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Abstract
Graphene is the first example of truly two-dimensional crystals - i t’s just one layer of carbon 

atoms. It turns out to be a gapless semiconductor with unique electronic properties resulting from 

the fact that charge carriers in graphene demonstrate charge-conjugation symmetry between elec­

trons and holes and possess an internal degree of freedom similar to “chirality” for ultrarelativistic 

elementary particles. It provides unexpected bridge between condensed m atter physics and quan­

tum  electrodynamics (QED). In particular, the relativistic Zitterbewegung leads to the minimum 

conductivity of order of conductance quantum e2/h  in the limit of zero doping; the concept of 

Klein paradox (tunneling of relativistic particles) provides an essential insight into electron prop­

agation through potential barriers; vacuum polarization around charge impurities is essential for 

understanding of high electron mobility in graphene; index theorem explains anomalous quantum 

Hall effect.

Keywords: Graphene; Transport Properties; Electron Mobility; Scattering Processes; Quantum 

Hall Effect; Index Theorem; Minimal Conductivity; Tunneling; Klein Paradox; Zitterbewegung.
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In tro d u ctio n

The variety of crystallographic forms of carbon places th is element in to  the  focus of 

a tten tio n  b o th  in term s of basic research as well as applications. The tree-dimensional 

crystallographic forms - g raphite  and  diam ond - are known from the  ancient tim es, and 

are widely used in industrial applications. Recently discovered zero-dimensional  (fullerenes 

or cage molecules1,2,3) and  one-dimensional  (carbon nano tubes4) forms are now extensively 

studied due to  i ts ’ rem arkable and, often, unique m echanical and electronic properties. At 

the  same tim e, despite very intensive research in the  area, no any two-dimensional  form of 

carbon has been known until very recently.

Ironically, this elusive two-dim ensional form  (dubbed graphene), is, probably, the  best 

theoretically  studied carbon allotrope. G raphene - p lanar, hexagonal arrangem ents of car­

bon atom s has been the  s ta rting  point in all calculations on graphite, carbon nanotubes 

and  fullerenes since la te  40s5. However, i ts ’ experim ental discovery has been postponed  till 

2004 when a technique called m icrom echanical cleavage has been employed to  ob ta in  first 

graphene crystals6,7. The observation of a peculiar spectrum  of charge carriers and anom a­

lous quantum  Hall effect (QHE) in graphene8,9 has in itia ted  enorm ously growing interest to  

th is field (for review, see Refs.10,11).

One of the  m ost interesting aspects of the  physics of graphene is th a t it provides a novel 

exam ple of a “feedback” of condensed m a tte r and  m aterial science on th e  fundam ental 

physics. Of course, this is not an unique case; archetypical exam ples are the  concept of 

spontaneously broken sym m etry playing a crucial role in m odern high energy physics and 

quan tum  field theory 12 and  the  use of M ossbauer effect to  check the  general relativ ity  th e­

ory 13 . At the  same tim e, such relations are ra th e r rare  and always tu rn  out to  be very 

fruitful. Actually, discovery of graphene has opened new ways to  study some basic quantum  

relativistic phenom ena which have always been considered as very exotic. P robably  the  m ost 

clear exam ple is the  Klein paradox 14,15, th a t is, a property  of relativistic quantum  particles 

to  p enetra te  w ith a probability  of the  order of unity  th rough  very high and  broad poten tial 

barriers. Previously it was discussed only for experim entally u n a tta inab le  (or very hard  to  

reach) situations such as particle-an tiparticle pair creation a t the  black hole evaporation, 

or vacuum  breakdow n at collisions of super-heavy nuclei. At the  same tim e, it appeared 

to  be relevant for graphene-based electronics16. Here we discuss similarities and  differences
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FIG. 1: Left: Crystallographic structure of graphene. Atoms from different sublattices (A and B) 

are marked by different shades of gray. Right: Band structure of graphene in the vicinity of the 

Fermi level. Conductance band touches valence band at K  and K '  points.

between physics of charge carriers in graphene and  quantum  electrodynam ics (QED).

I. ELECTRONIC STRUCTURE OF GRAPH ENE

From the  point of view of its electronic properties, graphene is a tw o-dim ensional zero-gap 

sem iconductor w ith the  energy spectrum  shown schem atically in Fig. 1 and  its low-energy 

quasiparticles formally described by the  Dirac-like H am iltonian 17,18,19

H 0 =  - i h v F  o V  (1)

where vF ~  106 m s-1  is th e  Fermi velocity, and  o =  (ox , oy) are the  Pauli m atrices. Neglect­

ing m any-body effects, this description is accurate theoretically 17,18,19 and  has also been 

proven experim entally8,9 by m easuring the  energy-dependent cyclotron mass in graphene 

(which yields its linear energy spectrum ) and, m ost clearly, by the  observation of a relativis- 

tic analogue of the  integer QHE which will be discussed below.

The fact th a t charge carriers in graphene are described by the  Dirac-like equation (1) 

ra th e r th a n  the  usual Schrödinger equation can be seen as a consequence of g raphene’s 

crystal structu re , which consists of two equivalent carbon sublattices A and B 17,18,19 (see 

Fig. 1). Q uantum  m echanical hopping between the  sublattices leads to  the  form ation of two 

energy bands, and  the ir intersection near the  edges of the  Brillouin zone yields the  conical 

energy spectrum  near the  “D irac” points K  and  K '. As a result, quasiparticles in graphene
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exhibit the  linear dispersion relation E  =  hkvF , as if they  were massless relativistic particles, 

w ith  the  role of the  speed of light played by the  Fermi velocity vF ~  c/300. Due to  the 

linear spectrum , one can expect th a t g raphene’s quasiparticles behave differently from those 

in conventional m etals and sem iconductors where the  energy spectrum  can be approxim ated 

by a parabolic (free-electron-like) dispersion relation.

A lthough the  linear spectrum  is im portan t, it is not the  only essential feature th a t under­

pins the  description of quan tum  tran sp o rt in graphene by the  D irac equation. Above zero 

energy, the  current carrying states in graphene are, as usual, electron-like and negatively 

charged. At negative energies, if the  valence band is no t com pletely filled, its unoccupied 

electronic sta tes behave as positively charged quasiparticles (holes), which are often viewed 

as a condensed-m atter equivalent of positrons. Note however th a t electrons and holes in con­

densed m a tte r  physics are norm ally described by separate Schrodinger equations, which are 

not in any way connected (as a consequence of the  Seitz sum  ru le20, the  equations should 

also involve different effective masses). In contrast, electron and hole states in graphene 

are interconnected, exhibiting properties analogous to  the  charge-conjugation sym m etry in 

Q ED 18,19. For the  case of graphene, the  la tte r  sym m etry is a consequence of its crystal 

sym m etry because g raphene’s quasiparticles have to  be described by two-com ponent wave- 

functions, which is needed to  define relative contributions of sublattices A and B in the 

quasiparticles’ make-up. The two-com ponent description for graphene is very similar to  the 

one by spinor wavefunctions in QED bu t the  “spin” index for graphene indicates sublattices 

ra th e r th a n  the  real spin of electrons and is usually referred to  as pseudospin a.

