
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The version of the following full text has not yet been defined or was untraceable and may

differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/34770

 

 

 

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

http://hdl.handle.net/2066/34770


Open AccessResearch
Exploration of the omics evidence landscape: adding qualitative 
labels to predicted protein-protein interactions
Vera van NoortK*+, Berend SnelH*§ and Martijn A Huynen*

Addresses: *Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen 
Medical Centre, Toernooiveld, 6525 ED Nijmegen, The Netherlands. +European Molecular Biology Laboratory, MeyerhofstraBe 1, 69117 
Heidelberg, Germany. *Bioinformatics Group, Department of Biology, Science Faculty, Utrecht University, Padualaan, 3584 CH Utrecht, The 
Netherlands. §Academic Biomedical Centre, Utrecht University, Yalelaan, 3584 CL Utrecht, The Netherlands.

k These authors contributed equally to this work.

Correspondence: Vera van Noort. Email: Vera.vanNoort@embl.de

Published: 19 September 2007

Genome B io lo g y  2007, 8:RI97 (doi:I0.II86/gb-2007-8-9-rl97)

The electronic version of this article is the complete one and can be 
found online at http://genomebiology.com/2007/8/9/RI97

Received: 4 June 2007 
Revised: 18 September 2007 
Accepted: 19 September 2007

© 2007 van Noort et al.; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A b stract

Background: In the post-genomic era various functional genomics, proteomics and computational 
techniques have been developed to elucidate the protein interaction network. While some of these 
techniques are specific for a certain type of interaction, most predict a mixture of interactions. 
Qualitative labels are essential for the molecular biologist to experimentally verify predicted 
interactions.

Results: Of the individual protein-protein interaction prediction methods, some can predict 
physical interactions without producing other types of interactions. None of the methods can 
specifically predict metabolic interactions. W e  have constructed an 'omics evidence landscape' that 
combines all sources of evidence for protein interactions from various types of omics data for 
Saccharomyces cerevisiae. W e  explore this evidence landscape to identify areas with either only 
metabolic or only physical interactions, allowing us to specifically predict the nature of new 
interactions in these areas. W e  combine the datasets in ways that examine the whole evidence 
landscape and not only the highest scoring protein pairs in both datasets and find specific 
predictions.

Conclusion: The combination of evidence types in the form of the evidence landscape allows for 
qualitative labels to be inferred and placed on the predicted protein interaction network of S. 
cerevisiae. These qualitative labels will help in the biological interpretation of gene networks and will 
direct experimental verification of the predicted interactions.

Background
Genome sequencing projects have resulted in the listing of all 
protein coding and RNA genes for a large number of organ­
isms. In order to understand how the inner workings of the

cell, a plethora of omics (genome-scale) techniques that 
measure the functional coupling between all the components 
has been developed. All these techniques measure different 
aspects of functional coupling: for example, yeast-two-hybrid
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assays [1,2] uncover direct physical interactions between pro­
teins, whereas affinity purification [3,4] measures the ten­
dency for proteins to be members of the same protein 
complex, and micro-arrays [5] detect the concerted expres­
sion of genes at the mRNA level. Furthermore, functional 
relationships are predicted from many other sources: genetic 
interaction data [6], gene fusion, conserved gene neighbor­
hood and gene co-occurrence [7-9], conserved co-expression 
between species [10 ,11] or the sharing of transcription factors 
[12]. Many of these high-throughput techniques to infer func­
tional relationships produce noisy data. The noise level of the 
data has lead to the development of bioinformatics data inte­
gration strategies to increase the reliability of the prediction 
of functional coupling.

Despite the obvious success of these integrative approaches, 
they remove from the raw data the information pertaining to 
functional coupling that was measured in the original assay; 
high quality generic gene networks have been inferred from 
the integration of very heterogeneous data, such as synthetic 
lethals, yeast-two-hybrid and mRNA derived co-expression 
[1 3 ,14 ]. These networks contain many accurate predictions, 
but specific information on the type of functional coupling is 
lost. In addition to the loss of specificity from integration, 
some techniques to measure interactions, such as co-expres­
sion, predict, even without integration, only generic func­
tional couplings. This lack of specificity is a problem, because 
for the biological interpretation of gene networks and the pri­
oritization of experimental verification, we not only need to 
identify protein interactions, but also to add qualitative labels 
to the interactions [15]. We here present a bioinformatics 
approach that distinguishes different types of functional cou­
pling on the basis of their behavior across different high- 
throughput datasets. We study how well in silico predictions 
and omics data serve to specifically predict a specific type of 
interaction. Subsequently, we combine the information from 
in silico predictions, functional genomics data and protein 
interaction assays into evidence landscapes. In these land­
scapes we identify regions that are populated solely by physi­
cal or metabolic interactions, allowing specific prediction of 
the nature of interactions between proteins.

