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A bstract. - Phase diagram  and pattern  formation in two-dimensional Ising model with coupling 
between order param eter and lattice vibrations is investigated by Mont.e-Carlo simulations. It 
is shown th a t if the coupling is strong enough (or plionons are soft, enough) a short-range order 
exists in disordered phase for a broader tem perature interval. Different types of this short-range 
order (stripe-like, clieckboard-like, etc.) depending on the tem perature and model param eters are 
investigated. W ith  further increase of the coupling, a reconstruction of the ground sta te  happens 
and new ordered phases appear a t low enough tem peratures.

In tro d u c tio n . — Traditional views assume that un­
der the thermodynamic equilibrium conditions a system 
should either be homogeneous or consist of macroscopi- 
cally large domains of homogeneous phases. It appears 
frequently, however, that equilibrium or very long-lived 
metastable states occur with a nanoscale or mesoscale het­
erogeneity (for a general review of these phenomena in var­
ious physical and chemical systems see. e.g.. Refs, fl 4]). 
It is commonly accepted now that the formation of the 
mesoscale heterogeneity is a result of frustrations in the 
system which can result from either geometric factors [4 7] 
or competing interactions, the long-ranged forces such as 
Coulomb or dipole-dipole interactions being of primary 
importance [4.8 14].

“Heterophase” fluctuations in metallic alloys [15] pro­
vide us interesting examples of intrinsic nanoscale inho­
mogeneities. In such cases, a system behaves like an en­
semble of nanosize particles of one phase embedded into 
the matrix, e.g., so-called athermic w-phase in bcc host 
which is observed in some Ti- and Zr-based alloys [16], as 
well as in C r1-xAlx [17]. This peculiar structural state 
leads to strong anomalies of electronic properties [18] and 
ultrasound attenuation [19]. The “athermic w-phase” is a 
term  to describe rather some short-range order in atomic 
positions than real phase since it never exists in the bulk 
(atomic positions in this “phase” are intermediate between 
bcc structure and true w-phase existing in Ti and Zr un­

der pressure). It would be not surprising to observe strong 
short-range order in the close vicinity of a second-order 
phase transition. On the contrary, these heterophase fluc­
tuations sometimes arise in a broad tem perature and con­
centration domain. Nature of this state is still unknown 
(see discussions in Refs. [7,15]).

A well-pronounced short-range order or nanoscale inho­
mogeneity in a broad tem perature interval are often ob­
served in magnetic alloys with a strong coupling between 
magnetism and lattice (or chemical composition), such as 
Cu-Mn alloys [20,21] or Fe-Ni Invar alloys [22,23], As 
mentioned above it is a tendency now to connect intrinsic 
inhomogeneities in various systems with long-range inter­
actions. One may expect therefore that a long-range char­
acter of elastic deformations is solids could be relevant for 
the problem under discussion.

To clarify a role of elastic-mediated interactions in pos­
sible pattern formation we have investigated the simplest 
model of Ising order param eter coupled with phonons at 
the square lattice. Basing on the results of Monte Carlo 
simulations for this model we show that, indeed, this cou­
pling can result in a formation of various nanosize-scale 
structures.

M o d e l a n d  c o m p u ta tio n a l d e ta ils . — The two­
dimensional Ising model [24, 25] is a prototype, exactly 
solvable model of order-disorder phase transitions in rnag-
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netic systems, ordering alloys, etc. To be specific we 
will use further terms “magnetic” and “spins” to  describe 
the ordering phenomena under consideration. To describe 
the effects of magnetoelastic (spin-lattice) interactions, we 
proceed with the Hamiltonian

H —  uj) +  JjjSjSj (1)
i,j i,j

where A j  =  1 if i, j  are the nearest neighbors and is equal 
to  zero, otherwise, Uj are atomic displacement vectors and 
spin variables S i =  ±1. The spin-lattice coupling is taken 
into account via coordinate dependence of the exchange 
parameters J ij  =  J (R i +  u i — R j — Uj), R i being square 
lattice vectors. Assuming th a t the displacements are small 
the exchange parameters can be written in the linear ap­
proximation