There are fu rther analogies w ith QED. The conical spectrum  of graphene is the  result 

of intersection of the  energy bands originating from  sublattices A and B (see Fig. 1) and, 

accordingly, an  electron w ith energy E  propagating  in the  positive direction originates from 

the  same branch of the  electronic spectrum  as the  hole w ith  energy — E  propagating  in 

the  opposite direction. This yields th a t electrons and holes belonging to  the  same branch 

have pseudospin a  pointing in the  same direction, which is parallel to  the  m om entum  for 

electrons and antiparallel for holes. This allows one to  in troduce chirality 19, th a t is formally 

a projection of pseudospin on the  direction of m otion, which is positive and negative for 

electrons and holes, respectively. The te rm  “chirality” is often used to  refer to  the  additional 

built-in  sym m etry between electron and hole p arts  of graphene’s spectrum  and is analogous 

(although not com pletely identical18,21) to  the  chirality in three-dim ensional QED.

4



An alternative view on the  origin of the  chirality in graphene is based on the  concept 

of “Berry phase”22. Since th e  electron wave function is a tw o-com ponent spinor, it has to  

change sign when the  electron moves along the  close contour. Thus the  wave function gains 

an  additional phase 0  =  n.

The analogy w ith the  field theory  takes a very interesting tw ist, should we take into 

account th a t a sheet of graphene m ust always be corrugated. The fact th a t graphene crystals 

always exhibit some finite local curvature can be considered as a consequence of the  M ermin- 

W agner theorem , and has been confirmed experim entally b o th  for graphene samples resting 

on a su b stra te23, as well as for free-hanging graphene films24.

It is well known th a t harm onic approxim ation in the  tw o-dim ensional case doesn’t  pro­

duce a solution w ith  long-range order 25>26>27>28. One can see this as bending instabilities, 

due to  soft long-wavelength phonons, lead to  m em brane crum pling29. A nharm onic coupling 

between bending and  stretching modes changes the  s ituation  drastically  and  prevents the 

crum pling29,30,31. However, the  m em brane should be rippled in a sense th a t typical fluctua­

tions in the  direction perpendicular to  the  surface h (x , y )  has a scale of order of a (L / a ) z ^  a 

where a is the  la ttice  constant, L  is the  size of the  sample and  (  is the  roughness exponent. 

The la tte r  can be estim ated  as (  ~  0.629,31. For a typical sample size L  ~  1^m, the  typical 

am plitude of the  corrugation for free-hanging m em brane a t room  tem peratu re  was estim ated 

as 0.5 nm, w ith  the ir characteristic size being abou t 5nm 24.

These ripples lead to  im portan t consequences for the  electronic s truc tu re  of graphene. 

The nearest-neighbor hopping integral 7  tu rn s out to  be fluctuating due to  its dependence 

on the  deform ation tensor 29

1 ( d u i i duj  i d u k d u k dh  dh
U%j 2 vctej  dxi dxi dxj dxi d x j )  ^

where x i =  (x, y ) are coordinates in the  plane and  u i are corresponding com ponents of the 

displacem ent vector:

<3)
Taking into account th is inhom ogeneity in a s tandard  tight-binding description of the  elec­

tronic s truc tu re  of g raphene5 one can obtain. instead  of E q .(1) an effective Dirac-like Ham il­

ton ian  describing electron states near the  K -point:

H  =  vp(T ( - i h V -----(4)
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where vp  =  \^>r'foa/2h and  A  is th e  “vector p o ten tia l” connected w ith  the  deviations of the 

hopping param eters y  from  the ir u n p ertu rbed  value y0:

c
A x  =  ------ (72  +  73  -  2 7 1 ) ,

2evF
y/3ic

- 4 »  =  2 ^ ( 7 s  - 7 2 >  • < 5 )

where the  nearest neighbors w ith vectors (—a /^ /3 ,  O) ; ( a / 2-\/3, — a /2 )  ; (a/2-\/3, a / 2) are la­

belled 1,2, and 3, correspondingly. This m eans th a t the  roughness fluctuations acts on the 

electronic s truc tu re  near the  K -point as an A belian gauge field32 which is equivalent to  the 

action of random  m agnetic field. This m eans th a t the  bending of graphene violates the 

tim e-reversal sym m etry for a given valley; of course, the  U m klapp processes between K  and 

K ' points will restore th is symmetry. As was suggested in Ref.23 these effective m agnetic 

fields are responsible for suppression of the  weak localization effects in graphene.

W hereas sm ooth deform ation of the  graphene sheets produces gauge field similar to  elec­

trom agnetic one, different topological defects in graphene inducing inter-valley (Umklapp) 

processes can be considered as sources of a non-A belian gauge field; corresponding analogy 

w ith  g rav itation  was discussed in Refs.33,34.

In relativistic quan tum  mechanics, chirality is a consequence of particle-antiparticle sym­

m etry, which also guarantees linear energy spectrum  for massless particles. The discovery 

of graphene opens a unique opportunity , to  investigate chiral particles w ith  parabolic (non- 

relativistic) energy spectrum . Q uasiparticle w ith  such unusual properties can be found in 

bilayer graphene35. For two graphene layers, the  nearest-neighbor tight-binding approxi­

m ation  predicts a gapless s ta te  w ith parabolic touching in K  and  K '  p o in ts35,36 (instead 

of conical band crossing in graphene). The electronic spectrum  in this approxim ation is 

described by a single-particle H am iltonian 35,36

H  =  f  0 -  (Px -  iPy)2 /2 m  \  (6)

y -  (px +  ipy) 2 / 2 m  0 J

where pi =  —ih d / d x i  are electron m om enta operators and  m  is the  effective mass. Here 

we neglected higher-order hopping processes which are im portan t only for very low Fermi 

energies. More accurate consideration 37 gives a very small band  overlap (about 1.6 meV) 

b u t a t larger energies bilayer graphene can be trea ted  as a gapless sem iconductor. At the
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same tim e, electronic sta tes are still characterized by chirality and  by non-trivial Berry phase 

2n 35,36 (in contrast to  the  case of graphene, where the  Berry phase was found to  be n 8,9).