Reference sets
We chose to analyze omics datasets for the budding yeast Sac­
charomyces cerevisiae because of the availability of much 
high quality genomics data as well as classical knowledge 
about its protein functions. We compiled reference sets that 
are specific for a category of interactions. Although a myriad 
of functional couplings exist, we here begin by defining two 
categories that are themselves widely used in data integration 
studies (Figure 1). Our first and most straightforward cate­
gory is a physical interaction that is mediated by physical 
proximity (red lines connecting proteins in Figure 1). A  sub­
class of this category is co-complex membership, which is well 
defined and for which trustworthy and large reference sets 
are available, in contrast to direct pairwise physical interac­

tions. We thus used known complexes from the MIPS data­
base as a basis for physical interactions. Care was taken to 
remove potential circularity in the form of those entries in the 
MIPS database that are explicitly based on the large-scale 
protein complex purification data. This resulted in 14,988 
positives and 884,224 negatives for pairwise interactions.

Co-pathway membership is another common functional rela­
tionship that is frequently used [13,14] and which we chose as 
our second category. Metabolic interactions, in which pro­
teins are part of the same metabolic pathway, are the clearest 
exponent of these pathway interactions for which clear cut 
databases of sufficient size are available. No high-throughput 
method exists that exclusively detects pathway or metabolic 
interactions, even though certain methods detect them 
among other functional relationships. As a basis for meta­
bolic interactions we took only those KEGG maps that repre­
sent metabolic pathways (that is, with map number below 
2000); obviously, metabolic pathways contain multimeric 
enzyme complexes, but we did not score the intra-complex 
interaction of these as positives or as negatives in our meta­
bolic reference. We did, however, consider the links between 
these enzymes and other enzymes from the pathway as meta­
bolic (Figure 1). This resulted in 18,460 positives and 275,768 
negatives.

Score-intervals and positive predictive value
We chose to measure the performance based on score inter­
vals as opposed to thresholds to measure prediction perform­
ance. Widely used measures, such as false negative rate or 
receiver operating characteristic (ROC) curves divide predic­
tions into positives (higher than a threshold) and negatives 
(lower than a threshold) and then score true and false predic­
tions. Thus, they rely heavily on the assumption that interac­
tions that score higher than a certain threshold are the true 
interactions. A  performance measure based on score intervals 
does not rely on such assumptions. In contrast, it can identify 
score intervals with high predictive performance anywhere 
along a scoring axis and is better suited for integration of data 
types with different noise levels [14]. A  performance measure 
that combines well with a score interval based scheme is the 
positive predictive value (ppv). As the predictions are not 
divided into positive and negative, there are no true and false 
negative rates. Ju st like the likelihood ratio in Bayesian net­
works [14], the ppv depends only on positive predictions 
without implying that all the other predictions are negative. 
Figure 2 reflects that indeed some of the evidence types show 
a high ppv for metabolic interactions at intermediate scores 
whereas this ppv drops at higher score intervals, which would 
not have been observed by a threshold based performance 
measure.

To determine whether there are omics evidence type data that 
alone are typical for either of the two categories, we cannot 
simply plot the prediction performance for each reference set 
independently. We have to take into account true and false
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Figure 1
Two categories of functional relationships. The two categories of functional relationships that we use in this study are physical interactions (specifically co­
complex memberships) and metabolic interactions. The physical interactions (red) exist between proteins that are identified in the same protein complex, 
whereas the metabolic interactions (blue) exist between proteins that act in the same metabolic pathway. Metabolic interactions may also exist between 
individual members of a complex and proteins that act in the same pathway as this complex. One aspect of the nature of these to functional relationships 
is the physical distance between proteins as illustrated in the graph. As the nature of the relationships differs, one might expect differential behavior in 
high-throughput experiments.
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Figure 2
Score-ppv plots of individual datasets. On the x-axis is the score for that dataset, on the y-axis the ppv. The ppv was calculated in all score intervals with 
bin-width 0.025. Red lines indicate ppv on the protein complex reference set, being the number of true positives in the complex reference set divided by 
the number of true positives and false positives in both reference sets. Blue lines indicate the ppv on the metabolic reference set, being the number of true 
positives in the metabolic reference set divided by the number of true positives and false positives in both reference sets. (a ) Correlated mRNA 
expression (CoExp). (b ) Shared binding of transcription factors (ChIP-chip). (c ) Co-regulation (ChIP-chip*CoExp). (d ) Conserved co-expression between 
four species (CoExp4Sp). (e ) Conserved co-expression between two species (CoExp2Sp). (f) Paralogous conserved co-expression (CoExpPar). (g ) Gene 
neighborhood conservation (GenNeigh). (h ) Correlated phylogenetic profiles (CoOcc). (i) Shared genetic interactions (GenInt). (j) Yeast-two-hybrid 
(Y2H). (k ) TAP-tag purifications (Gavin et al. [3]). (l) TAP-tag purifications (Krogan et al. [4]). For (k, l) the protein pairs that are never co-purified and 
thus have a SA score of 0 are in bin 0.2.