Jij J ij +  J j n ij (ui -  u■3)f (2)

P  ° J j  S iS j
j

(R i) =  \  G oß ( R j  )Pjß

] [ > “ß Gaß (Rij ) =  S i j  Saß.

dg^...dgN exp Sa ß a ß
9i 9'j

^ e x p ( - ß H ,eff )
Si

where the effective spin Hamiltonian

and 3  =  1 /T  is the inverse tem perature.
Due to  harmonic approximation for the potential en­

ergy of atomic displacements and linear approximation for 
the magnetoelastic coupling the phonon and spin subsys­
tems turn  out to  be totally separated after the change 
of variables. The statistical properties of the system is 
completely determined by the Hamiltonian H ef f  which 
depends on spin variables only. The last term  in the right- 
hand-side of Eq.(8) reads

1 ̂E  E  nfkJ lkS iSkGaß( R j  )rißJßSjSi (9)
ij kl

where n j  is the unit vector in direction of R j — R j.
Substituting Eq.(2) into Eq.(l) and assuming periodic 

boundary conditions we obtain

H = \  E + \  E  4 ^ 0  + E w -  (3)
j,j j

where =  K n - n^jAjj. The dependence of the ex­
change parameters on interatomic distances results in the 
last term  in right-hand-side of Eq.(3)

and describes indirect long-range spin-spin interactions via 
lattice distortions.

To investigate equilibrium properties of the spin system 
with the Hamiltonian (8) we have carried out the Monte 
Carlo simulations for the square lattice with 100 x 100 
sites and periodic boundary conditions, using a standard 
Metropolis algorithm [26]. To provide the Gibbs distribu­
tion P  ~  exp(—3 H e f f ) we have performed up to  104 flips 
for each lattice spin.

We are interested in the two-dimensional spin system 
embedded into three-dimensional elastic medium. For 
two-dimensional continuum the Green’s function is patho­
logical, with logarithmic growth at large distances. In­
stead, we use the expression

Gaß
daß S i(2 n R /a )

R
(10)

(4)

describing forces acting on atoms due to  spin redistribu­
tion. These forces initiate the displacements of atoms into 
new equilibrium positions R  +  u 0 determined by the ex­
pression

(5)

where R j  =  R j — R j  G aß ( R j ) is the static lattice 
Green’s function determined by the equation

(6)

Replacing the variables u  =  u 0 +  g one can represent the 
partition function Z  as

(7)

valid in the framework of quasi-continuum approach [27] 
with isotropic Debye model for the phonon spectra. Here 
S i(x )  is the integral sine function [28], a is the lattice 
param eter, ^  is the shear modulus which can be ex­
pressed [27] in terms of the force constants $ aß. The 
Green’s function (10) has asymptotic behavior Gaß (R) «  
1 /R  a t large distances. To speed up computations, 
we use its truncation by multiplying expression (10) by 
exp( — ( R /L ) 4). The length L  and phonon-induced inter­
action cut-off radius were chosen at 5th and 13th neigh­
bors, respectively; these values ensure the convergency and 
stability of computational results.

For the bare exchange parameters Jjj the nearest- 
neighbor (nn) interactions have been taken into account. 
The choice of nn  param eter | J 01 =  1 determines the energy 
units.

R esu lts o f  th e  M onte Carlo sim ulations. — In the
square-lattice Ising model with nn interactions the phase 
transition takes place at T  =  Tc =  2.264. One can see 
(Fig. 1) th a t the true ground state is reached for approx-

4
Carlo runs metastable configurations such as domain walls 
appear. Further we will use by default this number of flips. 
Probably it is not enough for a close vicinity of Tc due to 
critical slowing down but we will not discuss this region.

