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A tom ic C ollapse and Q uasi-R ydberg S ta tes in G raphene
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Charge impurities in graphene can host an infinite family of Rydberg-like resonance states of 
massless Dirac particles. These states, appearing for supercritical charge, are described by Bohr- 
Sommerfeld quantization of collapsing classical trajectories that descend on point charge, in analogy 
to Rydberg states relation with planetary orbits. We argue that divalent and trivalent charge 
impurities in graphene is an ideal system for realization of this atomic collapse regime. Strong 
coupling of these states to the Dirac continuum via Klein tunneling leads to striking resonance 
effects with direct signatures in transport, local properties, and enhancement of the Kondo effect.

The discovery of massless Dirac excitations in 
graphene [1] triggered new interest in solid-state realiza
tion of quantum  electrodynamics (QED) [2, 3, 4]. Trans
port phenomena in this system [5, 6] can be used to 
probe classic concepts of QED, such as chiral dynam
ics [7], flavor degrees of freedom [8] and particle/hole co
existence [9]. Here we demonstrate th a t graphene opens a 
way to  investigate in the laboratory a fundamental quan
tum  relativistic phenomenon, tha t is, atomic collapse in 
a strong Coulomb electric field [7, 10], long sought for but 
still inaccessible in high-energy experiments [11].

Bohr’s theory of an atom has explained that, while 
an electron is irresistibly pulled to the nucleus by the 
Coulomb force, it is prevented from falling on it by the 
quantum  mechanical zero-point motion. This balance, 
however, becomes more delicate in the relativistic the
ory. The effects undermining the stability of m atter arise 
already in classical dynamics, where electron trajectory 
can spiral around the nucleus and eventually fall down 
on it [12] (see F ig.1a,b), provided tha t electron angular 
momentum is small enough: M  < M c =  Z e2/c, where 
Z  is nuclear charge. Quantum mechanics partially saves 
m atter from collapse by imposing the angular momen
tum  quantization M  =  nh, which makes the relativistic 
fall-down possible only for heavy Z  > hc/e2 «  137.

Early work on the Dirac-Kepler problem has revealed 
bizarre properties of atoms with nuclear charge in excess 
of Z  =  137, posing as a fundamental bound on the peri
odic table of elements extent at large Z. The breakdown 
at Z  > 137 of the low-Z solution of the Dirac equation 
requires accounting for a finite nuclear radius [23]. The 
resulting electron states dive into the hole continuum at 
Z  > 170 and decay by positron emission [7, 10, 11]. These 
phenomena, never observed in the laboratory due to the 
difficulty of producing heavy nuclei, should be more read
ily accessible in graphene owing to its large “fine struc
ture constant,” a  =  e2/h v F «  2.5, where vF «  106 m /s 
is the velocity of Dirac excitations.

Charge impurities are an essential ingredient of our 
current understanding of transport in graphene. Scatter
ing on charge impurities explains [13, 14, 15] the linear 
density dependence of conductivity in this material [16],

FIG. 1: Classical and quantum picture of atomic collapse due 
to electron with angular momentum M  < M c falling on the 
nucleus. Trajectories obtained from (1) for (A) positive and 
(B) negative energy e of a massless Dirac particle are shown. 
(B,C) At e < 0 there are collapsing particle trajectories and 
non-collapsing hole trajectories, separated by a classically for
bidden region, the annulus r1 < r  < r 2 (r1>2 =  r , T MvF/e, 
r ,  =  Ze2/|e|). Tunnel coupling to the continuum at r  > r 2 
defines a family of quasistationary states with complex en
ergy spectrum (D), appearing abruptly when the potential 
strength exceeds the stability threshold |/?| =

and is thus regarded as one of the main factors limiting 
carrier mobility. Recent investigations of screening of im
purity potential [17, 18, 19, 20, 21] have only reinforced 
these conclusions, making graphene an ideal test system 
for the theory of Coulomb scattering [18, 22] of massless 
Dirac particles.

In this work we show that, although massless particles 
cannot form bound states, an infinite family of quasi
bound states appears abruptly when the Coulomb po
tential strength exceeds a certain critical value (3 =  
These states are obtained from Bohr-Sommerfeld quan
tization of collapsing orbits which descend on the point 
charge, similar to how the hydrogenic Rydberg states are
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found from circular orbits. The energies of these states 
converge on zero, en ^  0 at large n, whereas their radii 
diverge, similar to the Rydberg states. These results are 
corroborated by an exact solution of the 2D Dirac-Kepler 
problem. In graphene, the effective Coulomb potential 
strength [18] is given by 3  =  Z e2/« h v F with intrinsic di
electric constant k  «  5, and therefore the critical value 
¡3 =  j  can be reached already for the impurity charge 
Z  >  1. This is a lot more convenient from the experi
mental point of view than Z  > 170 in heavy atoms.