metabolic interactions as false physical interactions and vice 
versa. The ppv of metabolic interactions is calculated as the 
total number of true metabolic interactions divided by the 
sum of the true and false metabolic and the true and false 
physical interactions. The ppv of physical interactions is then 
calculated as the total number of true physical interactions 
divided by the sum of the true and false metabolic and the 
true and false physical interactions. By doing this, we can 
determine not only whether at a certain score in a certain 
dataset proteins are likely to interact, but also how they 
interact.

Results
Qualitative information from individual omics datasets
We calculated the ppv for each omics evidence type and each 
score interval. Figure 2 shows at what score each evidence 
type successfully predicts either metabolic or physical inter­
actions. The ppv for physical interaction (ppvphys) increases 
similarly to the ppv for metabolic interactions (ppv meta) for 
gene co-expression (CoExp), as well as for combinations of 
gene co-expression between species (CoExp2Sp, CoExp4Sp) 
and the combination of gene co-expression with shared tran­
scription factor binding sites (ChIP-chipCoExp) (Figure 2). 
These data are, therefore, not specific for either metabolic or 
physical interactions. In contrast, for gene neighborhood
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(GenNeigh) the ppv depends on the score: very high is specific 
for physical interactions whereas a lower, but still significant, 
score is indicative of a metabolic interaction (Figure 2 , Gen- 
Neigh). The highest ppv meta  in this set is 0.79, at a point 
where the ppvphys  is 0.05, whereas the highest ppvphys  is 
0.73 when the ppv meta  is 0 .11. Therefore, GenNeigh can be 
used to obtain some specificity about the type of predicted 
interaction. Correlated phylogenetic profiles (CoOccur) show 
a similar, but less pronounced, trend of differential ppv.

To get statistical support for these visually observed trends, 
we employed logistic regression where the binary dependent 
variable is the presence/absence of an interaction and the 
continuous variables are the scores from the omics data 
(Table 1 ). For all measures of co-expression, the logistic 
regression co-efficients are positive and significant for both 
physical and metabolic interactions. The logistic regression 
coefficients for GenNeigh and CoOccur for the metabolic 
interactions are not very high due to the probabilities of met­
abolic interactions not following a logistic curve. Finally, we 
observe specificity for physical interactions not only in data­
sets where physical interaction was measured directly (yeast- 
two-hybrid and protein complex purifications), but surpris­
ingly, also in one that contains a number of shared genetic 
interactions between proteins (GenInt). With regard to the 
socio-affinity (SA) score based on the protein complex purifi­
cations of Gavin et al. [3] and Krogan et al. [4], it was 
expected that a high score in either of these sets would be 
indicative of a physical interaction. Similarly, the logistic 
regression coefficient is very high, while for these datasets the 
regression coefficient for metabolic interactions is not signif­
icant. In conclusion, we can specifically pinpoint physical 
interactions based on single 'omics' datasets, both from visual 
inspection of the score-ppv plots as well as from the results of 
the logistic regression.

Q ualitative information from evidence landscapes
Normally, logistic regression provides the best fitting func­
tion between a dependent variable and a set of independent 
variables. In this case the variables are clearly not independ­
ent, as can be readily observed in a correlation matrix (Addi­
tional data file 1). There are also huge differences in 
coefficients between fitted functions on the separate variables 
and fitted functions on multiple variables at the same time 
(data not shown). Therefore, a simple logistic regression, for 
example, as applied in [16], is not permitted by these data. 
Moreover, the interval score-ppv plots show that the proba­
bilities of interactions do not always follow a logistic curve. An 
exploration of the combinations of scores of the different 
input data is more suitable. We call the combinations of omics 
data 'evidence landscapes', surfaces on which the x and y 
coordinates represent the scores of two types of 'omics' data. 
In these areas we plot the specificity for either metabolic or 
physical interactions, estimated by the differential ppv. The 
differential ppv is computed by subtracting the physical inter­
action ppv from the metabolic interaction ppv. This means

that if a region scores equally well in both reference sets (be it 
very poor or very well), it has a zero differential ppv, reflecting 
the inability of this region to differentiate between metabolic 
and physical interactions. However, if it is very accurate in 
predicting metabolic relations but unable to accurately pre­
dict physical interactions, it has a very high differential ppv 
and, vice versa, a very negative value reflects specificity for 
physical interactions. Thus, the differential ppv is a tool to 
judge whether areas exist that specifically predict either type 
of interaction.

