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ASYMPTOTIC DATA ANALYSIS ON MANIFOLDS

By Harrie Hendriks and Z inoviy Landsman

Radboud University Nijmegen and University o f Haifa

Given an m -dimensional compact submanifold M of Euclidean space RS, 
the concept of mean location of a distribution, related to mean or expected 
vector, is generalized to more general RS -valued functionals including me­
dian location, which is derived from the spatial median. The asymptotic statis­
tical inference for general functionals of distributions on such submanifolds 
is elaborated. Convergence properties are studied in relation to the behavior 
of the underlying distributions with respect to the cutlocus. An application is 
given in the context of independent, but not identically distributed, samples, 
in particular, to a multisample setup.

1. Introduction. Data belonging to some m -dimensional compact submani­
fold M of Euclidean space RS appear in many areas of natural science. Directional 
statistics, image analysis, vector cardiography in medicine, orientational statistics, 
plate tectonics, astronomy and shape analysis comprise a (by no means exhaus­
tive) list of examples. Research in the statistical analysis of such data is well docu­
mented in the pioneering book by Mardia [12] and more recently in [13]. Note that 
in these books, as well as in many research papers, the primary emphasis is placed 
on the analysis of data on a circle or a sphere. These are the simplest examples of 
compact manifolds and do not manifest the generic features of statistical inference 
intrinsic to compact submanifolds of Euclidean spaces.

Let P  be a family of probability measures on a manifold M c  RS and let

is one of the most popular examples of such a functional. Another example, more 
important in the context of robustness, is the spatial median (see [4])
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Both of these functionals are special cases of the Fréchet functional 

TFr(P) =  arg inf Í  p ( x , a ) ß dP(x) ,
aeRS JRS

where p is some metric in RS and ß  is some positive number (see details in [2]). 
Of course, Huber’s M -functionals, as well as many others, can be considered.

One would like to make statistical inference for data on the manifold, but in gen­
eral, T( P)  does not lie on the manifold. This is why we consider the “orthogonal” 
projection, or nearest-point mapping,

n  : RS ^  M, n(x)  =  arginf ||m — x ||2,
meM

as the instrument for getting characteristics of the distribution P  to appear in the 
manifold. Unfortunately, the projection n  is well defined and differentiable every­
where on RS , except on the set

C = {x e RS | n( x )  is not uniquely defined or the square distance function

L x (ß) =  Il /x — x ||2 on M has a degenerate second derivative at ß  = n(x)},

which is called the cutlocus. For the sphere SS—1, C consists only of the center, but 
for other manifolds, it may be more complicated (see, e.g., Section 6.3).

Let X i , . . . , X n be a sample of size n from the distribution P  on the manifold 
M and let Pn denote the empirical distribution. Then tn = T( Pn) is the empiri­
cal analogue of T( P)  in R S and n ( T ( P n)) is the empirical analogue of n ( T ( P ) )  
located on the manifold. In case T( P)  = T1(P) =  EX, one has T\(Pn) =  Xn = 
1 /nY n= \ X i , with n(T \ (P)) and n(T\ (Pn)) being the mean location and sample 
mean location on the manifold, respectively. The asymptotic statistical inference 
for this functional is considered in [6, 7]. The concept of mean direction coin­
cides with our concept of mean location when the manifold in question is the unit 
sphere. In [8] and [1], this situation is studied without any symmetry condition 
on the probability distributions. The present article deals with arbitrary compact 
submanifolds of RS. This may seem restrictive, but any compact manifold can be 
embedded in RS for some s . For example, submanifolds of projective space R P k 
can be embedded in Euclidean space using Veronese embedding (see [2]). Beran 
and Fisher [1] also consider the concept of mean axis, which would be within the 
realm of our approach, given such an embedding of the projective space of dimen­
sion 2 into Euclidean space. In [2], the consistency of sample mean location as an 
estimator of mean location is investigated in the more general context of intrinsic 
and extrinsic means.

For the case of T( P)  = T2(P),  that is, the spatial median, n ( T2(P))  and 
n(T2(Pn)) can be considered as median location and sample median location on 
the manifold M in the sense of Ducharme and Milasevic [4], who considered these 
concepts and developed some asymptotics for the case of a sphere.
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In this paper, we propose a general approach which allows one to study the 
asymptotic statistical inference for both mean location and median location func­
tionals, together with many others. The underlying distribution P  is allowed to 
depend on sample size n. Moreover, we do not require observations to be iden­
tically distributed. This essentially widens the framework of the applications, for 
instance to the multisample setup considered in Section 7.2. We do not even re­
quire that a sample consist of independent observations. Generally speaking, we 
do not require an underlying sample at all, only a sequence of statistics tn satisfy­
ing a suitable limit theorem. We found that the limit distribution does not need to 
be multivariate normal, but in our analysis, it needs to be spherically symmetric. 
Finally, one of the main issues of the paper is the investigation of the question as to 
how fast in n the spatial functional is allowed to approach the cutlocus if the con­
vergence properties are still to hold. We supply an example clarifying the possible 
speed of approach. This will be stated in Section 2 and proved in Sections 4 and 5. 
In our results, we will make use of the idea of stabilization introduced in [7]. Sec­
tion 3 is devoted to geometric properties of the projection mapping n . In Section 6, 
the general results are illustrated for the sphere. In fact, they generalize the results 
of Hendriks, Landsman and Ruymgaart [8] and Ducharme and Milasevic [4]. In 
this section, the effect of the stabilization term is demonstrated. Section 6.3 pro­
vides a brief review of the ingredients of the main theorems for Stiefel manifolds. 
Section 7 is devoted to application of the main results.

We will use the following notation: For t e  Rs and a closed subset C c  Rs, 
d( t ,C)  denotes the minimal Euclidean distance between t and points of C .In  par­
ticular, for C = {x}, we have d(t,  C) = d( t , x )  = \\t — x ||. The norm ||B|| of a 
matrix B will be the standard operator norm of linear transformation associated 
with matrix B ; see, for example, [11], Chapter 7, Section 4, Equation (2). Given a 
symmetric positive definite matrix B , its square root B 1/2 is the unique symmet­
ric positive definite matrix with the property that B 1/2 B 1/2 =  B . For a sequence 
of matrices Bn, Bn ^  B denotes convergence in operator norm or, equivalently,
coefficientwise convergence. The notation Z n ^  Z  denotes convergence in distri­
bution of random variables Z n to Z  and X  = Y denotes equality in distribution of

P
random variables. The notation Z n ^  Z  denotes convergence in probability. This 
is used with Z  =  0, in which case we may also write Z n =  op(1).

2. Main results.

2.1. General setup. We consider the situation where a compact m -dimensional 
submanifold M (without boundary) of Rs is given. Let n  : Rs\C  ^  M be the 
nearest-point mapping, where C is the cutlocus, as defined in Section 1. Note that 
the cutlocus is a closed subset of Rs .

