ψi(ci) is the partition function, which acts as a nor-

malizing constant.
Graphical models reduce the number of free parameters that are needed

to specify a JPD, thereby allowing efficient probabilistic inference, such as
the computation of conditional and marginal probabilities for random vari-
ables U ⊆ X given evidence E ⊆ X \ U. Over the years, various exact and
approximate inference methods have been developed, where exact methods
typically require the graph structure underlying a graphical model to be
sufficiently sparse.

The junction tree algorithm [12] is an exact inference algorithm that
allows for the computation of conditional and marginal probabilities in ar-
bitrary graphs. In this paper, we take the standard junction tree algorithm
as our point of departure, and focus on discrete random variables. In order
to apply the junction tree algorithm to a Markov network (G,Ψ), we need
to ensure that G is triangulated. An undirected graph is said to be triangu-
lated when all loops of length four or more have at least one edge between
non-neighboring nodes. The cliques of a triangulated graph can be arranged
to form a junction tree which satisfies the running intersection property: if
a node appears in two cliques C and C′, then it will also appear in all
cliques that lie on the path between C and C′. Figure 1 depicts (optional)
moralization, triangulation, and transformation into a junction tree.

1

2 3

54

1

2 3

54

1

2 3

54

2 3 5

1 2 3 2 4 5

Figure 1: Transforming an acyclic digraph into a moralized and triangulated undi-
rected graph and finally into a junction tree, satisfying the running intersection
property.

Inference proceeds by means of evidence absorption and message passing
in the junction tree, and produces posteriors for random variables U. Since
our interest is mainly in the structure of the Markov networks and junc-
tion trees, we will not elaborate on the exact form of the message passing
protocol, and instead refer to [12].

8

The complexity of inference is exponential in the size of the largest clique
after triangulation of the graph, and therefore, the aim is to obtain small
clique sizes. The sizes of the cliques that are obtained after triangulation
depend on the initial sizes of the cliques in the Markov network before
marginalization and the chosen elimination ordering of the nodes during
triangulation. Since finding an optimal elimination ordering is NP-complete
[1], we use a greedy approach which, at each step, eliminates that node
which will result in the addition of the least number of edges, where we
break ties by choosing the node that induces the clique having the smallest
weight [11]. The weight of a clique is defined as:

W(C) =
∏

C∈C

|ΩC |

where ΩC is the state space of C. The weight of a Markov network is defined
as the product of the weight of its cliques: W(M) =

∏

C∈M W(C). In the
next section, we show how tensor decompositions can be used as the basis for
approximate inference by reducing the weight of the used Markov networks
and junction trees.

4 Approximate Inference using Tensors

In this section, we describe the use of tensor decompositions for approximate
inference in graphical models. We first turn towards the interpretation of
tensor decompositions in terms of graphical models.

4.1 Graphical model interpretation of tensor decompositions

Consider an arbitrary potential ψ : ΩC → R
+
0 mapping configurations c ∈

ΩC to positive real values. If random variables in C = {X1, . . . ,XN} are
discrete, then we may interpret ψ as a tensor, such that ψx1···xN

denotes
the positive real value associated with (x1, . . . , xN) ∈ ΩC. As described in
Ref. [18], we may interpret a rank-K approximation in terms of a graphical
model structure. According to Eq. (4), the rank-K approximation of ψ can
be written as:

RK(ψ)x1···xN
=

K
∑

h=1

λh · b
(1)
x1h · · · b

(N)
xN k . (7)

9

By defining functions φj(xj , h) ≡ b
(j)
xjh for 1 ≤ j < n and absorbing λ into

the function φn(xN , h) ≡ λh · b
(N)
xN h, we obtain:

ψ(x1, . . . , xN) ≈
∑

h

N
∏

j=1

φj(xj , h) , (8)

which can be interpreted as marginalization over a hidden variable H with
states h ∈ ΩH , where we have dropped the requirement that potentials are
non-negative. Since the hidden variable is marginalized out and the original
potential is approximated by the marginalization, negative values cancel and
we again obtain a non-negative potential. This interpretation is depicted in
Fig. 2. Note that, in case the decomposition (8) uses just one component,

