
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/34746

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16121877?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/34746

International Journal of Network Security, Vol.5, No.3, PP.288–298, Nov. 2007 288

Formal Specification and Verification of the

Intrusion-Tolerant Enclaves Protocol

Mohamed Layouni1, Jozef Hooman2, and Sofiène Tahar3

(Corresponding author: Mohamed Layouni)

Computer Science Department, McGill University, 3480 University Street, Montreal, Quebec, H3A 2A7 Canada1

Computing Science Department, Radboud University, Toernooiveld 1, Nijmegen, Netherlands2

& Embedded Systems Institute, Eindhoven, Den Dolech 2 5612 AZ, Eindhoven, Netherlands

Department of Electrical and Computer Engineering, Concordia University, Montreal, Quebec, H3G 1M Canada3

(Received Dec. 14, 2005; revised and accepted May 7 & Nov. 8, 2006)

Abstract

We demonstrate the application of formal methods to the
verification of intrusion-tolerant agreement protocols that
have a distributed leadership and can tolerate Byzantine
faults. As an interesting case study, the Enclaves group-
membership protocol has been verified using two tech-
niques: model checking and theorem proving. We use
the model checker Murphi to prove the correctness of au-
thentication, and the interactive theorem prover PVS to
formally specify and verify Byzantine agreement, termi-
nation of agreement, and integrity.
Keywords: Byzantine agreement, formal verification
methods, group membership protocols, intrusion tolerance
Theorem proving, model checking.

1 Introduction

The explosive growth in the amount of electronic informa-
tion that individuals and organizations generate, and the
ever-increasing value of that information, make its pro-
tection one of today’s top priorities. A number of cryp-
tographic protocols and techniques have been developed
over the last couple of decades to protect information
transfer and processing. Nevertheless, it is still widely
recognized that cryptographic protocols are a tricky is-
sue. Even seemingly simple protocols like authentication
and authorization protocols have often turned out, years
later, to be wrong (see [7] for a survey).

Clearly, simulation and testing are not sufficient to de-
tect all errors in complex distributed protocols. Poten-
tially, formal verification methods offer a logical basis to
prove that all possible executions of a protocol satisfy a
set of desired properties. In these methods, both proto-
col and properties are expressed in languages with a pre-
cise mathematical meaning. In addition, there are mecha-
nisms to prove in a logically sound way that the protocol
satisfies the properties (or discover that this is not the

case). In this paper, we consider both model checking
and theorem proving. Model checking tools construct the
proof (or a counter example) automatically, but there are
restrictions on the protocol model (usually it has to be
finite and relatively small) and the properties that can be
proved. Theorem proving supports more general models
and properties, allowing the verification of unbounded in-
finite systems, but proofs require user interaction and are
much more difficult to construct.

A substantial progress in the formal verification of
cryptographic protocols has been achieved during the last
decade. A wide variety of techniques has been developed
to verify a number of security properties such as confi-
dentiality, integrity, authentication, and non-repudiation
[18, 24] (more related work is described in Section 2). The
focus, however, was either on two-party protocols (i.e., in-
volving only a pair of users) or on group protocols with a
trusted central leadership (i.e., a trusted fault-free server
managing a group of users). In this paper, we address the
verification of a more general setting, where group pro-
tocols have a distributed leadership, a portion of which
could be corrupted in accordance with the Byzantine fail-
ure model.

In the Byzantine failure model [16] corrupted servers
may maliciously collude, and behave in an arbitrary way.
Two important questions that arise in the formal verifica-
tion of Byzantine fault-tolerant protocols are: how much
power should be given to a Byzantine fault? And how
general should the model be to capture the arbitrary na-
ture of a Byzantine behavior? These questions have been
studied in the literature (e.g., [3, 4, 16]) and continue to be
a center of focus. In this paper, we limit Byzantine faults
only by cryptographic constraints. That is, we assume
encryption primitives semantically secure. Faulty lead-
ers can, for instance, send arbitrarily random messages,
reset their local clocks and perform any action without
satisfying its precondition. They cannot, however, de-
crypt a message without having the appropriate key, or

International Journal of Network Security, Vol.5, No.3, PP.288–298, Nov. 2007 289

impersonate other participants by forging cryptographic
signatures.

As an interesting case study, we consider in this pa-
per the verification of the intrusion-tolerant protocol En-
claves [11]. This is a group-membership protocol with
a distributed leadership architecture, where the author-
ity of the traditional single server is shared among a set
of n servers, of which at most f could fail at the same
time. Enclaves assumes the Byzantine failure model men-
tioned above. More details about our fault assumptions
can be found in Section 3. The protocol has a maximum
resilience of one third (i.e., f ≤ bn−1

3
c) and uses a fault-

tolerant broadcast algorithm similar to that in [3].

The primary goal of Enclaves is to preserve an accept-
able group-membership service of the overall system de-
spite intrusions at some of its sub-parts. For instance, an
authorized user u who requests to join an active group
of users should be eventually accepted, despite the fact
that faulty leaders may try to coordinate their messages
in such a way as to mislead non-faulty leaders (the ma-
jority) into disagreement, and thus into rejecting user u.
In addition, malicious leaders should be prevented from
leaking sensitive information (e.g., group keys) or provid-
ing clients with fake group keys.

To achieve its intrusion-tolerant capabilities, Enclaves
combines an authentication protocol, a Byzantine fault-
tolerant leader agreement protocol, and a verifiable secret
sharing scheme. Although the underlying cryptographic
primitives and fault-tolerant components are assumed to
be perfectly secure on their own, one cannot easily guar-
antee the security of the whole protocol.