Figure 3 shows the differential ppv in a representative selec­
tion of these evidence landscapes. The comprehensive collec­
tion of all evidence landscapes is available at our webpage 
[17]. Figure 3a shows the evidence landscape of the two TAP- 
tag protein-protein interaction datasets [3,4]. Despite the 
very high quality of both datasets, they are not completely 
comprehensive; each dataset identifies interactions with a 
high SA score [3] between proteins that in the other assay 
were never co-purified, but which are true interactions in the 
physical interaction reference set. An SA score of 5 (bin 0.4) 
in only one of the two assays is not enough to predict a reliable 
physical interaction; however, if the protein pair has an SA 
score of 5 in both sets, it is a reliable prediction. So in fact the 
two assays complement each other. That is why we used the 
sum of the two SA scores for the evidence landscapes with 
other 'omics' sets (Figure 3b, c); in these panels, bin 0.2 con­
tains all protein pairs that were purified in both assays but 
never co-purified. Gene pairs with high orthologous con­
served co-expression (CoExp2Sp) that were never co-purified 
are purely metabolic interactions (the upper left corner of 
Figure 3b). We also observe this for co-regulated gene pairs 
(ChIP-chip, Figure 3 c). Indeed, we are now able to predict 
purely metabolic interactions by taking gene pairs that have a 
null score in the physical interaction set and a positive score 
for co-expression or co-regulation. Gene-pairs that are null 
scoring in the complex purification datasets and have an 
intermediate score in gene neighborhood or correlated phyl­
ogenetic profiles also define purely metabolic interactions.

What we have observed in Figure 2 is that intermediate scores 
in correlated phylogenetic profiles and gene neighborhood 
conservation are often indicative of metabolic interactions. 
The evidence landscape of these two has specific metabolic 
interactions in intermediate scores of both sets (Figure 3g). 
Thus, not only do we find purely metabolic interactions from 
gene pairs that score null in protein-protein interaction data­
sets, we also find them in overlaps with intermediate scoring 
parts of other evidence types.

A  cellular network with qualitative labels on the 
predicted interactions
We extracted a list of predicted metabolic and physical inter­
actions by taking all gene pairs from areas in all evidence 
landscapes where the differential ppv is either higher than 
0.95 or lower than 0.95. We predicted novel metabolic and
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Table i

Logistic regression coefficients w ith  m etabolic and physical interactions

Input Intercepts Coefficients R2 value

CoExp
Metabolic -5.0I* 2.44* 0.00766

Physical -B.B2* 7.25* 0.05BB

ChIP-chip
Metabolic -3.37* 0.56Bt 0.000603

Physical -4.95* 2 .II* 0.00666

ChIP-chip*CoExp
Metabolic -4.32* 5.02* 0.0246

Physical -6.39* 9.I7* 0.0745

CoExp4Sp
Metabolic -2.32* 2.36t 0.00706

Physical -2.97* 6.33* 0.0546

CoExp2Sp
Metabolic -4.02* 2.55* 0.00594

Physical -B. I6* I0.5* 0.I03

CoExpPar
Metabolic -2.62* -2.07* 0.004B4

Physical -7.4B* 6.I7* 0.0373

GenNeigh
Metabolic -2.69* 2.96* 0.02B0

Physical -5.65* 6.20* 0.2I9

CoOcc
Metabolic -I.7 I* I.49* 0.0223

Physical -3.69* 3.27* 0.I20

GenInt
Metabolic -4. IB* 4.06* 0.0I20

Physical -3.I6* II.3 * 0 .II3

Y2H
Metabolic -3.35* -3.B9* 0.I06

Physical -2.30* 4.29* 0 .II9

TAP-tag Gavin
Metabolic -3.B5* -0. I53 I.B7e-06

Physical -I0.3* 24.5* 0.29B

TAP-tag Krogan
Metabolic -3.6B* 0.0350 9.I9e-0B

Physical -B.99* IB.37* 0.I46

TAP-tag (G+K)
Metabolic -3.7B* -0.54 I.77e-05

Physical -I2.3* 32.7* 0.322

The scores of the 'omics' datasets were in turn considered as the continuous independent variable to fit a logit function to the presence/absence of interactions. *P < 2e-l 6; tP 
< 0.0001. CoExp, correlated m RNA expression; ChIP-chip, shared binding of transcription factors; ChIP-chip*CoExp, co-regulation; CoExp4Sp, conserved co-expression 
between four species; CoExp2Sp, conserved co-expression between two species; CoExpPar, paralogous conserved co-expression; GenNeigh, CoOcc, correlated phylogenetic 
profiles; GenInt, shared genetic interactions; Y2H, yeast-two-hybrid; TAP-tag Gavin, TAP-tag purifications (Gavin et al. [3]); TAP-tag Krogan, TAP-tag purifications (Krogan et al. 
[4]); TAP-tag (G+K), the sum of SA scores derived from the two TAP-tag purification data sets.