Coupling of quasi-Rydberg states to the Dirac contin
uum, mediated by Klein tunneling [7], leads to strong res
onances in the scattering cross-section, manifest in trans
port, and to striking effects in local properties tha t can 
be probed by deliberately introducing impurities with 
Z  >  1 in graphene. Univalent charge impurities, such 
as K, Na, or NH3, all commonly used in graphene, are 
on the border of the supercritical regime. To investigate 
this regime experimentally, one can use divalent or triva
lent dopants such as alkaline-earth or rare-earth metals. 
They are frequently used to prepare intercalated graphite 
compounds[26], e.g., Ca and Yb [27] (Z =  2), La [28] and 
Gd [29] (Z =  3). Recently, spectroscopic experiments on 
graphene doped by Ca have been reported [30].

Recent literature [17, 18, 19, 20, 21] investigated the 
problem of screening of charge impurities, which depends 
on the polarization of the Dirac vacuum [18]. This effect 
is mostly inconsequential in atomic physics due to its 
short spatial scale set by the Compton wavelength A =  
h /m c «  2.4 x 10—3 nm. In the massless case of graphene, 
however, it leads to long-range polarization, appearing 
above the critical value (3 =  of the impurity charge [18]. 
These studies indicate th a t ¡3 = ^ separates two very 
different regimes of screening, essentially perturbative at 
f3 < \  [17, 20], and nonlinear at ¡3 > ^ [18, 19, 21].

To explain why the quasi-bound states appear at large 
3 , we consider fermions with energy e < 0 in the potential 
V(r) =  —Z e2/ r .  Since the kinetic energy K  =  e — V(r) 
vanishes at r* =  Z e2/ |e |,  the polarity of carriers changes 
sign inside the disk r  < r* (see Fig.1c). If r* exceeds 
particle wavelength A =  hvF /|e |, which happens for 3  =  
Z e2/hvF >  1, quantum  states can be trapped at r  < 
r* . These states will have finite lifetime due to Klein 
tunneling through the barrier at r  «  r* . Crucially, since 
the ratio r* /A is independent of e, this reasoning predicts 
infinitely many quasi-bound states (see F ig.1d).

These states can be constructed quasiclassically, from 
relativistic dynamics described by the Hamiltonian H  =  
vF |p| +  V (r), where V (r) =  —Z e2/ r .  The collapsing tra 
jectories with angular momenta M  < Mc =  Z e2/v F are 
separated from non-falling trajectories by a centrifugal 
barrier. This is manifest in the radial dynamics

p l
-2 e +

Ze2 \  M 2 
r  r 2 (1)

sically forbidden region, the annulus r i  < r  < r 2, 
r i ,2 =  (Ze2 +  M vF )/e, where (1) is negative. The quasi
bound states trapped by this barrier can be found from 
the Bohr-Sommerfeld quantization condition J^ 1 pr dr =  
nhn, where r 0 is the lattice cutoff (cf. Refs.[24, 25]). 
Evaluating the integral with logarithmic accuracy, we ob
tain 7 l n ^ -  =  -rrhn, where 7  =  (M 2 — M 2) 1̂ 2, which 
gives the quasi-Rydberg states

Z e2

ro
—nhn/y n > 0. (2)

The energies (2) are equally spaced on the log scale with 
the separation diverging as 1 / y at the threshold Mc «  M .

To find the transparency of the barrier, we integrate 
Im pr to  obtain the tunneling action

S': dr-i
M 2 e M c
—  -  —  + ----  =  7T (M c -  7 ) .
r 2 yv_F r

(3)

Taken near the threshold 7  «  0, the transparency e—2S/h 
gives the width r n ~  |en | exp(—2nZ e2/hvF ). Notably, 
since S has no energy dependence, all the states (2) fea
ture the same width-to-energy ratio.

