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A bstract

We present c v m h a p l o , a probabilistic method for haplotyping in general pedi­
grees with many markers. c v m h a p l o  reconstructs the haplotypes by assigning in 
every iteration a fixed number of the ordered genotypes with the highest marginal 
probability, conditioned on the marker data and ordered genotypes assigned in pre­
vious iterations. c v m h a p l o  makes use of the Cluster Variation Method ( c v m ) to 
efficiently estimate the marginal probabilities. In simulated data sets where exact 
computation was feasible, we found that the accuracy of c v m h a p l o  was high and 
similar to that of maximum likelihood methods. In simulated data sets where exact 
computation of the maximum likelihood haplotype configuration was not feasible, 
the accuracy of c v m h a p l o  was similar to that of state of the art Markov chain 
Monte Carlo ( m c m c ) maximum likelihood approximations when all ordered geno­
types were assigned, and higher when only a subset of the ordered genotypes was 
assigned. c v m h a p l o  was faster than the m c m c  approach and provided more de­
tailed information about the uncertainty in the inferred haplotypes. We conclude 
that c v m h a p l o  is a practical tool for the inference of haplotypes in large complex 
pedigrees.

IN T R O D U C T IO N
The problem of haplotyping is to infer for each individual the paternally inherited alleles 
and the maternally inherited alleles from the unordered genotype data. Haplotyping is an 
im portant tool for mapping disease-susceptibility genes, especially of complex diseases. It 
is an essential step in the analyses used for the mapping of quantitative tra it loci ( q t l ) 

in animal pedigrees. As genotyping methods become increasingly cheaper, efficient and 
accurate algorithms for inferring haplotypes are desirable.

Since the marker data are generally not informative enough to unambiguously in­
fer the ordered genotypes, a probabilistic modelling approach can be used to deal with 
the uncertainties. The computer programs m e r l i n  (Abecasis et al., 2002), GENEHUNTER 
(Kruglyak et al., 1996) and s u p e r l i n k  (Fishelson and Geiger, 2002; Fishelson et al., 2005) 
reconstruct exact maximum likelihood haplotype configurations in general pedigrees. Due 
to the exponential increase of computation time and memory usage with pedigree size 
( m e r l i n , GENEHUNTER) or the tree-width of the graphical model associated with the 
likelihood function ( s u p e r l i n k ) ,  application of these programs to large pedigrees and 
many markers typical of QTL-mapping studies may not be feasible, especially when some 
of the individuals have missing genotypes or no genotype information at all. Approx­
imate statistical approaches based on m c m c  sampling such as SIMWALK2 (Lange and 
Sobel, 1996) use the same likelihood function as the exact probabilistic approaches and 
consequently may achieve very high accuracy. m c m c  methods can be generally applied 
and have modest memory requirements. Although in theory com putation time does not 
scale exponentially with the problem size, in practice it can be very long and convergence
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of the Markov chain can be difficult to assess. An efficient statistical approach based on 
a heuristic approximation of conditional probabilities was proposed by Gao et al. (2004), 
however it has been tested only on data sets with no missing genotypes.

To overcome problems of efficiency several non-statistical approaches have been de­
veloped. W ijsman (1987) proposed a zero-recombinant haplotyping m ethod th a t is linear 
in the number of markers and individuals. Recently, efficient algorithms were described 
by Zhang et al. (2005); Baruch et al. (2005). Application of these approaches is limited 
to data sets w ithout forced recombinantion events. Qian and Beckmann (2002) presented 
a six-rule algorithm to reconstruct minimum recombinant haplotypes. Since com puta­
tion time is quadratic in pedigree size and cubic in the number of markers, application 
to large data  sets may not be practical. Li and Jiang (2004) proposed an expectation 
maximization ( e m ) approach th a t approximately minimizes the number of recombination 
events. They also proposed an integer linear programming approach th a t minimizes the 
number of recombination events. Although computation time of the la tter scales linearly 
with the rate of missing genotypes, it scales exponentially with the number of individuals. 
Windig and Meuwissen (2004) described an efficient haplotype reconstruction algorithm 
for general pedigrees. In spite of the improved efficiency of these methods, im putation of 
missing genotypes can be problematic due to the lack of a statistical treatm ent of missing 
data.

We present a statistical approach, implemented in the computer program c v m h a p l o , 

th a t combines the general applicability and accuracy of m c m c  approaches with high effi­
ciency. O ur haplotype inference algorithm is an iterative procedure where each iteration 
consists of the following two operations:

1. Estim ation of the marginal probabilities of all unassigned ordered genotypes condi­
tioned on the assigned ordered genotypes and the marker data;

2. assignment of a number of the ordered genotypes with the highest conditional 
marginal probabilities.

Like SIMWALK2, it can be applied to any pedigree and any number of markers. It provides 
detailed information about the uncertainty in the inferred haplotypes. Com putation time 
of CVMHAPLO scales approximately linearly with the number of markers and individuals.

We use the Cluster Variation Method ( c v m ) (Kikuchi, 1951; Morita, 1990; Yedidia 
et al., 2005) to approximately compute the marginal probability distributions of ordered 
genotypes. The CVM is a variational approximation designed for efficient estimation of 
marginal probabilities in complex probability models for which exact computation is not 
feasible. The CVM estimates marginal probabilities by optimizing marginal distributions 
on overlapping subsets of variables for which exact probability calculus is feasible. The 
Cluster Variation M ethod is closely related to the Belief Propagation algorithm (Pearl, 
1988; Yedidia et al., 2005) and has recently gained a lot of interest in the machine learning 
and computer science community. It has been successfully applied in computer vision
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(Weiss, 1997), channel decoding (McEliece et al., 1998) and param etric linkage analysis 
on extended pedigrees (Albers et al., 2006).

We evaluate our approach in simulated and real data  sets. We restrict the evalua­
tion to SNPs and discuss extension to markers with more than  two alleles. We compare 
CVMHAPLO with exact maximum likelihood approaches and the state of the art MCMC 
maximum likelihood approximation of SIMWALK2.

M E T H O D S
N o ta tio n  a n d  d efin itio n s: We explain the notation th a t we use with the small pedigree 
example in fig. 1. For each person i and marker l there is a pair of ordered genotype 
variables {Gl,p, Gl,m}, which are the paternal and m aternal alleles. For each non-founder 
i in the pedigree and each marker l there are the paternal and m aternal segregation 
indicators {vl,p, vl,m}. The founder and non-founder individuals are denoted by F and 
NF, respectively. We denote the vector of all ordered genotype variables by G , and the 
vector of all segregation indicators by v. Both G  and v  are unobserved experimentally. 
Instead, the observed genotypes consist of unordered pairs of alleles M? for a subset of 
persons and markers. We denote by M  the vector of all observed allele pairs. The marker 
map is assumed to be known; the recombination frequency between marker l and l — 1 is 
denoted by 9l,l-1 and m l denotes the prior allele frequencies for marker l.

Given the marker data  M , one can compute the probability distribution over the 
ordered genotype variables G  (and the segregation indicators v). If the pedigree and the 
number of markers is large, such a computation is intractable and cannot be done in a 
practical amount of time. W hen we can perform an exact computation, we will denote the 
resulting marginal probabilities as P(-|-) and when we are not specific about whether the 
marginals are exact or approximate, we will denote the resulting marginal probabilities 
as Q(-|-).

T h e  a lg o r ith m  CVMHAPLO: Algorithm 1 shows CVMHAPLO in pseudo-code. The or­
dered genotypes and segregation indicators are assigned to a specific value in a number 
of iterations, labeled by n. Lines 1-3 represent the initialization of the algorithm. Lines 
4-17 represent the iterative assignment procedure.

In iteration n of the algorithm, we use the CVM to compute the approximate marginal 
probability of all unassigned ordered genotypes, conditioned on all observed genotypes 
M  and conditioned on all ordered genotypes th a t have been assigned in all previous 
iterations, which we denote by G a in ed . The resulting conditional probability is denoted
by Q(Gl,p, Gl,m|M , Ga™-1̂ )  (line 5 in algorithm 1). This is the computationally intensive 
step of the algorithm. It can be either performed exactly or approximately using the CVM. 
The la tter approach is explained in the appendix.
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Subsequently, a number of ordered genotypes will be assigned. All ordered genotypes 
for which Q (G ,p,G i ’ m|M , Gi™-1̂ )  =  1 for some value of G ’p,G i ’ m will be assigned, as 
well as an additional number of ordered genotypes in the following way. For each marker 
and person we compute

¿ p  =  m ^  Q(G‘'p,G ''m|M , G i’s'sigl)
G G mi ’ i

and record the ordered genotype th a t yields the maximum (line 7 in algorithm 1). This 
is a trivial computation. For instance, if

Q(G1 ,p =  A ,G l,m =  A |M , G in s id )  =  0.9,

Q (G l,p =  A,G1 ,m =  B |M , Gin-gn’ed) =  0.1,

Q(G1p =  B ,G l,m =  A |M , Gin-gn’ed) =  0.0,

Q(G1,p =  B , G l m =  B |M , Gin-gn’ed) =  0.0,

then =  0.9 and it is obtained when {G1 ,p, Gl ’m}map =  {A, A}. We sort the in 
decending order (line 8) and select the pN L  ordered genotypes with the highest value 
(line 9)1.