II. CHIRAL TUNNELING  AND THE KLEIN PARADOX

The te rm  Klein paradox 14,15,16 usually refers to  a counterintuitive relativistic process in 

which an  incoming electron sta rts  penetra ting  th rough  a po ten tial barrier if its height V0 

exceeds twice the  electron’s rest energy m c 2 (where m  is th e  electron mass and c the  speed 

of light). In this case, the  transm ission probability  T  depends only weakly on the  barrier 

height, approaching the  perfect transparency  for very high barriers, in stark  contrast to  

the  conventional, nonrelativistic tunneling where T  exponentially decays w ith  increasing 

V0. This relativistic effect can be a ttr ib u ted  to  the  fact th a t a sufficiently strong potential, 

being repulsive for electrons, is a ttrac tive  for positrons and  results in positron states inside 

the  barrier, which align in energy w ith the  electron continuum  outside. M atching between 

electron and positron wavefunctions across the  barrier leads to  the  high-probability tunneling 

described by th e  Klein paradox.

One can th ink  abou t non-relativistic quan tum  m echanical tunneling though a poten tial 

barrier in term s of indeterm inacy principle. Since m om entum  and coordinates of a particle 

can not be m easured sim ultaneously a particle can propagate th rough  a classically forbidden 

region where the  m om entum  is formally im aginary, and only coordinates are well defined. 

In relativistic quan tum  mechanics even coordinate itself cannot be m easured w ith  arb itra ry  

accuracy, due to  pair creation a t this m easurem ent. In another words, the  Klein paradox 

illustrates th a t the  relativistic quantum  mechanics can be consistently form ulated only in 

term s of fields ra th e r th a n  individual partic les38.

A lthough K lein’s gedanken experim ent is now well understood, the  notion of paradox is 

still used widely, perhaps because the  effect has never been observed experim entally. Indeed, 

its observation requires a po ten tial drop ~  m c2 over the  C om pton length h /m c ,  which yields 

enorm ous electric fields39,40(E >  1016V /cm ) and makes the  effect relevant only for such exotic 

situations as, for exam ple, positron production  around super-heavy nuclei39,40 w ith  charge 

Z  >  170 or evaporation of black holes th rough  generation of particle-an tiparticle pairs near 

the  event horizon41 . A t the  same tim e, electronic s truc tu re  of graphene provides us an 

unique opportun ity  for easy experim ental realization of the  Klein u ltrarela tiv istic  tunneling
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in p  — n  junc tions16,42,43.

Let us consider for simplicity the  po ten tial barrier th a t has a rectangular shape and is 

infinite along the  y-axis:

f  V0, 0 < x  < D,
V  (x) =  { 0  (7)

0 otherwise.

This local po ten tial barrier inverts charge carriers undernea th  it, creating holes playing the 

role of positrons. For simplicity, we assume in E q .(7) infinitely sharp edges, which allows 

a direct link to  the  case usually considered in Q E D 14,15. The sharp-edge assum ption is 

justified if the  Fermi wavelength A of quasiparticles is much larger th a n  the  characteristic 

w id th  of the  edge smearing, which in tu rn  should be larger th a n  the  la ttice  constant (to 

disallow U m klapp scattering  between different valleys in graphene). Such a barrier can be 

created by the  electric field effect using a th in  insulator or by local chemical doping7,8,9. 

Im portantly , D irac fermions in graphene are massless and, therefore, there is no formal 

theoretical requirem ent for the  m inim al electric field E to  form  positron-like states under 

the  barrier. To create a well-defined barrier in realistic graphene samples w ith a disorder, 

fields E ~  105V / c m  routinely used in experim ents7,9 should be sufficient, which is eleven 

orders of m agnitude lower th a n  the  fields necessary for the  observation of the  Klein paradox 

for elem entary particles.

It is straightforw ard to  solve the  tunneling problem  for D irac electrons16. We assume 

th a t the  incident electron wave propagates a t an  angle 0  w ith  respect to  the  x  axis and  then  

try  the  com ponents of the  D irac spinor r0 1 and  r0 2 for the  H am iltonian H  =  H 0 +  V  (x) in 

the  following form:

f
^eikxx j re ikxx  ̂ eikyy x  0

^1  (x ,y )  =  < (aeiqxx +  be-iqxx) eikyy, 0 < x  < D,

teikx x+ikyy , x >  D,

s ^gikxx+i4 — r e~ikxX-i^ eikyy x  < 0

^2  (x ,y )  =  <j s' [aeiqxx+ie — be-iqxx-ie) eikyy , 0 < x < D ,  (8 )

steikx x+ikyy+iifi x  > D

where kF = 2n /A  is th e  Fermi wavevector, kx =  kF cos 0  and  ky =  kp  sin 0  are the  wavevec- 

to r com ponents outside the  barrier, qx = \ J { E  — Vo)2 / h 2v 2F — fc2, 9 =  ta n -1  (ky/qx) is the 

refraction angle, s =  s i g n E , s ' =  sign (E  — V0). Requiring the  continuity of the  wave-
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FIG. 2: Transmission probability T  through a 100-nm-wide barrier as a function of the incident 

angle for single- (a) and bi-layer (b) graphene. The electron concentration n outside the barrier is 

chosen as 0.5 x 1012 cm -2  for all cases. Inside the barrier, hole concentrations p are 1 x 1012 and

3 x 1012 cm -2  for solid and dashed curves, respectively (such concentrations are most typical in 

experiments with graphene). This corresponds to the Fermi energy E  of incident electrons w 80 

and 17 meV for single- and bi-layer graphene, respectively, and A w 50 nm. The barrier heights 

are (a) 200 and (b) 50 meV (solid curves) and (a) 285 and (b) 100 meV (dashed curves).

function by m atching up coefficients a, b, t, r , we can find the  the  reflection coefficient r .

Fig. 2a shows exam ples of the  angular dependence of transm ission probability  T  =  | t |2 =

1 — | r  |2 calculated using the  above expression. The barrier rem ains always perfectly tran s­

paren t for angles close to  the  norm al incidence 0  =  0. The la tte r  is the  feature unique to  

massless D irac fermions and directly rela ted  to  the  Klein paradox in QED. One can un­

derstand  th is perfect tunneling in term s of the  conservation of pseudospin. Indeed, in the 

absence of pseudospin-flip processes (such processes are rare  as they require a short-range 

poten tial, which would act differently on A and  B sites of the  graphene la ttice), an  electron 

moving to  the  right can be scattered  only to  a right-m oving electron s ta te  or left-moving 

hole state. The m atching between directions of pseudospin a  for quasiparticles inside and 

outside the  barrier results in perfect tunneling. In the  stric tly  one-dim ensional case, such 

perfect transm ission of D irac fermions has been discussed in the  context of electron tran s­
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port in carbon nano tubes44,45. This is also the  case for the  tw o-dim ensional (2D) problem  of 

graphene which can be directly proven by consideration of the  Lippm ann-Schwinger equation 

for scattering  of a rb itra ry  scalar po ten tial (see Ref.16, supplem entary inform ation).