physical interactions by taking protein pairs that do not over­
lap with the reference sets but have the same combinations of 
scores in the evidence landscape. In total, we retrieved 812 of 
the metabolic interactions in the reference set and 6,996 of 
the physical interactions in the reference set. Additionally, we 
predicted 2,985 new physical and 140 new metabolic interac­
tions. This allows us to display a network of physical (red) and 
metabolic (blue) interactions (Figure 4a). All predicted inter­
actions are available at our webpage [17]. Network visualiza­

tions are generally more open to biological interpretation 
than long lists of potential interactions. It is directly clear 
from the network layout that physical interactions are more 
clustered than metabolic interactions. The clustering coeffi­
cient (fraction of indirectly connected proteins that are also 
directly connected) of physical interactions (0.53) is much 
higher than the clustering coefficient of metabolic interac­
tions (0.031). The incompleteness of the metabolic network 
relative to the physical interaction network may bias this dif-
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Figure 3
Differential ppv in the evidence landscape. In each panel the x-axis indicates the score in the first dataset, the y-axis the score in the second set. The color 
scheme is based on differential ppv, being the ppv on the metabolic reference set minus the ppv on the physical interaction reference set. Differential ppv 
I is dark blue, 0 is yellow and - I is red, parts that contain no gene pairs are white. The blue parts of the landscapes are regions where there are only 
metabolic interactions, whereas in the red parts there are only physical interactions. (a ) TAP-tag purifications (Krogan) versus TAP-tag purifications 
(Gavin). (b ) TAP-tag purifications (sum Krogan Gavin) versus conserved co-expression (CoExp2Sp). (c ) TAP-tag purifications (sum Krogan Gavin) versus 
co-regulation (ChIP-chip*CoExp). (d ) TAP-tag purifications (Krogan) versus gene neighborhood conservation (GenNeigh). (e ) Gene neighborhood 
conservation (GenNeigh) versus co-regulation (ChIP-chip*CoExp). (f) TAP-tag purifications (Gavin) versus co-regulation (ChIP-chip*CoExp). (g) 
Correlated phylogenetic profiles (CoOcc) versus gene neighborhood conservation (GenNeigh).(h) Gene neighborhood conservation (GenNeigh) versus 
conserved co-expression (CoExp2Sp). (i) Paralogous conserved co-expression (CoExpPar) versus conserved co-expression (CoExp4Sp).

ference. However, the average number of connections per difference between physical and metabolic interaction 
protein (K) is only twice as high for physical interactions (4.1) networks. 
as for metabolic interactions (2.0) and the difference in clus­
tering coefficients appears at least partly due to an intrinsic
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L-Arginino-succinate

RG4 
Arginine

Figure 4
Network with qualitative labels on predicted interactions. (a ) The network of interactions in yeast that are specifically predicted to be physical (red lines) 
or metabolic (blue lines). W e  took all gene pairs that fell into squares (Figure 3) with a differential ppv larger than 0.95 and at least five true positive 
metabolic interactions for the specific metabolic interactions. W e  selected all gene pairs that fell into squares with differential ppv smaller than -0.95 and at 
least five true positive physical interactions for the specific physical interactions. Names of several known complexes and metabolic pathways are indicated 
on the network. (b ) The arginine biosynthesis pathway in yeast. Names of the enzymes are in orange, arrows indicate biochemical reactions. Blue lines 
indicate all interactions that exist for these genes. Note that ECM40 catalyzes two steps in this pathway but the interactions with the other genes are 
drawn only once.
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Several metabolic pathways are completely retrieved, such as 
the arginine and the threonine biosynthesis pathways, which 
are connected only by predicted metabolic interactions (blue 
lines). The arginine biosynthesis pathway is depicted in Fig­
ure 4b. We find many known physical protein complexes as 
clusters densely connected by red lines, as has been previ­
ously shown in many integrative bioinformatics studies [18 ­
21]. Interestingly, we now also observe the pathway interac­
tions that exist between them. For example, in the upper right 
corner is the oxidative phosphorylation pathway. Members of 
the same complex have red lines (physical interactions) 
between them, whereas members of different complexes have 
blue lines (metabolic interactions) between them. Even 
though we derived the metabolic pathway interactions by 
identifying the regions in the landscapes that scored highly in 
a metabolic reference set, we still expect this class in addition 
to be general for other functional associations from other 
types of cellular pathways. Therefore, the blue lines between, 
for example, the exosome and the small nucleolar ribonucle- 
oprotein complex, are not necessarily metabolic as in the case 
of the oxidative phosphorylation pathway, but rather other 
types of functional associations in which a substrate is passed 
on from one protein to another. Likewise, the oxidative stress 
cluster contains interactions between thioredoxin reductases 
and glutaredoxins. These proteins are, as far as is known, not 
part of the same pathway in the sense that they pass, for 
example, reducing equivalents to each other, but they are part 
of the same system.