In line 6 the partial haplotype configuration Gi™"-1^  of the previous iteration is checked 
for consistency as described in the appendix. The consistency check verifies th a t the 
partial haplotype configuration has a non-zero likelihood under the probabilistic model. 
W hen an inconsistency is detected, it is assumed th a t too many ordered genotypes have 
been assigned per iteration, and the algorithm is re-initialized in lines 12-14 with a lower 
value of p.

In line 10, G insigned is updated so tha t it contains all assigned ordered genotypes. 
The procedure of estim ating marginal distributions and assigning ordered genotypes is 
repeated either until all ordered genotypes have been assigned or until a stopping criterion 
has been reached.

C o n fid en ce  in  th e  a ss ig n m en t: W hen there are many missing values, there is a large 
uncertainty about the value of the ordered genotypes. In this case, maybe some ordered 
genotypes can be assigned with a relatively high confidence but others not. This is 
signalled by the conditional marginal probabilities computed above. For instance, in the 
above example it is clear tha t if the four probabilities are all 0.25, no reliable assignment 
can be made. In this case, it is clear tha t a full reconstruction of all ordered genotypes is 
likely to produce many errors and it is im portant to monitor the quality of the iterative 
assignment procedure. We suggest to use the values of the qmlap as an indication of the

1N  denotes the number of individuals in the pedigree and L  the number of markers and p  is a 
percentage tha t is specified by the user.
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reliability of the assignment procedure, in the following way. Denote by {i, l} the set of all 
ordered genotypes that have been assigned up to iteration n, and qm̂ ’1 is the probability 
of the assignment at the time that was made. We define the confidence in the total 
assignment up to iteration n as the average of these assignment probabilities:

Confidence(n) =  100% x . ^  q m ^ , (1)
|{i,l}| {i,i}

We demonstrate numerically, that this confidence measure is a good indicator of the 
accuracy of the assigned ordered genotypes. Therefore, one can use this measure to 
monitor the quality of the assignment procedure and stop when it reaches a prespecified 
value.

A pp lica tio n  of th e  C lu s te r  V aria tio n  M ethod : Exact inference of marginal prob­
abilities requires a summation over an exponential number of configurations of ordered 
genotypes and segregation indicators compatible with the marker data, which may not 
be feasible in practice for complex pedigrees and a large number of markers. The idea 
of the Cluster Variation Method is to avoid the exponential sum by optimizing marginal 
distributions of overlapping subsets of variables, i.e. the clusters. The subsets of vari­
ables must be chosen such that exact probability calculus on the corresponding cluster 
marginal distributions Qa (xa |-), where a  labels a cluster, is feasible. In essence, the CVM 
exactly models correlations between variables that are contained in the same cluster and 
approximates correlations between variables that are contained in different clusters. In 
the appendix we provide mathematical details of the CVM; here we will focus on the 
practical aspects of applying the CVM.

Obtaining approximations of the marginal distributions of the ordered genotypes with 
the CVM proceeds along the following lines. First the probabilistic model must be defined. 
We make use of the standard pedigree likelihood assuming Hardy-Weinberg equilibrium 
and linkage equilibrium; the specific form of the distribution is given in the appendix. As 
a preprocessing step we eliminate a number of symmetries from the model, such as the 
unknown phase in the ordered genotypes of the founders (see appendix for details). Sec­
ond, the CVM requires specification of the set of clusters B =  { a1; a 2, ...}  that determines 
the approximation. Below we describe our choice of clusters for the problem of haplotype 
inference; this is the default cluster choice of CVMHAPLO.

Third, given the set of clusters and the probabilistic model, the Cluster Variation 
Method prescribes that the so called free energy FCvm({Qa }) must be minimized with 
respect to the cluster marginal distributions to obtain the optimal approximation, i.e. 
{Qa} =  a r g m in ^ } FCVM({Qa }). The minimization must be performed under the con­
straint that the clusters have identical marginal distributions on variables that are con­
tained in more than one cluster. The CVM does not prescribe how this minimization must 
be performed, it only provides the analytic form of the functional FCVM({Qa }) in terms
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of the marginal distributions {Qa }, the parameters of the probabilistic model, the marker 
data and the assigned ordered genotypes. The assumption is that the specific form, which 
is given in the appendix, yields accurate approximations. We apply the provably conver­
gent double loop algorithm described by Heskes et al. (2003) to perform the numerical 
minimization of the CVM free energy.

Finally, after the numerical minimization procedure has converged, the marginal dis­
tribution of an ordered genotype can be obtained by straightforward marginalization of 
the marginal probability distribution of one of the clusters, e.g. a, that contains the 
ordered genotype of interest:

Q(Gi'P, Gi,m|M, G i^ n ’ed) =  £  Q a(xa|M , G i^ e d )  «  P (C ‘,p, G ^ M ,  G a^gL ).
Xa\{Gi’P,Gi’m }

Specification of th e  c lu ste rs  for CVMHAPLO: For the purpose of haplotype inference 
we have chosen the clusters such that the corresponding CVM approximation can be 
applied to any pedigree, regardless of inbreeding and size, and the numerical minimization 
can be performed within reasonable time and a reasonable amount of memory usage for 
large problems. Computation time and memory usage of the CVM increase exponentially 
with cluster size, but approximately linearly with the number of clusters. The accuracy 
of the CVM approximation generally increases with cluster size, resulting in a trade-off 
between accuracy and efficiency.

For every non-founder individual i and each pair of adjacent markers l and l +  1, we 
define the cluster

7jl,l+ 1  _ I s-'tl,p /''tl,m l,p l,m /~il,p /''tl,m /~il,p /''tl,m
i I i i i > i > i > fa(i)’ fa(i)’ mo(i) ’ mo(i) >

-̂rl+1 ,p .<-fl+1,m l+1 ,p l+1 ,m -̂rl+1 ,p .<-fl+1 ,m -̂rl+1 ,p .<-fl+1 ,m\ /r)\
Gi > Gi > Vi > Vi > Gfa(i) > Gfa(i) > Gmo(i)> Gmo(i) J . (2)

This basic cluster is illustrated in figure 1. Each cluster contains the genotype variables of 
the child and both its parents for two adjacent markers. It also contains the paternal and 
maternal segregation indicators of the child for these two adjacent markers. As a result, 
the CVM treats the inheritance of the child from its parents for two adjacent markers with 
exact probability calculus2. With this choice the number of clusters scales linearly with 
both the number of individuals and the number of markers, irrespective of the pedigree 
structure. As we will show, computation time and memory usage for this choice of clusters 
are acceptable, while the accuracy of the approximation is high.

2The observed genotypes M i  are not explicitly included in the cluster. Because their value depends 
only on the unobserved genotype variables through the conditional probability tables P ( M 1 \Gli’p,G li’m ) 
(see appendix for details), as a pre-processing step we integrate over M i before applying the CVM.
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I llu s tra tio n  of CVMHAPLO: In this section we demonstrate the procedures with a sim­
ple example. We consider a family consisting of a father, a mother, a daughter, and a 
son. Genotype data is simulated for three markers at 5 cM intervals. The true ordered 
genotypes are

marker father mother daughter son
1 BA BB BB BB
2 AA BB AB AB
3 AB BA AB AA

We now apply CVMHAPLO to this data set. W ith the choice of clusters given by (2), 
we have four clusters for this example:

B.1,2
da

B 1,2

B 2,3
da

B 2,3

ir 'i,p  n i,m nl Gda , Gda , G
2 ,m/^2 ,p y-'l

Gda , Gda

^ 1 ,m y'i 1,p y'i 1,m 1,p 1 ,m 
, Gfa , Gmo, Gmo , vda , vda 
^ 2 ,m G2 ,p /''i2,m 2 ,p 2 ,mn 
Gfa , Gmo, Gmo , Vda , Vda }

f1 ,P G 1,m r'i, G1,P{Gso , Gso , Gfa

G2 ,p 2 ,m /^2 ,p
so , Gso , Gfa ,

Gl,m
Tfa , Gmo, Gmo

2̂ ,™ 2 ,p
/il,^  1,p 1 ,m />,1 ,p /|}1 ,mGfa , Gmo, Gmo , vso , vso 
2̂ ,™ fa ,r(2 ,m ẑ 2 ,p /o2 ,m „,2 ,p /1,2 ,m'i 

Gfa , Gmo, Gmo , Vso , Vso } 
r ^ 2 ,p s~i2,m ,^2 ,p s~i2,m /-'t2,p /-'t2,m 2 ,p 2 ,m 
{Gda , Gda , Gfa , Gfa , Gmo, Gmo , vda , Vdada da
z-'i3,p f'i3,mGda , Gda ,

fa
r*3,p 
Gfa , G3,m

mo mo
3,p g 3,™ v3,p v3,mlfa , Gmo) Gmo , vda , vda J

2 ,m g 2 ,p g 2 ,™ v2 ,p v2 ,mfa , Gmo , vso , vso
G3,m /'i3,p ~̂t3,m 3,p 3,mi 

fa , Gmo, Gmo , Vso , Vso }

{G2 ,p G2 ,m G2 ,p G2 ,m G2 ,p G2 ,m ^ 2 ,p 1)2

G3,p 3,m /i3,p 
so , Gso , Gfa ,

Here da denotes the daughter, so denotes the son, fa denotes the father, and mo denotes 
the mother. For every child there are two clusters, one for markers 1 and 2, and one for 
markers 2  and 3. A cluster contains the paternal and maternal genotype variables (e.g. 
Gdap) and segregation indicators (e.g. v ^ )  of the child, and the genotype variables of both 
parents (e.g. Gj2,m) for the two markers in the cluster. Thus the genotype variables and 
segregation indicators of the children defined for marker 2  are contained in two clusters; 
the genotype variables of the parents defined for marker 2  are contained in all four clusters. 
With this set of clusters the CVM will yield approximate probabilities.