To elucidate which features of the  anom alous tunneling in graphene are rela ted  to  the 

linear dispersion and  which to  the  pseudospin and  chirality of the  D irac spectrum , it is 

instructive to  consider the  same problem  for bilayer graphene 16. A lthough “massive chiral 

ferm ions” w ith parabolic spectrum  near the  touching point and  Berry phase 2n do not exist 

in the  field theory  the ir existence in the  condensed m a tte r physics (confirmed experim en- 

ta lly35) offers a unique opportun ity  to  clarify the  im portance of chirality in the  relativistic 

tunneling problem  described by the  Klein paradox.

Charge carriers in bilayer graphene are described by an off-diagonal H am iltonian (6 ) 

which yields a gapless sem iconductor w ith  chiral electrons and  holes having a finite mass 

m . An im portan t formal difference between the  tunneling problem s for single- and  bi­

layer graphene is th a t in the  la tte r  case there are four  possible solutions for a given energy 

E  =  ± h 2kp /2m . Two of them  correspond to  propagating  waves and  the  o ther two to  

evanescent ones. Accordingly, for constant po ten tial Vi , eigenstates of H am iltonian (6 ) 

should be w ritten  as

f a  (x, y) =  (a^eikixx +  ble-ikixx +  +  dle-Kixx) eikyx

ip2 (x, y) = Si (^aieikixX+2i<l)i +  b.e-ikixx-2i4>i _  Cih.e^ , x  _  ^ e ~ Kixx ĵ eikyV (9)

where

Si = s ign (Vi — E ) ; hkix =  a /2 m  \ E  — V, \ cos 0»; hkiy =  y^2m  \E — V,\ sin cf>i

Kix = ^ J k 2x +  2kiy, hi =  1 +  sin2 (pi -  sin (pi

To find the  transm ission coefficient th rough  barrier (7 ), one should set d1 =  0 for x  < 0, 

b3 =  c3 =  0 for x  > D  and  satisfy the  continuity conditions for b o th  com ponents of 

the  wavefunction and the ir derivatives. For the  case of an electron beam  th a t is incident 

norm ally (0 =  0) and  low barriers V0 < E  (over-barrier transm ission), we ob ta in  tp1 =  —xp2 

b o th  outside and inside the  barrier, and the  chirality of fermions in bilayer graphene does 

not m anifest itself. In th is case, scattering  a t the  barrier (7) is the  same as for electrons 

described by the  Schrodinger equation. However, for any finite 0  (even in the  case V0 < E ), 

waves localized a t the  barrier interfaces are essential to  satisfy the  boundary  conditions.

10



The m ost intriguing behavior is found for V0 > E , where electrons outside the  barrier 

transform  into holes inside it, or vice versa. Exam ples of the  angular dependence of T  in 

bilayer graphene are p lo tted  in Fig. 2b. They show a dram atic  difference as com pared w ith 

the  case of massless D irac fermions. There are again pronounced transm ission resonances at 

some incident angles, where T  approaches unity. However, instead  of the  perfect transm ission 

found for norm ally-incident D irac fermions (see Fig. 2a) , our num erical analysis has yielded 

the  opposite effect: Massive chiral fermions are always perfectly reflected for angles close to

0  =  0 . At the  same tim e, there is always a “magic angle” when the  transm ission probability  

is equal to  one.

The fact th a t a barrier (or even a single p  — n  junction) incorporated  in a bilayer graphene 

device should lead to  exponentially small tunneling current can be exploited in developing 

graphene-based field effect transisto rs (F E T )16. Such transisto rs are particu larly  tem pting  

because of the ir high m obility and  ballistic tran sp o rt a t subm icron distances7,8,9. However, 

the  fundam ental problem  along this rou te  is th a t the  conducting channel in single-layer 

graphene cannot be pinched off due to  the  Klein paradox (alternative view on this fact 

based on the  concept of the  m inim al conductivity will be discussed in the  next section). 

This severely lim its achievable on-off ratios for such F E T s7 and, therefore, the  scope for 

the ir applications. A bilayer F E T  w ith a local gate inverting the  sign of charge carriers 

should yield much higher on-off ratios.

III. PROBLEM  OF M INIM UM  CO NDUCTIVITY

One of am azing properties of graphene is its finite m inim al conductivity which is of the 

order of the  conductance quan tum  e2/ h  per valley per spin; it is im portan t to  stress th a t 

th is is th e  “quan tization” of conductivity ra th e r th a n  of conductance8. This is not only very 

in teresting conceptually bu t also im portan t in the  view of po ten tial applications of graphene 

for ballistic field-effect tran sis to rs7,16. At the  same tim e, this phenom enon is in tim ately  

rela ted  w ith specifically quantum -relativ istic phenom enon known as Z itterbew egung38,46.

N um erous considerations of the  conductivity of a two-dim ensional massless D irac fermion 

gas do give this value of the  m inim al conductivity w ith accuracy of some factor of the  order of 

u n ity46,47,48,49,50,51,52,53,54,55. It is really surprising th a t in this case there is a final conductivity 

for an ideal crystal, th a t is, w ithout any scattering  processes46,49,54,55.
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The D irac H am iltonian (1) in the  secondary-quantization representation  takes the  form

H  =  v Y l  ^ P a p ^ p  (10)
p

and the  corresponding expression for the  current operato r

j =  e v Y ^  ^ p a ^ p  (11) 
p

where p  is the  m om entum  and ^ p  =  ^ p  1; ^ p 2j  are pseudospinor electron operators. Here 

we om it spin and  valley indices (so, keeping in m ind applications to  graphene, the  results 

for the  conductivity should be m ultiplied by 4 due to  two spin projections and  two valleys). 

S traightforw ard calculations result in the  following tim e evolution of the  electron annihilation 

operato r

and for the  current operator

e —  P i  ( i  +  ] +  e - P * ( i  _

p p

j  (t) =  j 0 (t) +  j 1 (t) +  j 1 (t) 

p p

®p ( 12)

mo = f E * lp
p  (p a ) i

(T-------- 5----- h - ( T X pp 2 p ^ p e 2i£pi (13)
p p

p

where ep =  v p / h  is th e  particle frequency. The last te rm  in E q .(13) corresponds to  the  “Z it­

terbew egung” , a phenom enon connected w ith the  uncertain ty  of the  position of relativistic 

quan tum  particles due to  the  inevitable creation of particle-antiparticle pairs a t the  position 

m easurem ent 38.