The effects of long-range interactions due to  magnetoe­
lastic coupling are crucially dependent on dimensionless

x
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Fig. 1: The pa tte rn  of spin distribution a t T  =  1 (a,b) and T  =  3.5 (c,d) w ithout spin-lattice coupling for the AFM case. 
Simulation results w ith 103 (a,c) and 104 (b,d) flips per spin are presented. Black and white regions indicate the spin-up and 
spin-down. respectively.

a b e d

Fig. 2: The p a tte rn  of spin distribution a t T  =  1.5 (a,b,c) and T  =  3.5 (d) w ith the spin-lattice coupling for FM ground sta te 
a t Q =  -1 0 .0  (a ), Q =  -4 .5  (a), Q =  -2 .5  (a), Q =  -1 0 .0  (a).

coupling constant Q = ( J ')2/ J 0. Nontrivial patterns 
in a broad enough tem perature interval both below and 
above T c arise at |Q| > 3.5; typical spin configurations are 
shown in Fig. 2. In this case we have found a long-range 
or short-range order of checkboard or stripe types with 
staggered spin-up and spin-down regions. These patterns 
appear when MC simulations start from both random and 
from regular initial spin distribution and. therefore, are 
not metastable but. rather, equilibrium states. Pictures 
of the long-range order are quite similar for the case of 
FM (J0 =  -1 )  and AFM (J0 =  1) Ising model.

Since these new types of ordering result from the cou­
pling between magnetic and elastic subsystems it is natu­
rally to expect its manifestations also in the distribution 
of the displacement field (Fig. 3). For weak magnetoelas- 
tic coupling the lattice distortions are created by domain 
boundaries in metastable configurations and spread over 
large distances due to  a slow decay of G (r). Fig. 3a shows 
the corresponding distribution calculated by the pertur-

Q
Q

chessboard patterns visible in Fig. 3b. Contrary to pre­
vious case, deformations are mutually cancelled at large 
spatial scale.

To understand character of new types of ordering let 
us consider energies of different local spin configurations

a b

Fig. 3: D istribution of atom ic displacements u x +  Uy for FM 
case a t T  =  1 w ithout spin lattice coupling (Q =  0) (a) and at 
T  =  3.5 w ith the  spin-lattice coupling (Q =  -9 .0 )  (b). Black 
regions correspond to  Ux +Uy <  0 and white o n es to u x  +Uy >  0. 
The results are presented for 103 flips per spin.

(Fig. 4). For ferromagnetic ordering (Fig. 4a) the force 
(4) P “ =  0 and therefore the magnetoelastic contribu­
tion to the total energy vanishes. On the other hand, 
the configuration Fig. 4b corresponds to the largest local 
value of P “ and, thus, to  the maximal magnetoelastic en­
ergy gain. This configuration is a minimal structural block 
of stripe and checkboard structures. Direct total energy 
calculations for various spin configurations (see the Ta­
ble) demonstrate th a t a t Q «  -3 .5  simple FM or AFM
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Table 1: Energies (per atom) of different spin configurations; 
FM, AFM, means the  FM and AFM nearest-neighbour inter­
action; “c” m n  labels checkboard ordering (see, e.g. Fig. 2b) 
w ith elem entary white and black m n  rectangles; “s” m n  la­
bels diogonal stripes w ith elem entary steps m  and n  in x and 
y directions; “R” labels random  spin configuration.

FM AFM
g -4 -3 4 3

FM -4.0 -4.0 4.0 4.0
AFM 4.0 4.0 -4.0 -4.0

R -1.8 -1.0 -1.8 -1.0
c2x2 -5.3 -3.0 -5.3 -3.0
c3x3 -4.2 -2.9 -1.6 -0.3
c2x3 -4.8 -3.0 -3.5 -1.7
s2xl -4.7 -2.6 -4.7 -2.6
s3xl -4.2 -2.9 -1.5 -0.3

1 — 1— i— 1— i— 1— i— f — i— 1— i— 1— r

( D O ©  ( B O O

Fig. 4: Local spin configurations forming different patterns. 
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tion functions of the corresponding order parameters. The
Q

the tem perature of transition from FM (AFM) and para­
magnetic phase decreases. This is not surprizing since 
the magnetoelastic coupling destabilizes these spin states.