With p =  0.5 %, CVMHAPLO requires four iterations to reconstruct the haplotypes. 
In table 1 the marginal distributions of the ordered genotypes as computed with the 
CVM, and the ordered genotypes that are assigned from these marginals, are shown for 
all four iterations. In the first iteration all homozygous genotypes can be assigned, since 
the corresponding marginal distributions indicate that one configuration has probability 
one. Also the ordered genotypes of the daughter and son for marker 2  can be assigned as 
these are unambiguously determined by the homozygous genotypes of the parents. The 
heterozygous ordered genotype of the father for marker 1 is assigned in the first iteration 
since it has the highest qmap. Note that the symmetry due to the unknown phase of founder 
genotypes was removed beforehand (see appendix for details). In the second iteration the
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marginal distributions are re-estimated conditioned on the marker data and the ordered 
genotypes assigned in the first iteration. The ordered genotype of the father for marker 
3 now has the highest probability: qmap =  0.9 and is assigned: the MAP-configuration 
is {G^f, G3am}map =  {Gjip =  A, Gjip =  B }. In the third iteration the ordered genotype 
of the daughter for marker 3 is assigned and finally in the fourth iteration the ordered 
genotype of the mother for marker 3 is assigned.

The inferred haplotype configuration is identical to the true haplotype configuration 
and is an exact maximum likelihood solution. In this example, the absolute error of the 
CVM approximation of the conditional marginal probabilities of the ordered genotypes is 
in the order of 10-4. Note that the true ordering of the genotypes was not available to 
the algorithm.

M A TER IA LS

D ata  sets
We evaluated CVMHAPLO on two pedigrees that were taken from experimental linkage 
studies. Pedigree I is an extended pedigree and concerns an affected/not-affected disease 
with a complex mode of inheritance. It consists of 53 individuals, of which 13 have been 
genotyped with an Affymetrix 10K SNP array. The pedigree is shown in figure 2. Pedigree 
II is a complex pedigree of 368 individuals, of which 262 were genotyped for 8  SNP markers 
spanning approximately 0.08 cM. It is taken from a QTL fine mapping study in a chicken 
population. The pedigree is shown in simplified form in figure 3. Pedigree IIsub contains 
a subset of the individuals in pedigree II and is shown in figure 4. Exact computations are 
feasible in this pedigree. In all analyses the Haldane mapping function was used. Details 
of the data sets analyzed are given in table 2 .

CVMHAPLO

1 0 0  outer loop iterations and 2  inner loop iterations of the double loop algorithm were used 
for the first iteration of the haplotype inference algorithm; in the subsequent iterations
10 outer loop and 2 inner loop iterations were used, see appendix for details. For all 
simulations we used p =  0.5%.

Im plem entation
The implementation of CVMHAPLO was done in C++ and compiled with gcc version 4.1.1.
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Hardware

All simulations were performed on a cluster of 5 machines with two dual-core 2.4 GHz 
AMD64 processors each and 4 GB of physical memory available per processor, running 
the Linux operating system.

RESULTS

A ccuracy of the m arginal d istributions o f ordered genotypes
In this section we assess the accuracy of the CVM approximation of the marginal distri­
butions of the ordered genotypes as computed with CVMHAPLO for problems for which 
exact likelihood computations are feasible. We compared the CVM approximation of the 
marginal distributions Q(Gi’p, C \’ m|M) with the exact marginal distributions P (G ,p, G \’ m|M) 
using the absolute difference as error measure. Unfortunately there are no linkage pro­
grams that provide exact marginal distributions; therefore we implemented the junction 
tree algorithm (Jensen, 1996; Jensen and Kong, 1999) to calculate these.

40 replicates of 5 markers were simulated for pedigree I (configuration A in table 2 ). 
Figure 5 shows a scatter plot of the exact marginal probabilities versus the approximate 
CVM marginal probabilities. The mean error was 0.0044 ±  0.012. Eight of the CVM 
estimates had an error larger than 0.25; the figure shows that these correspond to exact 
marginal probabilities that were close to 0.5. The error of the CVM estimates was generally 
smaller for exact marginal probabilities close to one and zero. This is relevant because 
the ordered genotypes that correspond to these extreme marginal probabilities are the 
ordered genotypes with the least uncertainty that will be assigned by CVMHAPLO in every 
iteration, while the ordered genotypes with the most uncertainty will not be assigned.

We also determined the accuracy of the approximation in the same pedigree and con­
figuration with real marker data. The mean error was 0.0036 ±  0.0073, with a maximum 
error of 0.059. We conclude that the CVM estimates of the marginal probabilities of the 
ordered genotypes are accurate for the purpose of haplotyping.

A ccuracy of the inferred haplotypes
In this section we evaluate the accuracy of the reconstructed haplotypes in simulated 
data sets where the true inheritance was known. We define accuracy as the percentage of 
assigned ordered genotypes equal to the true simulated ordered genotype.

C om parison  w ith  exact m axim um  likelihood m ethods: We assessed the perfor­
mance of CVMHAPLO in two pedigrees for which exact calculation of the maximum likeli­
hood haplotype configuration was feasible. We analyzed pedigree I with 5 markers using 
our own implementation of the junction tree algorithm and pedigree Ilsub with 8  markers
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using superlink (configuration B and G in table 2). Replicates were simulated with 
30, 4 0 ,. . . ,  90 % of the individuals genotyped for all markers. The genotyped individuals 
were chosen at random. For each percentage of genotyped individuals 40 replicates were 
simulated, resulting in a total number of 280 replicates per pedigree.

Column two and three in table 3 show that the accuracy of respectively the exact 
maximum likelihood haplotype configuration and the haplotype configuration obtained 
with CVMHAPLO were similar for all percentages of genotyped individuals, for both pedi­
grees. The fourth and fifth column show the log-likelihoods log P (Gassigned, vassigned, M) 
of the corresponding haplotype configurations. For both pedigrees the log-likelihoods of 
CVMHAPLO were very close to the exact maximum log-likelihoods when the percentage of 
genotyped individuals was high, and slightly lower when the percentage of genotyped indi­
viduals was low. Although in theory higher likelihoods should result in higher accuracies, 
we find that the differences in the likelihoods did not significantly affect the accuracy.

We also performed a partial haplotype reconstruction where we used the confidence 
measure (1) as a stopping criterion. The sixth column in the table shows the accuracy of 
the haplotype configuration obtained from the iteration n of CVMHAPLO where the confi­
dence in the assignment was 99 %. Indeed, independently of the percentage of genotyped 
individuals the accuracy of this partial haplotype configuration was approximately 99 %. 
The last column shows that the percentage of assigned ordered genotypes in the partial 
haplotype configuration decreased when fewer individuals had genotype information. In 
pedigree I the percentage of assigned ordered genotypes was lower than the percentage 
of genotyped individuals, while it was higher in pedigree Ilsub, indicating a non-trivial 
dependence of the accuracy on the structure of the pedigree and distribution of the geno- 
typed individuals over the pedigree. These results show that (1) provides a useful stopping 
criterion to obtain partial assignments of high accuracy.

To assess the performance of CVMHAPLO in the real data sets of pedigree I and Ilsub, 
we performed the simulations of table 3, however simulating genotype data for the same 
individuals as in the real data set (configuration A and H in table 2) rather than for indi­
viduals selected at random. For pedigree I we found that the log-likelihoods of CVMHAPLO 
were on average 2.03% lower than the exact maximum log-likelihood, but that the accu­
racy was higher (75.95 % and 73.02 %, respectively). For pedigree IIsub we found that the 
log-likelihoods of CVMHAPLO were on average 2.02% lower than the exact maximum log- 
likelihood, but that the accuracies were comparable (91.56 % and 92.05 %, respectively). 
These results are compatible with the results of table 3: when the pedigree contains un­
typed individuals the accuracy of CVMHAPLO is comparable to the accuracy of the exact 
maximum likelihood approach, while the log-likelihoods are slightly lower.

