
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/34747

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16121878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/34747

Formalizing Architecture Principles
using Object-Role Modelling

G.J.N.M. (Guido) Chorus , Y.H.C. (Yves) Janse, C.J.P. (Chris) Nellen,

S.J.B.A. (Stijn) Hoppenbrouwers and H.A. (Erik) Proper

Institute for Computing and Information Sciences, Radboud University Nijmegen
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, EU

{S.Hoppenbrouwers, E.Proper}@cs.ru.nl

Abstract. This technical report is the result of two experiments conducted as part of an ongoing research effort
to formalize architecture principles. The experiment involves a first, and modest, evaluation of the use of ORM
and ORC as a means to formalize and ground architecture principles. The experiments involve the evaluation
of the use of ORM and ORC to formalize the example principles provided by the TOGAF (The Open Group
Architecture Framework) and principles taken from industrial practice.

1 Introduction
This technical report is concerned with an experiment on the precise formulation and underpinning of
architecture principles. It can readily be observed how large organizations increasingly make use of
enterprise architectures to direct the development of the enterprise as a whole and IT development in
particular [Lo05]. These developments are fuelled even more by government regulations such as the
Clinger-Cohan Act in the USA [USA96], which requires government bodies to provide an IT architec-
ture based on a set of architecture principles. A more specific way of expressing the role of enterprise is
to state: “Architecture serves the purpose of constraining design space” [xAF06]. In most (enterprise)
architecture approaches, this constraining is done by means of so-called architecture principles [IEE00,
TOG04].

According to the TOGAF architecture framework [TOG04], “Principles are general rules and guide-
lines, intended to be enduring and seldom amended, that inform and support the way in which an orga-
nization sets about fulfilling its mission”. Such principles typically address the concerns of the key
stakeholders within an organization. Some example principles, taken from [TOG04], are:
1 Data is an asset that has value to the Enterprise and is managed accordingly.
2 Data is accessible for users to perform their functions.
3 Applications are independent of specific technology choices and therefore can operate on a variety

of technology platforms.

When considering principles in an enterprise architecture context, three perspectives on principles can
be discerned:
1 Principles as emergent laws. These are essentially properties of (classes of) a system that can be

observed and validated. Examples are the laws of nature, law of requisite variety, laws of social be-
haviour, etc.

2 Principles as imposed laws. Like emergent laws, they are properties that can be validated. How-
ever, imposed laws also require mechanisms to enforce them. Imposed laws typically address con-
cerns of stakeholders. Some of these concerns may be raised by emergent laws having a negative

Formalizing Architecture Principles with ORM 2

impact on the system / enterprise being designed. Examples are: societal laws, policies and regula-
tions within organizations, etc.

3 Principles as guidelines. Desired properties that are so concrete that they offer guidelines to make
operational behaviour fit imposed laws. For example: “Always use your car’s cruise control” is an
advisable property to abide by that provides guidance in obeying the law concerning maximum
speeds on roads.

The principles we will mainly focus on in this report are principles as imposed laws and principles as
guidelines. These are the kinds of principles that typically require enforcing and validation by
stakeholders. In a development project these principles can best be regarded as general requirements
that will apply to a class of systems.

While several sources attribute a pivotal role to principles, a precise definition of the concept of princi-
ples as well as the mechanisms and procedures needed to turn them into an effective means still lacks.
Both IEEE [IEE00] and TOGAF [TOG04] position principles as a means to guide the design and evolu-
tion of enterprises/systems, while xAF [xAF06] goes even further by equating architecture to a set of
(situation specific) principles. Nevertheless, no clear definition of principles and associated mechanisms
and procedures are given. Such definitions are, however, direly needed if enterprise architecture is to
become a steering mechanism as it is intended to be. Providing the ultimate answer to this question is
also not the aim of this report, even though it is part of our ongoing research [BHPW06,OP07] in which
we are indeed progressing towards such a definition.

In this report, however, we focus the evaluation of an approach to making the formulation of principles
more precise. The conducted evaluation is a first and most evaluation, in that it has been performed by
students. The aim of this modest evaluation is also to ascertain if further, more rigid, evaluation is worth
while. In [BHPW06] a method for formalizing architecture principles was proposed using ORM and
ORC: “It is argued that when using ORM and ORC for formal modelling of architecture principles, the
underlying logical principles of the techniques may lead to better insight into the rational structure of
the principles.” To this end, van Bommel et al. [BHPW06] formalized two exploratory example princi-
ples of The Open Group’s Architecture Framework [TOG04]. In this report, we proceed to explore the
other 18 principles presented in this framework to further test the value of formalizing architecture
principles. Apart from the formalization of TOGAF principles, the practical applicability of the method
has been evaluated by applying the method in an interactive joint modelling session with an enterprise
architect. Reflections on of the formalization of the TOGAF principles and the results of the joint mod-
elling session can be found at the end of this report.

2 First experiment: Formalization of Principles
In the first experiment, a group of three students:

G.J.N.M. (Guido) Chorus , Y.H.C. (Yves) Janse, C.J.P. (Chris) Nellen
formalized the TOGAF architecture in line with the approach taken in [BHPW06], with the slight modi-
fication of using the ORM2 notation rather than the traditional ORM notation.

It is important to identify the difference in definitions of principle that TOGAF 8.1 discusses. TOGAF
distinguishes three levels of principles. The top-most level is ‘enterprise principles’. The ‘IT principles’
elaborates on this level. Finally ‘architecture principles’ are even more specific, a subset of IT princi-
ples that relate to the actual architecture. TOGAF defines twenty of such ‘architecture principles’.
These principles must therefore be a subset of the TOGAF IT principles. Strangely enough though,
principles such as ‘Maximize Benefit to the Enterprise’ adhere more to general top-level enterprise
principles instead of IT specific principles. Because of this discrepancy, this report uses the enterprise
level definition whenever architecture principles are mentioned.

Formalizing Architecture Principles with ORM 3

In the formalization of the 18 architecture principles, the following template was used:

Principle # The Name Of The Principle

Statement The original text of the statement as defined in the TOGAF document. This is simply
for reference; it shows what the fundamental rule is of the principle, in natural lan-
guage. This should be unambiguous according to TOGAF, but they do not really suc-
ceed at that because of the inherent weaknesses of natural language.

Rationale The original text of the rationale as defined in the TOGAF document. This should
show the reason behind the principle in the form of business benefits which are ob-
tained by adhering to this principle. This is the rationale in the words of the architect,
not the rationale of the person(s) who give(s) meaning to the architecture.

Assumptions Here the assumptions made while interpreting the statement and rationale will be in-
cluded in an ordered numerical list for easy (cross) reference. This is the rationale of
those who give meaning to the architecture by interpreting it and extracting the mean-
ing from the information.

ORM Schema This is where the graphical ORM schema is inserted.

Verbalization This is where we include the relevant verbalization of the fact types and entity types.
This shows in a semi-formalized natural language what the structure of the schema is
meant to represent by means of NORMA generated sentences.

Issues Issues that need to be solved in making the formalization of the principle specific
enough to make it imposable.

The resulting filled in templates are listed on the following pages.

Formalizing Architecture Principles with ORM 4

1 Primacy of Principles

Statement These principles of information management apply to all organizations within the
enterprise.

Rationale The only way we can provide a consistent and measurable level of quality information
to decision makers is if all organizations abide by the principles.

Assumptions A1: Organizations are part of an enterprise.
A2: An enterprise consists of more than one organization.
A3: These principles: all defined principles for the current enterprise (in this case the
nineteen principles that follow).
A4: The principles apply to both the enterprise and its organizations.

ORM Schema

Verbalization Enterprise includes Organisation.
Each Enterprise includes some Organisation.
Each Organisation is part of exactly one Enterprise.
It is possible that the same Enterprise includes more than one Organisation.

Enterprise is ruled by IM Principle.
It is possible that more than one Enterprise is ruled by the same IM Principle
and that more than one IM Principle applies to the same Enterprise.
Each Enterprise, IM Principle combination occurs at most once in the population of
Enterprise is ruled by IM Principle.
Each Enterprise is ruled by some IM Principle.
Each IM Principle applies to some Enterprise.

Organisation is ruled by IM Principle.
It is possible that more than one Organisation is ruled by the same IM Principle
and that more than one IM Principle applies to the same Organisation.
Each Organisation, IM Principle combination occurs at most once in the population of
Organisation is ruled by IM Principle.
Each Organisation is ruled by some IM Principle.
Each IM Principle applies to some Organisation.

Each IM Principle that applies to some Enterprise which includes some Organisation, applies
to that Organisation as well.

Issues What does it mean for a principle to “apply”?