Let tn e  Rs be a sequence of spatial characteristics and tn e  Rs be random vec­
tors which we consider as estimators of tn, in the sense that

1 - D
(2.1) Zn = Bn (tn — tn) -d Z  as n ^ œ ,
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where Z  is some random vector in R5 and the Bn are nonsingular 5 x 5 ma­
trices such that Bn ^  0 for n ^  to. In particular, it follows from (2.1) that

P
Wtn — t n W ^  0 . Denote ßn = n(tn), ß n = n(tn).

R em ark  2.1. A simple situation is that an i.i.d. sample X1 , . . . , X n, is given 
where X 1 is distributed with probability measure Pn on R5 (not necessarily related 
to the manifold M). Associated with the distribution Pn is some characteristic 
tn = T(Pn) e  R5, and we are interested in the “manifold part” ß n = n( tn) of it. 
Furthermore one may define tn = T( Pn), where Pn denotes the empirical distribu­
tion. If Pn = P,  then tn = t, ß n = ß,  that is, they do not depend on n. This simpler, 
but important, specialization will be considered in the next subsection.

T heorem  2.1. Suppose tn e  C and d(tn, M) < D for  some D > 0. I f

(2.2) Bn/d(tn,  C) ^  0,
P

then II ßn — ßnll ^  0.

D efin itio n  2.1. Recall that a distribution Z  is called spherical (see [5]) 
if for any orthogonal matrix H  e 0 (5), H Z  = Z .

The most common example of a spherical distribution is the multivariate stan­
dard normal distribution.

R em ark  2.2. Note that for spherical Z  and any r x  5 matrices A  and B such
that A A t = B B t , we have the equality A Z  = BZ.  This follows from property 
that the characteristic function f Z (t) of Z  is a function of Ht||.

Let TßM and N ßM  =  (T ^M ^ be the tangent and normal spaces of M, respec­
tively, at the point ß  e M , considered as linear subspaces of R5. Let tanß (-) and 
norß (-) =  (I5 — tanß)(-) denote the orthogonal projections onto TßM and N ßM, 
respectively. Here, I5 denotes the identity mapping of R5. The 5 x 5 matrix-valued 
mapping M 9 ß  ^  tanß e Mat(5, 5 ) is smooth since it can be expressed locally in 
terms of m smooth, independent tangent vector fields along M. Thus, ß  ^  norß is 
also smooth (cf. [9], pages 1-15).

R em ark  2.3. For spherically distributed Z  = ( Z1, . . . , Z 5) e  R5, the distrib­
ution of Z TtanßZ =  Ym=1 Z i  and consequently does not depend on ß. This can 
be seen as follows. Given ß  e  M, there exists an orthogonal matrix H  such that 
tanß =  H t I5,mH , where I5,m is a diagonal matrix, the first m diagonal elements 
of which are ones and the others zeros. Because of spherical symmetry, we have

m
Z T tanßZ =  Z t H t \ , m H Z  =  Z T \ ,m Z  =  ¿  Z?.

i=1
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We will call its distribution Z^, where m =  dim(M). Recall that for the stan­
dard multivariate normal distribution Z, this distribution coincides with the X m  
distribution.

Recall that any normal vector vß e N ßM  determines a linear map, the Wein­
garten mapping ([9], pages 13-15), given by

(2.3) Avß : TßM ^  TßM : Av^(wß)  = - t a n ß(Dw^(v)),

where v : M ^  IR^ is any smooth mapping such that v(a) e Na M for all a e 
M and such that v(ß)  = vß (e.g., v(a) = nora (vß )). Dw (-) denotes coordinate- 
wise differentiation with respect to the direction wß e TßM  c  R5. Both tanß and 
the Weingarten mapping A vß are self-adjoint with respect to the Euclidean inner 
product and are therefore represented by symmetric 5 x  5 matrices.

Let Idß stand for the identity mapping of TßM. In [6] it was shown that the 
derivative of the projection n  has the form

(2.4) n  '(t) =  (Idß — At—ß)—1tanß,

where A t—ß is the Weingarten mapping corresponding to the normal vector t — ß  
and where ß  = n(t) .  Define

(2.5) Gn =  (Idßn — A n — ß„)tanß„ +  nor ßn =  I5 — A tn —ßn tanß„

so that in particular, Gnn' ( tn) =  tanßn. Note that Gn is a symmetric matrix.

T heorem  2.2. In addition to the assumptions in Theorem 2.1, let Tn be a 
sequence o f 5 x  5 matrices such that

(2.6) H r n m ^ / d ^ C ) 2 ^  0.

Then
P

1. r nGn( ßn ß n) (^ntanßn Bn) Zn  ̂ 0.

Furthermore, suppose that the limit distribution Z  in (2.1) is spherical and let the 
matrix Tn be chosen such that

(2.7) Tntanß„ Bn b T tanß„ F i =  tanß„ .

2. Suppose that ß n ^  ß  fo r  some ß  e M. Then

D
FnGn( ß n ß n) = (FntanßnBn) Z n + ^P(1)  ̂ tanßZ .

3. Without any restriction on ß n we have

(2.8) ( ßn — ß n)T Gn FnGn( ßn — ß n) ~D ^ .
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R em ark  2.4. Note that Fn is not uniquely defined by condition (2.7). Some­
times it is convenient to choose Fn such that it commutes with the projection tanßn 
as this implies that Fn maps tangent vectors to tangent vectors and normal vec­
tors to normal vectors. For example, Fn =  (a—2norßn +  tanßn BnB]¡tanßn) —1/2 for 
some suitable sequence an . In this vein, Fn is an invertible mapping, implying 
that in Theorem 2.2, item 3, G nFnFJ G n represents a symmetric positive definite 
matrix.

With respect to G n and the choice of Fn in Remark 2.4, note that adding the 
normal part makes the linear transformations invertible and leads to confidence 
regions which are intersections of an ellipsoid with the manifold. Leaving G n and 
Fn degenerate ( G n and Fn are nondegenerate on Tßn M) does not allow one to 
control normal directions and leads to a confidence region which is the intersection 
of a cylinder with the manifold, typically consisting of several disjoint pieces of the 
manifold. This adding of the normal part we call stabilization.  Another important 
role of stabilization, in the two-sample problem, is noted in [7], Remarks 1 and 5.

R em ark  2.5. In an application where G n and Fn are not known, we suggest 
replacing them with their values corresponding to the empirical values tn, ß  n of 
tn, ß n (cf. [7]). In the same vein, instead of the transformations Bn, some consistent
estimator Bn of Bn , in the sense that B—l Bn — I5, could be used.

C o r o l l a r y  2.1. In case Bn =  a—1V 1/2, where an is some sequence such 
that an —— to  and V is a posit ive definite matrix, condition (2 .2) o f  Theorem 2.1 
simplifies to

(2.9) and ( tn, C) — to.

Taking Fn =  an(norßn +  tanßnVtanßn)—1/2, condition (2 .6) o f  Theorem 2.2 s im­
plifies to and ( tn, C ) 2 —  to .