In this work, we discuss a formal verification of the
overall Byzantine fault-tolerant Enclaves protocol. We
experimented with various techniques, chosen according
to the nature of the correctness arguments in each mod-
ule, the environment assumptions, and the easiness of
performing verification. We found it profitable to check
the authentication module by taking advantage of the re-
duction techniques available in the model checker Mur-
phi [9]. The Byzantine leaders agreement module, how-
ever, was a little trickier. In fact, the latter relies, to a
large extent, on the timing and the coordination of a set
of distributed actions, possibly performed by Byzantine
faulty processes whose behavior is hard to represent in a
model checker. Instead, we used the interactive theorem
prover PVS [21] and formalized the protocol in the style
of Timed-Automata [1]. This formalism makes it easy
to express timing constraints on transitions. It also cap-
tures several useful aspects of real-time systems such as
liveness, periodicity, and bounded timing delays. Using
this formalism, we specified the protocol for any number
of leaders, and we proved safety and liveness properties
such as proper agreement, agreement termination and in-
tegrity using the interactive proof checker of PVS.

The remainder of this paper is organized as follows. In
Section 2, we review previous work on the formal verifica-
tion of fault-tolerant distributed protocols. In Section 3,
we give an overview of the architecture and design goals of

Enclaves, and explicitly state our system model assump-
tions. In Section 4, we describe the model checking of
the authentication module in Murphi. In Section 5, we
present how we model the elementary components of the
Byzantine leaders agreement module in PVS and how we
build the final protocol model out of these ingredients.
In Section 6, we formulate and prove the correctness the-
orems for the Byzantine leaders’ agreement. Finally, in
Section 7, we conclude the paper by commenting on our
results and stating some perspectives for future work.

2 Related Work

Much work has been done to formally verify fault-
tolerance in distributed protocols. Some of these veri-
fications dealt with the Byzantine failure model [4], while
others remained limited to the benign form [20]. A vari-
ety of automata formalisms has been adopted to specify
such protocols.

For instance, Castro and Liskov [4] specified their
Byzantine fault-tolerant replication algorithm using the
I/O automata of Tuttle and Lynch [19]. They have man-
ually proved their algorithm’s safety, but not its liveness.
The work in [4] has never been mechanized in any theorem
prover. In our work, we prove both safety (e.g., proper
agreement) and liveness (e.g., termination) properties, as
well as mechanize all proofs with PVS.

Timed automata were also used to model the fault-
tolerant protocols PAXOS [23] and Ensemble [13]. The
authors assume a partially synchronous network and sup-
port only benign failures. This bears some similarities
with our verification in the sense that we assume some
bounds on timing, but unlike the work in [13, 23] we are
dealing with the more general Byzantine failure model.

In [2], Archer et al presented the formal verification
of a number of distributed protocols using the Timed Au-
tomata Modelling Environment (TAME). TAME provides
a set of theory templates to specify and prove I/O au-
tomata. As of the time of writing this paper, the TAME
environment does not support security protocols. The
results we have achieved in this work could be used to ex-
tend the TAME environment to model and analyze pro-
tocols such as Enclaves.

In [18], Paulson et al extend their inductive approach
to cope with the so-called second-level security proto-
cols. Our work uses induction as well (among other tech-
niques), but is not constrained to second-level security
protocols only.

3 The Enclaves Protocol

Enclaves [11] is a protocol that enables users to share in-
formation and collaborate securely through insecure net-
works such as the Internet. Enclaves provides services for
building and managing groups of users. Access to a given
group is granted only to sets of users who have the right
credentials to do so. Authorized users can dynamically,

International Journal of Network Security, Vol.5, No.3, PP.288–298, Nov. 2007 290

and at their will, join, leave, and rejoin, an active group.
The group communication service relies on a secure multi-
casting channel that ensures integrity and confidentiality
of group communication. All messages sent by a group
member are encrypted and delivered to all other group
members.

The group-management service consists of 3 sub-
blocks: user authentication, access control, and group-
key distribution. Figure 1 shows the different phases of
the protocol execution. Initially at time t0, user u sends
requests to join the group, to a set of leaders. These lead-
ers locally authenticate u within time interval [t1, t2]. At
time t3 the agreement procedure starts, and a consensus
as to whether accept user u or not is reached at time
t4. Finally, on acceptance, user u is provided with the
current group composition, as well as information to con-
struct the group-key. Once in the group, each member
is notified when a new user joins or a member leaves the
group in such a way that all members are in possession of
a consistent image of the current group-key holders.

Leader1 Leader2 LeadernLeaderq

Leader1 Leader2

Leader1 Leader2 LeadernLeaderq

LeadernLeaderq

t1

t2

t3

t4

time

...

...

+=

...

...

...

Join Requests

Local Authentications

Byzantine Agreement

 Group Group

Group Management and Key Distribution

t0

User u

User u

Figure 1: Enclaves protocol execution

In summary, Enclaves should guarantee the following
properties, even in the presence of up to f ≤ bn−1

3
c cor-

rupted leaders, where n is the total number of leaders:

• Proper authentication and access control: Only au-
thorized users can join the group and an authorized
user cannot be prevented from joining the group.

• Confidentiality of group communication: Messages
from a member u can be read only by the users who
were in u’s view of the group at the time the message
was sent.

The description of Enclaves in [11] assumes a reliable
network where messages eventually reach their destina-
tions within an upper bound delivery time. In this paper
we make the same assumptions. Concerning the intruder,
we adopt a standard model where an intruder fully moni-
tors the network, proactively augments its knowledge, and
chooses to send, either adaptively or randomly, messages

on the network. The intruder, however, cannot block mes-
sages from reaching their destination and is limited by
cryptographic constraints. For instance, the intruder can-
not decrypt messages without having the right key, or im-
personating other participants by forging cryptographic
signatures.

Given the above assumptions, we prove that the
Proper authentication and access control requirement
holds through (1) the model checking of the Proper Au-
thentication invariant in Murphi (cf. Section 4), and (2)
the proofs of proper agreement, agreement termination
and agreement integrity theorems in PVS (cf. Sections 5
and 6)1. The confidentiality of group communications is
addressed in the group key management module by means
of a verifiable secret sharing scheme. This module is, how-
ever, outside the scope of this paper. Further details on
the security of this module can be found in [17].