Formalizing Architecture Principles with ORM 5

2 Maximize Benefit to the Enterprise

Statement Information management decisions are made to provide maximum benefit to the En-
terprise as a whole.

Rationale This principle embodies "Service above self." Decisions made from an Enterprise-
wide perspective have greater long term value than decisions made from any particu-
lar organizational perspective. Maximum return on investment requires information
management decisions to adhere to Enterprise-wide drivers and priorities. No minority
group will detract from the benefit of the whole. However, this principle will not pre-
clude any minority group from getting its job done.

Assumptions A1: Decisions can be made from the perspective of an enterprise (high level) or from
the perspective of one of the organizations within the enterprise.
A2: Decisions made from an organization perspective always must be compatible with
decisions made from the enterprise perspective.
A3: Every decision has benefit to the enterprise, independent of its origin.

ORM Schema

Verbalization Organisation is part of Enterprise.
Each Organisation is part of exactly one Enterprise.
Each Enterprise includes some Organisation.
It is possible that the same Enterprise includes more than one Organisation.

Organisation has OrganisationPerspective.
For each OrganisationPerspective, exactly one Organisation has that OrganisationPerspec-
tive.
Each Organisation has some OrganisationPerspective.
It is possible that the same Organisation has more than one OrganisationPerspective.

Organisation has benefit from DecisionMadeFromOrganisationPerspective.
Each DecisionMadeFromOrganisationPerspective benefits exactly one Organisation.
It is possible that the same Organisation has benefit from more than one DecisionMade-
FromOrganisationPerspective.

Decision made from OrganisationPerspective.
Each Decision made from exactly one OrganisationPerspective.
It is possible that more than one Decision made from the same OrganisationPerspective.

DecisionMadeFromOrganisationPerspective is compatible with DecisionMadeFromEnterprisePer-
spective.
It is possible that more than one DecisionMadeFromOrganisationPerspective is compatible

Formalizing Architecture Principles with ORM 6

Verbalization Organisation is part of Enterprise.
Each Organisation is part of exactly one Enterprise.
Each Enterprise includes some Organisation.
It is possible that the same Enterprise includes more than one Organisation.

Organisation has OrganisationPerspective.
For each OrganisationPerspective, exactly one Organisation has that OrganisationPerspec-
tive.
Each Organisation has some OrganisationPerspective.
It is possible that the same Organisation has more than one OrganisationPerspective.

Organisation has benefit from DecisionMadeFromOrganisationPerspective.
Each DecisionMadeFromOrganisationPerspective benefits exactly one Organisation.
It is possible that the same Organisation has benefit from more than one DecisionMade-
FromOrganisationPerspective.

Decision made from OrganisationPerspective.
Each Decision made from exactly one OrganisationPerspective.
It is possible that more than one Decision made from the same OrganisationPerspective.

DecisionMadeFromOrganisationPerspective is compatible with DecisionMadeFromEnterprisePer-
spective.
It is possible that more than one DecisionMadeFromOrganisationPerspective is compatible
with the same DecisionMadeFromEnterprisePerspective
and that the same DecisionMadeFromOrganisationPerspective is compatible with more than
one DecisionMadeFromEnterprisePerspective.
Each DecisionMadeFromOrganisationPerspective, DecisionMadeFromEnterprisePerspective
combination occurs at most once in the population of DecisionMadeFromOrganisation-
Perspective is compatible with DecisionMadeFromEnterprisePerspective.
Each DecisionMadeFromOrganisationPerspective is compatible with some DecisionMade-
FromEnterprisePerspective.

Enterprise has EnterprisePerspective.
Each Enterprise has some EnterprisePerspective.
For each EnterprisePerspective, exactly one Enterprise has that EnterprisePerspective.
It is possible that the same Enterprise has more than one EnterprisePerspective.

Enterprise has benefit from DecisionMadeFromEnterprisePerspective.
Each DecisionMadeFromEnterprisePerspective benefits exactly one Enterprise.
It is possible that the same Enterprise has benefit from more than one DecisionMade-
FromEnterprisePerspective.

Decision made from EnterprisePerspective.
Each Decision made from exactly one EnterprisePerspective.
It is possible that more than one Decision made from the same EnterprisePerspective.

Issues How is “maximum benefit” defined, and how is the benefit to be measured at all?

Formalizing Architecture Principles with ORM 7

3 Information Management is Everybody's Business

Statement All organizations in the Enterprise participate in information management decisions
needed to accomplish business objectives.

Rationale Information users are the key stakeholders, or customers, in the application of tech-
nology to address a business need. In order to ensure information management is
aligned with the business, all organizations in the Enterprise must be involved in all
aspects of the information environment. The business experts from across the Enter-
prise and the technical staff responsible for developing and sustaining the information
environment need to come together as a team to jointly define the goals and objec-
tives of information technology.

Assumptions A1: The concept Decision is about Information Management Decisions.

ORM Schema

Verbalization

Enterprise has Business Objective.
For each Business Objective, exactly one Enterprise has that Business Objective.
Each Enterprise has some Business Objective.
It is possible that the same Enterprise has more than one Business Objective.

Enterprise has Information Environment.
Each Enterprise has exactly one Information Environment.
For each Information Environment, at most one Enterprise has that Information Environ-
ment.

Enterprise includes Organisation.
Each Enterprise includes some Organisation.
Each Organisation is part of exactly one Enterprise.
It is possible that the same Enterprise includes more than one Organisation.

Business Objective determines Decision.
It is possible that more than one Business Objective determines the same Decision
and that more than one Decision to accomplish the same Business Objective.
Each Decision, Business Objective combination occurs at most once in the population
of Business Objective determines Decision.
Each Decision to accomplish some Business Objective.

Formalizing Architecture Principles with ORM 8

Enterprise makes Decision.
Each Decision is made by exactly one Enterprise.
It is possible that the same Enterprise makes more than one Decision.

Organisation participates in EnterpriseDecision.
It is possible that more than one Organisation participates in the same EnterpriseDeci-
sion
and that the same Organisation participates in more than one EnterpriseDecision.

Each EnterpriseDecision, Organisation combination occurs at most once in the popula-
tion of Organisation participates in EnterpriseDecision.
Each Organisation participates in some EnterpriseDecision.
For each EnterpriseDecision, some Organisation participates in that EnterpriseDecision.

Decision is about Information Environment.
Each Decision is about at most one Information Environment.
For each Information Environment, some Decision is about that Information Environment.
It is possible that more than one Decision is about the same Information Environment.

If an Organisation which is part of some Enterprise which makes some Decision then that
Organisation participates in some EnterpriseDecision involving that Enterprise

Issue What does it mean to “participate”?

Formalizing Architecture Principles with ORM 9

4 Business Continuity
Statement Enterprise operations are maintained in spite of system interruptions.

Rationale As system operations become more pervasive, we become more dependent on them,
therefore, we must consider the reliability of such systems throughout their design and
use. Business premises throughout the Enterprise must be provided the capability to
continue their business functions regardless of external events. Hardware failure, natu-
ral disasters, and data corruption should not be allowed to disrupt or stop Enterprise
activities. The Enterprise business functions must be capable of operating on alterna-
tive information delivery mechanisms.

Assumptions A1: Business Functions need Information, and implicitly their delivery.
A2: system interoperations are mechanisms for Information Delivery.
A3: The Business functions should be dependent on other delivery mechanisms then
system operations.
A4: An event is something that causes an interruption like a natural disaster or bug.

ORM Schema

Verbalization

Enterprise has Business Function.
Each Enterprise has some Business Function.
For each Business Function, exactly one Enterprise has that Business Function.
It is possible that the same Enterprise has more than one Business Function.

Enterprise has IT Operation.
Each Enterprise has some IT Operation.
For each IT Operation, exactly one Enterprise has that IT Operation.
It is possible that the same Enterprise has more than one IT Operation.

Business Function is dependent on Information Delivery.
It is possible that more than one Business Function is dependent on the same Information
Delivery

Formalizing Architecture Principles with ORM 10

 and that the same Business Function is dependent on more than one Information Delivery.
Each Business Function, Information Delivery combination occurs at most once in the
population of Business Function is dependent on Information Delivery.
Each Business Function is dependent on some Information Delivery.
For each Information Delivery, some Business Function is dependent on that Information
Delivery.

Information Delivery facilitated by IT Operation.
It is possible that the same Information Delivery facilitated by more than one IT Operation
and that more than one Information Delivery facilitated by the same IT Operation.
Each Information Delivery, IT Operation combination occurs at most once in the popula-
tion of Information Delivery facilitated by IT Operation.