It is instructive to compare these results to the exact 
solution of the Coulomb scattering problem. For that, 
we consider the Dirac equation for a massless electron in 
a potential V (r) =  where ¡3 =  —Z e 2/h v p .  (It will 
be convenient to include the minus sign in 3  to explic
itly account for attraction.) Performing standard angu
lar decomposition and solving the radial equation sepa
rately in each angular momentum channel [18], one finds 
the scattering phases £m(fc) tha t behave differently in the 
three regimes: (i) 3  > 3m , (ii) —3m  < 3  < 3m  and (iii) 
3  < —Pm ( 3 m  =  |m +  ^ |). As illustrated in Fig.2A, 
£m(fc) are energy-independent in case (ii) and have a log
arithmic dependence Sm (k ) ~  — 7 ln£;ro in case (i), where 
7  =  \J 0 1 ~  Pm ■ In the case (iii) the dependence is de
scribed by kinks of height n equally spaced on a log scale:

e2i^m (k) pni!3„ z  +  eix (k)
(4)

where pr is the radial momentum. This defines a clas-

1  +  eix(k) z* ’

(see [18], Eq.(20)) where z =  ^ £(1- 2%) r ( i+ .> h S ’ and 

x(^) =  27 In 2kro + 2 arctan V = \J (5)

The average winding rate of the phase in case (iii), 
<̂m(k) ~  7  ln k r0, is the same as in case (i) up to a sign 
(see F ig.2). The kinks signal the appearance of quasi
bound states at negative energies.

To find the quasi-bound states, we seek a scattering 
state with complex energy in which there is no incoming 
wave. This implies vanishing of the numerator (denom
inator) of (4) at e < 0 (e > 0). In the e < 0 case we 
obtain an equation for k: eix(k) =  —z. The right-hand

en

r 1



Potential strength p
FIG. 2: (A) Scattering phase So at negative energy e = 
—vFk < 0. The kinks correspond to the quasi-bound states 
trapped by the impurity potential of supercritical strength 
3 < —1/2, as illustrated in Fig.1. (B) Transport cross
section (10) vs. potential strength. Fano resonances cor
responding to quasi-bound states occur at [3 < — The 
oscillatory behavior at ¡3 > \  results from the energy de
pendence Sm(k) ~  — Ym ln kro. The cross-section asymmetry 
upon 3 ^  —3, with the values at 3 < 0 typically lower than 
at 3 > 0, reflects that the Klein barrier prevents particles 
from reaching the region of strong scattering r  ~  0.

side of this equation in general has a non-unit modulus, 
which makes it impossible to satisfy it by a real k. Com
plex solutions of x(k) =  — i ln (—z) — 2nin resemble those 
obtained quasiclassically, E q.(2).

For a more direct comparison, let us consider 3  near 
the threshold 3  =  3m. Expanding in small y , we find 
solutions similar to our quasiclassical result (2),

where A =

2ro
exp - - n - i X

7
n > 0, (6)

1_ e_[2j/3 and the prefactor c is of order one. 
(We suppress n  < 0, since E q .(5) holds only for k r0 ^  1.)

The interpretation of the solutions (6) depends on the 
sign of ¡3. For near-critical negative values ¡3 «  — ̂  we 
have arg kn «  0.045n, such tha t kn have small imaginary 
parts, defining sharp resonances of width

tT  =  — I m e  = -|e| «  0.14 |e|. (7)

In contrast, a rg kn «  —1.0457T for positive ¡3 «  i.e. 
complex kn ’s are rotated by more than 180o away from 
positive semi-axis. Thus there are no long-lived states 
with positive k (e < 0). Instead, since arg kn «  n, in

FIG. 3: Peak structure in the ohmic conductivity (8),(10) 
for overcritical 3 occurring when the Fermi energy is aligned 
with resonances. The values of 3 are indicated near each 
trace. (Parameters used: nimp =  3 • 1011 cm 2, r0 =  0.25nm) 
Inset: Fano resonance structure in the cross-section (10) at 
negative energies with the overall 1/k dependence factored 
out.

this case all kn ’s are found near the negative real semi
axis (e > 0). This is in agreement with particle/hole 
symmetry.

Before discussing manifestations in graphene, where 
at finite carrier density the 1 /r potential is screened, 
we note th a t the essential physics will be unaffected 
by screening as long as the quasi-bound states persist. 
At finite density, the RPA screening length is compara
ble to the Fermi wavelength AF =  h vp / e F [13, 14, 15], 
whereas our quasiclassical estimate of the state radius 
gives r i  «  (M  — M c)vF / |e | . The latter is much smaller 
than Xp near ¡3 =  which means th a t RPA screen
ing is non-detrimental for these states. Similarly, esti
mates for nonlinear screening [18] indicate tha t its effect 
is inessential at weak coupling, leaving enough room for 
quasi-bound states.