4 Model Checking Authentication

in Murphi

Murphi [9] is a verification tool that has been applied
to several protocols, notably in the areas of distributed
memory systems, and authentication protocols [20, 22].
To use Murphi, one has to first model the protocol us-
ing the Murphi language. Later this model is augmented
with a specification of the desired properties. Typically
one would start with a small protocol instance and grad-
ually increase the protocol size until the verification does
not terminate anymore. In many cases, errors in the gen-
eral protocol will also show up in smaller down-scaled
instances of the protocol. The Murphi tool is based on
explicit state enumeration and supports a number of re-
duction techniques such as symmetry and data indepen-
dency [14, 15]. The desired properties of a protocol can
be specified in Murphi by invariants. If a state is reached
where some invariant is violated, Murphi generates an er-
ror trace exhibiting the problem.

Our verification has been conducted as follows. First,
we formulated the protocol by identifying the protocol
participants, the state variable and messages, and the key
actions to be taken. Then we added an intruder to the
system. In our model, the intruder is a participant in the
protocol, capable of eavesdropping messages in transit,
decrypting cipher-text when it has the appropriate keys,
and generating new messages using any combination of
previously gained knowledge. Finally, we stated the de-
sired correctness conditions and ran the verification for
few size parameters.

4.1 System Model

The local authentication module (as shown in Figure 1)
aims at mutual authentication between group leaders and

1More details about the Murphi specifications, as well as the
PVS theories and proofs, can be found at http://hvg.ece.concordia.
ca/Publications/TECH REP/PVS TR03/PVS TR03.html

International Journal of Network Security, Vol.5, No.3, PP.288–298, Nov. 2007 291

users trying to join an active group. Group leaders need
to be assured about the users identity in order to convince
the rest of the leaders to accept them in the group, and
the users, from their side, want to have a guarantee that
they are not being fooled by some impostor.

This module is designed to work in a malicious envi-
ronment, where messages can be overheard, replayed and
created by a standard Dolev-Yao intruder [10]. The pro-
tocol assumes “perfect” cryptography, namely, if a mes-
sage m is encrypted with some participant’s public key K,
then only this participant is able to decrypt the ciphertext
{m}K .

It has been proved in [6] that the Dolev-Yao intruder
is the most powerful of all possible attackers (when per-
fect cryptography is considered). Furthermore, it has
been shown in [5] that considering a single Dolev-Yao in-
truder is no more restrictive than considering multiple
ones. This is a very important result for model checking-
based security, because reducing the threat model to a
single intruder (instead of n) dramatically reduces the
search space. In this work, we follow these observations
and consider one single intruder.

We study the following version of the local authentica-
tion module:

i. U −→ Li : AuthInitReq, U, Li, {U, Li, N1}PU,i

ii. Li −→ U : AuthKeyDist, Li, U, {Li, U, N1, N2, KU,i}PU,i

iii. U −→ Li : AuthAckKey, U, Li, {U, Li, N2, N3}KU,i
.

The user U sends a freshly generated random nonce
N1 along with its identifier to Leader Li, both encrypted
with the long term key PU,i shared by Li and U . Leader
Li decrypts the message and obtains knowledge of N1.
It checks U ’s identity in a predefined database, and then
generates a nonce N2 and a session key KU,i and sends
the whole encrypted with the shared key PU,i. User U de-
crypts the message and concludes that it is indeed talking
to Li, since only Li was able to decrypt U ’s initial message
containing nonce N1 (Li is hence authenticated). Simi-
larly U is authenticated, in the third step of the protocol,
after sending an acknowledgment including N2 and using
KU,i.

4.1.1 Modelling Users and Leaders

First, we consider the users component, referred to as
clients in our model. In Murphi the data structure for
the clients is as follows:

const
NumClients: 3; -- A small example

type

ClientId: scalarset (NumClients);
ClientStates : enum {

C_SLEEP, -- Initial state
C_WAIT, -- Waiting for response from leader

C_ACK -- Acknowledging the session key
};

Client : record

state: ClientStates;
leader: AgentId; -- Leader with whom the client

end; -- starts the protocol
var

clnt: array[ClientId] of Client;

The number of clients is scalable and is defined by the
constant NumClients. The type ClientId is a scalarset

of size NumClients; that is, a Murphi data structure
used to denote intervals [1 . . .NumClients], and to enable
reductions on instances of that type. The state of each
client is stored in the array clnt. In the initialization
statement of the model, the local state (stored in field
state) of each client is set to C SLEEP , indicating that
no client has started the protocol yet.

The behavior of a client is modelled with two Mur-
phi rules. The first rule is used to start the protocol
by sending the initial message to some agent (suppos-
edly a leader), and then change the sender’s local state
from C SLEEP to C WAIT . The second rule models
the reception and checking of the reply from an agent,
the commitment, and the sending of the final message.
The Murphi model for the first rule is as follows:

ruleset i: ClientId do

ruleset j: AgentId do
rule "client starts protocol (step 1)"
clnt[i].state = C_SLEEP & scriptsize -- play protocol only

with
!ismember(j,ClientId) & -- leaders and intruders

multisetcount (l:net, true) < NetworkSize
==>

var
outM: Message; -- outgoing message

begin

undefine outM;
outM.psource := i;

outM.pdest := j;
outM.mType := M_AuthInitReq;
...

multisetadd (outM,net);
clnt[i].state := C_WAIT;

clnt[i].leader := j;
end;

end;
end;

The condition of the rule is that client i is in the local
state C SLEEP , that agent j is not trivially a client (and
hence should be either a leader or an intruder), and that
there is space in the network for an additional message.
The network is modelled by the shared variable net. Once
the rule is enabled, the outgoing message is constructed
and added to the network. In addition, the local state is
updated and the identifier of the intended destination is
stored in state variable clnt[i].leader.

The leader part of the model is quite similar to the
client part. For instance, the leaders also maintain a lo-
cal state and store the identifier of the agent initiating
the protocol in their state variable lead[i].client. In addi-
tion, the behavior of the leaders is also modelled with two
rules: one that handles the initial authentication request
of the client and another which commits to the session
after receipt of the final message of the protocol.