Information Delivery is independent of Interruption.
It is possible that the same Information Delivery is independent of more than one Inter-
ruption
and that more than one Information Delivery is independent of the same Interruption.
Each Interruption, Information Delivery combination occurs at most once in the popula-
tion of Information Delivery is independent of Interruption.
Each Information Delivery is independent of some Interruption.

IT Operation is interrupted by Event.
It is possible that more than one IT Operation is interrupted by the same Event
and that more than one Event interrupts the same IT Operation.
Each Event, IT Operation combination occurs at most once in the population of IT Op-
eration is interrupted by Event.
Each IT Operation is interrupted by some Event.
Each Event interrupts some IT Operation.

Issues How to determine if an event is an interruption?

Formalizing Architecture Principles with ORM 11

6 Compliance with Law
Statement Enterprise information management processes comply with all relevant laws, policies,

and regulations.

Rationale Enterprise policy is to abide by laws, policies, and regulations. This will not preclude
business process improvements that lead to changes in policies and regulations.

Assumptions A1: An enterprise has several policies for different purposes, like for example security-
policies and customer-relationship policies.

ORM Schema

Verbalization

Enterprise has Enterprise Policy.
Each Enterprise has some Enterprise Policy.
For each Enterprise Policy, at most one Enterprise has that Enterprise Policy.
It is possible that the same Enterprise has more than one Enterprise Policy.

Enterprise has IT Process.
Each Enterprise has exactly one IT Process.
Each IT Process operates in exactly one Enterprise.

Enterprise Policy prescribes ITProcessConformsToLaw.
It is possible that more than one Enterprise Policy prescribes the same ITProcessConform-
sToLaw
and that the same Enterprise Policy prescribes more than one ITProcessConformsToLaw.
Each ITProcessConformsToLaw, Enterprise Policy combination occurs at most once in the
population of Enterprise Policy prescribes ITProcessConformsToLaw.

Enterprise Policy prescribes ITProcessConformsToRegulation.
It is possible that more than one Enterprise Policy prescribes the same ITProcessConform-
sToRegulation
and that the same Enterprise Policy prescribes more than one ITProcessConformsToRegula-
tion.
Each Enterprise Policy, ITProcessConformsToRegulation combination occurs at most once
in the population of Enterprise Policy prescribes ITProcessConformsToRegulation.

Enterprise Policy prescribes ITProcessConformsToPolicy.
It is possible that more than one Enterprise Policy prescribes the same ITProcessConform-

Formalizing Architecture Principles with ORM 12

 sToPolicy
and that the same Enterprise Policy prescribes more than one ITProcessConformsToPolicy.
Each ITProcessConformsToPolicy, Enterprise Policy combination occurs at most once in
the population of Enterprise Policy prescribes ITProcessConformsToPolicy.

IT Process conforms to Law.
It is possible that more than one IT Process conforms to the same Law
and that the same IT Process conforms to more than one Law.
Each IT Process, Law combination occurs at most once in the population of IT Process
conforms to Law.
Each IT Process conforms to some Law.

IT Process conforms to Regulation.
It is possible that more than one IT Process conforms to the same Regulation
and that the same IT Process conforms to more than one Regulation.
Each IT Process, Regulation combination occurs at most once in the population of IT
Process conforms to Regulation.
Each IT Process conforms to some Regulation.

IT Process conforms to Policy.
It is possible that more than one IT Process conforms to the same Policy
and that the same IT Process conforms to more than one Policy.
Each IT Process, Policy combination occurs at most once in the population of IT Process
conforms to Policy.
Each IT Process conforms to some Policy.

Issue How to determine/evaluate compliance?

Formalizing Architecture Principles with ORM 13

7 IT Responsibility
Statement The IT organization is responsible for owning and implementing IT processes and

infrastructure that enable solutions to meet user defined requirements for functionality,
service levels, cost, and delivery timing.

Rationale Effectively align expectations with capabilities and costs so that all projects are cost
effective. Efficient and effective solutions have reasonable costs and clear benefits.

Assumptions A1: All IT processes enable a solution.
A2: All elements of IT infrastructure enable a solution.
A3: In this scope we assume solutions are IT solutions.

ORM Schema

Verbalization

Enterprise includes IT Organisation.
Each Enterprise includes exactly one IT Organisation.
For each IT Organisation, at most one Enterprise includes that IT Organisation.

Enterprise gets value from IT Solution.
Each IT Solution provides value to exactly one Enterprise.
It is possible that the same Enterprise gets value from more than one IT Solution.

Enterprise gets value from IT Solution.
Each IT Solution provides value to exactly one Enterprise.
It is possible that the same Enterprise gets value from more than one IT Solution.

IT Organisation is responsible for Process Ownership.
Each IT Organisation is responsible for some Process Ownership.
For each Process Ownership, at most one IT Organisation is responsible for that Process
Ownership.
It is possible that the same IT Organisation is responsible for more than one Process Own-
ership.

IT Organisation is responsible for Infrastructure Implementation.
Each IT Organisation is responsible for some Infrastructure Implementation.
For each Infrastructure Implementation, at most one IT Organisation is responsible for that

Formalizing Architecture Principles with ORM 14

Infrastructure Implementation.
It is possible that the same IT Organisation is responsible for more than one Infrastructure
Implementation.

IT Organisation is responsible for Infrastructure Ownership.
Each IT Organisation is responsible for some Infrastructure Ownership.
For each Infrastructure Ownership, at most one IT Organisation is responsible for that Infra-
structure Ownership.
It is possible that the same IT Organisation is responsible for more than one Infrastructure
Ownership.

IT Organisation implementing IT Process.
Each IT Organisation implementing some IT Process.
For each IT Process, at most one IT Organisation implementing that IT Process.
It is possible that the same IT Organisation implementing more than one IT Process.

IT Organisation owns IT Process.
Each IT Organisation owns some IT Process.
For each IT Process, at most one IT Organisation owns that IT Process.
It is possible that the same IT Organisation owns more than one IT Process.

IT Organisation implementing IT Infrastructure.
Each IT Organisation implementing some IT Infrastructure.
For each IT Infrastructure, at most one IT Organisation implementing that IT Infrastructure.
It is possible that the same IT Organisation implementing more than one IT Infrastructure.

IT Organisation owns IT Infrastructure.
Each IT Organisation owns some IT Infrastructure.
For each IT Infrastructure, at most one IT Organisation owns that IT Infrastructure.
It is possible that the same IT Organisation owns more than one IT Infrastructure.

IT Process enables IT Solution.
It is possible that more than one IT Process enables the same IT Solution
and that the same IT Process enables more than one IT Solution.
Each IT Solution, IT Process combination occurs at most once in the population of IT
Process enables IT Solution.
Each IT Process enables some IT Solution.

IT Infrastructure enables IT Solution.
It is possible that more than one IT Infrastructure enables the same IT Solution
and that the same IT Infrastructure enables more than one IT Solution.
Each IT Infrastructure, IT Solution combination occurs at most once in the population of
IT Infrastructure enables IT Solution.
Each IT Infrastructure enables some IT Solution.

Formalizing Architecture Principles with ORM 15

8 Protection of Intellectual Property
Statement The enterprise's IP must be protected. This protection must be reflected in the IT Ar-

chitecture, Implementation, and Governance processes.

Rationale A major part of an enterprise's Intellectual Property is hosted in the IT domain.

Assumptions A1: Every enterprise has some Intellectual Property.
A2: IP protection is reflected in three processes, being:
- IT Architecture process
- IT Implementation process
- IT Governance process
A3: Every enterprise has an IT domain.

ORM Schema

Verbalization

Enterprise has Intellectual Property.
Each Enterprise has some Intellectual Property.
For each Intellectual Property, at most one Enterprise has that Intellectual Property.
It is possible that the same Enterprise has more than one Intellectual Property.

Enterprise protects Intellectual Property.
Each Enterprise protects some Intellectual Property.
For each Intellectual Property, exactly one Enterprise protects that Intellectual Property.
It is possible that the same Enterprise protects more than one Intellectual Property.

EnterpriseProtectsIntellectualProperty is reflected in IT Architecture Process.
Each EnterpriseProtectsIntellectualProperty is reflected in some IT Architecture Process.
Each IT Architecture Process reflects at most one EnterpriseProtectsIntellectualProperty.
It is possible that the same EnterpriseProtectsIntellectualProperty is reflected in more than

Formalizing Architecture Principles with ORM 16

 one IT Architecture Process.

EnterpriseProtectsIntellectualProperty is reflected in IT Governance Process.
Each EnterpriseProtectsIntellectualProperty is reflected in exactly one IT Governance Process.
It is possible that the same IT Governance Process reflects more than one EnterprisePro-
tectsIntellectualProperty.