When applied to the real data sets of pedigree I and pedigree IIsub, CVMHAPLO 
yielded a haplotype configuration with a log-likelihood that was 2.3 % lower than the 
exact maximum log-likelihood for pedigree I, and a log-likelihood that was equal to the 
exact maximum log-likelihood for pedigree IIsub. These results suggest that CVMHAPLO 
will also accurately infer haplotypes in the real data sets.
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We conclude that the accuracy of the haplotype configurations inferred with CVMHAPLO 
was high and similar to the accuracy of exact maximum likelihood haplotype configura­
tions.

C om parison  w ith  SIMWALk2: For pedigree I 40 replicate data sets with 20 markers 
were simulated and for pedigree II 8  replicate data sets with 8  markers were simulated 
(respectively configuration C and F in table 2). The number of replicates for pedigree II 
was relatively small due to the long computation times of SIMWALk2. Exact computation 
of the maximum likelihood haplotype configuration was not feasible in these data sets. 
Figure 6  shows the accuracy as a function of the percentage of assigned ordered genotypes 
of CVMHAPLO and SIMWALk2 for both pedigrees.

By default, SIMWALk2 assigns only a subset of the alleles from the unordered marker 
data, the size of which depends on the informativeness of the marker data (the two 
leftmost data points ‘sim w alk2 (all)’ and ‘sim w alk2 (genotyped)’ in figure 6 ). The 
subset consists of those alleles that are transmitted to an observed genotype given the 
inheritance vector of the (approximate) maximum likelihood configuration. SIMWALK2 
can also be forced to assign all alleles in the haplotypes (the two rightmost data points 
‘SIMWALk2 (all)’ and ‘sim w alk2 (genotyped)’ in figure 6 ). Depending on the number of 
iterations, CVMHAPLO infers anywhere between zero and all of the ordered genotypes.

When all alleles in the haplotypes are assigned (100 % on the horizontal axis), the 
accuracy of CVMHAPLO was not signficantly different from the accuracy of SIMWALk2, 
both on the subset of genotyped individuals and the full pedigree. As expected, the 
accuracy of SIMWALk2 and CVMHAPLO was higher in the subset of genotyped individuals. 
The likelihoods of the haplotype configurations inferred with CVMHAPLO were slightly 
lower than the likelihoods of the haplotype configurations inferred with SIMWALK2: in 
pedigree I the mean difference in the log-likelihood was -1 .6  % ±  1.2 %; in pedigree 
II the mean difference was -3 .3  % ±  2.3 %. Apparently the lower likelihoods did not 
significantly affect the overall accuracy, in agreement with our previous results.

In the case of partial assignments, we infer from figure 6  that the accuracy of SIMWALk2 
and CVMHAPLO are similar for the genotyped individuals, and that the accuracy of 
CVMHAPLO is significantly higher for the individuals without genotype information. The 
accuracy of CVMHAPLO was very high when only the ordered genotypes with high con­
fidence (eq. 1 ) were assigned, and decreased as more ordered genotypes were assigned. 
In contrast, the criterion used by SIMWALk2 to flag the alleles that could be assigned 
with certainty was more coarse. This difference was more pronounced in pedigree I than 
in pedigree II. We attribute this difference to a large extent to the larger percentage 
of missing data in pedigree I. We conclude that CVMHAPLO gives more accurate partial 
assignments than SIMWALk2 when the percentage of missing values is high.
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Scaling w ith  th e  nu m b er of m arkers: To assess the scaling of the accuracy of 
c v m h a p l o  with the number of markers, we analyzed 1 0  replicates with 2 0  markers and 1 0  

replicates with 200 markers for pedigree I (configuration C and D in table 2, respectively). 
In order to obtain replicates with comparable marker informativeness, the replicates with 
2 0 0  markers consisted of 1 0  adjacent blocks of the markers in the replicates with 2 0  mark­
ers. Analysis of the replicates with 2 0 0  markers with c v m h a p l o  was feasible, whereas 
s i m w a l k 2  did not converge in reasonable time (one week for a single replicate).

Figure 7 shows that the average accuracy for the replicates with 20 markers and 200 
markers was similar. We conclude that the accuracy of c v m h a p l o  does not degrade with 
the number of markers.

T h e  effect of m ark er-m ark er linkage d isequilib rium : We investigated the effect of 
marker-marker linkage disequilibrium ( l d ) on the accuracy of the haplotype reconstruc­
tion of c v m h a p l o  and SIMWALK2. For pedigree I, l d  was generated as follows. Five 
haplotype blocks each containing four markers were defined. Next, for each block a pool 
of four haplotypes with randomly chosen frequencies was created; the resulting mean pair­
wise l d  coefficient |D'| was 0.85 ±  0.28 for markers within a haplotype block. For pedigree 
II l d  was generated by assuming a single haplotype block with a pool of 25 haplotypes 
with randomly chosen frequencies. This resulted in a mean pair-wise l d  coefficient |D'| 
was 0.59 ±  0.36. For each block the haplotypes of the founders were assigned by sampling 
a haplotype from the corresponding pool, and the haplotypes for the non-founders were 
obtained by gene-dropping, whereby recombination between markers within a block was 
allowed. Thus, the alleles of markers in different blocks were assumed to be in equilib­
rium. For pedigree I and II respectively 40 and 8  replicates were simulated. These were 
analyzed using the correct marginal allele frequencies (obtained by marginalizing the true 
haplotype frequencies), however under the assumption of linkage equilibrium between the 
markers. Thus, the replicates were analyzed using an incorrect model. The results were 
compared to results obtained with an equal number of replicates simulated under the 
assumption of linkage equilibrium and the same marginal allele frequencies. Both l d  and 
non-LD replicates are shown as configuration E and F in table 2.

We did not find a significant effect of LD on the accuracy of the inferred haplotypes 
for pedigree I and II, neither for the genotyped individuals nor for the individuals with­
out genotype information (results not shown). We found this to be the case for both 
c v m h a p l o  and SIMWALK2. In the presence of LD we also observed that the log-likelihood 
of the fully reconstructed CVMHAPLO haplotype configurations were slightly lower than 
the log-likelihood of the haplotype configurations of SIMWALK2, similar to what we found 
in data sets simulated without LD. Thus we expect the effect of marker-marker LD, which 
may be assumed to be present in real data sets, on the accuracy of the inferred haplotypes 
to be small.
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E valua tion  of th e  confidence m easure: Figure 6  demonstrates that it would be use­
ful to have an indication of the reliability of the (partial) haplotype configuration, as the 
accuracy decreased significantly when a larger subset of ordered genotypes was assigned. 
For these replicates we therefore compared the confidence level from eq. 1 to the accuracy 
of the (partial) haplotype configuration inferred in iteration n of CVMHAPLO, for all n. 
Figure 8  shows for a given confidence level the mean accuracy of the corresponding hap- 
lotype configurations, where the leftmost circle and square data point correspond to the 
haplotype configurations where all the ordered genotypes were assigned (the haplotypes 
obtained in the final iteration). We see that for pedigree I the confidence was lower than 
the accuracy, but still highly correlated with it. For pedigree II the confidence of the 
haplotype configurations gave a very good indication of the accuracy. The difference is 
most likely due to the fact that the marker data in pedigree II were more informative 
than in pedigree I. We conclude that the confidence measure (1) gives a useful indication 
of the accuracy (assuming absence of genotype errors) and may be used to control the 
accuracy of the inferred haplotypes.

C om parison o f com putation  tim e and m em ory usage
Finally we report the computation time and memory usage for all the experiments that 
were performed. For CVMHAPLO we report the computation time of the marginal poste­
rior distributions (computed in the first iteration) and the computation time of the full 
reconstruction (computation time of all subsequent iterations) separately. When applica­
ble we report the values for SIM W AL k 2  and for the exact computation with the junction 
tree algorithm.

For all analyses performed with CVMHAPLO we used a fixed value of p =  0.5% for the 
percentage of ordered genotypes assigned in every iteration, independent of the number 
of markers and individuals. Theoretically, for a fixed percentage p computation time of 
CVMHAPLO is expected to scale linearly with the number of markers and approximately 
linearly with the number of individuals depending on the pedigree structure, which is 
confirmed by the results shown in table 4. Although CVMHAPLO required more memory, 
it was significantly more efficient than SIM W A L k 2  for the complex pedigree II, and scaled 
more favorably with the number of markers.
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D ISC U SSIO N

In order to obtain useful results with maximum likelihood methods, it must be assumed 
that the distribution of the parameters that are being estimated (for the purpose of 
haplotype inference these are the ordered genotypes) is peaked around the maximum 
likelihood solution. If genotype information is available for all individuals and markers, 
this assumption is generally valid, however, if there are many missing genotypes this 
assumption may not be valid. Although a maximum likelihood estimate will yield the 
most likely value of the parameters given the observations, it is not guaranteed that all 
parameters can be inferred with certainty. Indeed, as we have shown in our experiments, 
the accuracy of a partial haplotype configuration can be significantly different from a full 
haplotype reconstruction. Therefore in the case of missing marker data there is a clear 
need to monitor the quality of the haplotype inference and we suggest to use equation
1 for this purpose. Our results indicate that it can be used to obtain partial haplotype 
configurations of high accuracy.