4.1.2 Modelling Intruders

The intruder maintains a set of overheard messages and
an array representing all the nonces it knows. The behav-
ior of the intruder is modelled with three rules: one for
eavesdropping and intercepting messages, one for replay-

International Journal of Network Security, Vol.5, No.3, PP.288–298, Nov. 2007 292

ing messages, and one for generating messages using the
learned nonces and injecting them into the network. The
model for the first rule is given in the following.

ruleset i: IntruderId do
choose j: net do

rule "intruder overhearing messages"
!ismember (net[j].psource, IntruderId) -- not for intruder

==>
var temp: Message;

begin
alias msg: net[j] do -- message to intercept

alias intruderknowledge: int[i].messages do
if multisetcount(f:intruderknowledge, true)

< MaxKnowledge then
if msg.key=i then -- msg encrypted with i’s key

int[i].nonces[msg.nonce1] := true; -- learn nonces

if msg.mType= M_AuthKeyDist then
int[i].nonces[msg.nonce2] := true;

end;
else -- learn whole msg
end;

........
end;

The enabling condition of the intruder’ message over-
hearing rule is that the network cell in question, net[j],
does not contain a message sent by the intruder itself (oth-
erwise nothing will be learned). We distinguish then two
cases:

• The intercepted message is intended for the in-
truder (encrypted with a key known to the intruder
msg.key = i), then the action is simply to learn the
nonces (cf. Murphi model above).

• The intruder intercepts a message that is intended for
another participating agent and then learns all useful
message fields. The intruder can also be modelled to
block and remove messages from the network.

4.2 Properties Specification

The main property we are interested in is mutual authen-
tication between a given pair of leader and client, namely
Li should be able to assert that it has been talking, in-
deed, to client U , and vice-versa. The verification is done
by means of invariant checking under the above assump-
tions. The client proper authentication invariant is given
below.

invariant "client proper authentication"

forall i: LeaderId do

lead[i].state = L_COMMIT &

ismember(lead[i].client, ClientId)

->

clnt[lead[i].client].leader = i &

clnt[lead[i].client].state = C_ACK

end;

It basically states that for each leader i, if it committed
to a session with a client, then this client (whose identifier
is stored in lead[i].client), must have started the protocol
with leader i, i.e., have stored i in its field leader and be
awaiting for acknowledgment (i.e., in state C ACK).

In addition to the above invariant, we have checked a
similar one for leaders proper authentication. The leaders
proper authentication invariant asserts that for each client,
if it commits to a session with a leader Li, then Li is, in
reality, the same leader with whom the client started the
session.

invariant "leaders proper authentication"

forall i: ClientId do

clnt[i].state = C_ACK &

ismember(clnt[i].leader, LeaderId)

->

lead[clnt[i].leader].client = i &

(lead[clnt[i].leader].state = L_WAIT |

lead[clnt[i].leader].state = L_COMMIT)

end;

4.3 Experimental Results

Table 1 summarizes the experimental results obtained
from the model checking of the first invariant, clients
proper authentication, including the number of reached
states and CPU run times taken on a six-440-MHz-
processor Sun Enterprise Server with 6 GB of memory, for
different instance sizes of the protocol. The dashes (“–”)
in the table indicate that no conclusive results were ob-
tained for those instances because of a memory overflow.
The instances of the protocol that we have considered,
were chosen in a way that emphasizes the weight of each
size parameter. Our approach is as follows. We start with
an instance of the protocol for which the model checking
terminates (e.g., the first row in the table), and from there
we explore several instances, following a certain pattern,
where we vary only one size parameter and keep all others
unchanged. The results roughly show that the number of
leaders is less significant, in terms of verification complex-
ity, then other parameters such as the number of clients,
and the network size (maximum number of messages al-
lowed on the network at the same time). This can be
explained by the fact that the average load for each in-
dividual leader is reduced when we increase their total
number. Another important parameter is the intruder’s
maximum knowledge (or memory size). For the purpose
of this experiment, we have tried few small instances.

Many of the rows in Table 1, show non-conclusive re-
sults, where Murphi ends up running out of memory be-
fore reaching all possible states. This is a well known
problem of model checking in general. One way to im-
prove this, is by deploying more computational resources.
However, doing so will not bring a major change, as the
number of states grows exponentially with respect to the
size parameters. A better alternative would be to use
more powerful abstractions and reduction techniques (cf.
[8]) than those currently available in Murphi.

4.4 Discussion

The focus in this section has been on the mutual au-
thentication between a single pair of client and leader.

International Journal of Network Security, Vol.5, No.3, PP.288–298, Nov. 2007 293

Table 1: Model Checking Experimental Results
Network States CPUe

Clients Leaders size time
2 2 1 274753 515 s
3 2 1 – –

2 3 1 1240550 3408 s
2 4 1 3723157 18383 s
2 5 1 – –

3 1 1 1858746 3161 s
3 2 1 – –

2 2 2 – –
3 1 2 – –

When a client concurrently runs several authentication
requests with several leaders, we consider those requests
inter-independent.

The experimental results show that the efficiency of
model checking is still a major problem. Only for a few
number of small instances of the protocol, the Murphi tool
terminated the model checking in a reasonable amount of
time. Although we performed our experiments on a rel-
atively powerful machine, and despite the fact that Mur-
phi had mechanisms to reduce the state space, the execu-
tion time increased dramatically as we started increasing
the protocol size, and the model checker was unable to
terminate. This, indeed, shows the limitations of model
checking when applied to security protocols. One way
to circumvent this, is by using rank functions [24] in the
context of a theorem prover.

5 Modelling Byzantine Agree-

ment in PVS

Most group communication protocols, including Enclaves,
can be modelled by an automaton whose initial state is
modified by the participants’ actions as the group mutates
(new members join). Because Enclaves depends also on
time (participants timeout, timestamp group views, etc.),
it was convenient to model it as a timed automaton. In
the current verification, timing is used only to ensure ac-
tions progress. Timing, however, is essential to prove up-
per bounds on agreement delays (e.g., a maximum join
delay), but this is beyond the scope of this paper. Par-
ticipants in a typical run of Enclaves consist of a set of n

leaders (f of which are faulty), a group of members, and
one or more users requiring to join the group.