The conclusions remain true under the weaker assumption that Bn =  a—1 V„/2 , 
where V * <  Vn <  V **,n =  1, 2 , . . . ,  and matrices Vn, V * , V * *  are posi t ive defi­
nite.

2.2. Underlying probabi li t y P  does not  depend on n. In this section, we re­
turn to the situation described in Remark 2.1. Suppose that neither the probability 
measure Pn on the manifold nor the functional Tn depends on n, that is, Pn =  P  
and Tn =  T , so tn =  Tn(Pn) =  T ( P )  =  t does not depend on n. Then the state­
ments of Theorems 2.1 and 2.2 can be simplified. In fact, condition (2.2) is a 
consequence of the condition t e  C. In case Bn =  a—l V 1/2, where an is some 
sequence such that an —  to and V  is a positive definite matrix, Fn can be cho­
sen as Fn =  an(norßn +  tanßn V tanßn) —1/2 and condition (2.6) of Theorem 2.2 
automatically holds.
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T heorem  2.3. Suppose that t e  C and

(2.10) Z n =  anV ~ l / 2 (tn — t) —  Z  as an —  to ,

where Z  is some random vector in R5. Then:

1. \\ß n — ßW P  °.

Furthermore, suppose that the limit distribution Z  in (2 .10) is spherical. Then

2 . an(norß +  tanßVtanß ) ~ x/1Gn(ßn — ß )  =

((norß +  tanß Vtanß)—1/2tanß V—1/2)Zn +  op(1) D  tanßZ and
o t 1 Dy o3. a2(ßn — ß )  Gn(norß +  tanß Vtanß)—i Gn(ßn — ß )  —  Z2, where the limit 

distribution Zm does not depend on ß ,  that is, is standard (see Remark 2.3) .

If the covariance of the distribution P  exists, and t =  T1( P )  is the expected 
vector of P  and tn =  T1(F>n) is the sample mean vector, then one can choose an =  
J u  and Zm will be the xm distribution. In Section 7, we exhibit a case with a 
different choice of an and Zm.

3. Geometry. In this section, we collect the necessary results concerning the 
projection mapping n .

Lemma 3.1. Let  t e  C. Then

d( t ,  M ) 
lln'(t)|| < — — - +  1. 

d( t ,  C)

Note that the inequality is sharp in the case where M is the sphere Sm and t lies 
in its convex hull, the unit ball Dm+1.

P ro o f. Consider t e  C and let X =  0 be the largest eigenvalue (in absolute 
value) of the symmetric linear transformation n '( t ) .  Let n ( t )  =  ß .  From (2.4) it 
follows that (X — 1)X—1 is an eigenvalue of A t—ß . But the Weingarten mapping 
A t—ß depends linearly on t — ß ,  as long as t — ß  ±  TßM. By looking at the 
path ta =  a ( t  — ß )  +  ß ,  with a  running from 1 to X(X — 1)—1, we see that the 
largest eigenvalue of (Idß — A ta—ß ) —1tanß runs from X to to. Therefore, if it is 
not the case that ta e  C for some a  strictly between 1 and X(X — 1)—1, then it is 
so for a  =  a 1 =  X/(X — 1). Therefore, d ( t ,  C) < ||ta1 — 11| =  ||(a1 — 1)(t — ß)|| =  
|X — 1\—l d( t ,  M). From this, it follows that |X |< 1 +  d( t ,  M ) / d ( t ,  C). □

We state one more lemma, giving the differentiability of the tangential projec­
tions and the Weingarten mapping.
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Lemma 3.2. The mapping  M 9 ß  —  tanß is C TO-differentiable in ß .  Its val­
ues are symmetric 5 x  5 matr ices . The Weingarten mapping

r5  x M 3 (^  ß )  —  A ç — tanßf tanß

is C TO-differentiable on (%,ß) .  Its dependence on Ç f o r  any f ixed ß  is linear. Its 
values are symmetric 5 x  5 matrices.

Note that the Weingarten mapping A v in some tangent space TßM is only de­
fined for v ±  TßM. This is the reason why Ç appears in the form Ç — tanß£ =  
norß (£) in the above formula. The proof can be based on the ideas given in Sec­
tion 2.1.

The next lemma concerns the preimages of the mapping n . It is required for the 
treatment of multisample data.

Lemma 3.3. Suppose that t0, t 1 /  C and n ( t 0) =  n ( t 1) =  ß  e  M. Let a  e  
[0, 1]. Then ta =  (1 — a)to +  a t 1 e  C and n ( t a ) =  ß .  In other words, n —1{ ß ] \ C  
is convex.

P ro o f. First we show that there exists a unique point on M closest to ta and 
that it is the point ß. Let x e M. A plane geometric calculation involving two 
applications of the cosine rule reveals that

(3.1) \\ta — x l|2 =  a Wh — x  II2 +  (1 — a ) Wt0 — x l|2 — \\ta — h\\ ■ \\ta — t0 II.

This would be minimal if both ||t0 — x || and ||t1 — x || were minimal, but this is 
the case precisely for x =  ß .  Thus, \\ta — x || reaches its minimum at the unique 
point x =  ß. We still need to show that the function M 9 x — L ta(x) =  \\ta — x \ 2 
has a nondegenerate second derivative at ß. Equation (3.1) states that L ta =  
(1 — a ) L t0 +  a L t1 up to a constant term. For a real-valued function f  on M, let 
d f ( x )  denote the differential of f  at the point x . This means that d f ( x )  e  Tx*M 
is the dual vector, mapping any tangent vector v e  Tx M to the derivative of f  
in the direction v. For a stationary point ß  e  M, that is, a point ß  satisfying 
d f ( ß )  =  0, the Hessian H f  is defined as a symmetric bilinear form on Tß M (see 
[15], pages 4-5). Since d L ta =  (1 — a)  d L t0 +  a d L t1 at any point x e M, it follows 
that HLta =  (1 — a)H Lt0 +  aH Lt1 at the stationary point ß. Since HLta is positive 
definite for a  =  0 and a  =  1, it follows that it is positive definite for any 0 < a  <  1. 
Together with the uniqueness of the nearest point, this means that ta e  C. □

4. Convergence in probability: Proof of Theorem 2.1.

P ro o f  o f  T heorem  2.1 . First, note that for any differentiable function f  
(real-, vector- or matrix-valued), the following formula holds:

(4.1) f ( y )  — f ( x ) =  Í  f ' ( x  +  d ( y  — x ) ) ( y  — x )d Q .
0
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Applying this formula to the vector-valued function n(-) ,  we obtain

i7n ßn =  f  n  (tn +  @(tn tn) (̂tn tn) d @
0(4.2)

— f  n  (tnd) ( tn tn) d @ 
0

with tn0 — t̂ n +  @(tn tn) .
There now follows an ingenious argument, which simplifies a tedious calcula­

tion to an application of the continuous mapping theorem. Consider the event

(4.3) Fn =  {d(tn, tn)  <  d(tn, C ) /2 } .