EnterpriseProtectsIntellectualProperty is reflected in IT Implementation Process.
Each EnterpriseProtectsIntellectualProperty is reflected in exactly one IT Implementation
Process.
It is possible that the same IT Implementation Process reflects more than one Enterprise-
ProtectsIntellectualProperty.

Intellectual Property is hosted in IT Domain.
Each Intellectual Property is hosted in at most one IT Domain.
For each IT Domain, some Intellectual Property is hosted in that IT Domain.
It is possible that more than one Intellectual Property is hosted in the same IT Domain.

IT Implementation Process operates in IT Domain.
Each IT Implementation Process operates in at most one IT Domain.
For each IT Domain, some IT Implementation Process operates in that IT Domain.
It is possible that more than one IT Implementation Process operates in the same IT
Domain.

IT Governance Process operates in IT Domain.
Each IT Governance Process operates in at most one IT Domain.
For each IT Domain, some IT Governance Process operates in that IT Domain.
It is possible that more than one IT Governance Process operates in the same IT Domain.

IT Architecture Process operates in IT Domain.
Each IT Architecture Process operates in at most one IT Domain.
For each IT Domain, some IT Architecture Process operates in that IT Domain.
It is possible that more than one IT Architecture Process operates in the same IT Domain.

Issues How to check whether the processes are “protected”?

Formalizing Architecture Principles with ORM 17

9 Data is an Asset
Statement Data is an asset that has value to the Enterprise and is managed accordingly.

Rationale Data is a valuable corporate resource; it has real, measurable value. In simple terms,
the purpose of data is to aid decision-making. Accurate, timely data is critical to accu-
rate, timely decisions. Most corporate assets are carefully managed,
and data is no exception. Data is the foundation of our decision making, so we must
also carefully manage data to assure that we know where it is, can rely upon its accu-
racy, and can obtain it when and where we need it.

Assumptions -

ORM Schema

Verbalization Data is managed by Enterprise.
Each Data is managed by exactly one Enterprise.
It is possible that the same Enterprise manages more than one Data.

Data has value to Enterprise.
Each Data has value to exactly one Enterprise.
It is possible that more than one Data has value to the same Enterprise.

Data supports EnterpriseDecision.
It is possible that more than one Data supports the same EnterpriseDecision
and that the same Data supports more than one EnterpriseDecision.
Each EnterpriseDecision, Data combination occurs at most once in the population of
Data supports EnterpriseDecision.
For each EnterpriseDecision, some Data supports that EnterpriseDecision.

Enterprise makes Decision.
Each Enterprise makes some Decision.
For each Decision, exactly one Enterprise makes that Decision.
It is possible that the same Enterprise makes more than one Decision.

Issue How should a valuable asset be treated?

Formalizing Architecture Principles with ORM 18

11 Data is Accessible
Statement Data is accessible for users to perform their functions.

Rationale Wide access to data leads to efficiency and effectiveness in decision-making, and af-
fords timely response to information requests and service delivery. Using information
must be considered from an Enterprise perspective to allow access by a wide variety of
users. Staff time is saved and consistency of data is improved.

Assumptions A1: A user must have at least access to the data it uses to perform functions.

ORM Schema

Verbalization User has access to Function Data.

It is possible that more than one User has access to the same Function Data
and that more than one Function Data is accessible for the same User.
Each User, Function Data combination occurs at most once in the population of User has
access to Function Data.
Each User has access to some Function Data.
Each Function Data is accessible for some User.

User uses Function Data to perform Function.
It is possible that more than one User uses the same Function Data to perform the same
Function
and that the same User uses more than one Function Data to perform the same Function
and that the same User uses the same Function Data to perform more than one Function.
Each User, Function Data, Function combination occurs at most once in the population
of User uses Function Data to perform Function.

User, Function Data, Function combination occurs at most once in the population of User
uses Function Data to perform Function.

Each Function data which is used by some User to perform some Function must also be
accessible for that User

Issues What does it mean for data to be accessible for a user? This may touch on issues such
as timeliness, location, media, file format, etc.

Formalizing Architecture Principles with ORM 19

12 Data Trustee
Statement Each data element has a trustee accountable for data quality.

Rationale One of the benefits of an architected environment is the ability to share data (e.g., text,
video, sound, etc.) across the Enterprise. As the degree of data sharing grows and busi-
ness units rely upon common information, it becomes essential that only the data trus-
tee make decisions about the content of data. Since data can lose its integrity when it is
entered multiple times, the data trustee will have sole responsibility for data entry,
which eliminates redundant human effort and data storage resources. (Note that a trus-
tee is different from steward - trustee is responsible for accuracy and currency of the
data while responsibilities of a steward may be broader and include data standardiza-
tion and definition tasks.)

Assumptions A1: Data is shared by employees, as shown in principle 10.
A2: There is no essential data element without a data trustee.

ORM Schema

Verbalization

Enterprise employs Employee.
Each Enterprise employs some Employee.
Each Employee is employed by exactly one Enterprise.
It is possible that the same Enterprise employs more than one Employee.

Employee shares Data Element.
It is possible that more than one Employee shares the same Data Element
and that more than one Data Element is shared by the same Employee.
Each Employee, Data Element combination occurs at most once in the population of
Employee shares Data Element.
Each Data Element is shared by some Employee.

Enterprise requires Data Element.
It is possible that more than one Enterprise requires the same Data Element
and that more than one Data Element is essential to the same Enterprise.
Each Enterprise, Data Element combination occurs at most once in the population of
Enterprise requires Data Element.
Each Enterprise requires some Data Element.

Formalizing Architecture Principles with ORM 20

 Each Data Element is essential to some Enterprise.

EssentialDataElement is an entity type.
EssentialDataElement objectifies "Enterprise requires Data Element".

Employee is accountable for EssentialDataElement.
For each EssentialDataElement, exactly one Employee is accountable for that Essential-
DataElement.
It is possible that the same Employee is accountable for more than one EssentialDataEle-
ment.

Issues When is data shared? How does one define this?

Formalizing Architecture Principles with ORM 21

14 Data Security
Statement Data is protected from unauthorized use and disclosure. In addition to the traditional

aspects of national security classification, this includes, but is not limited to, protection
of pre-decisional, sensitive, source selection sensitive and proprietary information.

Rationale Open sharing of information and the release of information via relevant legislation
must be balanced against the need to restrict the availability of classified, proprietary,
and sensitive information.

Assumptions A1: Data and Information are used as synonyms, we chose Information.

ORM Schema

Verbalization Enterprise protects Item of Information.
Each Item of Information is protected by exactly one Enterprise.
It is possible that the same Enterprise protects more than one Item of Information.

Each Item of Information is sensitive
or is proprietary
or is pre-decisional
or is source selection sensitive.

Formalizing Architecture Principles with ORM 22

15 Technology Independence
Statement Applications are independent of specific technology choices and therefore can operate

on a variety of technology platforms.

Rationale Independence of applications from the underlying technology allows applications to be
developed, upgraded, and operated in the most cost-effective and timely way. Other-
wise, technology, which is subject to continual obsolescence and vendor dependence,
becomes the driver rather than the user requirements themselves. Realizing that every
decision made respect to information technology makes us dependent on that technol-
ogy, the intent of this principle is to ensure that applications software is not dependent
on specific hardware and operating systems software.

Assumptions -

ORM Schema

Verbalization IT Application is independent of Technology.
Each IT Application is independent of exactly one Technology.
It is possible that more than one IT Application is independent of the same Technology.

Technology is dependent on IT Platform.
Each Technology is dependent on some IT Platform.
For each IT Platform, at most one Technology is dependent on that IT Platform.
It is possible that the same Technology is dependent on more than one IT Platform.

Issues What does it mean to be able top operate on a variety of platforms?

Formalizing Architecture Principles with ORM 23

16 Ease of Use
Statement Applications are easy to use. The underlying technology is transparent to users, so they

can concentrate on tasks at hand.

Rationale The more a user has to understand the underlying technology the less productive that
user is. Ease of use is a positive incentive for use of applications. It encourages users to
work within the integrated information environment instead of developing isolated
systems to accomplish the task outside of the Enterprise's integrated information envi-
ronment. Most of the knowledge required to operate one system will be similar to oth-
ers. Training is kept to a minimum, and the risk of using a system improperly is low.

Assumptions A1: That 'users can concentrate on the task at hand' is the result of the rule to be de-
fined here, the desired effect. This though does not add any value to the model, be-
cause the model is about the rule itself. For this reason, the latter part of the statement
is not modelled.
A2: The principle is clearly about ease of use. But also stated is that: technology un-
derlying the application is transparent. The word ‘is’ in this last sentence suggests a
fact, but this can be interpreted as a rule: technology underlying the application must
be transparent.
A3: If application technology transparency is in fact a rule, it can be connected to ease
of use in the following way: application technology transparency helps in some way
the ease of use. It can be seen as some subcategory, not a separate rule. This complies
with the statement name: ease of use.