In this section, we first present the timed automata
model of Enclaves in terms of the higher-order typed
logic of the PVS specification and verification system. We
explain the different components and parameters of the
model, then we describe the resulting overall protocol as

well as the adopted fault assumptions.

5.1 Timed Automata

We present a general, protocol-independent, theory called
T imedAutomata. Given a number of parameters, it de-
fines all possible executions of the protocol as a set of
Runs. A run is a sequence of the form s0

a0→ s1

a1→ s2

a2→
s3

a3→ . . . where the si are States, representing a snap-
shot of the system during execution and the ai are the
executed Actions. A particular protocol (an instance of
the timed automaton) is characterized by sets of possible
States and Actions, a condition Init on the initial state,
the precondition Pre of each action, expressing in which
states that action can be executed, the effect Effect of
each action, expressing the possible state changes by the
action, and a function now which gives the current time
in each state. In a typical application, there is a special
delay action which models the passage of time and in-
creases the value of now. All other actions do not change
time. In PVS, the theory and its parameters are defined
as follows.

TimedAutomata [States, Actions: TYPE+,
Init : pred[States],

Pre : [Actions -> pred[States]] ,
Effect : pred[[States, Actions, States]],
now : [States -> nonneg_real]

] : THEORY

To define Runs, let PreRuns be a record with two
fields, states and events.

PreRuns : TYPE = [# states : sequence[States],
events : sequence[Actions] #]

A Run is a PreRun where the first state satisfies
Init, the precondition and effect predicates of all ac-
tions are satisfied, the current time never decreases and
increases above any arbitrary bound (avoiding Zeno-
behaviour [12]). In PVS, this is formalized as follows.

PreEffectOK(pr) : bool = FORALL i :

Pre(events(pr)(i)) (states(pr)(i)) AND
Effect(states(pr)(i), events(pr)(i), states(pr)(i + 1))

NoTimeDecrease(pr) : bool =
FORALL i : now(states(pr)(i)) <= now(states(pr)(i + 1))

NonZeno(pr): bool =

FORALL t : EXISTS i : t < now(states(pr)(i))

Runs : TYPE =
{ pr: PreRuns | Init(states(pr)(0)) AND PreEffectOK(pr) AND

NoTimeDecrease(pr) AND NonZeno(pr) }

5.2 Leaders Actions

To define the actions of the leaders, we first state a few
preliminary definitions. Let n be the number of leaders
and let f be such that 3f +1 ≤ n (the maximum number
of faulty leaders). For simplicity, leaders are identified by
an element of {0, 1, . . . , n − 1}. Users are represented by

International Journal of Network Security, Vol.5, No.3, PP.288–298, Nov. 2007 294

some uninterpreted non-empty type, and time is modelled
by the set of non-negative real numbers.

n : posnat

f : { k : nat | 3 * k + 1 <= n }

LeaderIds : TYPE = below[n]
UserIds : TYPE+
Time : TYPE+ = nonneg_real

The actions of the protocol are represented in PVS
as a data type, which ensures, e.g., that all actions are
syntactically different. Thereafter, we define the following
actions:

• A general delay action which occurs in all our timed
models; it increases the current time (now), and all
other clocks that may be defined in the system, with
the amount specified by a delay parameter del.

• An announce action is used to send announcement
messages of new locally authenticated users to the
other leaders of the protocol.

• A trypropagate action allows a user announcement
to be further spread among leaders. This action is
executed periodically, but it only changes the state
of the system if enough announcements (f + 1) have
been received for the considered user and it has not
already been announced or propagated by the leader
in question before.

• An action tryaccept used to let leaders periodically
check whether they have received enough announce-
ments and/or propagation messages for a given user.
Once this condition is satisfied, the user is accepted
to join the group.

• A receive action allows a leader to receive messages;
it removes a received message from the network and
adds corresponding data to the local buffer of the
leader.

• A crash action models the failure of a leader. After
a crash, a leader may still perform all the actions
mentioned above, but in addition it may perform a
misbehave action.

• An action misbehave models the Byzantine mode
of failure and can only be performed by a faulty
(crashed) leader.

Besides, we define three time constants for the maximum
delay of messages in the network, the maximum delay
between trypropagate actions and the maximum delay
between tryaccept actions.

5.3 States

In order to properly capture the distributed nature of the
network, it is suitable to model two kinds of states: a
local state for each leader, accessible only to the partic-
ular leader, and a global state to represent global system

behavior, which includes the local state of each leader,
the representation of the network and a global notion of
time.

An important part of the local state is the group view,
which is a set of users in the current group. In fact, the
ultimate goal of Enclaves is to assure consistency of the
group views. Moreover, we use a Boolean flag (faulty)
marking the leader status as faulty or not, some local
timers (clockp and clocka) to enforce upper bounds on
the occurrence of trypropagate and tryaccept actions, and
finally a list (received) of the leaders from which the local
leader received proposals for a given user.

Views : TYPE = setof[UserIds]

LeaderStates : TYPE =

[# view : Views,
faulty : bool,

clockp : Time, % clock for the trypropagate action
clocka : Time, % clock for the tryaccept action

received : [UserIds -> list[LeaderIds]] #]

We model Messages as quadruples containing a
source, a destination, a proposed user and a timestamp
indicating an upper bound on the delivery time, i.e., the
message must be received before the tmout value.

Messages : TYPE = [# src : LeaderIds,

tmout : Time,
proposal : UserIds,

dest : LeaderIds #]

In the global states, the network is modelled as a set
of messages. Messages that are broadcast by leaders are
added to this set, with a particular time-out value, and
they are eventually received, possibly with different delays
and at a different order at recipient ends. The global state
also contains the local state of each leader and a global
notion of time, represented by now.