Note that from assumption (2.1), tn — tn =  d ( t n, C ) d ( t n, C ) —l BnZ n, where 
Z n —  Z , and that because of assumption (2.2), d ( tn, C ) —1Bn —  0, so 
d ( tn, C ) —1BnZ n —— 0 and consequently,

(4.4) P(Fn) >  P(\\d(tn, C)  — l BnZn\\ <  1/2) — 1.

In the event Fn, we have

d ( tn0, C) > d ( tn, C) d ( tn, t nO )

>  d ( tn, C) — d ( tn, tn)

>  d(tn, C)  — d(tn, C ) / 2  >  d(tn, C ) / 2 .

In particular, n  £ C and from Lemma 3.1,

, d( tn0 , M)
l|n m \ ' f,  <  + 1

(4 5) < d( tn, M) +  d ( tn, C ) / 2  1
( . ) < d(tn, C ) / 2

d ( tn, M)
< 2 — - +  2.
-  d(tn, C)

D
Lemma 4.1. Suppose P(Fn) —  1. Then the fol lowing holds. I f  1FnX n —  U ,

D P P
then X n —  U (special case: i f  1FnX n —0, then X n —  0).

PROOF. \P[Xn <  u ] —P[1FnXn <  u)}\ <  P(F£)  =  1 — P(Fn) —  0. □

Since from (4.5) we have

sup
tn

1
0

1Fn n  ( tne)Bnd9 2 d ( n  M) +  2  j y Bn \I — 0, 
d(tn, C)  ^  ,
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Q

Equation (4.4), together with Lemma 4.1, yields

'1 p 
n ' (tne)BndO — Q.

Q
D

Moreover, from condition (2.1) we have Z n —  Z  and (4.2) can be rewritten as

ß  n ßn =  I n  (tne )B n d e  Z n.
Q

Hence, by the continuous mapping theorem,
p p  

itn — i n  —  Q or, equivalently, ||ßn — in  II — 0.
Thus, Theorem 2.1 is proved. □

5. Limit law: Proof of Theorem 2.2. Let N M =  { ( ß ,  Ç) e  Rs x Rs | ß  e
M,Ç ±  Tß M }  be the normal bundle of M in Rs and let G  : N M — Mat(s, s) 
be the s x  s matrix-valued mapping defined by G ( ß ,  Ç) =  (Is — A ç tanß), where 
Aç denotes the Weingarten mapping (see (2.3)). Thus, G ( n ( t ) ,  t — n ( t ) )  n ' ( t )  =  
tann(t). Most importantly, G  is a smooth mapping and Ç —  G ( ß ,Ç)  is an affine 
mapping for every ß  e  M (see Lemma 3.2).

In particular, since M is compact, there exists a constant K  such that for all 
( ß , ^ ) , ( ß ' ^ r) e  N M, we have the inequality
(5.1) IIG(ß, Ç) — G ( ß ' , ? ) I I  <  K ( I ß  — ß'H +  I ( ß  +  Ç) — ( ß  +  ÇOH).
Note that G n =  G ( n ( t n), tn — n ( t n)). Also, the mapping M 9 ß  —  tanß is smooth 
(Lemma 3.2) and because of the compactness of M, there exists a constant K1 
such that for all ß ,  ß  e  M, we have the inequality
(5.2) 11tanß — tan^H < K ^ ß  — ß '||.

As in the proof of Theorem 2.1, let Fn be the event defined in (4.3). From (4.2) 
and (4.5), we obtain, for some K2,

d ( ß  n, ß n)1 Fn —

(5.3) =

1Q

11Q

n  (tne)1Fn d e  (tn tn)

n  (tne)1 Fn Bn d e  Z nQ n

K 2 HBn II
<  IIZnII.
-  d(tn, C)" n"

p
We are going to show that YnG n( ß n — ß n) — TntanßnBnZ n —  0. Let us start 

from the identity

(5.4)
ß n ß n n  (tn)(tn tn) — f  (n  (tne) n  (tn)) (tn tn) d e

JQ

=  i  (n  '(tne) — n  '(tn)) d e  BnZn.
Q
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Then
TnG n( ß n ß n) T ntanßnBnZ n =  TnG n(ß n ß n n  (tn)(tn tn))

(5.5)
=  Tn

/Q
Í  G n (n'(tne) — n'(tn))  d e  BnZn.  
Q

Let ß ne — n ( t ne) and G ne — G ( ^ ( t ne), tne n ( t ne)) — G ( ß ne , t ne ß ne) . Then 
. TnG n(n  (tne) n  (tn)) Bn =  Tn( G n G ne)n  (tne)B n(5.6)

+  T n (tanßne —tanßn)Bn.

Using (4.5), (5.1), (5.2) and an obvious extension of the upper bound (5.3) to 
d ( ß ne, ß n) (which is applicable since in the event Fn, the inequality d ( tne, t n) <  
d ( tn, C ) / 2  also holds), and taking into account the fact that

Htne—tnH =  \\0(tn — tn)H <  H-n HH-—1 (tn — tn)H =  H-nHHZnH 

in Fn, we obtain the bound
d ( tn, M) +  d ( tn, C)

H(Gn — G ne)n  (tne)H <  2 K ( Wß ne — ß nW +  Htne — tn
d(tn, C)

(5.7) < 2KI H-nHHZnH +  KÚBnl  HZnH^d ( t n M) +  d ( t n C)
d(tn, C) /  d(tn, C)

<  2K (1  +  W | | ^ M) +  ^  C)  HZnH.
-  V d(tn, C ) J  n " d(tn, C)  " n "

We see that HTn(Gn — Gne)n  '(tne)-nH Q if I T  HH-nH2/d( tn ,  C)2 ^  Q. More­
over, we have

K2||Bn||
(5.8) HTn(tanßne — tanßJBnH <  HTnHH-nHK1 HZnH,

— \ tn, C)
P oso that HTn(tanßne —tanßn)BnH -> Q if HTnHHBnH /d( tn ,  C) ^  Q. Since the tn ’s 

are confined to a finite distance from the compact submanifold M, we also have 
that d ( tn, C) is uniformly bounded and the condition HTn HH-n H2/ d ( t n, C) ^  Q is 
a consequence of condition (2.6). Under this last condition, the right-hand side of
(5.6) converges to Q in event Fn and thus the left-hand side of (5.5) converges to Q 
in probability. This proves item 1 of Theorem 2.2.

For the proof of the second item, we use the fact that (TntanßnBn) x  
(TntanßnBn)T =  tanßn and therefore (TntanßnBn) is uniformly (in n) bounded.
Moreover, since Z  is a spherical distribution, we have TntanßnBnZ  =  tanßnZ.