To calculate the  conductivity a  (u) following Ref.46 we will try  first to  use the  K ubo 

form ula56 which reads for tw o-dim ensional isotropic case:

CO 3

°  M  =  ƒ  dtel0Jt ƒ  dX (j [t -  i \ )  j)  (14)
0 0

where =  T -1  is the  inverse tem peratu re, A  is th e  sample area. In the  sta tic  lim it u  =  0 

tak ing  into account the  Onsager relations and analytic ity  of th e  correlators (j (z) j)  for 

—f l <  Im z <  0 one h as56
CO

a = IA ƒ (15)
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Usually, for ideal crystals, the  current operato r com mutes w ith  the  H am iltonian and thus j  (t) 

does not depend on tim e. In th a t case, due to  E q .(14) the  frequency-dependent conductivity 

contains only the  D rude peak

<td (co) =  lim  (uj) (16)
2A t ^ o T  v '

E ither the  spectral weight of the  D rude peak is finite and, thus, the  sta tic  conductivity is 

infinite, or it is equal to  zero. It is easy to  check th a t for the  system  under consideration the 

spectral weight of the  D rude peak is proportional to  the  m odulus of the  chemical po ten tial 

|^ | (cf. Eq.(44) of Ref.53) and  thus vanishes a t zero doping (^ =  0). It is the  Zitterbewegung, 

i.e. the  oscillating te rm  j 1 (t) which is responsible for nontrivial behavior of the  conductivity 

for zero tem peratu re  and  zero chemical po ten tial ( th a t is, the  case of no charge carriers). A 

straightforw ard calculation gives a form al result

CO

a =  ^ h  ƒ  det62 ^  ^
0

where one delta-function originates from  the  in tegration  over t  in E q .(15) and the  second 

one - from  the  derivative of the  Fermi d istribu tion  function appearing a t the  calculation of 

the  average over p roduct of Ferm i-operators. Of course, the  square of the  delta  function 

is not a well-defined object and thus E q .(17) is meaningless before specification of the  way 

how one should regularize the  delta-functions. A fter regularization the  integral in E q .(17) 

is finite, bu t its value depends on the  regularization procedure (see Refs.49,55).

To circumvent the  problem  of am biguity in the  expression for a  in E q .(17) it is instructive 

to  follow the  alternative L andauer approach to  calculate the  conductiv ity57,58. Let us assume 

th a t our sample is the  ring of length  L y in y  direction; we will use th e  L andauer form ula to  

calculate the  conductance in the  x  direction (see Fig. 3 ). There is still an  uncertain ty  in 

the  sense th a t the  conductivity tu rn s out to  be dependent on the  shape of the  sample. To 

have a final transparency  we should keep L x finite. On the  o ther hand, periodic boundary 

conditions in y  direction are nonphysical and  we have to  choose Ly as large as possible to  

weaken the ir effects. Thus, for tw o-dim ensional s ituation  one should choose L x ^  L y.

In the  coordinate representation  the  D irac equation a t zero energy takes the  form

(Kx  +  iKy  )^1  =  0

(Kx — iKy  )^2  =  0 (18)

13



FIG. 3: Geometry of the sample. The thick arrow shows the direction of current. (solid line) 

and (dashed line) are wave functions of the edge states localized near the top and the bottom 

of the sample, correspondingly.

where Ki  =  / J '  . G eneral solutions of these equations are ju s t a rb itra ry  analytical (or 

complex conjugated analytical) functions:

01  =  01  (x +  iy)

02  =  -02 (x -  iy) (19)

Due to  periodicity in the  y  direction b o th  wave functions should be proportional to  exp (ikyy) 

where ky =  2 n n / L y , n  =  0, ± 1 , ± 2 ,.. . .  This m eans th a t the  dependence on x  is also fixed: the 

wave functions are proportional to  exp ( ± 2 n n x / L y) .  They correspond to  the  states localized 

near the  bo ttom  and the  top  of the  sample (see Fig. 3 ).

To use the  L andauer formula, we should in troduce boundary  conditions a t the  sample 

edges (x =  0 and  x  =  Lx). To be specific, let us assume th a t the  leads are m ade of doped 

graphene w ith  the  po ten tial V0 <  0 and  the  Fermi energy E F =  v k F =  — V0. The wave 

functions in the  leads are supposed to  have the  same y-dependence, th a t is, 0 1>2 ( x , y ) =  

0 1)2 (x) exp (ikyy ). Thus, one can try  the  solution of the  D irac equation in the  following 

form:

01  (x)

eikxx re ikxx

te ikx x

x  < 0 

0 < x  < L x 

x  > L x

14



02  (x)

eikxx+i^_re-ikxx-itp x  < 0

be-kyx, 0 < x  < L x (20)

telkxx+l^ , x  > L xx

where s in 0  =  ky/ k F , k x = \ j k 2F — k 2. ¿From  the  conditions of the  continuity of the  wave 

functions, one can find the  transm ission coefficient

Tn =  \ t (kv)\2 =  , C° S?  ' * 6  <21)cosh (kyL x ) — sin 0

Furtherm ore, one should assume th a t k FL x ^  1 and  pu t 0  ~  0 in E q .(21). Thus, the  trace 

of the  transparency  which is ju s t the  conductance (in units of e2/ h )  is

O 1 L
T r T  = Y  ------ 2-------- - ~  — y~ .  (22)

cosh (kyLx) n L x

Assuming th a t the  conductance is equal to  a j f  - one finds the  contribution to  the  conductivity 

equal to  e2/(n h ) . E xperim entally8, it is close to  e2/h ,  th a t is, roughly, th ree tim es larger 

th a n  this estim ation. This discrepancy known as a “missed pi(e) problem ” is still not solved.

One should stress th a t this is the  gapless character of the  spectrum  and the  chirality 

ra th e r th a n  the  linear dispersion relation which lead to  the  m inim al conductivity. Different 

estim ations for the  bilayer graphene give the  same order of m agnitude for the  conductiv- 

ity46,59,60,61,62,63, in agreem ent w ith  experim enatl observations35.

A nother approach to  qualitative understanding  of the  m inim al conductivity is based 

on the  Klein paradox 16. In conventional 2D systems, strong enough disorder results in 

electronic sta tes th a t are separated  by barriers w ith  exponentially small transparency64,65. 