Discussion
It is perhaps logical in hindsight that we detect metabolic 
interactions in areas where both proteomic approaches report 
no co-purification while there are strong indications for co­
regulation, but there are some important implications. We 
should use not only integrations based on the top scoring pro­
teins but also non-scoring proteins. For the co-purification 
data this implies that the absence of a reported interaction is 
in fact the reflection of a cellular reality: in other words, we 
need physical protein interaction datasets where the nega­
tives are really true negatives rather than the absence of 
results. Although the comparison of the Gavin et al. [3] and 
Krogan et al. [4] co-purification data reveals that both data­
sets still harbor some false negatives, a combined dataset of 
both comes close to having the perfect properties for our 
objective, and it is only since the publication of these data that 
a differential genomics approach as proposed here has 
become possible.

tions. As the conserved co-expression set of Stuart et al. is 
based on four species and the other one on only two, we spec­
ulate that metabolic interactions are less conserved in evolu­
tion than physical interactions, which is consistent with 
results on the evolutionary modularity of metabolic pathways 
and protein complexes in biological systems [22]. The higher 
rate of evolution of metabolic interactions also explains that a 
very high level of conservation of gene neighborhood conser­
vation or correlation of phylogenetic profiles indicates a phys­
ical interaction whereas intermediate levels are more 
indicative of metabolic interactions.

One striking observation is that we predict many more phys­
ical interactions than metabolic interactions. This difference 
might be easily explained by the fact that there are specific 
experimental methods to find physical interactions and no 
specific methods to find metabolic interactions. Even the 
shared genetic interactions, which we previously thought to 
be indicative of co-pathway membership, turn out to correlate 
mostly with physical protein interactions. Only co-expression 
data and the in silico prediction methods contain metabolic 
interactions mixed with physical interactions, making it hard 
to specifically extract metabolic interactions from omics data. 
Ultimately, it might even be the nature of metabolic interac­
tions themselves that makes them less amendable to predic­
tion: metabolic interactions are, by nature, indirect, and only 
in the case of linear pathways do the enzymes involved have 
the kind of mutual dependence that proteins in the same 
complex have, which might explain why the former leave a 
less strong signal in the genomics data than the latter. A  
weaker type of interaction between enzymes in the same 
pathway is also suggested by our observation that metabolic 
interactions are prevalent at intermediate degrees of gene 
order conservation or correlation between phylogenetic pro­
files while high levels of gene order conservation correlate 
with physical interactions.

It is of course tempting to combine more than two types of 
omics data. There are, however, two reasons why we here 
explore pairs of evidence types rather than the multidimen­
sional evidence landscape given by all evidence types simulta­
neously. Firstly, visual inspection of differential ppv plots is 
still possible in two dimensions but becomes more trouble­
some in higher dimensions. Secondly, and more importantly, 
overlapping all evidence types at the same time results in very 
small numbers of protein pairs in each multidimensional vol­
ume in the reference sets, which in turn hampers the reliable 
calculation of prediction ppv.

Another contribution in distinguishing metabolic from phys­
ical interactions comes from differential rates of evolution. 
We could not obtain the same level of differential ppv for the 
prediction of metabolic interactions in landscapes with the 
conserved co-expression set of Stuart and co-workers [11] as 
we did with a two-species orthologous conserved co-expres­
sion [10] because the first predicts mainly physical interac­

As an extension to this work we would like to specifically pre­
dict more than only two types of interactions. One type of 
interaction that we can not predict is a kinase-target interac­
tion; the prediction of these kinds of interactions is a field on 
its own and requires integration of many more types of pre­
diction methods and data, such as sequence data [23]. 
Furthermore, for the type of method we use here it is neces­
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sary to have reference sets that are of high quality and at the 
same time cover many protein pairs. For transient physical 
interactions, such reference sets are not available at the 
moment, although they might become available in the near 
future.

Protein relations predicted by our computational integration 
should be less laborious to experimentally test, because they 
prioritize the usability of various assays for biochemical veri­
fication. For example, it would be disingenuous to verify our 
metabolic relations by CoIP. In general, we expect that novel 
ways of integration and the advent of more and more types of 
omics data will allow the further development of approaches 
to increase the specificity and to extract more qualitative data 
on the nature of protein interactions.