DUnder the condition that ß n ^  ß ,  we have tanßnZ  ^  tanßZ. Then item 2 of 
Theorem 2.2 is a simple consequence of the following lemma:

Lemma 5.1. Let A n (n =  1 , 2 , . . . )  be l inear transformations that are uni­
formly  (in n) bounded in norm and let X n and X  be random vectors. Suppose

D  D  D
Xn D  X and A n X  D  W. Then AnXn D  W .
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P ro o f. Let t e  Rs and let K =  supn HA^t ||. We denote the characteristic 
function of a random vector Y  by f Y . Then for large n, \ f AnXn(t) — f AnX(t)\ =  
\ fXn( A Tnt )  — f X ( A Tnt) \  <  sup|SH<K\fXn(s ) — fX (s) \  <  e , and for large n, 
\fAnX(t) — f w ( t ) \ < e . So, for large n, we have \ fAnXn(t) — f w ( t ) \  <  2 e . This 
proves the lemma. □

For the proof of item 3, we need the following:

Lemma 5.2. Suppose that X n (n =  1, 2 , . . .)  and X  are random vectors in Rs
D

such that X n ^  X .  Le t g  be a continuous mapping. Suppose that A n (n =  1 , 2 , . . . )
D

are linear transformations, uniformly (in n) bounded and such that g ( A nX )  ^  W
D

f o r  all n. Then we  also have g ( A nX n) ^  W .

P ro o f. First, we consider the case where the sequence A n converges to 
some A. Then the lemma is an easy consequence of the continuous mapping the­
orem. If A n is not convergent, reasoning by contradiction, suppose that for some 
t , the characteristic function of g ( A nX n) in t does not converge to f W(t). Then 
for some e >  Q, one can construct a subsequence ni for which \ f g(An.Xn.)(t) — 
f W(t) \ > e and from uniform boundedness of A n , there exists a subsequence nij 
for which A ni, converges. This leads to a contradiction of the first case. The lemma 
is thus proved. □

From condition (2.7), it is clear that TntanßnBn is uniformly bounded and
D 2according to Remark 2.3, we have TntanßnBnZ  =  q .  The lemma then yields

H(TntanßnBn)ZnH2 D  Zm. Thus HTnGn(ßn — ßn)H2 =  H(TntanßnBn)Zn +  

oP(1)H2 D  Theorem 2.2 is now proved. □

6. Spheres and stabilization; Stiefel manifolds. Note that condition (2.6) is 
necessary for Theorem 2.2, even for the simplest case of the sphere. The following 
example shows this in the case of a circle and deterministic Zn. Recall that in 
the case of a sphere, M =  Ss—1 =  {x e  Rs \ ||x H =  1}, C ={Q} (the origin), n ( t )  =  
Ht h — 1t (t e  C), n  '(t) =  Ht H—1tann(t) and Gn =  Htn l|tanßn +  (Is — ta n ß j;see  [8, 7].

6.1. Example o f  necessity o f  condition (2.6). Suppose that M =  S1 c  R2. 
Let an, u n >  Q be such that an and anun ^  œ  and let tn =  (un, Q) and
tn =  (un, a — 1), Bn =  a— 1 be such that condition (2.2) holds. Note that Z n =  
an (tn — tn) =  (Q, 1) =  Z. Also, ßn =  ß  =  (1, Q), ßn =  (un +  a—2) —1/2 
(un, a — 1) and G n =  untanß +  (Is — tanß). Taking Tn as in Corollary 2.1, we
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have Tn =  an . We find that

/  un u„a —1
TnG n( ß n x )  =  an I “ Z _2, i /o 1

(un +  an 2)1/2 ’ (un +  a- 2 ) 1!2

un=  a j  —-------- t— - -  1
(u-  +  an )1/2 7 (u- +  an )1/2

This should converge to tanxZ =  (0,1). The second, tangential coordinate does 
have the correct limit, namely

1 1
(u2n +  a- 2 ) 1/ 2 (1 +  (anun)- 2 ) 1/2 2

but the first, normal coordinate

un 1 2 1 2 1
r ~2 —2x1 n  — 1 ) ^  — Oan(anun) =  T (anun)

' (u— +  an 2) 1/2 J 2 2

converges to 0 only if anu-  ^  to , which corresponds exactly to condition (2.6).

6.2. Relaxation o f  condition (2 .6) : Tuning the stabilization. In the above ex­
ample, we have seen that the tangential part of TnG n(jln — x )  has the desired 
limit behavior. The reason why the normal part does not behave appropriately, 
nevertheless, is the rough stabilization term (Is — tanx—) of G n. We may modify 
G -  to Gn =  (Idxn — Atn—x„)tanx„ +  s-(Is — tan^J, where s -  is chosen sufficiently 
small, in order that condition (2.6) can be relaxed in the case of a sphere. It should 
be noted that the sphere is the only case known to us where such an improvement 
is possible. Even in the case of a noncircular ellipse, considered as a submanifold 
of the plane, with the cutlocus corresponding to the line segment connecting the 
focal points (see [6]), condition (2.6) cannot be relaxed by modifications of G n or 
Tn in the normal directions.

T heorem  6.1. Let  M =  S s—1. The conclusions o f  Theorem 2.2 hold, even 
when condition (2 .6) is relaxed to

(6.1) \\Tn\\\\Bn\\2/d( tn,  C) ^  0, 

i f  G n is replaced by the operator

G n =  (IdXn — A tn — xn)tanxn +  s n (Is — tanx—) =  \ tn \tanx— +  sn(Is — tanxn),

where s n =  O(\\ tn \\). In particular, one can take s n =  ||tn ||. Then

(6.2) G -  = \ t -  ||Is.

un

un
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C o r o l l a r y  6.1. In the case where Bn =  a—1V 1/2 and Tn is as in Corol­
lary 2.1, that is, Tn =  an(norXn +  tanx— V tanx— )—1/2, condition (6.1) coincides 
with the f irst  condition (2 .9) o f  Corollary 2.1, namely and ( tn, C) ^  to.

The conclusions remain true under the weaker assumption that Bn =  a—1 V„/2 , 
where V * <  Vn <  V ** ,— =  1, 2 , . . . ,  and matrices Vn,V'*,V'*'* are posit ive defi­
nite.

C o r o l l a r y  6.2. In the case where the distribution o f  tn is rotationally sym­
metric about  direction x n, tn can be represented in the form

tn =  x - u +  v £

where £ is uniformly distributed on the equator of  the sphere, perpendicular to 
X n and independent o f  random variables u and v. Then i f  Bn =  V(tn)1/2, where  
V(-) is the covariance matrix o f  (■), it can be represented as Bn =  ^/YnXnX1̂ +
«Jß—(Is — XnX Tn) ,  where y— =  V ( x —t-)  and ß -  =  E(||tnll2 — ( x —t - ) 2) / ( s  — 1)

1/2(cf. [20], page  92). Moreover, Tn can be chosen as Tn =  ß n Is prov ided
m a x ( Y n ß - 1/2, ß 1n/2) / \ \ t n \ \ ^ 0 .