GlobalStates : TYPE = [# ls : [LeaderIds -> LeaderStates],

now : Time,
network : setof[Messages] #]

s, s0, s1 : VAR GlobalStates

Furthermore, we define a predicate Init, which ex-
presses conditions on the initial state, requiring that all
views, received sets and the network are empty, and all
clocks and now are set to zero.

5.4 Precondition and Effect

For each action A, we define its precondition, expressing
when the action is enabled, and its effect.

Pre(A)(s) : bool =
CASES A OF

delay(t) : prenetwork(s,t) AND preclock(s,t),
announce(i,u) : true,
trypropagate(i) : true,

tryaccept(i) : true,
receive(i) : MessageExists(s,i),

crash(i) : NOT faulty(ls(s)(i)),
misbehave(i) : faulty(ls(s)(i))

ENDCASES

International Journal of Network Security, Vol.5, No.3, PP.288–298, Nov. 2007 295

An announce action, for instance, may always oc-
cur and hence has precondition true. Similarly for
trypropagate and tryaccept, which should occur periodi-
cally. Action receive(i) is only allowed when there exists
a message in the network with destination i. For sim-
plicity, a crash action is only allowed if the leader is not
faulty (alternatively, we could take precondition true). A
misbehave action may only occur for faulty leaders.

Most interesting is the precondition of the delay(t) ac-
tion. This action increases now and all timers (clockp

and clocka) by t. To ensure that messages are delivered
before their time-out value, we require that the condition
prenetwork, defined below, holds in the state before any
delay(t) action is taken, which fits our informal assump-
tions about network reliability.

prenetwork(s, t) : bool = FORALL msg :
member(msg, network(s)) IMPLIES now(s) + t <= tmout(msg)

Similarly, there is a condition preclock which re-
quires that all timers (clockp and clocka) are not larger
than MaxTryPropagate and MaxTryAccept, respec-
tively. Since the trypropagate and tryaccept actions reset
their local timers to zero, this may enforce the occurrence
of such an action before a time delay is possible.

Next we define the effect of each action, relating a state
s0 immediately before the action and a state s1 immedi-
ately afterwards.

• delay(t) increments now and all local timers by t, as
defined by s0 + t.

• announce(i, u) adds, for each leader j a message
to the network, with source i, time-out now(s0) +
MaxMessageDelay, proposal u, and destination j.

• trypropagate(i) resets clockp to zero and adds to the
network messages, to all leaders, containing propos-
als for each user for which at least f + 1 messages
have been received.

• tryaccept(i) resets clocka to zero and adds to its local
view all users for which at least (n−f) messages have
been received.

• receive(i) removes a message with destination i from
the network, say with source j and proposal u, and
adds j to the list of received leaders for u, provided
it is not in this list already.

• crash(i) sets the flag faulty of i to true.

• misbehave(i) may just reset the local timers
clockp and clocka of i to zero, as expressed by
ResetClock(s0, i, s1), or it may add randomly as well
as maliciously chosen messages to the network (pro-
vided that timeouts are not violated). A misbehaving
leader, however, cannot impersonate other protocol
participants, i.e., any message sent on the network
has the identifier of its actual sender.

This leads to a predicate of the form:

Effect(s0,A,s1) : bool =
CASES A OF

delay(t) : s1 = s0 + t,
announce(i,u) : AnnounceEffect(s0,i,u,s1),
...

misbehave(i) : ResetClock(s0,i,s1) OR SendMessage(s0,i,s1)
ENDCASES

5.5 Protocol Runs and Fault Assumption

Runs of this timed automata model of Enclaves are ob-
tained by importing the general timed automata theory.
This leads to type Runs, with typical variable r. Let
Faulty(r, i) be a predicate expressing that leader i has a
state in which it is faulty. It is easy to check in PVS that
once a leader becomes faulty, it remains faulty forever.
Let FaultyNumber(r) be the number of faulty leaders in
run r (it can be defined recursively in PVS). Then we pos-
tulate by an axiom that the maximum number of faults
is f (MaxFaults:AXIOM FaultyNumber(r) ¡= f+).

6 Proving Byzantine Agreement

in PVS

We are interested in verifying the following properties of
the Enclaves protocol:

• Termination: if user u wants to join an active group
and has been announced by enough non-faulty lead-
ers, then eventually user u will be accepted by all
non-faulty leaders and becomes a member of the
group.

• Integrity: a user that has been accepted in the group
should have been announced by a non-faulty leader
earlier during the protocol execution.

• Proper Agreement: if a non-faulty leader decides to
accept user u, then all non-faulty leaders accept user
u too.

In the remainder of this section, we formally enunciate
the above theorems and briefly outline their proofs.

Theorem 1 (Termination).
For all r and u, announced by many(r,u) implies
accepted by all(r,u), where

• announced by many(r,u) expresses that at least (f+
1) non-faulty leaders announced user u during run r;

• accepted by all(r, u) asserts that eventually all
non-faulty leaders have user u in their view during
run r.

Proof. Assume announced by many(r,u), which implies
that at least (f + 1) non-faulty leaders broadcast a pro-
posal for u. Because of the reliability of the network,
eventually these messages will be delivered to their desti-
nation, and in particular to the (n−f) non-faulty leaders

International Journal of Network Security, Vol.5, No.3, PP.288–298, Nov. 2007 296

of the network. They all receive (f + 1) announcement
messages for user u, which is enough to trigger the propa-
gation procedure (for u) for all non-faulty leaders who did
not participate in the announcement phase. Now because
of the network reliability, we conclude that eventually all
non-faulty leaders will receive at least (n − f) approvals
for user u, enough to make a majority, since (n − f) > f

follows from n > 3f .

Theorem 2 (Integrity).
For all r and u, accepted by one(r,u) implies
announced by one(r,u), where

• accepted by one(r,u) holds if at least one leader
eventually included u in its view during run r.

• announced by one(r,u) expresses that at least one
non-faulty leader announced user u during run r.