X1, . . . , XN

· · ·X1 XN

H

φ1 φN

Figure 2: A clique {X1, . . . , XN} can be represented by a tensor rank-K approxi-
mation. This can be interpreted in terms of a graphical model, with (possibly nega-
tive) real-valued functions φj and a hidden variable H taking values in {1, . . . ,K}.

it reduces to:

ψ(x1, . . . , xN) ≈

N
∏

j=1

φj(xj) , (9)

which implies probabilistic independence between random variables Xi and
Xj with i, j ∈ {1, . . . , N}, i 6= j. In this case, random variables X1, . . . ,XN

are decoupled, which allows the representation of ψ(x1, . . . , xN) in terms of
N potentials over single random variables.

4.2 Approximate inference with tensor decompositions

Savický and Vomlel focused in their work [18] on the exact decomposition of
a restricted set of potentials that display functional dependence, which are
tensors of the form ψ(x, y) = 1y=f(x) for the indicator function 1X and some
function f . In this paper, in contrast, we focus on arbitrary potentials.
The basic idea of approximate inference with tensor decompositions is to
decompose the potentials in a Markov network into sets of smaller cliques
using the rank-K approximation of Eq. (4).

10

0 5 10 15 20 25
10

−2

10
−1

10
0

number of variables

tim
e

10
1

1 component
1000 components
10000 components

Figure 3: Inference time spent using a rank-K decomposition of a potential as
compared with the original potential for binary variables and three different choices
of K.

If we focus on a Markov network M consisting of one clique C =
{X1, . . . ,XN} of binary random variables only, then the decomposition of
C leads to a network weight of 2KN instead of 2N , where K is the number
of states of the hidden variable H. The smaller we choose K, the more
efficient inference will become, whereas the higher we choose K, the better
the approximation will become. The efficiency of this approximate inference
method critically depends on how fast marginalization is for a decomposed
potential as compared with marginalization for the non-decomposed po-
tential. Figure 3 depicts the relative time that is spent on inference for
different numbers of components K. It is shown that, with our implemen-
tation of the junction tree algorithm, inference in the decomposed potential
becomes faster than inference in the original potential for a clique contain-
ing seventeen binary variables, given that one component is used in the
decomposition. This is equivalent to a clique weight of about 1.3 · 105. For
a Markov network consisting of one clique only, the approximate inference
method is straightforward and outperforms standard inference whenever a
critical weight (as shown in Fig. 3) is exceeded. In arbitrary Markov net-
works the situation is more complex since we need to take into account the
triangulation step of the junction tree algorithm.

11

1

2

3 4

1

2

3 45 6

1

2

3 45 6

original MN decomposed MN triangulated MN

Figure 4: Example of a suboptimal application of decomposition.

Figure 4 depicts the problem associated with a naive decomposition of
a Markov network, where we disregard for the moment the critical weight.
The original Markov network consists of two cliques C1 = {1, 2, 3} and
C2 = {1, 2, 4}, and is already triangulated. After decomposition, the decom-
posed Markov network consists of six cliques of size two, but it is no longer
triangulated! After triangulation, the triangulated decomposed Markov net-
work has actually become more complex than the original Markov network,
which invalidates the usefulness of the decomposition. In order for a Markov
network decomposition to be useful, we need to make sure that the resulting
decomposed Markov network after triangulation is significantly less complex
than the original Markov network after triangulation, where we define com-
plexity in terms of network weight. There are, however, some special cases,
for which we can guarantee that a decomposition leads to more efficient
inference.

1 3

2

1 3

2

4

singly-connected clique decomposed clique

Figure 5: After decomposition, a singly-connected clique remains a triangulated
component of the Markov network, since there is no loop containing nodes outside
of a clique, that connects two distinct nodes within the clique.

One special case in which it is guaranteed that the decomposition is
useful, is in case of a singly-connected clique, which is defined as a clique for
which there is no loop containing nodes outside of a clique, that connects
two distinct nodes within the clique (Fig. 5).

12

Proposition 4.1. Decomposition of a singly-connected clique whose weight
is above the critical weight always leads to more efficient inference.

Proof. By construction, a singly-connected clique does not change after tri-
angulation. Since its cliques after decomposition are triangulated as well,
no edges will be added to the cliques of the decomposition, such that infer-
ence on the potential associated with the clique depends only on its critical
weight.