Conclusion
When predicting interactions between genes it is essential to 
specify the type of interaction that is predicted to allow bio­
logical interpretation. Some data types are already specific for 
the type of interaction, for example, ChIP-on-chip data of 
transcription factors is indicative of regulatory interactions 
and co-purifications are specific for physical interactions. 
However, co-regulation, correlated expression, shared 
genetic interactions and in silico interactions are not intrinsi­
cally specific to any type of interaction. Here we have shown 
that although some datasets do contain a high level of meta­
bolic interactions at intermediate scores, it is not possible to 
reliably predict metabolic interactions from them. However, 
by combining the datasets in ways that examine the whole 
evidence landscape and not only the highest scoring protein 
pairs in both datasets we can find specific predictions; for 
example, by taking protein pairs whose co-expression is evo- 
lutionarily conserved but that never co-purify in two compre­
hensive protein-protein interaction datasets, we can label 
these predicted interaction as metabolic interactions. This is 
a first step towards improved biological interpretation of gene 
networks generated from the integration of high throughput 
data.

M aterials and methods 
Evidence types
Protein-protein interactions
We downloaded the yeast protein complex purifications pub­
lished by Gavin and co-workers [3] and recalculated the SA 
scores that reflect the likelihood of interaction to include also 
proteins that were purified only once. Protein pairs that weree 
never co-purified but were both purified at least once received 
a SA score of zero. We also downloaded the protein complex 
purifications of Krogan and co-workers [4]. These authors 
produced a different interaction score per protein pair, which 
was optimized to overlap with protein complexes from the 
MIPS database. To have a reference set-independent score we 
calculated SA scores based on the purifications of Krogan et

al. Protein pairs that were never found together in a purifica­
tion but were purified at least once were given a score of zero. 
As a third set we took the sum of SA scores of all protein pairs 
occurring in both protein-protein interaction datasets. 
Scored yeast-two-hybrid interactions were obtained from the 
STRING database [24].

In silico predictions
In  silico predictions of functional interactions were obtained 
from the STRING database [24]. From this database we took 
the co-occurrence scores based on phylogenetic profiles of 
COGs and gene neighborhood conservation also based on 
COGs. The scores were transferred from pairs of COGs to 
pairs of S. cerevisiae genes. I f  more than three yeast genes 
belonged to the same COG, the score was considered ambig­
uous and was removed from the dataset.

Conserved co-expression
We used two multi-species conserved co-expression datasets; 
co-expression conservation between human, yeast, fly and 
worm [11] and between yeast and worm [10]. We also used co­
expression conservation between pairs of paralogs [10] in 
yeast. For the two-species conservation we took the 
maximum expression correlation of all pairs of orthologs and 
averaged this maximum with the expression correlation of 
the gene pair itself. For paralogous conservation we took the 
maximum expression correlation between all parallel dupli­
cated gene pairs and averaged this maximum with the expres­
sion correlation of the gene pair itself.

Co-regulation
Co-regulation was assessed by combining correlated mRNA 
expression profiles with similarity in bound regulators to the 
gene promoter. Rick Young's lab made a comprehensive sur­
vey of the gene regulatory network in yeast [25]. We took a 
cut-off of 0 .01 for binding of a transcription factor to a pro­
moter based on the raw ChIP-on-chip data and divided the 
number of shared transcription factors between two genes Ni, 
j  by the geometric average of the total number of transcription 
factors bound by each of the two genes T  resulting in a co-reg­
ulation score Sij:

NnS.. -  j

j  Vt2+ Tf
Gene pairs that share a promoter were excluded. To increase 
the reliability of the co-regulation signal, we multiplied the 
correlation in binding profile by the correlation in mRNA 
expression profile based on a large-scale expression dataset 
in yeast [11], that is:

Snew ij = rij x Sij 

where rij is the expression correlation of gene i and j .
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Synthetic lethality
A  set of synthetic lethal and synthetic sick interactions were 
downloaded from the Saccharomyces Genome Database 
[26]. It was found earlier that genetic interactions [6] on their 
own are only marginally useful for predicting direct interac­
tions, but shared genetic interactions do indicate involvement 
in similar pathways [27]. We corrected the number of shared 
genetic interactions Ni, j  by the geometric average of total 
interactions T  per protein, exactly the same as for the co-reg­
ulation score.

Reference sets
We downloaded known complexes from MIPS [28] and 
removed all categories containing the terms 'other' or 'pre­
dicted'. Removal of the predicted category was especially 
acute, because these contain complexes derived from purified 
complexes identified by mass-spectrometry from earlier 
high-throughout publications from the same groups that pro­
duced the Krogan et al. and the Gavin et al. datasets. We took 
complexes at the lowest level of definition. Protein pairs that 
are in the same complex are positive examples, and protein 
pairs that are in different complexes are negative examples. 
The positive and negative examples constitute the physical 
interaction reference set.