This is known to  lead to  the  A nderson localization. In contrast, in b o th  graphene m aterials 

all po ten tial barriers are relatively transparen t (T  «  1 a t least for some angles) which does 

not allow charge carriers to  be confined by po ten tial barriers th a t are sm ooth on an atom ic 

scale. Therefore, different electron and  hole “puddles” induced by disorder are not isolated 

bu t effectively percolate, thereby suppressing localization. In the  absence of the  localization, 

a s tandard  M ott estim ation of the  m inim al conductivity assum ing th a t the  mean-free p a th  

cannot be sm aller th a t electron wave-length 66 im m ediately gives the  m inim al conductivity 

~  e2/ h67.
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IV. INDEX THEOREM  AND ANOM ALOUS Q UANTUM  HALL EFFECT

The anom alous QHE in graphene8,9 is probably the  m ost striking dem onstration  of the 

massless character of the  charge carrier spectrum  in graphene. In tw o-dim ensional systems 

w ith  a constant m agnetic field B  perpendicular to  the  system  plane the  energy spectrum  is 

discrete (Landau quantization). For the  case of massless D irac fermions the  energy spectrum

takes the  form 68,69

E va = ^ 2 \ e \ B h v 2F ( v + l / 2 ± l / 2 )  (23)

where vF is the  electron velocity, v  =  0 , 1 , 2 ... is th e  quan tum  num ber and the  te rm  w ith 

± 1 /2  is connected to  the  chirality. Ju st to  rem ind th a t in the  usual case of the  parabolic 

dispersion relation the  L andau level sequence is E  =  hwc(v  +  1/2) where u c is the  frequency 

of electron ro ta tion  in m agnetic field (cyclotron frequency)20,70.

A n im portan t peculiarity  of L andau levels for massless D irac fermions is the  existence of 

zero-energy states (w ith v  =  0 and the  minus sign in equation (23)). This s ituation  differs 

fundam entally  from  usual sem iconductors w ith parabolic bands where the  first L andau level 

is shifted by hwc/2.  The existence of the  zero-energy L andau level leads to  an anom alous 

QHE w ith half-integer quantization  of the  Hall conductivity, instead  of the  integer one (for 

a review of the  QHE, see, e.g., Ref.71). Usually, all L andau levels have the  same degeneracy 

(a num ber of electron states w ith a given energy) which is ju s t proportional to  a m agnetic 

flux th rough  the  system. As a result, p lateaus in the  Hall conductivity corresponding to  the 

filling of the  first v  levels are ju s t integer (in units of the  conductance quant e2/h ) . For the 

case of massless D irac electrons, the  zero-energy Landau level has twice sm aller degeneracy 

th a n  any o ther level (it corresponds to  the  minus sign in the  equation (1) whereas the  energy 

level proportional to  ^Jp w ith  integer p > 1 are obtained  twice, for u = p  and minus sign, 

and  for v  =  p  — 1 and  plus sign). A discovery of this “half-integer Q H E” 8,9 was th e  m ost 

direct evidence of the  D irac fermions in graphene.

A deeper view on the  origin of the  zero-energy L andau level and thus the  anom alous 

QHE is provided by the  famous Atiyah-Singer index theorem  which plays an  im portan t role 

in th e  m odern quantum  field theory  and  theory  of superstrings72. The D irac equation has a 

charge-conjugation sym m etry between electrons and  holes. This m eans th a t for any electron 

s ta te  w ith a positive energy E  a corresponding conjugated hole s ta te  w ith the  energy —E  

should exist. However, the  sta tes w ith zero energy can be, in general, anom alous. For
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curved space (e.g., for a deformed graphene sheet w ith some defects of crystal structure) 

a n d /o r  in the  presence of so called “gauge fields” (the usual electrom agnetic field provides 

ju s t th e  simplest exam ple of these fields) sometimes an  existence of sta tes w ith  zero energy 

is guaranteed  by topological reasons, th is states being chiral (in our case th is m eans th a t 

depending on the  sign of the  m agnetic field there is only sublattice A or sublattice B states 

which contribu te to  the  zero-energy L andau level). This means, in particu lar, th a t the 

num ber of these states expressed in term s of to ta l m agnetic flux is a topological invariant 

and  rem ains the  same even if the  m agnetic field is inhom ogeneous8. This is an  im portan t 

conclusion since, as discussed in section 1 , the  ripples on graphene create strong effective 

inhomogeneous m agnetic fields leading, in particu lar, to  suppression of weak localization 23. 

However, due to  these topological argum ents they cannot destroy the  anom alous QHE in 

graphene. A bout applications of the  index theorem  to  tw o-dim ensional systems, and, in 

particu lar, to  graphene see also Refs.73,74.

An alternative view on the  origin of the  anom alous QHE in graphene is based on the  con­

cept of the  “Berry phase” which was discussed above in connection w ith  the  Klein paradox. 

W hen chiral electron moves along the  close contour its wave function gains an additional 

phase 0  =  n. In quasiclassical term s (see, e.g., Refs.20,75), sta tionary  states are nothing bu t 

electron standing waves and  they can exist if the  electron orbit contains, a t least, half of the 

wavelength. Due to  the  additional phase shift by the  Berry phase, th is condition is satisfied 

already for the  zeroth length of the  orbit, th a t is, for zero energy. O ther aspects of the  QHE 

in graphene are considered in papers76,77,78,79.

In the  previous section we have discussed an absence of localization in graphene as one 

of the  m ain consequences of relativistic quan tum  effects such as the  Klein paradox. At the 

same tim e, the  localization is of crucial im portance for the  QHE providing a well-defined 

Hall p la teau 71. Here we dem onstrate th a t the  localization by a scalar po ten tial V  in the 

m agnetic field is possible. For simplicity, let us assume the  case of a weak one-dim ensional 

inhom ogeneity w ith  the  po ten tial V  =  V (y ) much smaller th a n  the  cyclotron quan tum  of 

the  order of hvF/ l  where l =  (nc / \ e \B ) 1/2 is th e  m agnetic length.

Using a s tandard  gauge for the  vector po ten tial A x =  A z =  0, A y =  B x  one can w rite the 

D irac H am iltonian for the  problem  as

H  =  H  +  H 2 (24)
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H l =  | °  ~ m r  < * " * )  | , (25)
- i h v F ( £  +  f ) o

-  (  V ( y )  hvF£- \
H 2 = Ky> dy . (26)

\ - h v F§-y V ( y )  j

Let us try  eigenfunctions of the  H am iltonian (24) w ith the  energy E  as an expansion in the 

basis of appropria te  harm onic oscillator problem:

where

rc f  dk
*  =  E  J  (*»)

v A h . x )  =  D „ r ^ ( x i l % )  I ,  (27)

where i =  1,2 is the  pseudospinor index and D v (z) ~  exp (—z 2/A) H v ( z / \ / 2 )  the  We­

ber functions80. A fter straightforw ard calculations one obtains a set of equations for the 

expansion coefficients cV  (ky):

-  —  i 1 -  M  c{2) (ky) = j — c ^ ] (ky) ~  j  (ky -  qy) cÿ  (qy) (u, ky \ij', qy)
V=0 ' 

r c

(1 +  v) ¿41} (ky) =  —  4 2) (fcy) -  J ~ Y ^ J  -T ^v  (ky -  qy) c f )  (qy) (u, ky \ij', qy)