Another special case is due to the fact that a tensor decomposition which
uses one component leads to a fully disconnected clique (Fig. 6).

Proposition 4.2. Decomposition of a clique whose weight is above the crit-
ical weight using one component (state of the hidden variable H) only, never
leads to less efficient inference.

Proof. In the worst-case situation, the nodes that have been disconnected
in the decomposed Markov network again become part of the same clique
after triangulation, which does not induce extra overhead as compared with
the original Markov network.

1 3

2

1 3

2

connected clique disconnected clique

Figure 6: If the decomposition uses one component then we disconnect the clique.
After triangulation, in the worst case, the original clique becomes connected again.

In this paper, we use a heuristic approach when determining the de-
composition of a Markov network. We define Rǫ(ψ) = {φ1, . . . , φn} as the
rank-K decomposition of a potential ψ(x1, . . . , xn) into potentials {φ1(x1, h),
. . ., φn(xn, h)}, where the number of components K is such that the least-
squares cost function C(ψ,RK(ψ)) < ǫ. Our approach for decomposing a
Markov network is shown in Algorithm 2. It finds a decomposed Markov
network that is approximately equal to the Markov network (depending on
the choice of ǫ), and whose weight after triangulation is equal to or smaller
than that of the original Markov network after triangulation due to the
selective decomposition of potentials. Whether or not this leads to more ef-
ficient inference depends on the tradeoff between marginalization for a small

13

input: a Markov network M = (G,Ψ), an error criterion ǫ
let C = {C1, . . . ,Cm} denote the cliques of G.
let Ψi denote the replacement of ψi in Ψ by Rǫ(ψi)
let Gi denote the graph that is associated with Ψi

for i = 1 to m do

if |Ci| ≥ 3 and W(triangulate(Gi,Ψi)) < W(triangulate(M)) then

M = (Gi,Ψi)
end if

end for

return a decomposed Markov network M

Algorithm 2: Algorithm for finding a decomposition of a Markov network.

number of large potentials and marginalization for a large number of small
potentials, as was previously discussed in terms of critical weight.

5 Empirical Validation

The approximate inference method has been implemented in Matlab, where
we have made use of both the Bayes Net Toolbox [15] and the Tensor Toolbox
[2]. In order to validate our approximate inference method, we have tested
it on randomly generated Markov networks. The graphs underlying the gen-
erated Markov networks are so-called small-world networks [24], which are
highly clustered graphs that have a short characteristic path length. This
type of graph shares similarities with real-world graphs, since many real-
world graphs (such as social networks [14]) have a tendency to cluster, and,
even though most nodes in the graph are not neighbors, most nodes can
reach other nodes in a small number of steps. A small-world network is gen-
erated by reconnecting with probability p the edges in a regular ring lattice
consisting of N nodes, with each node having K neighbors, as depicted in
Fig. 7.

We have randomly generated thirty Markov networks, whose underlying
graphs are small-world networks. We have chosen N = 50 as the number
of nodes, K = 8 as the initial number of neighbors, and p = 0.2 as the
reconnection probability. The potentials are given by random matrices and
are defined over binary random variables. We have chosen three different
values of the error criterion (ǫ = 1, ǫ = 0.1, and ǫ = 0.01).

Figure 8 depicts the relative weight of the triangulated Markov networks
that are obtained after the decomposition by means of Algorithm 2. For a
number of experiments, there is no decrease in network weight due to the
decomposition, but for many experiments, network weights have become

14

regular ring lattice small-world network random graph

p = 0 p = 1

Figure 7: In order to construct a small-world graph, we start with a regular ring
lattice (N = 8 andK = 4), and reconnect edges with probability p. At intermediate
values of p, we obtain small-world networks. At high values of p, the small-world
networks transform into random graphs.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

experiment

re
la

tiv
e

ne
tw

or
k

w
ei

gh
t

ε = 1
ε = 0.1
ε = 0.01

Figure 8: Relative weight of the triangulated and decomposed Markov networks
as compared with the triangulated and non-decomposed Markov networks.