From the KEGG database [29] we took all metabolic maps 
with indices smaller than 2,000. Maps with higher index are 
not metabolic and contain other processes, including many 
that consist of a single protein complex. Positive examples are 
all protein pairs that co-occur on a metabolic map, and nega­
tive examples are all protein pairs that do not co-occur on a 
metabolic map but are, nevertheless, present in the metabolic 
maps of KEGG. In order to not have any physical interactions 
in our metabolic reference set, we removed all protein pairs 
with the same EC number and removed all protein pairs that 
are part of the same complex according to SGD/GO annota­
tion [30,31] or MIPS. Together, the positive and negative 
examples form the metabolic interaction reference set.

Cytoplasmic ribosomal proteins were removed from all refer­
ence sets and datasets. As they confer very many pair-wise 
interactions, including them would bias all statistics towards 
ribosomes.

ppv and differential ppv
The conserved co-expression values of the Kim lab [11] were 
rescaled by transforming the -log(P-value) to scores between

0 and 1, such that high scores correspond to more likely inter­
actions. All other scores were rescaled to scores between 0 
and 1 by a linear transformation. In the score-ppv plots for 
each set we calculated ppv based on intervals with bin width 
0.025. In the evidence landscape plots, we plotted two data­
sets against each other in a heat map-like fashion and color 
squares according to their differential ppv (see below). 
Squares were made with sides of 0.05; if a square contained 
fewer than two true positives, a larger square with sides 0.1 
was made to avoid high performance scores based on very few 
examples.

Physical interaction ppv (ppv phys) was calculated as the 
number of true positives of the physical interaction reference 
set divided by the number of true positives plus false positives 
of both reference set sets in that bin (Table 2). Metabolic 
interaction ppv (ppv meta) was calculated as the number of 
true positives of the metabolic interaction reference set 
divided by the number of true positives plus false positives of 
both reference sets in that bin. In order to score for how well 
a given region/square bin in the evidence landscape predicts 
either type of interaction, we computed what we here call the 
differential ppv (ppv diff).

ppv meta  = TP meta/(TP meta  + FP meta  + TP phys  + FP 
phys)

ppv phys  = TP phys/(TP meta  + FP meta  + TP phys  + FP 
phys)

ppv d iff  = ppv meta  - ppv phys

Differential ppv is computed by subtracting the ppv phys 
from ppv meta. This means that if a region scores equally well 
in both reference sets (be it very poor or very well), it has a 
zero differential ppv, reflecting the inability of this region to 
differentiate between metabolic and physical interactions. 
However, if it is very accurate in predicting metabolic rela­
tions but unable to accurately predict physical interactions, it 
has a very high differential ppv and, vice versa, a very negative 
value reflects specificity for physical interactions.

Logistic regression
We took all gene pairs that fell into the reference sets and took

Table 2

T rue  positives and false positives

Positive metabolic Negative metabolic Positive physical Negative physical

Present in bin TP meta FP meta TP phys FP phys
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as a binary dependent variable the absence or presence of a 
known interaction. Again, for metabolic interactions the gene 
pairs of the physical interaction reference set were added as 
gene pairs with an absent interaction and for physical 
interactions the gene pairs of the metabolic interaction refer­
ence set were added as gene pairs with an absent interaction. 
The scores of the 'omics' datasets were, in turn, considered as 
the continuous independent variable to fit a logit function. 
The intercepts (a) and coefficients (b) are reported in Table 1 . 
An approximation of the R2 value was calculated as:

R2 = (null variance - residual variance) / (null variance)

Adding specificity to predicted interactions
We took all gene pairs that fell into squares with differential 
ppv larger than 0.95 and at least five true positive metabolic 
interactions and called them 'predicted metabolic interac­
tions'. We selected all gene pairs that fell into squares with 
differential ppv smaller than -0.95 and at least five true posi­
tive physical interactions and called them 'predicted physical 
interactions'.

Software
Figure 2 was made using xmgrace [32]. The panels of Figure 
3 were made using R  [33]. The network of predicted interac­
tions was visualized using cytoscape [34].

A bbreviations
ChIP-chip, chromatin imuno purification followed by chip; 
CoExp, correlated expression; CoExp2Sp, correlated expres­
sion in two species; CoExp4Sp, correlated expression in four 
species; CoOccur, phylogenetic cooccurrence; GenNeigh, 
gene neighborhood conservation; FP, false positive; ppv, pos­
itive predictive value; SA, socio-affinity; TP, true positive.
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