In this light it is interesting to note that although our approach does not explicitly 
maximize the likelihood, it inferred haplotype configurations with nearly optimal likeli­
hood when full genotype information was available. In case of missing genotypes, the 
log-likelihood of the inferred haplotype configurations was ~  2  percent lower than the 
exact maximum log-likelihood; however the accuracy was not significantly different. Our 
results suggest that the assignments that are suboptimal in the sense of the likelihood 
are limited to the ordered genotypes that cannot be inferred with high certainty from the 
marker data.

An important parameter of c v m h a p l o  is p, the percentage of ordered genotypes 
assigned in every iteration. In general, for smaller values of p the accuracy will be higher 
and the computation times longer. In our experience values of p smaller than 0.5% did 
not yield significantly higher accuracies. With p =  0.5% only 4 replicates of the ~  700 
replicates analyzed the algorithm required a restart with p =  0.25%. For higher values of 
p the number of replicates where c v m h a p l o  made an inconsistent assignment increased 
somewhat. Therefore we recommend to use the default value of p =  0.5%, but it can 
be adjusted by the user. When an inconsistent assignment has been detected we expect 
that it is not necessary to completely restart the algorithm as we do now, but that it may 
also suffice to reset the algorithm only a few iterations backwards. In principle genotype 
elimination methods (Lange and Goradia, 1987; O’Connell and Weeks, 1998) can be used 
to detect and prevent incompatibe assignments. We plan to investigate whether more 
computationally inexpensive heuristics can be devised to prevent inconsistent assignments.

We compared our approach to the approximate maximum likelihood haplotyping al­
gorithm of s i m w a l k 2 ,  since like our approach, s i m w a l k 2  is a statistical approach that 
does not require absence of recombinations or tightly linked markers and does not assume 
the number of recombinations to be minimal. Furthermore, SIMWALK2 is commonly used 
by practitioners. In previous work on the estimation of parametric l o d  scores in pedi­
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grees without inbreeding (Albers et al., 2006), we showed that our approach based on 
the c v m  was more efficient than the MCMC-sampler implemented in the computer pro­
gram M o r g a n  (Thompson, 1994; Thompson and Heath, 1999; George and Thompson,
2003). Since m o r g a n  has no option for haplotyping and cannot be applied to general 
pedigrees, we believe a comparison here would not be of added value. We also consid­
ered the Integer Linear Programming algorithm implemented in p e d p h a s e  (Li and Jiang,
2004), since this algorithm does not require absence of recombinations. On the simulated 
data sets for pedigree I (configuration C in table 2 ), the accuracy was on average 10 % 
lower than that of c v m h a p l o , and the log-likelihoods were on average 50 % lower than 
those of SIMWALK2. It could not analyze the real and simulated data sets (configura­
tion F) for pedigree II within one week. The Block-Extension algorithm in p e d p h a s e  

produced inconsistent output for the data sets simulated for pedigree I and terminated 
with error status for the data sets simulated for pedigree II. Finally, on simulated data 
(400 SNPs covering 100 cM) in a pedigree of 400 outbred mice, where a small number 
of parents had many offspring, we found that our approach was more accurate than the 
approach described by Windig and Meuwissen (2004), although it was less efficient (re­
sults not shown). This approach requires that sufficient genotyped offspring are available 
for each parent and therefore we expect that it will be less accurate than SIMWALK2 and 
c v m h a p l o  on the data sets considered in this article, especially for pedigree I. For these 
reasons we have not included this approach in our comparison.

Like SIMWALK2, our haplotype inference algorithm currently does not explicitly ac­
count for linkage disequilibrium between the markers. In dense SNP panels, such as the 
Affymetrix 10K and Illumina 6 K panels, significant marker-marker LD has been shown to 
be present (Peralta et al., 2005). LD can lead to a bias in l o d  scores when the marker 
alleles are assumed to be in equilibrium, especially when parental genotypes are missing 
(Huang et al., 2004; Abecasis and Wigginton, 2005). Our finding that there was no sig­
nificant effect of LD on the accuracy appears to be in contradiction, but we believe the 
difference can be explained by the fact that we evaluated the accuracy of a single haplotype 
configuration, while Huang et. al investigated l o d  scores, which may be more sensitive 
to violations of the assumption of linkage equilibrium. The issue of LD is a modeling issue 
and therefore in principle unrelated to the issue of the quality of the c v m  approximation, 
although, of course, the quality of the c v m  approximation may depend on the model. 
The c v m  approximation can be applied to any probabilistic model and in particular to 
a pedigree likelihood model that includes LD. Pair-wise modeling of LD between markers 
would not require a different choice of the clusters in the c v m  approximation. This is a 
direction for further research.

We applied our algorithm to data sets consisting of SNP markers only. Currently our 
software does accept multi-allelic markers. Due to the increased state space in case of 
multi-allelic markers, the efficiency of our implementation is not as high as in the case of 
SNPs. Work is in progress to improve the efficiency for multi-allelic markers by applying 
additional preprocessing techniques and using clusters with fewer variables in the c v m
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approximation.
In this paper we assumed absence of genotyping errors. In practice this will rarely 

be the case. A simple heuristic for error detection is to locate unlikely double recombi­
nants. These can be inferred from the marginal distributions over segregation indicators 
of adjacent loci, which can be trivially obtained from the cluster marginal distributions. 
However, it is preferable to use an error model as proposed by Sobel et al. (2002). Such 
an error model can be relatively easily incorporated into our approach, at the expense of a 
larger state space. Although the efficiency of c v m h a p l o  will be reduced, we believe that 
the additional computational expense may be well justified. In a preliminary analysis of 
a real data set of 1600 animals genotyped for 14 closely linked markers, we found that 
inclusion of an error model significantly reduced the number of unlikely recombinant hap­
lotypes, which suggests that haplotype effects can be estimated with better power. These 
results will presented in a separate publication. We plan to incorporate the modelling of 
genotyping errors in future versions of CVMHAPLO.

Software
CVMHAPLO can be obtained by contacting the first author.

A cknow ledgm ents

We are grateful to Addie Vereijken at Hendrix Genetics, Boxmeer, the Netherlands and 
Jim Stankovich at the Walter and Eliza Hall Institute of Medical Research, Melbourne, 
Australia for providing the data sets. We would like to thank the anonymous reviewers for 
their suggestions. This work was sponsored by the Dutch Technology Foundation ( s t w ). 

We acknowledge the support of the Pascal Network of Excellence.

R eferences
Abecasis, G. R., Cherny, S. S., Cookson, W. O., and Cardon, L. R. 2002. Merlin-rapid 

analysis of dense genetic maps using sparse gene flow trees. N at Genet, 30:97-101.

Abecasis, G. R. and Wigginton, J. E. 2005. Handling marker-marker linkage disequilib­
rium pedigree analysis with clustered markers. A m  J  H um  Genet, 77:754-767.

Albers, C. A., Leisink, M. A. R., and Kappen, H. J. 2006. The Cluster Variation Method 
for efficient linkage analysis on extended pedigrees. B M C  Bioinform atics, 7:S1.

18



Baruch, E., Weller, J. I., Cohen, M., Ron, M., and Seroussi, E. 2005. Efficient 
inference of haplotypes from genotypes on a large animal pedigree. Genetics. 
doi:10.1534/genetics.l05.047134.

Fishelson, J., Dovgolevsky, N., and Geiger, D. 2005. Maximum likelihood haplotyping for 
general pedigrees. H um an Heredity, 59:41-60.

Fishelson, J. and Geiger, D. 2002. Exact genetic linkage computations for general pedi­
grees. Bioinform atics, 18:S189-S198.

Gao, G., Hoeschele, I., Sorensen, P., and Du, F. 2004. Conditional probability methods 
for haplotyping in pedigrees. Genetics, 167:2055-2065.

George, A. W. and Thompson, E. A. 2003. Discovering disease genes multipoint linkage 
analyses via a new Markov Chain Monte Carlo approach. Statistical Science, 18:515­
535.

Heskes, T., Albers, C. A., and Kappen, H. J. 2003. Approximate inference and constrained 
optimization. In Proceedings o f Uncertainty in A I, pages 313-320.

Huang, Q., Shete, S., and Amos, C. I. 2004. Ignoring linkage disequilibrium among tightly 
linked markers induces false-positive evidence of linkage for affected sib pair analysis. 
A m  J  H um  Genet, 75:1106-1112.