ORM Schema

Verbalization

Application Technology is easy to use by User.
It is possible that the same Application Technology is easy to use by more than one User
and that more than one Application Technology is easy to use by the same User.
Each User, Application Technology combination occurs at most once in the population of
Application Technology is easy to use by User.
Each Application Technology is easy to use by some User.

TaskIsSupportedByApplicationTechnology is transparent to User.
It is possible that the same TaskIsSupportedByApplicationTechnology is transparent to
more than one User
and that more than one TaskIsSupportedByApplicationTechnology is transparent to the
same User.

Formalizing Architecture Principles with ORM 24

 Each TaskIsSupportedByApplicationTechnology, User combination occurs at most once in
the population of TaskIsSupportedByApplicationTechnology is transparent to User.
For each User, some TaskIsSupportedByApplicationTechnology is transparent to that User.
Each TaskIsSupportedByApplicationTechnology is transparent to some User.

Performing Task is supported by Application Technology.
It is possible that more than one Performing Task is supported by the same Application
Technology
and that the same Performing Task is supported by more than one Application Technology.
Each Application Technology, Performing Task combination occurs at most once in the
population of Performing Task is supported by Application Technology.
Each Performing Task is supported by some Application Technology.

User performs Task.
It is possible that more than one User performs the same Task
and that the same User performs more than one Task.
Each User, Task combination occurs at most once in the population of User performs
Task.
Each User performs some Task.
For each Task, some User performs that Task.

Issues How to measure ease of use and transparency.

Formalizing Architecture Principles with ORM 25

17 Requirements-Based Change
Statement Only in response to business needs are changes to applications and technology made.

Rationale This principle will foster an atmosphere where the information environment changes in
response to the needs of the business, rather than having the business change in re-
sponse to information technology changes. This is to ensure that the purpose of the
information support -- the transaction of business -- is the basis for any proposed
change. Unintended effects on business due to information technology changes will be
minimized. A change in technology may provide an opportunity to improve the busi-
ness process and hence, change business needs.

Assumptions A1: A change is an actual existence and therefore always affects technology and IT
application.
A2: IT Application & Technology should not be interpreted as singleton.
A3: A change is about an IT change.

ORM Schema

Verbalization

Enterprise uses Technology.
It is possible that more than one Enterprise uses the same Technology
and that more than one Technology is used by the same Enterprise.
Each Enterprise, Technology combination occurs at most once in the population of En-
terprise uses Technology.
Each Enterprise uses some Technology.

Enterprise has Business Need.
Each Enterprise has some Business Need.
For each Business Need, exactly one Enterprise has that Business Need.
It is possible that the same Enterprise has more than one Business Need.

Enterprise uses IT Application.
It is possible that more than one Enterprise uses the same IT Application
and that more than one IT Application is used by the same Enterprise.
Each Enterprise, IT Application combination occurs at most once in the population of
Enterprise uses IT Application.
Each Enterprise uses some IT Application.

Business Need determines ChangeTechnology.
For each ChangeTechnology, exactly one Business Need determines that ChangeTechnology.
It is possible that the same Business Need determines more than one ChangeTechnology.

Business Need determines ChangeITApplication.

Formalizing Architecture Principles with ORM 26

For each ChangeITApplication, exactly one Business Need determines that ChangeITApplica-
tion.
It is possible that the same Business Need determines more than one ChangeITApplica-
tion.

Business Need causes Change.
For each Change, exactly one Business Need causes that Change.
It is possible that the same Business Need causes more than one Change.

Change affects Technology.
For each Technology, at most one Change affects that Technology.
Each Change affects some Technology.
It is possible that the same Change affects more than one Technology.

Change affects IT Application.
For each IT Application, at most one Change affects that IT Application.
Each Change affects some IT Application.
It is possible that the same Change affects more than one IT Application.

Issues How to determine/predict the impact of changes?

Formalizing Architecture Principles with ORM 27

18 Responsive Change Management
Statement Changes to the Enterprise information environment are implemented in a timely man-

ner.

Rationale If people are to be expected to work within the Enterprise information environment,
that information environment must be responsive to their needs.

Assumptions -

ORM Schema

Verbalization

Enterprise responsively manages Change.
Each Change is responsively managed by exactly one Enterprise.
It is possible that the same Enterprise responsively manages more than one Change.

Enterprise employs Employee.
Each Enterprise employs some Employee.
Each Employee is employed by exactly one Enterprise.
It is possible that the same Enterprise employs more than one Employee.

Enterprise has Information Environment.
Each Enterprise has exactly one Information Environment.
For each Information Environment, at most one Enterprise has that Information Environ-
ment.

Employee works within Information Environment.
Each Employee works within at most one Information Environment.
For each Information Environment, some Employee works within that Information Environ-
ment.

Formalizing Architecture Principles with ORM 28

 It is possible that more than one Employee works within the same Information Environ-
ment.

Employee has Need.
It is possible that more than one Employee has the same Need
and that the same Employee has more than one Need.
Each Need, Employee combination occurs at most once in the population of Employee
has Need.
Each Employee has some Need.
For each Need, some Employee has that Need.

Response generates Change.
Each Response generates some Change.
For each Change, at most one Response generates that Change.
It is possible that the same Response generates more than one Change.

Change is implemented in Information Environment.
Each Change is implemented in exactly one Information Environment.
It is possible that more than one Change is implemented in the same Information Envi-
ronment.

ImplementedChange satisfies Need.
It is possible that the same ImplementedChange satisfies more than one Need
and that more than one ImplementedChange satisfies the same Need.
Each ImplementedChange, Need combination occurs at most once in the population of
ImplementedChange satisfies Need.
Each ImplementedChange satisfies some Need.

Issues Again. How to gage the impact of changes? How to determine if an implemented
change satisfies a need?

Formalizing Architecture Principles with ORM 29

19 Control Technical Diversity
Statement Technological diversity is controlled to minimize the non-trivial cost of maintaining

expertise in and connectivity between multiple processing environments.

Rationale There is a real, non-trivial cost of infrastructure required to support alternative tech-
nologies for processing environments. There are further infrastructure costs incurred to
keep multiple processor constructs interconnected and maintained.

Limiting the number of supported components will simplify maintainability and reduce
costs.

The business advantages of minimum technical diversity include: standard packaging
of components; predictable implementation impact; predictable valuations and returns;
redefined testing; utility status; and increased flexibility to accommodate technological
advancements. Common technology across the Enterprise brings the benefits of econo-
mies of scale to the Enterprise. Technical administration and support costs are better
controlled when limited resources can focus on this shared set of technology.

Assumptions -

ORM Schema

Verbalization

Enterprise has Cost.
Each Enterprise has some Cost.
For each Cost, exactly one Enterprise has that Cost.
It is possible that the same Enterprise has more than one Cost.

LessExpertise reduces Cost.
For each Cost, at most one LessExpertise reduces that Cost.
Each LessExpertise reduces some Cost.
It is possible that the same LessExpertise reduces more than one Cost.

LessConnectivityMaintenance reduces Cost.
For each Cost, at most one LessConnectivityMaintenance reduces that Cost.
Each LessConnectivityMaintenance reduces some Cost.

Formalizing Architecture Principles with ORM 30

 It is possible that the same LessConnectivityMaintenance reduces more than one Cost.

Enterprise controls Technical Diversity.
Each Enterprise controls some Technical Diversity.
For each Technical Diversity, exactly one Enterprise controls that Technical Diversity.
It is possible that the same Enterprise controls more than one Technical Diversity.

EnterpriseControlsTechnicalDiversity requires less Expertise.
Each EnterpriseControlsTechnicalDiversity requires less some Expertise.
For each Expertise, at most one EnterpriseControlsTechnicalDiversity requires less that Ex-
pertise.
It is possible that the same EnterpriseControlsTechnicalDiversity requires less more than
one Expertise.

EnterpriseControlsTechnicalDiversity requires less Connectivity.
Each EnterpriseControlsTechnicalDiversity requires less some Connectivity.
For each Connectivity, at most one EnterpriseControlsTechnicalDiversity requires less that
Connectivity.
It is possible that the same EnterpriseControlsTechnicalDiversity requires less more than
one Connectivity.

Issues How are the different costs to be measured?

Formalizing Architecture Principles with ORM 31

20 Interoperability
Statement Software and hardware should conform to defined standards that promote interoper-

ability for data, applications and technology.