Q
check-board (or stripe) phase and the paramagnetic state,

Q

1

i . i . i . i . i . i . i .

0 0.5 1 1.5 2 2.5 3 3.5 4 

T

Fig. 5: A phase diagram  for ferromagnetic case. 1, 2, and 3 
labels FM phase, checkboard ordering, and disordered (para­
magnetic) phase, respectively.

structure become energetically unfavorable and the new 
ordered ground state occurs. In this case the checkboard 
ordering is preferable and the stripe structure has slightly 
higher energy.

W ith the tem perature increase, the long-range order 
is destroyed. We estimate critical tem peratures of these 
transitions calculating the R-dependence of pair correla-

Fig. 6: Space dependence of the  correlation function <  SoSX > 
in X  (or Y) direction for Q =  0 (solid curves 1, 2, 3, and 4) and 
Q =  - 2 .0  (dashed curves 1’, 2’, 3’, and 5). The tem peratures 
are equal to  0.9 Tc (curves 1, 1’), 1.1 Tc (curves 2, 2’), 1.2 TC 
(curves 3, 3’), 1.3 Tc (curve 4), and 1.65 Tc (curve 5).

Figure 6 shows the evolution of the spin correlation func­
tions for |Q| < 3.5 (that is, a t the transition between 
regions 1 and 3 at the phase diagram 5) with the tem ­
perature increase. One can see th a t the magnetoelastic

Tc
curves 2 and 2’, 3 and 3’, respectively), which survives up 
to  a relatively higher tem perature, in comparison with the 
original Ising model. In particular, the short-range order 
for Q =  — 2.0 and T  =  1.65Tc (curve 5) is stronger than 
for Q =  0 and T =  1.3Tc (curve 4).

The short-range order in the region 3 near the triple 
point tends to  formation of stripe-like structures (Fig. 
2b,c), although this configuration is not the most ener­
getically preferable. The appearance of this structure is 
connected with its higher entropy in comparison with the 
checkboard structure.

D iscu ssion  and conclusions. — Our computational 
results are summarized schematically in the phase diagram 
shown in Fig. 5. For small enough coupling constant 
|Q| < 3.5 the behavior of the system is qualitatively sim­
ilar to  th a t of the standard Ising model. In this case the 
main effect of the magnetoelastic coupling is suppression

Tc
Tc

fluctuations, such as in quasi-two-dimensional Heisenberg 
magnets [29] or frustrated three-dimensional Heisenberg

Tc

b
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is much smaller than a typical energy of nearest-neighbor 
J

tem perature interval survives up to  the tem peratures of 
J

of occurrence of the short-range order due to  coupling with 
a second subsystem providing long-range effective interac­
tions.

Thus, in this regime the magnetoelastic interactions are 
favourable for the short-range order in paramagnetic phase 
but do not result yet in the nontrivial pattern formation. 
The latter happens at Q > 3.5 where exotic spin config­
urations (checkboard or stripe states) become favourable. 
Especially, near the triple point a t the phase diagram (Fig. 
5) there are many different states with approximately the 
same free energy and therefore a formation of complicated 
inhomogeneous states could be expected. At further tem ­
perature increase we reach a conventional paramagnetic 
(random) state without short-range order. This scenario 
reminds the behavior observed at the “melting” of stripe 
domains in magnetic films [11], our “pattern” regime being 
similar to  “tetragonal phase” in the latter case. The main 
formal difference between these two problems is two-spin 
character of long-range dipole-dipole interactions versus 
four-spin character of long-range phonon-mediated inter­
action considered here.

Despite a simplicity of our model, it demonstrates a 
rather general feature which we believe can be relevant for 
discussions of real systems demonstrating a strong short-

Tc
|Q|

which means either unusually strong interaction between 
the subsystems (large J ')  or soft phonons (small shear 
modulus). At least, in some case, such as Cu-Mn alloys the 
shear modulus tends to  zero at some critical composition 

|Q|
large. It would be interesting to  analyse the problem of 
heterophase fluctuations in alloys mentioned in the Intro­
duction from this point of view.
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