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A nom alous th erm al expansion  in a -titan iu m
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We provide a complete quantitative explanation for the anisotropic thermal expansion of hcp 
Ti at low temperature. The observed negative thermal expansion along the c-axis is reproduced 
theoretically by means of a parameter free theory which involves both the electron and phonon 
contributions to the free energy. The thermal expansion of titanium is calculated and found to be 
negative along the c-axis for temperatures below ~  170 K, in good agreement with observations.
We have identified a saddle-point Van Hove singularity near the Fermi level as the main reason for 
the anisotropic thermal expansion in a —titanium.

PACS numbers: 65.40.De, 63.20.Dj, 71.20.Be

The most general aspects of the chemical bonding 
in the transition d metals can be understood from the 
Friedel model[1], explaining the trends in equilibrium vol
ume, bulk modulus and cohesive energy. The transition 
metals are found to crystallize at low tem peratures in 
the cubic fcc and bcc structures, and the hexagonal hcp 
structure [2], which can be qualitatively explained from a 
band filling of itinerant d-states[3]. In addition, the De
bye model reproduces the thermal volume expansion with 
a rather good accuracy[4]. Hence, with a seemingly good 
understanding of the fundamental mechanisms governing 
the properties of the transition metals, the recently ob
served negative thermal expansion coefficient along the 
c-axis of one of these elements, the hcp (a) phase of Ti [5], 
stands out as an enigma. Especially since no other tran 
sition metal so far has been shown to display such a be
haviour.

The problem of finding connections between the elec
tronic structure of metals and alloys and peculiarities of 
their lattice properties has a long history, starting with 
the “third Hume-Rothery rule” concerning boundaries of 
phase stability in noble-metal alloys [6] and its explana
tion by Jones in terms of touching of the Brillouin zone 
faces by the Fermi sphere [7] (for a review of further 
developments of these ideas, see Ref. [8]). The general 
concept of electronic topological transitions (ETT), in
troduced by I. Lifshitz [9], tha t is, a coincidence of the 
Fermi level with a Van Hove singularity of the electronic 
density of states (DOS), is of crucial importance for un
derstanding these interrelations. Phase transitions and 
pre-martensitic anomalies of elastic moduli in alkali and 
alkaline-earth metals under pressure provide a clear ex
ample of the effects of the Van Hove singularities on the 
lattice properties [10, 11]. It turns out tha t the singu
larity in the electron DOS at the Fermi energy, N ( E p ), 
should be visible also in elastic moduli and Debye tem
perature and, thus, in the thermodynamic properties 
of metals at low enough tem peratures (the anomalies 
in phonon spectra with large enough wave vectors and 
thus in high-temperature thermodynamic properties are 
in general weaker, see Ref. [8] and references therein).

Since the thermal expansion is connected with the pres
sure derivatives of the elastic moduli, anomalies in the 
thermal expansion might be especially strong. In par
ticular, it can be proven thermodynamically tha t ETT 
in non-cubic metals should lead to a singular anisotropic 
thermal expansion at low enough tem peratures [5, 12]. 
The latter means tha t in principle it is always possible 
to prepare a textured material with zero thermal expan
sion. This conclusion, being interesting in itself, opens 
new ways to find nonmagnetic Invar systems. However, 
based on these general considerations alone it is impos
sible to  predict the tem perature region where the effect 
should be observable, or how far from the point of ETT 
the effect is still visible. Here we answer these questions 
based on direct microscopic calculations, in a framework 
of the density functional theory, and we address the re
cently discovered negative thermal expansion of a-T i [5].

The occurrence of negative thermal expansion at low 
tem peratures for non-cubic elemental solids have been 
known for quite some time, but only for elements outside 
the transition metal series. For instance, the hexagonal 
close packed metals zinc and cadmium [13] have nega
tive thermal expansion coefficients along the a-axis (a±  ) 
for tem peratures below ~  75 K, while amongst the IIIB 
group of the Periodic Table it is tin and indium that 
have negative thermal expansion coefficients along the 
basal plane (a^ ) and orthogonal to the basal plane (a 11 ), 
respectively [13]. Amongst the transition metals, Ti how
ever stands out.

The analysis presented here is based on first principles 
density functional theory of the electron and phonon con
tributions to the total energy. We write the Helmholtz 
free energy as

F  (e ,T  ) =

y  E  r ; " ;  +  FPhon^  T ) +  F el&  T ). (!)

where C j  are the elastic constants, e the elastic strain, 
V the volume, F phon the phonon free energy and F e1 the 
energy of thermal excitations in the electron subsystem.
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In this expression the reference (zero) level is for a crys
tal at equilibrium conditions at zero tem perature. The 
elastic constants were calculated from first principles[14].