Proof. We proceed by contrapositive and use the non-
impersonation property. We assume that for all non-
faulty leaders no announcement for user u has been done
during run r. Now because of non-impersonation, faulty
leaders cannot send more than f different announcements.
This implies that the leaders would receive no more than
f announcements for user u, which is not enough to trig-
ger propagation actions. This yields that u will never
be proposed by any of the non-faulty leaders, and hence
none of them will receive as much as (n− f) messages for
u (recall (n − f) > f). As a result, user u will never be
accepted by any of the non-faulty leaders.

Theorem 3 (Proper Agreement).
For all r and u, accepted by one(r,u) implies
accepted by all(r,u)

Proof. accepted by one(r,u) implies that there exists a
non-faulty leader that received at least (n − f) approvals
(i.e., announcements or propagation messages) for user u.
Among these approvals, at least (n− 2f) come from non-
faulty leaders (by non-impersonation). Now because these
leaders are non-faulty, they broadcast the same approval
to all the other leaders. In addition, because of the net-
work reliability, these messages are eventually delivered
to destination. This implies that all (n − f) non-faulty
leaders receive eventually the above (n − 2f) approvals.
Since (n − 2f) ≥ (f + 1), all (n − f) non-faulty leaders
have received at least (f + 1) messages for u. Similar to
the proof of Termination, the latter implies the start of
the propagation procedure, then the reception of at least
(n− f) approvals for user u, and finally the acceptance of
u by all non-faulty leaders.

6.1 Concluding Remarks

In this section, we have verified the correctness of the
Byzantine Agreement module of Enclaves using the PVS
theorem prover. The high level of expressiveness of the
Timed-Automata formalism, as well as the rich data-type
package of PVS, were very useful in formalizing the mod-
ule for any number of leaders, in a way that thoroughly

captures the many subtleties on which the correctness ar-
guments of the module rely. In fact, mechanizing the
proofs with PVS, allowed us to discover many errors in
our initial pen-and-paper manual proofs, and to correct
them.

In addition, the PVS theorem prover provides a col-
lection of powerful inference procedures to help derive
theorems. These procedures can be combined to yield
higher-level proof strategies making verification much eas-
ier. PVS also produces scripts that can be edited, at-
tached to additional formulas, and rerun. Such capabil-
ities have been extremely helpful in this work; they al-
lowed similar theorems to be proved efficiently, permitted
a number of proofs to be easily adjusted after modifica-
tions were brought to the specification, and helped pro-
duce readable proofs.

Using these features, we have proved the module to sat-
isfy its requirements of termination, integrity and proper
agreement. The proofs required over 40 intermediate lem-
mas. The integrity and termination theorems were the
most challenging to prove and they helped deduce proper
agreement.

7 Conclusion and Future Work

This paper describes our results about the formal verifica-
tion of an Intrusion-Tolerant group-membership protocol.
We experimented with various techniques, namely model
checking with Murphi, and theorem proving with PVS.
Our choice of the techniques was, adaptively, driven by
the nature of the correctness arguments in each module
of the protocol, by the environment assumptions, and the
easiness of performing verification.

Although we believe we have achieved a promising suc-
cess in verifying a complex protocol such as Enclaves, we
think our results could be further improved. For instance,
the feasibility of model checking is always limited to in-
stances with a finite number of states, which may, in some
cases, prevent from discovering security flaws in realistic
implementations of security protocols. This can be cir-
cumvented by the use of rank functions [24]. The role of
a rank functions will be to partition the message space
into messages, of positive rank, which the adversary may
intercept or infer, and messages, of non-positive rank, that
should remain out of the adversary’s reach. The verifica-
tion consists then in finding if, during the protocol exe-
cution, some secret information with a non-positive rank
can be leaked to the intruder. We believe that using rank
functions is a very efficient way to mechanically prove au-
thentication properties (cf. [24]).

The high degree of expressiveness of the Timed-
Automata formalism, as well as the rich data-type pack-
age of PVS, helped us formalize the Byzantine agreement
module for any number of leaders, in a way that thor-
oughly captures the many subtleties on which the cor-
rectness arguments of Enclaves rely. We have proved
the protocol to satisfy its requirements of termination,

International Journal of Network Security, Vol.5, No.3, PP.288–298, Nov. 2007 297

integrity and proper agreement. Yet, we have not proved
the consistency of group membership when members leave
the group. We are planning to address this issue in fu-
ture work. Finally, one promising direction for further
development would be to perform the mathematical anal-
ysis of the group key management module mechanically
in PVS. This requires the elaboration of some general
purpose theories (e.g., number theory, and probabilities)
not yet available in PVS. The current specification can
be further extended by widening the Byzantine faults ca-
pabilities and by modelling the cryptographic primitives
that have been abstracted away. Also results about an
upper bound on agreement establishment delays can be
further investigated.

References

[1] R. Alur, and D. Dill, “A theory of timed automata,”
Theoretical Computer Science, vol. 126, pp. 183-235,
1994.

[2] M. Archer, C. Heitmeyer, and E. Riccobene, “Prov-
ing Invariants of I/O Automata with TAME,” Auto-
mated Software Engineering, vol. 9, no. 3, pp. 201-
232, 2002.

[3] G. Bracha, and S. Toueg, “Asynchronous consensus
and broadcast protocols,” Journal of the ACM, vol.
32, no. 4, pp. 824-840, 1985.

[4] M. Castro, and B. Liskov, A Correctness Proof for
a Practical Byzantine-fault-tolerant Replication Al-
gorithm, MIT Laboratory for Computer Science, no.
MIT/LCS/TM-590, June 1999.

[5] I. Cervesato, C. Meadows, and P. Syverson, “Dolev-
Yao is no better than Machiavelli,” in First Work-
shop on Issues in the Theory of Security, pp. 87-92,
2000.

[6] I. Cervesato, “Data access specification and the most
powerful symbolic attacker in MSR,” in Software Se-
curity - Theories and Systems, LNCS 2609, pp. 384-
416, 2002.