Rationale Standards help ensure consistency, thus improving the ability to manage systems and
improve user satisfaction, and protect existing IT investments, thus maximizing return
on investment and reducing costs. Standards for interoperability additionally help en-
sure support from multiple vendors for their products, and facilitate supply chain inte-
gration.

Assumptions -

ORM Schema

Verbalization

Enterprise uses Software.
Each Enterprise uses some Software.
For each Software, at most one Enterprise uses that Software.
It is possible that the same Enterprise uses more than one Software.

Enterprise uses Standard.
It is possible that more than one Enterprise uses the same Standard
and that the same Enterprise uses more than one Standard.
Each Enterprise, Standard combination occurs at most once in the population of Enter-
prise uses Standard.

Software conforms to InteroperableStandard.
For each InteroperableStandard, some Software conforms to that InteroperableStandard.
Each Software conforms to at most one InteroperableStandard.
It is possible that more than one Software conforms to the same InteroperableStandard.

Standard promotes Interoperability.
Each Standard promotes at most one Interoperability.
It is possible that more than one Standard promotes the same Interoperability.

Hardware conforms to InteroperableStandard.
For each InteroperableStandard, some Hardware conforms to that InteroperableStandard.
Each Hardware conforms to at most one InteroperableStandard.
It is possible that more than one Hardware conforms to the same InteroperableStandard.

Enterprise uses Hardware.
Each Enterprise uses some Hardware.
For each Hardware, at most one Enterprise uses that Hardware.

Formalizing Architecture Principles with ORM 32

 It is possible that the same Enterprise uses more than one Hardware.

Issues How to ascertain if a standard promotes interoperability. How is consequently the con-
formance to standards to be checked.

3 Second experiment: Practical trial
To evaluate the applicability and value of formalizing architecture principles, the suggested formaliza-
tion approach has been tried in a more practical setting as well. This trial took the shape of an interac-
tive joint modelling session with an architect (from a large international IT consultancy firm) working
in the field. The joint modelling session took about two and a half hours time in which two architecture
principles were discussed, preceded by an introduction and discussion of the approach to be evaluated
and the relationship to the approach commonly used by the practitioner.
In the joint modelling session two principles were discussed taken from one of the practitioner’s clients
(a large Anglo-Dutch oil company). This client operates in 145 countries all over the world and consists
of 2500 different companies and joint ventures with governments and other companies, so the need for
enterprise architecture is obvious.

Discussing the methodologies
In discussing the suggested formalization approach and the approach currently used by the practitioner
some interesting questions and remarks arose.

• An issue raised by the practitioner was how to deal with situations when two compa-
nies merge, or engage in a joint venture, and there are conflicting principles. We ex-
plained that the current approach does not aim to provide mechanisms for the resolu-
tion of such conflicts, but that our method can be used to identify these potential con-
flicts by making the meaning of the principles in natural language explicit by using a
formal object-role modelling method.

• A commonly encountered problem with companies the practitioner works with was
that there often is no (or no clear) prioritization of principles. The unknown ranking
of one principle over another becomes even more challenging when these principles
overlap or conflict.

• For the client, a deeply rooted issue is the compliancy to principles, which is also rec-
ognizable in their architecture. The practitioner recollected an incident where the cli-
ent was forming a cartel, which is illegal and thus non-conformity with their principle
to comply with all applicable laws and regulations. The client publicly announced this
non-compliance and that they have taken disciplinary measures against those involved
and that this incident cost them 250 million euro. The business principles can be felt
even on the shop floor in all activities.

• The method for architecture presentation as used by the practitioner provides for so-
called sanity-checks. These checks were explained as “The sooner consistency and san-
ity checks are made on assumptions, the better.” This supports our own opinion that
documenting assumptions as a part of design rationale is essential in the creation of
principles.

Conducting the experiment
In the joint modelling session two principles from client organization were discussed. These are defined
as follows (translated from Dutch to English):

- Principle 1: Compliancy

Formalizing Architecture Principles with ORM 33

Rationale: The client organization wants to comply with all law and regulations of the countries
they operates in.
Background: Not complying with regulation results not only in economic loss but also loss of
reputation and as such loss of market value.

- Principle 2: Operate Globally, but work and support is regionally (or locally)

Rationale: The client organization is governed world-wide, but in daily practice there are a lot
of local companies, often organized as a joint venture. This signifies that business operates re-
gionally and locally.

In a global review of these two principles it soon became clear that the second principle is not a true
principle. It is merely a statement on the company’s organizational structure. This statement may how-
ever contain a core that can be modelled into the form of a principle. The formalization approach used
may point out anomalies or inconsistencies, but it is not intended to detect such non-principles. As such,
principle 2 was not further discussed.

In discussing principle 1 it became clear that the Dutch version of the principle was different from the
English one, leading to a misinterpretation of the intended meaning: The word “wil” in Dutch (trans-
lated above in ‘wants to’ was used whereas the English version uses “We comply”. This original Eng-
lish statement does not imply a conditional element. Principles must be prescriptive and not optional;
therefore a principle with ‘wil/wants to’ is not recommended.

From discussing principle 1 it was observed that to the client organization it is unmistakably clear that
compliancy is the main element guiding its operation and management, together with Health and
Safety.

Results of the experiment

The following table contains the result of formalizing Principle 1.

Formalizing Architecture Principles with ORM 34

Principle 1 Compliance
Statement Our organization complies with all applicable laws and regulations of the countries in

which they operate.

Rationale Not complying with regulation results not only in economic loss but also loss of reputa-
tion and as such loss of market value.

Assumptions -

ORM Schema

Verbalization

Enterprise includes Subsidiary.
It is possible that more than one Enterprise includes the same Subsidiary
and that more than one Subsidiary is part of the same Enterprise.
Each Enterprise, Subsidiary combination occurs at most once in the population of Enter-
prise includes Subsidiary.

Enterprise governs Subsidiary.
It is possible that more than one Enterprise governs the same Subsidiary
and that the same Enterprise governs more than one Subsidiary.
Each Subsidiary, Enterprise combination occurs at most once in the population of Enter-
prise governs Subsidiary.
For each Subsidiary, some Enterprise governs that Subsidiary.

Enterprise operates in Country.
Each Enterprise operates in some Country.

Subsidiary operates in Country.
Each Subsidiary operates in some Country.

SubsidiaryOperatesInCountry is an entity type.
SubsidiaryOperatesInCountry objectifies "Subsidiary operates in Country".

Country prescribes Law.
Each Country prescribes some Law.

Formalizing Architecture Principles with ORM 35

 Each Law is applicable to some Country.

Country prescribes Regulation.
Each Country prescribes some Regulation.
Each Regulation is applicable to some Country.

SubsidiaryOperatesInCountry complies with Regulation.
Each SubsidiaryOperatesInCountry complies with some Regulation.

RegulationCompliance is an entity type.
RegulationCompliance objectifies "SubsidiaryOperatesInCountry complies with Regulation".

SubsidiaryOperatesInCountry complies with Law.
Each SubsidiaryOperatesInCountry complies with some Law.

LawCompliance is an entity type.
LawCompliance objectifies "SubsidiaryOperatesInCountry complies with Law".

Enterprise proves LawCompliance.
It is possible that more than one Enterprise proves the same LawCompliance
and that the same Enterprise proves more than one LawCompliance.
Each LawCompliance, Enterprise combination occurs at most once in the population of
Enterprise proves LawCompliance.
Each Enterprise proves some LawCompliance.
For each LawCompliance, some Enterprise proves that LawCompliance.

Enterprise proves RegulationCompliance.
It is possible that more than one Enterprise proves the same RegulationCompliance
and that the same Enterprise proves more than one RegulationCompliance.
Each RegulationCompliance, Enterprise combination occurs at most once in the population
of Enterprise proves RegulationCompliance.
Each Enterprise proves some RegulationCompliance.
For each RegulationCompliance, some Enterprise proves that RegulationCompliance.

Issues How to determine compliance?

Besides the direct results in ORM from the formalization of the principle, the practitioner concluded
from the discussion that

- “It (i.e. the model) is a good representation of reality and shows the essence of the principle.”

- “It (i.e. the model) is useful.” The model forces the architect to carefully consider the relation-
ships and cohesion between the underlying concepts. The construction of this model also brings
new findings, insights and hidden conflicts to the fore.

- “You should do this (i.e. the process) with the boardroom of the client organization.” The above
identified insights gained from the modelling process would be highly beneficial.

- “(The model…) Gives insight into existing exceptions. Do not make the model too complex by
modelling to allow for every exception. Because then there is the risk of switching abstraction
level to rules and guidelines instead of principles.

Formalizing Architecture Principles with ORM 36

- “The model shows also the fact that compliancy is something that is the responsibility of the
Enterprise.”