(V, k , y , qy) = J  M  * , ( *  , X) , (28)

v(q) is a Fourier com ponent of V ( y ). For the  case of a weak (|V  (y)| ^  hvF/l)  and sm ooth 

po ten tial one can neglect a mixing of different Landau bands, sim ilar to  the  case of QHE 

for conventional electron gas71 . As a result of direct calculations one can dem onstrate th a t 

in this case th e  solution of E q .(28) describes the  L andau wave functions of nonpertu rbed  

problem  w ith the  orbit center y0 satisfying the  equation

E ± ĥ V 2 ^ = V ( y 0).  (29)

Thus, the  L andau levels in the  case under consideration are ju s t sm eared into the  bands of 

localized states w ith  the  localization radius of order of the m agnetic length, sim ilar to  the 

case of the  usual QHE 71.
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V. NO NLINEAR SCREENING OF CHARGE IM PURITIES

In QED, vacuum  polarization effects due to  creation of v irtual electron-positron pairs 

by an external po ten tial are of a crucial im portance81,82. Due to  the  smallness of the  fine 

s truc tu re  constant aQED =  e2/h c  ~  1/137 these effects leading to  logarithm ic corrections 

to  the  Coulomb po ten tial are ra th e r small, except the  case of very small distances. In 

graphene, the  effective fine s truc tu re  constant a  =  e2/ h v Fe is of the  order of unity  (e is the 

dielectric constant due to  substrate; for the  case of graphene on quartz one should choose83 

e ~  2.4 — 2.5) and the  corresponding effects can be of crucial im portance for tran sp o rt 

p roperties84. Due to  the  absence of explicitely small param eters describing correlation effects 

in graphene it is very difficult to  consider this problem  rigorously and the  situation  still is 

controversial. Nevertheless, the  vacuum  polarization effects are in our opinion im portan t 

and  should be taken into account in any fu ture theory.

A general nonlinear theory  of screening in the  system  of in teracting  particles can be 

form ulated in a framework of the  density functional approach85. In th is theory  a to ta l 

po ten tial V  (r) acting on electrons is equal

V  (r) =  V0 (r) +  Vind (r) (30)

where V0 (r) is an external po ten tial and Vind (r) is a po ten tial induced by a red istribu tion  

of electron density:

Vind (r) =  — f  dr, U^  ™ +  Vxc (r) , (31)
e J |r  — r  |

where the  first te rm  is the  H artree po ten tial and the  second one is the  exchange-correlation 

potential. We consider here only a red istribu tion  of charge carriers in the  external im purity  

potential
Z e 2

V, (r) =  — . (32)
er

tak ing  into account contributions of the  crystal la ttice  po ten tial and  of electrons in com­

pletely filled bands via a dielectric constant e and  com pensated homogeneous charge density 

—en. Here Z  is th e  dimensionless im purity  charge (to be specific, we will assume Z  > 0; it 

can be easily dem onstrated  th a t, actually, in our final expressions Z  should be ju s t replaced 

by |Z |). This kind of approach is valid a t a spacial scale much larger th a n  a la ttice  constant; 

in all o ther aspects, it is formally exact until we specify the  expressions for Vxc and  n  [V (r)].
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The Thom as-Ferm i theo ry86 which is, actually, the  simplest approxim ation in the  density 

functional approach, was used in Ref.84. It is based on the  two assum ptions: (i) we neglect 

the  exchange-correlation po ten tial in com parison w ith the  H artree po ten tial in E q .(31) and 

(ii) we pu t n  (r') =  n  [p — V  (r')], where n  (p) is a density of a homogeneous electron gas 

w ith  chemical po ten tial p. The form er assum ption m eans th a t we are in terested  in the 

long-wavelength response of the  electron system  and thus the long-range Coulomb forces 

dom inate over the  local exchange-correlation effects. The la tte r  one holds provided th a t the 

external po ten tial is sm ooth enough. A rigorous s tatem ent is th a t an  addition  of a constant 

po ten tial is equivalent to  the  shift of the  chemical potential. In particu lar, the  Thom as-Ferm i 

theory  gives an exact expression for a sta tic  inhomogeneous dielectric function e(q) in the 

lim it of small wavevectors q ^  020. The Thom as-Ferm i theory  of atom s is asym ptotically  

exact in the  lim it of infinite nuclear charge86.

In the  Thom as-Ferm i theory  E q .(31) reads

Vmd(r (33)
e J |r — r'|

The function n  (p) is expressed via the  density of sta tes N  ( E ):

n  (p) =  ƒ  d E f  ( E ) N  ( E ) =  ƒ  d E N  ( E ) (34)

where f  ( E ) is the  Fermi function, and  the  last equality is valid for zero tem pera tu re  (we 

will restric t ourselves here only to  th is case). For the  case of graphene w ith the  linear energy 

spectrum  near the  crossing points K  and  K '  one has

/ \ 1 V  M /oc \
n ( " ) =  i F 4 '  <35)

where we have taken into account a factor 4 due to  two valleys and  two spin projections.

Let us s ta rt first w ith  the  case of zero doping (p =  0) where, according to  the  linear 

response theory, there is no screening a t all. S ubstitu ting  E qs.(33), (32), and (35) into 

E q .(30), in troducing the  no ta tion
e2

V ( r )  = — F ( r )  (36)
er

and in tegrating  over the  polar angle of vector r ',  we ob ta in  a nonlinear integral equation for 

the  function F  (r) :

F { r )  =  Z - ? Q . J  ^  ( / )  m
n  J  r' r +  r' \ r  +  r' I

0
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* ' W =  ,, %  . 2 P S )J y  1 — k2 sin2 ^

where
7t/2

is the  com plete elliptic integral,

<39>
for the  case of graphene on SiO2 Q  ~  2 .

An approxim ate solution of the  integral equation (37) a t r ^  a gives the  following result 84

Z
F  (r) ~ ----------------- (40)

V ; 1 + Z Q \ n r-  y ’

which is formally similar to  th a t in Q ED 82 bu t w ith a much larger value of the  in teraction 

constant. Note th a t logarithm ically divergent corrections to  the  electron effective mass in 

undoped graphene due to  the  vacuum  polarization effects have been considered in Ref.87.

For the  case of doped graphene the  m ain result of Ref. 84 is the  replacem ent of the  bare 

charge im purity  Z  by
Z

Z '  ~ ------
1 +  i

where

■ ■  a s  »
is the  inverse screening radius. This weakens essentially this scattering  m echanism  since 

Q  In ^  is of order of ten  for typical charge carrier concentrations. Pertu rbative  estim ations 

of the  electron m obility88 should be thus m ultiplied by th is factor squared. As a result, the 

m obility for the  same param eters tu rn s out to  be two order of m agnitude larger. Instead of 

a concentration-independent mobility, we ob ta in  a m obility proportional to  ln2 (kFa). More 

accurately, one should use an  expression for the  m obility obtained  by A ndo83 (see Eq.(3.27) 

and  Fig. 5 of th a t paper) bu t w ith the  replacem ent of Z  by Z * when calculating the  streng th  

of the  Coulomb interaction.