Jensen, C. S. and Kong, A. 1999. Blocking-Gibbs sampling for linkage analysis in large 
pedigrees with many loops. A m  J  H um  Genet, 65:885-902.

Jensen, F. V. 1996. A n  introduction to Bayesian networks. UCL Press.

Kikuchi, R. 1951. A theory of cooperative phenomena. Physical Review, 81:988.

Kruglyak, L., Daly, M. J., Reeve-Daly, M. P., and Lander, E. S. 1996. Parametric and 
non-parametric linkage analysis: A unified multipoints approach. A m  J  H um  Genet, 
58:1347-1363.

Lange, K. and Goradia, T. M. 1987. An algorithm for automatic genotype elimination. 
A m  J  H um  Genet, 40:250-256.

Lange, K. and Sobel, E. 1996. Descent graphs in pedigree analysis application to haplo­
typing, location scores, and marker-sharing statistics. A m  J  H um  Genet, 58:1323-1337.

Lauritzen, S. L. 1996. Graphical models. Oxford University Press.

Lauritzen, S. L. and Sheehan, N. A. 2003. Graphical models for genetic analyses. Statistical 
Science, 4:489-514.

19



Li, J. and Jiang, T. 2004. An exact solution for finding minimum recombinant haplotype 
configurations on pedigrees with missing data by integer linear programming. In Proc. 
RECOM BO4, pages 1 0 1 - 1 1 0 .

McEliece, R. J., MacKay, D. J. C., and Cheng, J. F. 1998. Turbo decoding as an in­
stance of Pearl’s ‘Belief Propagation’ algorithm. IE E E  Journal on Selected A rea ’s in 
Com munication, 16:140-152.

Morita, T. 1990. Cluster Variation Method and Moebius inversion formula. J  S ta t Phys, 
59:819-825.

Mukhopadhyay, N., Almasy, L., Schroeder, M., Mulvihill, W. P., and Weeks, D. E. 2005. 
Mega2: Data-handling for facilitating genetic linkage and association analyses. B io in­
form atics, 21:2556-7.

Murphy, K. P., Weiss, Y., and Jordan, M. I. 1999. Loopy Belief Propagation for ap­
proximate inference an empirical study. In Proceedings o f Uncertainty in A I, pages 
467-475.

O’Connell, J. R. and Weeks, D. E. 1998. PedCheck: A program for identificationn of 
genotype incompatibilities in linkage analysis. A m  J  H um  Genet, 63:259-266.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent System s Networks o f Plausible In ­
ference. Morgan Kaufmann Publishers Inc.

Peralta, J. M., Dyer, T. D., Warren, D. M., Blangero, J., and Almasy, L. 2005. Link­
age disequilibrium across two different single-nucleotide polymorphism genome scans. 
In Genetic Analysis Workshop 14: M icrosatellite and single-nucleotide polymorphism, 
volume 6 (Suppl 1), page S8 6 .

Qian, D. and Beckmann, L. 2002. Minimum-recombinant haplotyping in pedigrees. A m  
J  H um  G enet, 70:1434-1445.

Sobel, E., Papp, J. C., and Lange, K. 2002. Detection and integration of genotyping 
errors in statistical genetics. A m  J  H um  G enet, 70:496-508.

Thomas, A., Abkevich, V., and Bansai, A. 2000. Multilocus linkage analysis by Blocked 
Gibbs Sampling. Statistics and Computing, 10:259-269.

Thompson, E. A. 1994. Monte Carlo likelihood in genetic mapping. S ta t Sci, 9:355-366.

Thompson, E. A. and Heath, S. C. 1999. Estimation of conditional multilocus gene 
identity among relatives. 33:95-113.

20



Weiss, Y. 1997. Interpreting images by propagating bayesian beliefs. In Advances in 
Neural In form ation  Processing System s 9, pages 908-915.

Wijsman, E. 1987. A deductive method of haplotype analysis in pedigrees. A m  J  H um  
G enet, 41:356-373.

Windig, J. J. and Meuwissen, T. H. E. 2004. Rapid haplotype reconstruction in pedigrees 
with dense marker maps. J. A nim . Breed. Genet., 121:26-39.

Yedidia, J. S., Freeman, W. T., and Weiss, Y. 2005. Constructing free-energy approxima­
tions and generalized Belief Propagation algorithms. IE E E  Transactions on Inform ation  
Theory, 51:2282-2312.

Zhang, K., Sun, F., and Zhao, H. 2005. HAPLORE: a program for haplotype reconstruc­
tion in general pedigrees without recombination. Bioinform atics, 21:90-103.

A pp en d ix
We use the formalism of Bayesian networks (Pearl, 1988; Lauritzen, 1996; Fishelson and 
Geiger, 2002; Lauritzen and Sheehan, 2003) to represent the probability distribution that 
describes the problem of linkage analysis. The probability distribution is given by the 
product of conditional probability tables defined on subsets of a low, tractable number of 
variables. This facilitates the application of the Cluster Variation Method, which requires 
a set of tractable potential functions as input for the approximation.

A B ayesian  netw ork  rep resen ta tio n : The full probability distribution is given by 

P  (M, v, G |m , () =

n  n  P  (M !|G i/ , G ' 'm)  x
ieF, NF i

n  n  p  (v‘j'iv '- i 'p,» .,.-i) p  (v‘'miv' -i,m, x
¿eNF i

n  n  p  ( g ' ^ ^ g ; - )  p  ( G r i ^ G m , «  , G » fl) x
¿eNF i

n n  P  ( g ' - V )  P  (G im|m l)  . (3)
¿eF i

Here fa(i) and mo(i) represent the father and mother of individual i, respectively. The 
second line in this equation represents the observation model, i.e. the probability of 
the observed genotype conditional on the true ordered genotype, and incorporates the
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unknown phase of the observed genotype. The third line represents the recombination 
model parameterized by the recombination frequencies between the adjacent markers l — 1 

and l, for l > 1. The fourth line represents the paternal and maternal allele transmission 
from parents to children. The last line represents the prior allele distributions. Here, 
Hardy-Weinberg equilibrium of the alleles within a marker and linkage equilibrium be­
tween alleles of different markers is assumed. We assume that m, (  are given as well as 
the M:l of the person-markers with genotype information.

T h e  C lu s te r V aria tion  M ethod : In this section we describe the CVM for the case that 
no ordered genotypes have been assigned and only unordered genotype observations are 
available. The case in which ordered genotype assignments are available does not require 
a different treatment, as assignments of ordered genotypes can be modelled as observed 
genotypes for which both the value of the two alleles and the ordering of the alleles is 
known.

The idea of the Cluster Variation Method (Kikuchi, 1951; Morita, 1990; Yedidia et al.,
2005) is to approximate the intractable probability distribution

n/ m w  P(M , v, G |m ,()
P (v , G 'M , m , ( ) =  (P (M |m W  J

in terms of marginal distributions on overlapping subsets of variables, i.e. the clusters. It 
requires specification of the set of clusters B =  { a 1 , a 2, ...} : a collection of overlapping 
subsets of variables, chosen such that the corresponding approximate marginal distribu­
tions (xa ) are feasible for exact probability calculus3. We define I  as the set of clusters 
that consists of all clusters that can be formed by the intersection of clusters in B and 
in I. Thus any intersection of clusters is contained in I. The choice of B determines the 
approximation and fully determines I. The following restrictions on the choice of the set 
of clusters B hold:

1. For every conditional probability table in the definition of equation 3, there must 
exist at least one cluster a  G B that contains all variables of the conditional 
probability table.

2. No cluster a 1 G B is a subset of another cluster a 2 G B.

To motivate the formalism of the CVM, we first observe that the exact posterior dis­
tribution P (v , G |M , m, () can be obtained by minimizing the exact free energy defined 
as

Fexact(Q) =  ^  Q(x) log ^ jx y , subj. to ^  Q(x) =  1

■V \ / -v

3For ease of notation we do not explicitly state tha t Q a ( x a ) is conditioned on the marker data M  and 
assigned ordered genotypes G assigned, and tha t x  =  (v, G).
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with respect to Q(x), where ^ (x ) is the right hand side of eq. 3. This can be verified 
by simple differentiation with respect to Q. Since the functional Fexact(Q) itself is gen­
erally intractable to evaluate, the Cluster Variation Method proposes to minimize the 
approximate free energy

F cvm(Q) =  S “Y S QY(xY) log QY( Y) subj. to consistency constraints (4)
YeBu/ x7  ^ Y (xY)

with respect to the approximate marginal distributions QY (xY). Here Q defines the col­
lection of all approximate cluster marginals {QY (xY) : 7  G B U I }.