4 Individual reflections on the methodology

Reflection by Chris Nellen
In [BHPW06] formalizing using ORM is said to have two advantages. Besides achieving formalization
of the architecture principle, the quality of the principle can be improved. The analysis of the principle
causes reconsideration and thorough understanding of what it actually says. This reflection will discuss
my views on the statement above on the basis of my experience with both formalizing TOGAF princi-
ples and the joint-modelling-session.

An important thing to notice is that with formalizing TOGAF principles one only has the source docu-
ment available as a basis for interpreting the described principles. You have to make a lot of assump-
tions, which you write down, to be able to generate a formalized ORM model. The assumptions are
direct proof in that you have found ambiguity in the principle. As such, it is indeed effective for im-
proving the quality or effectiveness of the TOGAF principles. But since you are not able to communi-
cate these assumptions back to a domain expert, let alone validate them, the TOGAF formalizations (i.e.
the models) we have created are essentially worthless from a practical point of view.

Although they are worthless in the practical sense, in that it is unknown if they truly reflect the archi-
tects intent, the process of creating these formalizations has generated for me some important insights.
One of these is determining the scope of what is to be formalized. TOGAF defines three major types of
information to explain a principle, being statement, rationale and implications. One can formalize only
the statement, this is the way I started formalizing the TOGAF principles. But after a discussion with
the other project members I wondered if this adds any value to the model. If nouns from the statement
simply change in entities and verbs in to fact types, nothing new is really done. Later on I realized, see
the “Issue” column in the principles template, that producing the model also provided valuable insight
into the relationships and concepts that needed more precise definitions.

During the rest of the TOGAF formalization process I somewhat struggled with how to determine what
to add to the model and what not. There is always some cause or situation that gives rise to the exis-
tence of the principle. Next the principle itself which is mostly some kind of a single sentence rule,
followed by the implications of this rule. With each formalization, we had to determine what parts of
‘rationale’ and ‘implications’ to take into consideration. If you do too much, you end up formalizing the
entire domain area of the principle.

Another struggle was the formalization of the concepts of information involved at the level of architec-
ture. Architecture tries to define guiding statements by using vague concepts of information. These
concepts must be vague to some level to make sure they are viable for long term use and avoid giving
short term solutions. ORM is indeed able to handle things that are not physical, but ideas like ‘ease of
use’ and ‘business continuity’ are almost impossible to grasp within standard ORM. Determining a
population for such concepts is not easy to do. Standard ORM does not really provide the mechanisms
to define a method to “measure” the population of such concepts in practical situations.

I found ORM limited in the handling of such singleton type concepts. A second difficulty was the han-
dling of negations: “something or other must not fail if something else is unavailable”. A property that
must always be present is another difficulty: “A Data definition is understandable”. This can me mod-
elled as a binary fact type, but what is the collection of ‘understandable’? Should it be modelled as a
unary fact type? How then to enforce that it is always the case for every data definition? Bear in mind

Formalizing Architecture Principles with ORM 37

that I am not a professional ORM modeller and that some of these questions arose due to my lack of
expertise. In the end the ORM model is as good as the modeller’s knowledge of ORM.

A thing worthy to notice is the usability of the method in the boardroom. This is also linked with the
expertise level of the modeller. A Corporate Information Officer might want to use formalizing princi-
ples in the boardroom to enhance quality and reduce ambiguity. The people in the boardroom are
mostly bright people and can understand an ORM model. However, the modeller should then avoid the
more complex modelling techniques that ORM provides. Question is then if the model is still able to
represent the finer constraint of the principles meaning. This is something that also popped up in the
case experiment.

From the case experiment an important conclusion is to mention that the model is only intended to clar-
ify what is actually meant with a certain principle. The method does not provide any solution or any
way to come up with a solution, in the conflicts that are made visible from the analysis. Neither does
the method provide in a solution about ranking the principles.

Finally it is worth to mention that merging al separate models into one big picture could provide in
additional insight in conflict between principles. For this however, you need a very strict definition
library to make sure that all entities with the same name truly mean the same thing.

In the end I can conclude that ORM is indeed capable to achieve formalization of the architecture prin-
ciple and at the same time possibly improve the quality of the principle itself. However I have doubts
regarding the reliability of the formalization that is achieved. If at this moment two different modellers
would formalize the same set of principles, the result would be quite different. The formalization results
of both will be unambiguous, but the method of achieving this state is not.

Reflection by Guido Chorus
Formalizing architecture principles with ORM seems to be very useful in creating an understanding and
consensus in the meaning of architecture principles. All TOGAF-principles I encountered during our
assignment had a deeper meaning then just the sentences itself. Formalizing the principles encouraged
me to think about the principle and thereby opening the world behind the principles. The world of a
principle contains two kinds of meanings, one that is meant by the architect and the one that is per-
ceived by the reader. Formalizing the principles with ORM brings these two kinds of meanings closer
together or even the meanings become the same.

The ambiguity of the principles, which they all implicitly have, is reducible by formalizing the princi-
ples. Note that the ambiguity only is reduced for the people who participated in the formalization of the
principle. Reading the ORM-model only, without having participated in the formalization process, is
still very easy to be miss-interpreted and ambiguous because of concepts used for objects (explained
later), the two meanings mentioned earlier are still not completely the same when only reading the
ORM-model. This is strange because ORM is a formal method which should eliminate this ambiguity.
In my opinion, formalizing the principle is far more important than the product (ORM-model) created
with the process.

A problem with the proposed is that much knowledge of ORM is required. I think that architects and
boardroom members (the people who should use the method!) do not have the time to learn ORM,
thereby reducing the possibilities for the usage of the method. ORM gave us another problem; because
many principles contain concepts that are not identifiable as data-elements, it was “strange” to use
ORM objects for them, because ORM is not meant for singleton objects. The constraints of ORM are

Formalizing Architecture Principles with ORM 38

also not completely applicable to those objects. An example of such an object we used was: Interoper-
ability.

Our way of working is not very strict. We created a template which we filled in during the process. The
way of working is a sort of “joint-session” in which we all first read the principle and then 1-by-1 give
our notion of the meaning of the principle. Then we tried to formalize the principle by first pointing out
the important concepts and meaning we saw. Afterwards the ORM-roles were added. The most impor-
tant step in the process is adding the constraints. In my opinion, the constraints enabled us to give a
more exact (less ambiguous) representation of the meant meaning of the principle. A notable tool when
formalizing principles is NORMA. During the creation of the ORM-models, we directly put the model
in NORMA. We were able to directly model-check and verbalize constraints which gave us more in-
sight in the ORM-model and background. In addition, it gave us more points to discuss and thereby
made the ORM-model more justified and enhanced the consensus creation.

The way of working proved to be very hard when experimenting with the architect. We (Yves, Chris
and me) have created some kind of consensus in how to formalize principles. This consensus has
probably come into being in the many hours we sat together discussing the principles. The start of the
joint-session with the practitioner was therefore very slow, because he did not have that consensus. In
addition, the practitioner did not have any knowledge of ORM which also reduced the speed.

The reliability of our way of working is very low because much subjectivity is always present because
much cognitive processes are required in the process. In addition the method is not strict (no fixed
steps) and therefore the stability and reproducibility are very low. We saw this problem a few times
when we tried to create an ORM-model of a principle from scratch which we had already formalized
some time earlier. A few times we created a completely different ORM-model. In my opinion, the only
stability in the way of working is given by the architect (domain-expert) who should steer the discus-
sion in the joint-session to produce the right consensus (exact match between perceived and meant
meaning) and ORM-model among the participants because he/she is the only one with the “right” no-
tion of the meaning behind the principle.

Reflection by Yves Janse
In this reflection, I draw some conclusions on the results of the research project I performed with the
other two students, Guido Chorus and Chris Nellen. In addition, I will illustrate some of the strengths
and weaknesses of the proposed method of using Object-Role Modelling to formalize architecture prin-
ciples. I will conclude this reflection with a few points of interest related to this project.

The goal of this project was to discover whether it is a good idea to use Object-Role Modelling (ORM)
to formalize architecture principles. My personal answer to this is yes, with a few comments. I believe
that formalizing architecture principles with ORM is a good and valuable method but it should not be
seen as a miracle solution. Principles formalized with ORM are by no means something that should be
part of an end-result; i.e. the ORM models are not the final deliverable and the only way the principles
are formulated. One of the main important goals of architecture principles is that they should be under-
standable for everyone, and ORM models are sometimes hard to grasp for those unfamiliar with the
method. However, the ORM models prove their worth during architecting as a working document that,
when all principles are completed, may be added to an architecture document as an appendix.