This happens if
1 n

t- =  a rg in f ->  p(\ \Xi  — 11|), 
ttR s T i=i

where p  is some loss function and X 1, . . . , X n constitute a random sample f rom a  
rotationally symmetric distribution about  direction x n. Depending on the choice  
of  p , this is applicable,  f o r  example, to the expected vector and the spatial median.

P ro o f  o f  T heorem  6.1. For simplicity, we give the proof for s n =  ||tn ||. 
Then G -  — G -e  =  (Ht-H — \\t—e ||)Is and therefore

(6.3) IIG- — G-e W<\\tn — t-e II.

If in inequality (5.7), inequality (6.3) is used instead of (5.1), then Wxne — x n W
p

disappears and we obtain the improvement WTn( G n — G - e ) n r(tne)B n W ^  0 if
II Tn llll Bn W2/ d ( t n, C) ^  0. This change in the proof of Theorem 2.2 immediately 
leads to a proof of Theorem 6.1. □

6.3. Stiefel manifolds. We give a very brief review of the main ingredients 
needed in the application of Theorems 2.1 and 2.2. More details can be found 
in [7]. We consider the Stiefel manifold Vp ,r (r <  p) ,  understood as the sub­
manifold of the vector space of p  x r  matrices given by the equation x T X =  Ir . 
The inner product structure for p  x  r  matrices is given by (u, v) =  Trace(uTv) =  
Trace(uvT). The cutlocus C is the set of all matrices having rank less than r . Then 
for X  </ C, that is, rank(X) =  r ,

n ( X )  =  X ( X T X ) —1/2
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and for the matrix x n =  n ( t n) e  Vp r , tn e  C,

tanxT(X)  =  X  — 2  X n l x T X  +  x T  X - ]

and
T 1 T 1 T 

G n(X )  =  tanxT( X ) x n tn +  2 X - tanxT(X)  tn ^  tntanxT(X)  Xn

+  (X  — tanx-(X)).

The following theorem makes explicit the distance between any p  x  r  matrix and 
the cutlocus:

T heorem  6.2. Let  C be the cutlocus o f  the Stiefel manifold Vp ,r . Let  t be 
a p  x  r matrix. Then the Euclidean distance o f  t to C  equals d( t ,  C)  =  V^min, 
where Àmin is the smallest  eigenvalue o f  t T t .

P ro o f. Note that for any p  x  r matrix u of rank less than r , there exists 
a unit vector w e  Rr such that u w  =  0. Given a p  x  r  matrix t of rank r , v =  
t — t w w T is a rank r — 1 matrix and t — v =  t w w T is perpendicular to u — v. 
Thus, d( t ,  v) <  d( t ,  u). Now, d ( t ,  t — t w w T)2 =  \ \ tw w T ||2 is minimal if w  is the 
eigenvector associated with the smallest eigenvalue Àmin of t T t and then d ( t ,  t — 
t w w T)2 =  Àmin. □

In the case of the sphere Ss—1 =  Vs,2, Àmin =  t T t =  \\t||2. In the general case, 
a smooth lower bound for d( t ,  C), which is sharp in the case of the sphere, is given 
by

d( t ,  C)2 > Tr((tT t ) —1) —1.

7. Applications. First, we will explain how the results of Hendriks and 
Landsman [7] fit into the approach adopted in this paper. In the aforementioned 
work, the starting point is a probability measure p  on a compact submanifold 
M of Rs and an i.i.d. sample X2, . . . , Xn from distribution P . The investigated 
functional T  is expected value. Corollary 2.1 is applicable, where one may take 
Pn =  P , Pn the empirical distribution of the sample, T  the expected value func­
tional and, finally, an =  «JT. tn =  E(X) =  t e  Rs (the Euclidean mean of P ) and 
tn =  XXn =  T e T=1 X i e  Rs, the sample mean. x n =  n ( t )  and X n =  n ( t n) are the 
mean location and sample mean location, respectively. Of course, the spherical 
distribution Z  is standard multivariate normal and the distribution is simply 
X2. Note that the approach in this paper allows for the making of inference on 
X n, even for a sequence of underlying probability measures Pn depending on the 
sample size n [cf. Remark 2.1], for which the Euclidean means tn may converge to 
the cutlocus with a speed such that y í T d ( t n, C)2 ^  to  [for the case of a sphere, 
with G n as in Theorem 6.1, it is enough that y í T d ( t n, C) =  ^/T\\tn \\ ^  to].
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7.1. Median location functional. In this subsection, we explain how the results 
in [4] with respect to median direction fit into our approach and can be generalized 
to the situation without the rotational symmetry requirement on the distribution 
of the sample, even to the situation of any compact submanifold of Rs. Even the 
probability measure which generates the sample of size n may depend on n. Let P  
be a probability measure on a compact submanifold M of Rs. Recall that the spatial 
median in Rs is defined uniquely if the probability distribution is not supported by 
a straight line (see [14]).

Let M =  Ss—1 be the sphere in Rs. Then consider Corollary 2.1 with an =  -JT, 
Pn =  P , Pn the empirical distribution of the sample and T  the spatial median 
functional, that is,

Let tn =  n =  T ( P ) ,  and let tn =  T ( P n) =  r)n be the sample spatial median. Let
=  n( n)  =  n/\\n\\ =  0 and X n =  n(r)n) =  0n be the median direction and sample 

median direction, respectively. Then our convergence condition (2.1) corresponds 
to [4], condition (3.1), and we immediately obtain the equation (3.2) of that pa­
per from our Theorem 2.3, item 2, because an =  -JT, V =  C —1A C —1 and G  can 
be taken as G  =  \\n\\Is (see (6.2)); in the case of rotationally symmetric P  about 
the mean direction 0 , r¡n has a rotationally symmetric distribution and Tn can be 
taken as Tn =  ( ^ T / ^ [ ß ) I s (see Corollary 6.2), where ß  is as in [4]. Then the 
confidence region given in Theorem 2.2 conforms with the second confidence re­
gion of Ducharme and Milasevic [4]. Note that Theorem 2.2 gives the confidence 
region without any rotational symmetry assumption. As for the first confidence 
region given in [4], it has the disadvantage that if 0 belongs to a confidence re­
gion, then —0 also belongs to the same confidence region, so, in fact, it consists 
of two antipodal confidence regions. It suffers from the problem addressed after 
Remark 2.4.

Theorem 2.2 immediately extends the results for spheres to Euclidean mani­
folds. Moreover, one can use different generalizations of spatial median function­
als, as given, for example, in [17] and [3]. The simple converging algorithm for the 
derivation of spatial and related medians is given in [19].