Resonance scattering on the quasi-bound states will 
manifest itself in the dependence of transport properties 
on the carrier density. Here we analyze electrical conduc
tivity described by the Drude-like model (see Ref.[13]):

T 1 =  Vp nimpCTtr, (8)

where eF is the Fermi energy, n;mp is the concentration 
of charge impurities and <rtr is the transport scattering 
cross-section for one impurity. We use the 2D scattering 
amplitude partial wave decomposition

ƒ (^ )
2i

\/2 irikv m=0
Y ^ (e2íá„ — 1) cos(m +  ^)cp, (9)

c

2

7T
e



(see Ref.[4], Eq.(47)) to evaluate transport cross-section

f  4
(T tr =  d(fi(l -  c o s ( p ) \ f ( t p )\2 =  -  sin2 6 

J m=0
(10)

0m =  ôm — ôm+ i, with the phases ôm given by (4) for over- 
critical channels (see Ref.[22] for subcritical channels).

For subcritical potential strength the phases are 
energy-independent and thus atr scales as 1/|£ |, giving 
conductivity (8) linear in the carrier density [13, 14, 15]. 
For |/31 > \  the contribution of the subcritical channels 
still scales as 1/|£ |, while the overcritical channels, be
cause of energy-dependent ôm (k ), give an oscillatory con
tribution (cf. Fig.2B). These oscillations, shown in Fig.3 
inset, have a characteristic form of Fano resonances cen
tered at £n . In this regime the conductivity (8) exhibits 
peaks at the densities for which the Fermi energy £F 
alignes with en . As evident from Fig.3, the peak position 
is highly sensitive to the potential strength 3, changing 
by an order of magnitude when 3  varies from —1.0 to
— 1.3, which is a combined effect of £F quadratic depen
dence on density and of the exponential dependence in
(6).

Another striking feature in the conductivity vs. den
sity plots in Fig.3 is the n ^  —n asymmetry, which 
results from the scattering cross-section being typically 
lower at £ < 0 than at £ > 0. Such asymmetry, noted al
ready in the subcritical regime [22], becomes more promi
nent in the supercritical regime because of the Klein 
barrier preventing particles with negative energies from 
reaching the strong scattering region r  ~  0.

The signatures of quasi-bound states, similar to those 
in conductivity, will be featured by other transport coef
ficients. In particular, they will be strong in the thermo
electric response because it is proportional to the energy 
derivative of a tr . Yet the most direct way to observe 
these states is via the local density of states (LDOS)

£
hvF '

where ^  is the two-component Dirac wave function
(5) [18]. This quantity can be directly measured by scan
ning tunneling spectroscopy probes. Evaluating the sum 
over m in (11), we obtain LDOS map shown in Fig.4.

Several quasi-bound states are seen in LDOS maps 
(Fig.4) as local resonances at £ < 0. The values of 3 
were chosen to illustrate tha t the width r  of each reso
nance scales with e, while its spatial extent scales as 1/e, 
in agreement with our quasiclassical analysis and Eq.(7).

A distinct advantage of local probes, as opposed to 
transport, is tha t the supercritical impurities do not need 
to be a majority. In fact, it suffices to locate just one non
univalent impurity and perform STM imaging in vicin
ity. Alternatively, one can identify groups of two or three 
univalent impurities th a t together will act as one super-

FIG. 4: Spatial map of the local density of states (LDOS) 
near a charge impurity, Eq.(11). The signatures of the quasi
bound states are resonances appearing a t / 3 < — |  at r ^  0 
and £ < 0 (marked by arrows). Note the localization length 
that scales inversely with e, and the linewidth proportional 
to £, as predicted by Eq.(7). The intensity of the resonances 
is well in excess of the asymptotic value v(e) rc |£ at large r. 
Periodic modulation at £ > 0 with maxima at kr ~  nn is the 
standing wave oscillation [18] (k = e/hvF , £0 = 10-3hvF/ r 0).

critical impurity, or even deliberately create such a group 
by inducing local charge by voltage applied to STM tip.

The resonances (6) also give rise to anomalously strong 
Kondo-like effects. The striking property of the linewidth
(7), namely, its proportionality to the energy (see Fig.4), 
indicates tha t the dwell time diverges at £ ^  0. This 
divergence compensates the suppression of Kondo tem 
perature by the Dirac |£ density of states. Standard 
estimates [31] for the Anderson model with the localized 
spin state associated with one of our resonant levels yield 
the Kondo tem perature exponent tha t exhibits no sup
pression at £F ^  0. This is in contrast to the Kondo 
problem with extraneous spin impurities [32, 33].

In summary, although massless particles are incapable 
of forming discrete states, an infinite family of quasi- 
Rydberg states can appear in a Coulomb potential of su
percritical strength. These quasi-bound states manifest 
themselves in a variety of physical properties, in particu
lar in resonant scattering and local resonances, providing 
a striking signature of the atomic collapse regime tha t can 
be modeled using charge impurities in graphene.
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