To evaluate the free energy contribution F phon, which 
can be expressed as [16, 17]

F phon(e,T  ) =
r °° h

d u ;g (u ;,ë )[^  + k BT ln (  1 -  e~hu' kBT)], (2) 
Jo 2

the phonon DOS g(w, e) has to be calculated. This was 
done within the quasi-harmonic approximation [18, 19], 
where all anharmonic effects except the thermal expan
sion are neglected when calculating the tem perature de
pendence of the phonons. In practice the phonon DOS 
was calculated by making small displacements of the 
atoms in a supercell (SC) [19]. The directions of the 
displacements were [1 1 0] and [001 ] with amplitudes that 
were equal to ^0.4%  of the lattice constant. The su
percell used was a 3x3x2 cell. Further details are found 
in Ref.14. The energy of thermal excitations of electron 
states F e1 was calculated by the standard expression by 
Sommerfeld and Frank [20].

K M A

F  ' l (e ,T ) = - ^ ^ D ( e F ,e )T 2. 
6

(3)

where D (eF , e) is the calculated electronic density of 
states at the Fermi level.

In Fig.1 we compare our calculated phonon spectrum 
(at T  =  0) with experimental values (at room tem pera
ture). It is worthwhile to mention tha t a tight-binding 
calculation of the phonon dispersion for hcp Ti has been 
published recently [21], where parameters of the model 
were fitted to  experimental data as well as to first prin
ciples calculations. The theoretical phonon dispersion 
curve in Fig.1 agrees very well with the theoretical curves 
in Ref. [21]. When comparing the theoretical and ex
perimental [22] curves, we note an overall agreement, 
although certain differences can be identified. For in
stance, along the r  — A direction the theory underesti
mates the frequencies in the lowest experimental branch, 
whereas the higher branches are reproduced with better 
accuracy, especially using the general gradient approxi
mation (GGA). Also, the calculated lowest branch along 
the r  — K  direction comes out somewhat too low com
pared to observations. The phonon DOS was then calcu
lated with the method of Ref. [23].

By differentiating the free energy (1) with respect to 
ev = d ( ln (V )) and ec =  d (ln (c /a )), it is possible to obtain 
an expression for the change in volume and structural 
property as a function of tem perature. These changes 
are expressed in terms of equilibrium strains ,e0 and e0 
at which d F /d e v =  d F /d e c =  0, and can be written in 
terms of the elastic constants and strain derivatives of

¿aH
s
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FIG. 1: The phonon dispersion of hcp Ti at room tempera
ture and ambient pressure. The solid curve is the calculated 
frequencies from GGA and the dashed curve represents cal
culated frequencies from LDA. Both calculations are done at 
the experimental volume V0 =  15.91A3. The filled circles are 
the experimental data of Stassis et al [22].

the free energy

eV (T  )
1

(T) =

V (B 11B 22 -  B 2) 
1

— B 22
d F  *

V (B 11B 22 — B 2)
B12

dev
dF*
dev

+  B
d F  *

12

B

dec -
d F  * -

11
dec

(4)

(5)

where

B 11 =
2 1
ÿ ( C u + C 12 + - C 33+ 2 C 13) (6)

B 22 —
2
77(^11 +  Ci 2 +  2C33 — 4C 13) 9

(7)

B 12 = l ( C 33 + C 13 -  C u  -  C 12) 
9

(8)

F  * = Fphon +  f  el (9)

Furthermore by differentiating (4) and (5) with respect
to the tem perature the following relations are obtained 
for the thermal expansion coefficients [5, 12]

1
3V (B 11B 22 — B22)

3V (B 11B 22 — B22)

— (B22 +  B 12)
d 2 F  *

+  (B 12 +  B 11)

d T d ev 
d 2F * -

— (B22 — 2B 12) 

+  (B12 — 2B n)

d T d e J  
d 2F  *

d T d eV 
d 2F * -

V (B 11B 22 — B 22)
d 2F  * 

~ B 2 2 d T d Z  +  B l 2

d T d e J  
d 2F* -I 
d T d e r .