E xam ple  7.1. As an illustration of the techniques, we take the sample of 
size n =  14 on the circle from Ducharme and Milasevic [4] and produce the ingre­
dients and 95% confidence region without a rotational symmetry condition. Then 
an =  4 —, the empirical median vector r) =  (—0.661, 0.647) and the empirical me­
dian location 0) =  (—0.715,0.699) (i.e., 135.6°, as in loc. cit.). For V , we take its 
empirical version,
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for G, we take its empirical version, G  =  ||ñll Is =  0.925 Is. We take Tn =  
( V T / V N ) I s , where ß2 is uniquely defined by the condition tan0 V tan0 =  ß2tan0 
(0 denotes the median location of the distribution, for rotationally symmetric mea­
sures ß 2 =  ß  with ß  as defined in loc. cit.), and use its empirical form Fn =

( V T / J ß k ) I s ,  where ß 2 is defined by tan) V tan)  =  ß)1tan) , giving ß2 =  0.467. 
This leads to the confidence region (113.3°, 157.9°), which is slightly wider than 
(114.3°, 157.2°) found in loc. cit. under rotational symmetry conditions.

7.2. Multisample setup. Suppose that we are provided with k (k fixed) inde­
pendent samples on the manifold M c  Rs,

(7.2) Xi i , . . . , Xi - i ,  i =  1 , . . . , k .

The main feature of the multisample setup is the dependence of the underlying 
distribution P  on n. Denote by ai =  E X i 2 and S i =  V ( X i 2) the mean expectation 
point and covariance matrix, respectively, of the i th sample, i =  1 , . . . , k .  Let n =  

ik=1 ni be the total number of observations and let
1 k 1 k -i 

t— =  ~ ^   ̂—iai and t— =  X  n =  ~  ^ ^   ̂X i j , 
n i=i  n i=i  j = i

so that tn is the average of all the observations. Suppose that tn e  C and S i is 
positive definite, i =  1 , . . . , k .  Denote

/ 1 k \
X -  =  n ( t - )  =  n i - ^ —iai I.

n i=1
This will be considered as the mean location of the multisample data (7.2). Fur­
thermore,

X n =  n ( X  n)

is the sample mean location for the multisample data (7.2). Setting
k \ 1/2

,2Bn = (  “ o X I —i S i
V  i=1

we can verify that the multivariate version of the Lindeberg condition (see, for 
example, [10]) holds for n ^  to and consequently we have (2.1) with standard 
multivariate Gaussian limit Z . In fact, to apply [10], we reorganize Z n in (2.1) as

k ni
Zn =  S-  =  £  J 2 B 'n 

i=1 j =1

Then

, —1 ( X ij — ai )

V(Sn) =  Is
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where Is denotes the identity matrix. Let

X =  min min Xii,
1<i<k 1<l<s

where Xi1, . . . , X is are the eigenvalues of the positive definite matrices S i , i =  
1 , . . . , k ,  so X >  0. Note that

B— >  n —1XIs

in the sense that B -  — n —1XIs is nonnegative definite. Thus,

\ \B -x II2 =  x T B^x >  Xn~l \\x ||2,

\\B—l x y2 < X—l n\ \ xy2

and
k

L - ( S) =  Y 2 - i  E \\Bn 1(Xi  1 — a i ) / n y 2 l {\\B- 1 (Xi1—ai)/n\\>e] 
i=1

k

<  X n ^ niEy(Xi1 a i ') y 2 l {\\(Xii—ai)\\>^TXs]
i=1

1 2
<  X Ä E| l (Xi1 — ai )y h m n —a M ^ X e ] ^  0 as n ^ ™ .

This establishes the Lindeberg condition.

7.2.1. Confidence region. To apply Theorem 2.2 in order to clarify the asymp­
totic behavior of (Xn — x ) ,  we should note that now, tn =  Y!k=2 Tiai depends on 
n and may approach the cutlocus C of the manifold. If, however, condition (2.6) 
(for the case of sphere condition (6.1)) holds, then from item 3 of Theorem 2.2, we 
have

(X n X - ) G —Tn VnG n(X n X - )  ̂ ,

which provides a confidence region for x n. Let us note that because Bn has the 
form

1 (  k \ 1/2 

Bn =  a i S i )  , 

where a i =  n i / n ,  i =  1 , . . . , k ,  and J2k= 2 a  =  1, we can use Corollary 2.1 and 
reduce condition (2.6) to

r -  (  n i \
(7.3) ^ n d ^ ^ j a i ,  C j  as n, n i , . . . , —k ^ œ .
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As a matter of fact, (7.3) is a restriction on the behavior of n i , i =  1 , . . . , k ,  depen­
dent on n in the situation where the cutlocus intersects the convex hull of vectors 
a 2, . . . , a k. For the sphere, one may use Corollary 6.1 and then the condition sim­
plifies to

k, »  ̂ - i  n j f-p
(7.4) V — ----- - a T aj  D œ .n n i

\  i , j=1

In the following example, we illustrate condition (7.4).

E xam ple  7.2. Let M =  Ss—1 =  {x e  Rs | ||x\| =  1]. Then C ={0] (the ori­
gin). Let k =  2 and suppose that a 2 =  0 and y 1a 1 +  y2a2 =  0 for some y 1 >  0, 
y2 >  0. Then

tn =  ( l  +  -  ) ( T i — - T - V\  Y 2 / \  n Yi +  Y2J 

and tn may approach the cutlocus if n  ^  y i+n . Condition (7.4), in fact, restricts 
the speed of these convergences, that is, (7.4) reduces to

ni Yl
y[T œ  as n 2, n ^ œ .

Yl +  Y2

In particular, if a2 =  0 (a2 e C), then y 2 =  0 and the condition is
n1 ■> œ  as n 2, n ^  œ .

n

7.2.2. Hypothesis testing. Suppose ai e  C and let vi =  n ( a i ), i =  1 , . . . , k ,  
be the mean locations on the manifold for each sample, where we suppose that 
v2 =  ••• =  vk =  x 2. Suppose the null hypothesis

(7.5) Hq : x i  =  X

holds. Then from Lemma 3.3, we have
1 k

J ^ n i a A  =  x .
i=1

Moreover, this lemma says that the convex hull of a 2 , . . . , a k  never intersects the 
cutlocus. This means that in spite of the underlying distributions depending on n, 
condition (7.3) holds automatically and from item 2 of Theorem 2.2, we have

(7.6) r - G n(Xn — x )  =  (T n tanx Bn) Z n +  °P(1) D  N(0, tanx),

while from item 3 of Theorem 2.2 we have

(X n x )  G n^nFnG n(iXn x )   ̂ Xm,
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which provides a test for H0.
We now address the two-sample problem. Let

X i l i .  — iXini i  i =  1 , . . . , k 1'> and Yj  1 , . . . , Y j i j i  j  =  1 , . . . , k 2i

be two multisample sets of data on the manifold M having equal mean locations 
within each set, that is,

vi =  ••• =  Vk2 =  x i ,

Ui =  ••• =  Uk2 =  X2.