The cluster potential functions ^ Y are defined by the conditional probability tables of 
the Bayesian network in equation 3:

^Y (xy ) =  n P  (Xn|xn(n)). (5)
n-x{n,n(n)} ̂ =xY

In this equation refers to a variable in the Bayesian network and xn(n) denotes the 
set of variables on which variable is conditioned. Thus, the product of conditional 
probability tables that defines a potential function ^ Y may contain the tables associated
with the allele transmissions, P  ^G'’ m|v' ’ m, GmO(:), Gm™^ as well as unordered genotype

observations P(M :l |G' ’p, G' ’m)4.
The Moebius coefficients aY satisfy

a  =  1, V y G B U I,
¿eBu/^Y

and have the effect that for instance the evidence in the form of observed genotypes is 
not over counted. For details we refer to (Heskes et al., 2003).

The constraints in equation 4 are consistency and normalization constraints. The 
consistency constraints are

S Q«(x«) =  Qp(x^), V a  G B, p  G I  C a,
xa\x^

which require any pair of clusters to have identical marginal distributions over the subset 
of variables contained in both clusters. The normalization constraints are

S Qy(xY) =  1, V y G B U I,
x7

4Note again tha t the variables M* are not explicitly included in the clusters included since they are 
observed.
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which require the cluster marginal distributions to sum to one.
Thus, the approximate free energy FCVM(Q) is a sum of the free energies associated 

with each cluster y G B U I  multiplied by the Moebius coefficient aY. The Generalized 
Belief Propagation (g b p) algorithm (Yedidiaet al., 2005; Pearl, 1988; Murphy et al., 1999) 
is a fixed point iteration scheme that finds extrema of FCVM(Q). However, gbp does not 
always converge. Therefore we use the convergent double loop algorithm described by 
Heskes et al. (2003) to minimize FCVM(Q). The idea of the double loop algorithm is to 
iteratively minimize convex upper bounds on the free energy. At each iteration of the 
algorithm a convex upper bound is calculated (the outer loop) which is minimized in the 
inner loop. The algorithm always converges to a (local) minimum of FCVM(Q), provided 
the inner loop has converged.

C onsistency  of th e  assignm ent: When p of the ordered genotypes are assigned si­
multaneously in one iteration, it is possible that the resulting GanSigned is inconsistent 
in the sense that this configuration has zero probability under the probability model of 
equation 3. This is not likely to happen if p is chosen sufficiently small. Our implemen­
tation of CVMHAPLO automatically detects inconsistent assignments as follows. When 
assignments are inconsistent, for one or more of the CVM cluster marginal distributions 
as a result QY(xY) =  0, V x Y, i.e. all states have zero probability. When all alleles in the 
pedigree are assigned and no inconsistency is detected like this, the inferred haplotype 
configuration is consistent.

Rem oval of sym m etries: The probabilistic model defined by eq. 3 contains a number 
of symmetries. The first symmetry concerns the haplotypes of the founders: since by def­
inition the founders do not have parents that are included in the pedigree, it is impossible 
to determine which haplotype is paternal and which is maternal. The second symmetry 
occurs when a father and mother are founders and also do not have genotype information. 
In this case a haplotype that is found in one of the children could be inherited from either 
parent with equal probability (assuming no recombination). More symmetries may be 
present, but in general it is hard to enumerate them all.

We find experimentally that CVMHAPLO yields better results when these symmetries 
are removed before application of the CVM. We remove the first symmetry by fixing for 
one child of every founder the parental source of the allele inherited from the founder 
for one marker. The second symmetry is removed by fixing in one grandchild of every 
untyped pair of founder parents the parental source of the inherited allele for one marker.
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A lg o rith m  1 CVMHAPLO

1: G assigned ^  ^
2: n ^  1 

3: Choose p 
4: re p e a t
5: Run the double loop algorithm to compute the CVM approximate marginal distri­

butions Q(G'’p, G'’m|M, G ^ d) for all individuals i and loci l.

6: if S igned is consistent th e n
7: For all individuals i and loci l, compute

?m'ap =  max Q(Gi’p, Gi’m|M, Ga ŝliiied), (6)

{G'’p,G '’m}maP =  argmax Q (G '’p, G ^ M ,  Ginned). (7)

8: Order the genotypes ^ a 'p 1, , . . .} such th at qmia'p1 > ^a'p2 > ^a'p3,... .
9: Select the ordered genotypes with qmap =  1 and at most pNL ordered genotypes

with qmap < 1 , and assign the value of the corresponding genotype variables 
rW W r W g ' ,{Gi , Gi }map to {Gi , g : }
Update S igned 

else
10
11
12
13
14
15
16 
17

G assigned ^  $
n ^  0

p ^  2  p 
end  if
n ^  n + 1

un til all ordered genotypes have been assigned
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Figure 1: Illustration of the basic variables in the probabilistic model and the cluster 
choice. G ’p is the paternal allele of individual i and marker l, Ĝ  ’ m is the maternal allele. 
Paternal and maternal segregation indicators are respectively denoted by v'’p and vj ’m. 
The variables for the observed genotype variables M ' (dashed lines) are shown only for 
individual 1 , but apply for every individual/marker for which a genotype was observed. 
A basic cluster consists of the genotype variables of the parents (i =  1,i =  2  in the 
figure) of one child (i =  3), as well as the genotype variables and the paternal and 
maternal segregation indicators of the child, for a pair of adjacent markers (l =  1 , 2 ). 
These variables are shown as solid circles in the figure. For every individual that is not 
a founder and every pair of adjacent markers such a cluster is defined. The observed 
genotype variables M ' (dashed lines) are not explicitly included in the clusters since their 
value is observed (see running text).
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Figure 2: Pedigree I. Individuals marked gray have genotype information.

Figure 3: Pedigree II. Schematic representation. Diamonds represent groups of 5-15 
individuals. Gray nodes represent groups with genotyped individuals.
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Figure 5: Scatter plot of exact marginal probabilities of the ordered genotypes versus the 
CVM approximation of the marginal probabilities, computed for pedigree I and 5 markers 
(configuration A in table 2 ).
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percentage of assigned ordered genotypes

B

percentage of assigned ordered genotypes

Figure 6 : Comparison of the haplotype reconstruction accuracy of CVMHAPLO and 
SIMWALK2 for pedigree I (panel A, 20 markers, configuration C in table 2) and pedigree
II (panel B, 8  markers, configuration F in table 2). Accuracy is defined as the percentage of 
assigned ordered genotypes identical to the true simulated ordered genotype. Accuracy is 
shown for all individuals (‘all’) and for genotyped individuals only (‘genotyped’). Standard 
deviations are over 40 replicates for pedigree I and 8  replicates for pedigree II. For clarity, 
standard deviations are shown only on one side of the curve. Note the different scales on 
the horizontal and vertical axis.

29



percentage of assigned ordered genotypes

Figure 7: Comparison of the haplotype reconstruction accuracy of GYMHAFLG in pedigree
I with 10 replicates of 20 markers {gray, configuration C in table 2} and 10 replicates of 
200 markers {black, configuration D in table 2 }. Accuracy is shown for all individuals 
{‘all’} and for genotyped individuals only {‘genotyped’}.
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Figure 8 : Accuracy vs. confidence of the haplotype configurations inferred with 
CVMHAPLO. For every iteration of CVMHAPLO the accuracy and the confidence level 
from (1 ) of the (partial) haplotype configuration was computed for the replicates ana­
lyzed in figure 6 . The figure shows for a given confidence level the mean accuracy of the 
corresponding haplotype configurations. The leftmost circle and square correspond to the 
haplotype configurations where all ordered genotypes were assigned.
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T able 1: I llu stra tio n  o f  c v m h a p l o

iteration marker father mother daughter son
1

o

1

2

3

(0.00,0.05,0.95,0.00)-
(1 .0 0 ,0 .0 0 ,0 .0 0 ,0 .0 0 ) -
(0.00,0.86,0.14,0.00)-

» BA
» AA

(0 .0 0 ,0 .0 0 ,0 .0 0 ,1 .0 0 ) -
(0 .0 0 ,0 .0 0 ,0 .0 0 ,1 .0 0 ) -
(0.00,0.20,0.80,0.00)-

» BB 
» BB

(0 .0 0 ,0 .0 0 ,0 .0 0 ,1 .0 0 ) -
(0 .0 0 ,1 .0 0 ,0 .0 0 ,0 .0 0 ) -
(0.00,0.83,0.17,0.00)-

» BB 
» AB

(0 .0 0 ,0 .0 0 ,0 .0 0 ,1 .0 0 ) -
(0 .0 0 ,1 .0 0 ,0 .0 0 ,0 .0 0 ) -
(1 .0 0 ,0 .0 0 ,0 .0 0 ,0 .0 0 ) -

» BB 
» AB 
» AA

Q

1

2

3

(0 .0 0 ,0 .0 0 ,1 .0 0 ,0 .0 0 ) -
(1 .0 0 ,0 .0 0 ,0 .0 0 ,0 .0 0 ) -
(0.00,0.90,0.10,0.00)-

» BA 
» AA 
» AB

(0 .0 0 ,0 .0 0 ,0 .0 0 ,1 .0 0 ) -
(0 .0 0 ,0 .0 0 ,0 .0 0 ,1 .0 0 ) -
(0.00,0.18,0.82,0.00)-