(10)

(11)

(12)

r r

e

a a —

1
a c

1
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FIG. 2: Linear thermal expansion for hcp Ti at ambient pres
sure. The solid lines are the theoretical calculation using GGA 
and the dashed line is from an LDA calculation. The filled 
circles are the experimental data of Nizhankovskii et al [5]. 
The filled squares are the experimental volume expansion co
efficient of Mal’ko et al [24]. The filled and empty triangle 
are the experimental data of a a and a c respectively of Pawar 
et al [25]. The empty circles are the experimental data of 
Nizhankovskii et al scaled to give a volume expansion coeffi
cient in agreement with Ref.24.

where a a a dT, a c c dT an(i ¡3 v  dT ■

By fitting free energies calculated at different strains 
and at a given tem perature to polynomials of first degree 
in ev and second degree in ec, the equilibrium strains 
can be obtained from Eqns. (4) and (5), and the thermal 
expansion coefficients can be calculated from Eqns. (10)- 
(12).

In F ig.2 we show the calculated thermal expansion co
efficients of a-titanium . The most im portant informa
tion to be extracted from this figure is tha t the observed 
negative thermal expansion coefficient along the c-axis 
is reproduced by our theory, where especially the calcu
lation based on GGA reproduce observations with the 
highest accuracy. It should be noted tha t GGA often is 
found to describe chemical bonding with better accuracy 
than LDA. The tem perature interval for which a c is neg
ative is roughly 0-170 K, both in the observations and 
from the theory. The order of magnitude of a c and a a 
is also the same when comparing experiment and theory. 
Figure 2 also shows th a t theory reproduces, with good 
accuracy, the volume expansion coefficients of Ref. 24, 
especially at somewhat elevated temperatures. We also 
note tha t based on thermodynamic relations 3  should 
approach zero at T =  0 K, which our theoretical curves 
do.

The fact th a t both the measured and calculated ther
mal expansion coefficients along the c-axis of Ti are nega

tive at low tem peratures strongly suggests the uniqueness 
of elemental Ti among transition metals, although the ab
solute value of the measures low tem perature expansion 
coefficient is still somewhat uncertain. The measured 
data of Ref. 5 (filled circles) have in Fig. 2 been scaled 
(open circles) to reproduce room tem perature values of 
¡3, a a and a c, and it is found tha t these scaled values 
compare better with our theory (Fig. 2). Although a 
slight calibration error in Ref. 5 can not be excluded, 
there is good reason to view the negative value of a c at 
low tem peratures as a true materials property of a-Ti.

As we will show below the microscopic origin of the 
negative thermal expansion for a c of Ti is due to the 
closeness to a saddle point van Hoove singularity of the 
electronic structure. To illustrate this singularity we pro
ceed with an analysis of the Fermi surface. In order to 
do this we show in Fig. 3 the calculated Fermi surface at 
the equilibrium volume for three different values of the 
out-of-plane lattice constant, c. The figure shows th a t as 
the c lattice constant decreases the inner ellipsoidal sur
face at the T-point and the Fermi surface centered at the 
A-point, become connected along the rA  line. The elec
tronic structure as revealed by the Fermi surface shown 
in Fig.3 thus demonstrates the presence of a saddle point 
Van Hove singularity, which is associated with a singular 
contribution to the density of states at the Fermi level 
N ( E p ) ,  S N  ( Ep)  ~  —\JE f  — E c\0 (E f  — E c\) , where 
0(x) fulfills: 0(x > 0) =  1, 0(x < 0) =  0 and E c1 is the 
critical point energy [5, 12]. The energy difference be
tween E F and the energy of the critical saddle point, at 
the theoretical equilibrium volume and a c=c0, has been 
calculated to be E p — E c1 — 44 meV. Another critical 
point, associated with the appearance of a new ellipsoid 
around the K  symmetry point (not shown in Fig. 3 ) 
has been found in the calculations, giving rise to the sin
gular contribution S N ( E p )  ~  \ J E C2 — E p 9 ( E c2 — E p )  
to N ( E p ). However since E c2 — E p  — 142 meV and 
|d(E c2 — E p )/de| C  |d(E P — E c1)/de|, it is clear th a t the 
saddle-point topological transition, at E c1, gives rise to 
the strongest singular contribution to N (E p ).

By calculating the derivatives of N (E p ) with respect 
to the two different types of strains we have found that
d N (E p )/d ev -  0.75 eV-1 and d N (E p )/d ec ------0.77
eV- 1 . Since the singularities in N (E p ) influence the elas
tic moduli, thus effecting the Debye tem perature [8], it is 
natural to attribute the main reason for the anisotropic 
thermal expansion in a —titanium  to the saddle-point 
Van Hove singularity near the Fermi level.
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FIG. 3: Calculated Fermi surface of hcp Ti at T=0 equi
librium volume for three different lattice constants c, at 
c =  0.988co (a), at c =  c0 (b) and at c =  1.012co (c). Here c0 
corresponds to the (T=0) equilibrium lattice constant.
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