significantly smaller; showing that our algorithm performs well for these
randomly generated Markov networks. For those Markov networks for which
the network weight is decreased, the improvement will disappear as ǫ goes
to zero, since an increasing number of components K will be chosen, unless
we find a perfect approximation. Sometimes, the network weight becomes
less for more accurate approximations (as in experiments 3,15,17, and 18).
This is most likely caused by the way our greedy algorithm operates; for

15

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

experiment

re
la

tiv
e

tim
e

ε = 1
ε = 0.1
ε = 0.01

Figure 9: Relative inference times of the triangulated and decomposed Markov
networks as compared with the triangulated non-decomposed Markov networks;
decreases in relative network weight are not exactly matched by decreases in infer-
ence time.

a more accurate approximation, a set of different cliques may be selected
for decomposition, which may perform better in terms of reducing network
weight.

Smaller network weights do not always lead to corresponding decreases in
inference time. Figure 9 depicts the inference time that is needed to compute
the marginals for all fifty nodes. The shortest relative inference time is found
for the Markov network of experiment seventeen with ǫ = 1, where the time
taken to compute the marginals with the decomposed Markov network is
approximately 7% of the time taken to compute the marginals with the
non-decomposed Markov network. The quality of the approximation of the
marginals is of course dependent on ǫ, and Fig 10 depicts the average and
standard deviation of the error in the marginals. It demonstrates that the
approximation becomes better for decreasing values of ǫ.

Our best result was obtained for the Markov network of experiment
seventeen with ǫ = 0.01. This Markov network saw a decrease in network
weight from 8.4·106 to 5.2·105 with an average difference of 10−3 in the com-
puted marginals. Due to the decomposition of three cliques, the size of the
largest clique after decomposition has decreased from twenty-four to nine-

16

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

experiment

av
er

ag
e

er
ro

r
in

 m
ar

gi
na

ls
ε = 1
ε = 0.1
ε = 0.01

Figure 10: Average error in marginals when computed with the decomposed
Markov network instead of the original Markov network, where stacked bars de-
note the standard deviation.

teen. Although the number of cliques after decomposition increased from
twenty-seven to thirty-three, we did manage to compute the marginals in
18% of the time it would take without a decomposition since the complexity
of inference scales with the largest clique size.

6 Discussion and Conclusion

The conducted experiments have shown that approximate inference by means
of the rank-K approximation of potentials in a Markov network is feasible,
where the trade-off between the efficiency of inference and the quality of the
approximation is determined by the number of components K that is cho-
sen. Note that the approximation that is given by Eq. (5) is only guaranteed
to find the optimal rank-K approximation if the tensor A is orthogonally
decomposable [25], which implies that there is room for further improve-
ment. For instance, if a potential displays functional dependence, then a
minimum number of components for an exact decomposition can be found
analytically [18], whereas the rank-K approximation of Eq. (5) can only
find better approximations to such potentials using an increasing number
of components. Other decompositions, such as the (more general) Tucker

17

decomposition [21], non-negative tensor decompositions [20], or decompo-
sitions in terms of decision trees [22], may also prove to be useful in this
context.

The efficiency of the approximation also depends on the structure of the
resulting junction tree, and in this paper, we have used a greedy approach
to select those cliques that lead to minimal network weights. As we have
seen, a decrease in network weight does not always imply the same decrease
in inference time. The network weight also depends on the order in which
the cliques are evaluated since different orderings suggest different cliques
as candidates for decomposition; a more extensive search for the optimal
candidates should improve the quality of the decomposition. Note that the
decomposition can also be applied to Markov networks after triangulation,
which may lead to further decreases in Markov network weight. Even though
we may encounter problems such as those of Fig. 4, repeated decomposition
could be useful for particular Markov networks. Especially Markov networks
whose graphs represent small-world networks could benefit from such an
approach, since these are characterized by large cliques that are sparsely
connected.

The use of tensor decompositions for approximate inference is easily im-
plemented and applied to arbitrary (discrete) Markov networks. Construc-
tion of the decomposed Markov network can be done off-line and standard
inference algorithms may be used for approximate inference in the decom-
posed Markov network. The empirical validation of the algorithm that has
been presented in this paper has shown the potential of this new approach
to approximate inference in graphical models.