Denote by a i =  EXi2 and 'Ei =  V ( X i2) [resp. bj  =  E Y j 2 and Ej  =  V ( Y j 0 ] the 
expectation vector and covariance matrix of the i th sample, i =  1 , . . . , k 2, of X-
data (resp. the j  th sample, j  =  1 , . . . , k 2,of  Y -data). Let n =  YÍ¡1=1 T , t  =  YT¡1=k2

i t l
and

1 k1 ni 1 k2 ti

X -  =  T T . H X ij' Y‘ =  j E E Yij
i = 1 j  = 1 i = 1 j  = 1

be numbers and averages of all X -observations and all Y -observations, respec­
tively. Then

1 k1
v„ =  n \ iai

1 k2

n i=1
T ^ t i b i
i=1

and

v- =  n ( X  n), Ut =  n ( Y t )

are mean and sample mean locations, respectively, for multisample data X  and Y. 
Let us show how Theorem 2.2 provides a test for the hypothesis H 0 : x 2 =  x 2. 
Denote

1 k1
tn — ^ ' nia i ,

i=1

tn — X  n,

1 k2
ut =  ^ J 2 t i bi , 

t  i=1

u t  =  Yt

and
k1 1/2

i=1

k2 1/2

B2,t =  I
i=1

Then the multivariate Lindeberg condition holds if n , t  d  œ  and we have 

Zi,n =  B —n(tn — t - ) D  Z i  and
1 D

Z2,t =  B2,¿(Ut — ut )  -D Z 2,

n
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where Z2 and Z2 are two independent standard 5 -dimensional normal distribu­
tions, N (0, I5). Let G1n and G2 t (also r 1n and r 2 t ) be matrices corresponding 
to X-data and Y -data and satisfying (2.5), (2.6) and (2.7). We suppose that r 1n 
and r 2,t are chosen to be nonsingular; G 2,n and G 2,t  are nonsingular by definition. 

Suppose the null hypothesis H° : x 2 =  X 2 holds. Then we have

Vi =  ••• =  Vki =  Ul =  ••• =  Uk2 =  X.

From item 1 of Theorem 2.2, we have (cf. (7.6))
D

(7.7) r  1,nG 1,n(Vn — x )  — ( r  1,ntanx B 1,n) Z 1,n D  0,
D

(7.8) r 2, tG 2, t (Ut  — X ) — ( r 2,ttanx B2,t) Z 2,t D  °.
Denote

Ai =  ( r h n G h n)—\  A 2 =  ( r 2, t G 2, t ) —\  c  =  A i a 2  +  A 2A 2 .

The matrix C  is positive definite and it follows immediately from the definition of 
C  that the linear transformations C —1/2A j , j  =  1, 2, are uniformly bounded in n 
and t ,  respectively. Therefore, from (7.7) and (7.8), we obtain, as n , t D  œ ,

C  1/2(Vn — Uvt ) — C  1/2(A1 r i,ntanx B 1,nZ 1,n — A 2r 2,ttanx B2,tZ 2, t) D  °.

As Z2 and Z2 are independent standard 5 -dimensional normal distributions, 
N  (0, I5), one can straightforwardly obtain that

(7.9) C—1/2A ir i , n t a n x B i , n Z i  — C —1/2A2r 2 , t tanß B2,tZ2 =  N(0, V), 

where, taking into account (2.7),

V =  C —1/2[Airi,ntanxBi,nB1r - ta n x ^ -A 2

+  A2r 2,ttanx B2,tB2,ttanxr 2,tAT ]C 1/2

=  C—1/2[AitanxA2 +  A2tanxA2 ] C —1/2.

Choosing r 1n, r 2 t to commute with tanx (see Remark 2.4), we have A i tanx =  
tanXA¡-, i =  1 , 2, C —1/2tanx =  tanXC—1/2 and hence V =  tanx . As the coefficients 
of Z2 and Z2 in (7.9) are uniformly bounded in norm [by the above and (2.7)], from
Lemma 5.2 it follows that C ~ l / 2 (Vn — Ut ) d  N(0, tanx) and consequently that

(t-  — Ut ) 2 [ G —n ( r l n r i , n )  — l G —n
(7.1°)

+  G^1t(r22,tr2,t)—1G ^ } ] —1(v-  — U t ) D  x m.

To obtain areal test, one should substitute r 1n, r 2 t and G 1n, G 2 t in (7.10) with 
their empirical analogues as follows (one can find more details in [7]):
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r i ,n =  ( Tnotvn +  tanv„^i,n^l,ntanv„

/ I  - ~2 \ - 1/2
r  2 ,t =  ( j  nor vt +  tanUt B2,tB2 ,t tan^

G  1,n =  Is — A X n—Vn tanV„, G 2,t =  Is — A Ÿt —ï t tanùt,

where Xi , Sr , i =  1 , . . . , k 2, r =  1 , . . . ,  k2, are the sample covariance matrices 
of the subsamples of X-data and Y -data, respectively. Note that the asymptotic 
equation

(Vn — Ut )2 [ G — - ( r  2, nr  1, n) —1 G  —, -  +  G —, ̂  A  t )  — 1G —\] — 1(V- — Ut) D  Xm

provides an asymptotic test for H° without any knowledge about the value of the 
common mean location x.

— 1/2

7.3. Spherically symmetric stable limit distribution. Suppose, as in Section
2.2, that the underlying probability measure Pn =  P  does not depend on n and 
that the functional 2n =  2  does not depend on n. Suppose that P  is a spherical 
probability distribution on the whole space RS (see Remark 2.1) and that the radial 
distribution has a regularly decreasing tail. Consider, for example, for some S >  0, 
C  >  0 and a  e  (0, 2), a sample X2, . . . , X n from the spherical distribution P ,

P  {x e  R S :\ \x — a\\ > r  } =  C r —a , r  > S,
P  {x e  RS :\ \x — a\\ > r  } =  1, r < S .

Then (see [18], Section 7.5) limit condition (2.10) holds with t =  a,  tn =  X n , 
an =  n 1—1/a and V =  1 ( )2/aIS, and the limit distribution Z  has
the characteristic function f Z (t) =  exp(—||t||a ) (t e  RS), that is, Z  has a spheri­
cally symmetric stable distribution (see also [5], Section 3.5). Theorem 2.3 holds 
and asymptotic confidence regions are obtained, where zm (which is not the classi­
cal xm distribution) has a distribution that does not depend on x  (see Remark 2.3). 
Moreover, the distribution of ( Z 1, . . . , Z m) has characteristic function exp(—||t ||a ) 
(t e Rm) and zm =  YJi=1 Z2. Nolan [16] gives several representations for the den­
sity of Zm =  iJZm. One of them, based on [21], equation (6), yields an expression 
for the density of Z,2,

1 C œ
gzm (S 2) =  2 m/ 2 r ( m) S J0 ( su)m/2jm/2—1(s U) exp ( —Ua ) d U,

which can be tabulated (Jp is the Bessel function of order p) .  In case a  =  1, Z  is 
just a multivariate Cauchy distribution; explicit analytic expressions can be found 
in [16].
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