Observed strengths of the proposed method are the following:

• The method makes the assumptions made during interpretation of the principles statement ex-
plicit. This is valuable because the inherent problem of the natural language description is that

Formalizing Architecture Principles with ORM 39

it likely to be ambiguous. The assumptions that are made are documented so they are traceable
and verifiable.

• The result of the method as well as the act of performing the method exposes the perceived
meaning of the architecture principles. This should match exactly with the intended meaning in
the ideal situation.

• This results in the elimination of ambiguity as much as possible, which leads to a set of better
architecture principles. It is often argued that principles should be SMART and I believe that
this method can help reach that goal.

• The act of performing this method leads to a better understanding of the principle by all people
who are involved and participate. This is very important because it increases commitment and
support when members of the boardroom are involved in the join-modelling sessions. The
method clearly serves as feedback to the architect.

• By making the assumptions and thereby the perceived meaning explicit, one of the results of
performing this method is that it uncovers potential conflicting situations. This is a valuable re-
sult because it can be the incentive for an organization to adjust or review the prioritization of
architecture principles. The discussion that ensues will result in a revised architecture that bet-
ter suits the organization and its goals, reflecting the order of importance of principles.

Observed weaknesses of the proposed method are:

• ORM is not the easiest and most intuitive method for those unfamiliar with it, even though it is
a method that is used widely in many companies. The strength of using ORM for this purpose is
in the constraints that make the meaning of the principle explicit and rigid, but the constraints
in the graphical language of ORM are the least intuitive element for laymen. We encountered
this during the practical experiment; the architect we spoke was not familiar with ORM which
posed a slight communication problem. However, this problem was solved quickly by a quick
introduction to the basics of ORM notation. I believe that an average boardroom member may
need a longer introduction to ORM to be able to participate efficiently.

• It is very hard to capture concepts that have a “Singleton”-like character in ORM diagrams. An
example of this is the concept “Enterprise” of which there is only one in the architecture princi-
ples we explored. This leads to a strange situation when determining the uniqueness and man-
datory role constraints, because the population of the entity type is always the same element.
The resulting verbalization is therefore less fluent and comprehensive because of this.

• One of the well-known characteristics of architecture principles is that they can be described in
rather verbose language, leading to a broad range of possible interpretations as a result of the
inherent ambiguity. Extracting the intended meaning from the statement and rationale is a hard
process that is based on assumptions. Even though these assumptions are documented, verified
and traceable, they remain assumptions. Putting the assumptions in a formal model does not
necessarily bring the assumptions closer to the intended meaning, but they do clarify the per-
ceived meaning in a way that it is possible to discuss.

Considering these strengths and weaknesses, I argue that the method is valuable and will certainly
contribute to the quality of the architecture principles when attention is paid to the possible pitfalls
and limitations of the method. I do not think that ORM is the only method that can be used to
achieve these goals; there will be other conceptual modelling methods that may serve this purpose.

Formalizing Architecture Principles with ORM 40

This method should be able to cope with complex constraints, conceptual entities and be relatively
intuitive so it can be used as a communication vehicle with the boardroom and architects.

Some additional observations are:
• The TOGAF principles formalized in this report are all about Information Management accord-

ing to the authors, whereas there is a likeness with the principle of compliancy from the archi-
tecture of the client organization we formalized in the practical experiment. The rationale be-
hind the client’s principle is much richer and complicated because it is tailor-made for this par-
ticular organization. It was very interesting to formalize this principle together with one of the
architects because we dynamically created the model together with continuous interaction, re-
fining the model and gradually increasing the match with the intended meaning.

• This method is most useful when it is performed interactively in a joint session-session because
then all participants can share their views directly. It is essential that some member of the
boardroom of the company is participating in this process.

• When all architecture principles are formalized, it will be an interesting test to try to combine
the ORM models into one large model. In the ideal situation, this should pose no problem at all
and the models should fit seamlessly. This is however probably never the case because of the
hard to determine scope of the individual models. A concept can have a different meaning but
the same name in two separate models, for example: “Question” in the context of a question
asked from a particular perspective (enterprise or organization) as opposed to a question that is
raised at a helpdesk. These are often namespace issues but sometimes design choices result into
conflicts that will be unveiled when the model is put together. As in the real organization the
architecture principles exist together in coherence, I believe it is a good practice to test this. Un-
fortunately, due to time-restrictions in this project we have not been able to do this with the
TOGAF principles.

5 Conclusions
The prime conclusion that can be drawn from the two modest experiments is that further experimenta-
tion is indeed worthwhile since our hypothesis of the potential usefulness of the proposed ORM and
ORC approach to formalizing architecture principles has not been falsified. At the same time, some
additional careful conclusions can be drawn:

• The formalization approach makes the assumptions made during interpretation of the principles
statement explicit. By recording these assumptions, principles and their formalization are likely
to become more transferable.

• The models resulting from the formalization process, as well as the actual act of doing the for-
malization, does expose the perceived meaning (and more particular harboured by different
stakeholders) of the architecture principles

• The act of performing the formalization also leads to a better understanding of the principle by
all people who are involved in the process.

• Care should be taken about the exposure of stakeholders and domain experts to the ORM nota-
tion as it is not the easiest and most intuitive notation to those who are unfamiliar with it. This
may require the use of a lightweight version of ORM focusing on the bare essentials: object
types, fact types and instances.

• A number of principles required the capture of instances as explicit modelling constructs. Con-
cepts such as “Enterprise” and “Interoperable” have been modelled as object types, but should
rather have been treated as instances. What seems to be needed is to allow for instances to be
modelled explicitly and furthermore to allow them to participate in fact types.

• By starting with some form of formalization / grounding of architecture principles early on in
the modelling process, one may be able to avoid modellers from using unnecessary verbose lan-
guage in their formulation.

Formalizing Architecture Principles with ORM 41

The approach to take in future real-life experiments with architects (in the role of model mediator) and
stakeholders (in the role of domain experts) would be to follow the following:
1 Identify the concern / business issue that needs to be addressed by the principles.
2 Prioritize these concerns.
3 Formulate candidate architecture principles, while using the list of concerns as a checklist since

each concern should be addressed by at least one principle. At this stage, for each candidate princi-
ple should have a name (typically a catchy phrase), a first brief description of its statement and a ra-
tionalization.

4 Using the prioritization of the concerns, select which principles to actually enforce and provide the
priority of these principles.

5 For each of the selected principles (depth first or breath first):
a. Provide a domain model of the underlying business concepts (using a lightweight ORM

notation). Use the concern(s) which are addressed by the principle as a scoping mecha-
nism.

b. Clarify any mismatches that may occur with the overall domain model and/or domain
models underlying other principles.

c. Re-formulate the principle’s primary statement in terms of ORC rules expressed in
terms of the domain model. In doing so, the architect (model mediator) has to use a
full-fledged ORM model. In communicating to the domain expert, the light-weight
ORM notation may be used.

d. Express the principle’s rationale in terms of the way it addresses the concerns leading
to the principle.

e. In line with the rationale, identify measuring techniques / methods needed to assess the
conformance of system designs to the architecture principles.

6 References

[BHPW06] P. van Bommel, S.J.B.A. Hoppenbrouwers, H.A. (Erik) Proper, and Th.P. van der Weide.
Giving meaning to enterprise architectures - architecture principles with ORM and ORC.
In R. Meersman, Z. Tari, and P. Herrero, editors, On the Move to Meaningful Internet Sys-
tems 2006: OTM Workshops - OTM Confederated International Workshops and Posters,
AWeSOMe, CAMS, GADA, MIOS+INTEROP, ORM, PhDS, SeBGIS, SWWS, and WOSE
2006, Lecture Notes in Computer Science, Montpellier, France, EU, October/November
2006. Springer, Berlin, Germany, EU.

[IEE00] Recommended Practice for Architectural Description of Software Intensive Systems.
Technical Report IEEE P1471-2000, The Architecture Working Group of the Software
Engineering Committee, Standards Department, IEEE, Piscataway, New Jersey, USA,
September 2000.

[Lo05] M.M. Lankhorst and others. Enterprise Architecture at Work: Modelling, Communication
and Analysis. Springer, Berlin, Germany, EU, 2005.

[OP07] M. Op ‘t Land and H.A. (Erik) Proper. Impact of Principles on Enterprise Engineering.
Technical Report ICIS-R07001, Radboud University Nijmegen, January 2007.

[TOG04] The Open Group. TOGAF - The Open Group Architectural Framework, 2004.
[USA96] USA Government. Clinger-Cohan; IT Management Reform Act, 1996.
[xAF06] xAF working group. Extensible Architecture Framework version 1.1 (formal edition).

Technical report, 2006.