[7] J. Clark and J. Jacob, A Survey of Authentication
Protocols Literature: Version 1.0., Department of
Computer Science, University of York, UK, 1997.

[8] E. Clarke, O. Grumberg, and D. Peled, Model Check-
ing, MIT Press, 2000.

[9] D. Dill, A. Drexler, A. Hu, and C. Han Yang, “Pro-
tocol verification as a hardware design AID,” in Pro-
ceedings of the IEEE International Conference on
Computer Design: VLSI in Computers and Proces-
sors, pp. 1-14, Cambridge, Maryland, USA, 1992.

[10] D. Dolev, and A. Yao, “On the security of public-
key protocols”, IEEE Transactions on Information
Theory, vol. 29, no. 12, pp. 198-208, 1983.

[11] B. Dutertre, V. Crettaz, and V. Stavridou,
“Intrusion-tolerant enclaves”, Proceedings of the
IEEE International Symposium on Security and Pri-
vacy, pp. 216-224, Oakland, California, USA, 2002.

[12] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine,
“Symbolic model checking for real-time systems”, in

Proceedings of the Seventh Symposium on Logics in
Computer Science, pp. 394-406, Santa-Cruz, Califor-
nia, 1992.

[13] J. Hickey, N. Lynch, and R. V. Renesse, “Specifica-
tions and proofs for ensemble layers,” in Tools and
Algorithms for the Construction and Analysis of Sys-
tems, LNCS 1579 , pp. 119-133, 1999.

[14] C. Ip, and D. Dill, “Better verification through sym-
metry,” in Proceedings of the International Confer-
ence on Computer Hardware Description Languages
and their Applications, pp. 87-100, Ottawa, Canada,
1993.

[15] C. Ip, and D. Dill, “Verifying systems with replicated
components in Murphi,” in Computer-Aided Verifi-
cation, LNCS 1102, pp. 147-158, 1996.

[16] L. Lamport, R. Shostak, and M. Pease, “The byzan-
tine generals problem,” ACM Transactions on Pro-
gramming Languages and Systems, vol. 4, no. 3, pp.
382-401, 1982.

[17] M. Layouni, J. Hooman, and S. Tahar, Formal Spec-
ification and Verification of the Intrusion-Tolerant
Enclaves Protocol, Technical report, Concordia Uni-
versity, Department of Electrical and Computer En-
gineering, 2003.

[18] C. Longo, G. Bella, and L. Paulson, “Verifying
second-level security protocols,” in Theorem Prov-
ing in Higher Order Logics, LNCS 2758, pp. 352-366,
2003.

[19] N. Lynch and M. Tuttle, “An introduction to in-
put/output automata,” Centrum voor Wiskunde en
Informatica Quarterly Journal, vol. 2, no. 3, pp. 219-
246, 1989.

[20] J. Mitchell, M. Mitchell, and U. Stern, “Automated
analysis of cryptographic protocols using Murphi,
in Proceedings of the IEEE Symposium on Security
and Privacy, pp. 141-153, Oakland, California, USA,
1997.

[21] S. Owre, J. Rushby, and N. Shankar, “PVS: A pro-
totype verification system,” in Automated Deduction,
LNCS 607, pp. 748-752, 1992.

[22] S. Park and D. Dill, “An executable specification,
analyzer and verifier for RMO (Relaxed Memory Or-
der),” in Proceedings of the Seventh Annual ACM
Symposium on Parallel Algorithms and Architec-
tures, pp. 34-41, Santa Barbara, California, USA,
1995.

[23] R. Prisco, B. Lampson, and N. Lynch, “Revisiting
the PAXOS algorithm,” in Distributed Algorithms,
LNCS 1320, pp. 111-125, 1997.

[24] P. Ryan and S. Schneider, The Modelling and
Analysis of Security Protocols: the CSP Approach,
Addison-Wesley, 2000.

International Journal of Network Security, Vol.5, No.3, PP.288–298, Nov. 2007 298

Mohamed Layouni received the BS
degree in electrical engineering from
Tunisia Polytechnic School in 2001,
and the MS degree in electrical and
computer engineering from Concordia
university in 2003. He is currently a
PhD candidate in computer science at
McGill university. His research inter-

ests are in cryptography, privacy preserving technologies,
and the management of digital identity.

Jozef Hooman is a senior lecturer
in the group Informatics for Techni-
cal Applications at the University of
Nijmegen since 1998. Before, he was
a lecturer at the Eindhoven Univer-
sity of Technology, where he also re-
ceived a PhD degree on a thesis enti-
tled ”Specification and Compositional

Verification of Real-Time Systems”. Since 2003 he is
also employed as a research fellow at the Embedded Sys-
tems Institute (ESI), Eindhoven. His current research ad-
dresses various aspects of embedded systems, such as per-
formance and reliability, the combination of formal meth-
ods and UML, and multi-disciplinary modelling.

Sofiène Tahar received in 1990 the
Diploma degree in computer engineer-
ing from the University of Darmstadt,
Germany, and in 1994 the Ph.D. de-
gree with Distinction in computer sci-
ence from the University of Karlsruhe,
Germany. From 1995 to 1996, he was
a postdoctoral fellow at the University

de Montral, P.Q., Canada. Currently he is Professor in
the Department of Electrical and Computer Engineering
at Concordia University, Montreal, P.Q., Canada. Dr.
Tahar is founder and director of the Hardware Verification
Group at Concordia University. He has made contribu-
tions and published papers in the areas of formal hardware
verification, microprocessor and system-on-chip verifica-
tion, VLSI design automation, communications architec-
tures and protocols, and mobile CDMA communications.
Dr. Tahar has been involved in various international con-
ference program committees as well as national research
grant selection committees. In 1998, he received a Canada
Foundation for Innovation (CFI) Researcher Award. In
2001, he has been appointed Concordia Research Chair
in Formal Verification of Microelectronics Systems. Dr.
Tahar is a Professional Engineer in the Province of Que-
bec.