VI. SCATTERING OF DIRAC FERM IONS BY  SHORT-RANGE IM PU RITY  PO­

TENTIAL

Here we will discuss quan tum  relativistic effects in the  electrons scattering  by a short- 

range potential. It appears th a t in the  case of graphene the  contribution of such defects to
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the  resistivity is essentially smaller th a n  for the  conventional nonrelativistic two-dim ensional 

electron gas. We argue th a t th is conclusion should help our understanding  of rem arkably 

high charge carrier mobilities observed in graphene7,8,9.

Let us consider the  case of a small concentration of point defects (to  be specific, we 

will call them  im purities) w ith  the  concentration n imp and  the  angle-dependent scattering 

cross-section a  (0 ) . T hen th e  defect contribution to  the  resistivity p reads51

2 1
p e2vF N  (E f  ) t  (kF )'

2n

1 — n impvF [  (1 -  cos 4>) (43)
t  (kF) J

0

where N  (E F) =  2kF/ n h v F is the  density of sta tes a t the  Fermi level (taking into account 

the  double spin degeneracy and  two valleys), t  is th e  mean-free path . Note th a t the  p roduct 

v f N  (E f ) is proportional to  k F =  \ f ï ïn  (n is th e  electron concentration) for b o th  ultrarela- 

tivistic and nonrelativistic two-dim ensional electron gas and  thus any essential difference in 

the ir tran sp o rt properties can be rela ted  only to  the  scattering  cross-section.

To determ ine the  scattering  cross section one has to  solve the  tw o-dim ensional D irac 

equation which, for the  case of massless particles and  radially  sym m etric scattering  poten tial

V  (r) takes the  from  (cf. R ef.38 for three-dim ensional case):

-  -9,  (r) — -jr— [E — V  (r)] ƒ< (r) =  0,dr r hvF

^  +  — fi M  - - ¡ ¡ - [ E - V  (r)] g, (r) =  0, (44)
dr r hvF

where l =  0 , ± 1 ,... is th e  angular-m om entum  quan tum  num ber, gi (r) eil^ and  f  (r) ei(1+1)^ 

are com ponents of the  D irac pseudospinor; to  be specific we will consider the  case of electrons 

E  =  hvFk > 0.

M odifying a s tandard  scattering  theory89 for the  tw o-dim ensional case one should try  the 

solutions of Eq. (44) outside the  region of action of the  po ten tial in the  form

gi (r) =  A  Ji (kr)  +  t i (kr) ,

fi (r) =  iA  Ji+i (kr) +  t iH i+l (kr) , (45)

where the  term s proportional to  Bessel (Hankel) functions describe incident (scattering)
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waves,

da  (0 ) 
d0

2
n k Y 1 ti e t '

ìl$ (46)

The D irac equation for u ltrarela tivstic  particles (44) has as im portan t sym m etry w ith 

respect to  replacem ent f  <— ► g, l <— ► — l — 1 which m eans t i =  t - i - 1 . Thus, E q .(46) can be

rew ritten  in the  form
da  (0 ) 

d0
2

n k
y t i  cos [(l +  1/ 2 ) 0 ]
l=0

(47)

The back scattering  (0 =  n) is absent rigorously, as was discussed in the  section 2.

For the  simplest case of the  po ten tial V  (r) =  V0 a t r < R  and  V  (r) =  0 a t r > R,  using 

boundary  conditions of continuity of the  wave functions a t r  =  R  one finds

Ji (qR) Ji+i (kR)  — Ji (kR) Ji+i (qR)
ti (k) = (48)

H (1) (kR) J + i  (qR) — Ji (qR) (kR)  

where q =  (E  — V0) / h v F . For the  case of small energy, E  ^  V0, k R  ^  1 which is typical 

for graphene one has
J .  , (q R) / k R \ 2i+ 1

(49)m v +i
(l!)2 Ji (q R ) V 2 /

and  thus the  s-scattering  (I =  0) dom inates. S ubstitu ting  E q .(49) into E qs.(47) and (43), 

one finds the  estim ation for the  im purity  contribution to  the  resistivity p ~  (h /4 e 2) n impR 2. 

This m eans th a t scattering  centers w ith  the  radius of po ten tial R  of order of in teratom ic 

distances and  small concentration are irrelevant for the  electron tran sp o rt in graphene giving 

negligible contribution to  the  resistivity.

If we would repeat the  same calculations for nonrelativistic electron gas90 we would obtain, 

instead  of E q .(48)

(k/q)  Ji (qR)  Ji+ i (kR)  -  Ji (kR)  Ji+i (qR)
ti (k)

H 1  (kR)  Ji+i (qR) -  (k/q)  Ji (qR) H + i  (kR)r(i)
(50)

where k  and  q are, again, wavevectors outside and inside the  po ten tial region. In this case 

the  s-scattering  phase vanishes for small energies not linearly b u t only logarithm ically and 

one obtains much larger resistivity

h n imp (51)
4e2 n  ln2 (kFR)

(note th a t the  same estim ation holds for the  case of massless D irac electrons in a particu lar 

case of the  resonant scattering  when J0 (qR)  =  0).
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So, the  basic conclusion is th a t whenever any po ten tial works as a resonant scatterer in 

the  case of massive particles, the  scattering  is non-resonant in the  case of massless D irac 

fermions in graphene, except some special values of param eters.

Conclusions

The exam ples considered dem onstrate th a t graphene provides an unexpected bridge be­

tween the  condensed m a tte r  physics and quan tum  field theory. The im pact of the  ex­

perim ental discovery of th is m ateria l on different areas of physics and  industry  can ’t  be 

overestim ated. F irst of all, graphene is the  first exam ple of tru ly  two-dim ensional crystals, 

in contrast w ith num erous quasi-two-dim ensional crystals known before. This opens m any 

in teresting questions concerning therm odynam ics, la ttice  dynam ics and s truc tu ra l proper­

ties of such systems which are, however, beyond the  scope of this paper. Furtherm ore, 

single-layer graphene provides first experim ental realization of a two-dim ensional massless 

D irac fermion system. T he analogy w ith  the  quantum  field theory  proved crucial for under­

standing of graphene unusual electronic properties, such as anom alous QHE, absence of the 

A nderson localization, inefficiency of scattering  by point defects, etc. The bilayer graphene 

has a very unusual gapless parabolic spectrum  providing an exam ple of the  system  w ith 

electron wave equation different from  b o th  Dirac and Schrodinger ones.
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