» BB 
» BB

(0 .0 0 ,0 .0 0 ,0 .0 0 ,1 .0 0 ) -
(0 .0 0 ,1 .0 0 ,0 .0 0 ,0 .0 0 ) -
(0.00,0.86,0.14,0.00)-

» BB 
» AB

(0 .0 0 ,0 .0 0 ,0 .0 0 ,1 .0 0 ) -
(0 .0 0 ,1 .0 0 ,0 .0 0 ,0 .0 0 ) -
(1 .0 0 ,0 .0 0 ,0 .0 0 ,0 .0 0 ) -

» BB 
» AB 
» AA

A

1

2

3

(0 .0 0 ,0 .0 0 ,1 .0 0 ,0 .0 0 ) -
(1 .0 0 ,0 .0 0 ,0 .0 0 ,0 .0 0 ) -
(0 .0 0 ,1 .0 0 ,0 .0 0 ,0 .0 0 ) -

» BA 
» AA 
» AB

(0 .0 0 ,0 .0 0 ,0 .0 0 ,1 .0 0 ) -
(0 .0 0 ,0 .0 0 ,0 .0 0 ,1 .0 0 ) -
(0.00,0.10,0.90,0.00)-

» BB 
» BB

(0 .0 0 ,0 .0 0 ,0 .0 0 ,1 .0 0 ) -
(0 .0 0 ,1 .0 0 ,0 .0 0 ,0 .0 0 ) -
(0.00,0.95,0.05,0.00)-

» BB 
» AB 
» AB

(0 .0 0 ,0 .0 0 ,0 .0 0 ,1 .0 0 ) -
(0 .0 0 ,1 .0 0 ,0 .0 0 ,0 .0 0 ) -
(1 .0 0 ,0 .0 0 ,0 .0 0 ,0 .0 0 ) -

» BB 
» AB 
» AA

1

2

3

(0 .0 0 ,0 .0 0 ,1 .0 0 ,0 .0 0 ) -
(1 .0 0 ,0 .0 0 ,0 .0 0 ,0 .0 0 ) -
(0 .0 0 ,1 .0 0 ,0 .0 0 ,0 .0 0 ) -

» BA 
» AA 
» AB

(0 .0 0 ,0 .0 0 ,0 .0 0 ,1 .0 0 ) -
(0 .0 0 ,0 .0 0 ,0 .0 0 ,1 .0 0 ) -
(0.00,0.05,0.95,0.00)-

» BB 
» BB 
» BA

(0 .0 0 ,0 .0 0 ,0 .0 0 ,1 .0 0 ) -
(0 .0 0 ,1 .0 0 ,0 .0 0 ,0 .0 0 ) -
(0 .0 0 ,1 .0 0 ,0 .0 0 ,0 .0 0 ) -

» BB 
» AB 
» AB

(0 .0 0 ,0 .0 0 ,0 .0 0 ,1 .0 0 ) -
(0 .0 0 ,1 .0 0 ,0 .0 0 ,0 .0 0 ) -
(1 .0 0 ,0 .0 0 ,0 .0 0 ,0 .0 0 ) -

» BB 
» AB 
» AA

For each individual, marker and iteration of c v m h a p l o  the c v m  approximation of the marginal distribution of 
ordered genotype Q(Glf  ,G l̂ m \M ,  G assigned) is shown between parentheses, where the probabilities are ordered as 
(Q (A A ),Q (A B ),Q (B A ),Q (B B )). The value assigned to the ordered genotypes are shown next to the marginal proba­
bilities. Assignments of ordered genotypes with qmap = rasjtQ(Glf , G ^’m | M ,  G assjgned) < 1 are shown in boldface. Ordered 
genotypes that were not assigned are represented by The recontructed ordered genotypes are identical to the true ordered 
genotypes.



Table 2: O verv iew  o f  d a ta  se ts  an alyzed

p e d ig re e m a rk e rs in d iv id u a ls g e n o ty p e d d i s t . 1 MMAF2 av g . s p a c in g  (cM )
A I 5 53 13 re a l 0 .31 0 .312
B I 5 53 30 % -  90 % r a n d o m 0.31 0 .312
C I 20 53 13 re a l 0 .2 4 0 .601
D I 200 53 13 re a l 0 .2 4 0 .601
E I 20 53 13 re a l 0 .3 4 0 .601
F I I 8 368 262 re a l 0 .2 8 0 .012
G I I s u b 8 22 30 % -  90 % r a n d o m 0.2 8 0 .012
H I I s u b 8 22 16 re a l 0 .2 8 0 .012

1 D is t r ib u t io n  o f  g e n o ty p e d  in d iv id u a ls ;  ‘r e a l ’ in d ic a te s  as  in  re a l d a t a  s e t,  ’r a n d o m ’ in d ic a te s  
r a n d o m ly  a s s ig n e d  in d iv id u a ls
2 m m a f : M e a n  M in o r  A lle le  F re q u e n c y
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T able 3: C om p arison  o f  c y m h a p l q  w ith  exact m ax im u m  lik elih ood  m eth o d s

p e rc e n ta g e
g e n o ty p e d
in d iv id u a ls

fu ll h a p lo ty p e  r e c o n s t r u c t io n p a r t i a l  r e c o n s t r u c t io n 1

2a c c u r a c y 2 lo g - lik e lih o o d a c c u ra c y
p e r c e n ta g e
a s s ig n e d

e x a c t  m l c v m h a p l o e x a c t  m l , c v m h a p l o c v m h a p l o c v m h a p l o

P e d ig re e  I 
90 97 .2 0 97 .53 -79 .01 -7 9 .0 6 9 9 .4 7 92.25

80 95 .6 9 95 .92 -77 .51 -7 7 .6 9 99.51 85 .98
70 92 .4 6 9 2 .9 7 -7 6 .3 4 -7 6 .4 5 99 .3 8 74 .76
60 89 .2 6 89 .95 -7 4 .8 0 -7 5 .2 3 99 .4 8 60.72
50 83 .9 9 84 .4 6 -7 2 .1 8 -7 3 .3 5 99 .1 6 38.62
40 79.93 81 .33 -7 0 .1 9 -7 1 .6 4 99 .5 9 31 .49
30 77 .5 7 77 .80 -6 6 .0 0 -6 7 .1 4 99 .43 20.31

P e d ig re e  I I s u b
90  98 .1 6 98 .4 4 -33 .51 -33 .51 99.01 98.05
80 96 .25 96 .13 -3 3 .5 0 -3 3 .5 3 99 .35 89 .90
70 94 .8 7 94 .63 -33 .51 -33 .51 99.31 84 .94
60 93 .6 7 94 .0 0 -3 2 .6 0 -3 2 .6 7 99.71 79 .55
50 91 .0 6 91 .93 -3 1 .9 7 -3 2 .0 9 99 .6 0 70 .72
40 87 .1 7 87 .5 4 -3 2 .0 7 -3 2 .1 3 99.41 55 .07
30 83.91 83 .35 -3 1 .1 4 -3 2 .7 9 99 .53 37.61

Note: A ll v a lu e s  a re  r e p o r te d  a s  m e a n s  o v e r  40  r e p lic a te s

1 T h e  p a r t i a l  h a p lo ty p e  c o n f ig u ra t io n  G^gned o b ta in e d  f ro m  th e  i te r a t io n  n  w h e re  th e  
c o n f id e n c e  f ro m  eq . (1 ) w a s  99 % .
2 A c c u ra c y  is d e f in e d  as  th e  p e r c e n ta g e  o f  a s s ig n e d  o r d e re d  g e n o ty p e s  e q u a l to  th e  t r u e  
s im u la te d  o rd e re d  g e n o ty p e .



Table 4: C om parison  o f  co m p u ta tio n  t im e  and m em ory  usage

Pedigree markers
Computation time (s) Memory usage (MB)

CVM CVMHAPLO SIMWALK2 EXACT CVMHAPLO SIMWALK2! EXACT
I 1 ’2 5 26 542 NA4 329 18 NA 1230
I2 5 26 ±  1 530 ±  21 NA 307 ±  29 18 ±  0.3 NA 750 ±  233
Ilsub3 8 6 ±  1 185 ±  27 NA < 1 6 ±  0.5 NA < 1
Ilsub1 ’3 8 9 165 NA < 1 6 NA < 1
I 20 187 ±  6 2977 ±  887 «  2400 NF5 85 ±  1 10 NF
I 200 2520 ±  43 16.2 h ±  9.6 h >  280 h NF 944 ±  2 23 NF
II 8 568 ±  32 2.2 h ±  0.12 h 4.5 d ± 1.7 d NF 150 ±  3 15 NF
II1 8 572 2.9 h 5 d NF 151 15 NF

Real data set
Exact results computed with junction tree algorithm 
Exact results computed with s u p e r l i n k

NA: Simulations not performed as exact computation was feasible 
NF: Exact computation not feasible