References

[1] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding
embedding in a k-tree. SIAM J Alg Disc Meth, 8(2):277–284, 1987.

[2] B. W. Bader and T. G. Kolda. Algorithm 862: Matlab tensor classes
for fast algorithm prototyping. ACM Transactions on Mathematical
Software, 32(4):635–653, 2006.

[3] J. D. Carroll and J. Chang. Analysis of individual differences in mul-
tidimensional scaling via an N-way generalization of ”Eckart-Young”
decomposition. Psychometrika, 35:283–319, 1970.

[4] L. de Lathauwer, B. de Moor, and J. Vandewalle. A multilinear singular
value decomposition. SIAM J Matrix Anal Appl, 21:1253–1278, 2000.

18

[5] L. de Lathauwer, B. de Moor, and J. Vandewalle. On the best rank-
1 and rank-(R1, R2, . . . , RN) approximation of higher-order tensors.
SIAM J Matrix Anal Appl, 21(4):1324–1342, 2000.

[6] F. J. D́ıez and M. J. Druzdzel. Canonical probabilistic models for knowl-
edge engineering. Technical Report CISIAD-06-01, UNED, Madrid,
Spain, 2006.

[7] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data
Analysis. Chapman and Hall, London, UK, 1 edition, 1995.

[8] R. A. Harshman. Foundations of the PARAFAC procedure: Model and
conditions for an ”explanatory” multi-mode factor analysis. UCLA
Working Papers in Phonetics, 16:1–84, 1970.

[9] J. H̊astad. Tensor rank is NP-complete. Journal of Algorithms, 11:644–
654, 1990.

[10] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An
introduction to variational methods for graphical models. In M. I.
Jordan, editor, Learning in Graphical Models. MIT Press, Cambridge,
UK, 1999.

[11] U. Kjaerulff. Triangulation of graphs - algorithms giving small total
state space. Technical Report R-90-09, University of Aalborg, Aalborg,
Denmark, 1990.

[12] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with proba-
bilities on graphical structures and their application to expert systems.
J Roy Stat Soc B, 50:157–224, 1988.

[13] A. L. Madsen and F. V. Jensen. LAZY propagation: A junction tree
inference algorithm based on lazy evaluation. Artificial Intelligence,
113(1–2):203–245, 1999.

[14] S. Milgram. The small world problem. Psychol Today, 2:60–67, 1967.

[15] K. P. Murphy. The Bayes net toolbox for Matlab. Computing Science
and Statistics, 33, 2001.

[16] K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation for
approximate inference: An empirical study. In K. Laskey and H. Prade,
editors, Proceedings of the Fifteenth Conference on Uncertainty in Ar-
tificial Intelligence, pages 467–475, San Francisco, CA, 1999. Morgan
Kaufmann.

19

[17] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, San Francisco, CA, 2nd edi-
tion, 1988.

[18] P. Savický and J. Vomlel. Tensor rank-one decomposition of probability
tables. Technical Report DAR-UTIA 2005/26, Institute of Information
Theory and Automation, Prague, Czech Republic, 2005.

[19] G. R. Shafer and P. P. Shenoy. Probability propagation. Annals of
Mathematics and Artificial Intelligence, 2:327–352, 1990.

[20] A. Shashua and T. Hazan. Non-negative tensor decompositions with
applications to statistics and computer vision. In Proceedings of the
22nd International Conference on Machine Learning, volume 119 of
ACM International Conference Proceeding Series, pages 792–799, New
York, NY, 2005. ACM Press.

[21] L. R. Tucker. Some mathematical notes of three-mode factor analysis.
Psychometrika, 31:279–311, 1966.

[22] M. A. J. van Gerven. Efficient Bayesian inference by factorizing con-
ditional probability distributions. Technical Report ICIS-R6032, Rad-
boud University, Nijmegen, The Netherlands, 2006.

[23] H. Wang and N. Ahuja. Compact representation of multidimensional
data using tensor rank-one decomposition. In International Conference
on Pattern Recognition, pages 44–47. IEEE, 2004.

[24] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’
networks. Nature, 393:440–442, 1998.

[25] T. Zhang and G. Golub. Rank-one approximation to high order tensors.
SIAM J Matrix Anal Appl, 23:534–550, 2001.

20

