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A b s t r a c t

Wc present a variant of the  dynamic hierarchical model (d h m ) th a t describes a large 
num ber of parallel tim e series. The separate series, which may be interdependent, are 
modelled through dynamic linear models (d l m s ). This interdependence is included 
in the model through the definition of a ’top-level’ or ’average’ DLM. The model 
features explicit dependences between the latent states of the parallel DLMs and the 
states of the average model, and thus the many parallel tim e series are linked to 
each other. The com bination of dependences within each tim e series and dependences 
between the different DLMs makes the com putation tim e th a t is required for exact 
inference cubic in the num ber of parallel tim e series, however, which is unacceptable 
for practical tasks th a t involve large num bers of parallel tim e series. We therefore 
propose two m ethods for fast, approxim ate inference: a variational approxim ation 
and a factorial approach. Under these approxim ations, inference can be performed 
in linear tim e, and it still features exact means. Learning is implem ented through 
a maximum likelihood (m l ) estim ation of the model param eters. This estim ation 
is realized through an expectation m axim ization (e m ) algorithm  w ith approxim ate 
inference in the E-step. We perform  learning and forecasting on two da ta  sets to show 
th a t the addition of direct dependences has a ’sm oothing’ effect on the evolution of 
the states of the individual tim e series, and leads to b e tte r prediction results. We 
further dem onstrate th a t the use of approxim ate instead of exact inference does not 
lead to inferior results on our da ta  sets.
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1 IN T R O D U C T IO N

Many real-world tasks can be viewed as parallel time series. Consider for 
example weather prediction for various parts of the same country, stock price 
prediction for a portfolio of stocks traded on the same stock exchange, or sales 
figures for a number of different items sold in the same store. Models that 
describe such tasks can make use both of the fact that the data has the form 
of a time series, and therefore may have a specific behavior through time, and 
of the fact that these tasks are similar to each other, and thus may have a 
(hidden) inter-dependence.

In this article we propose a new combination of the hierarchical models of 
(Lindley and Smith 1972) and the dynamic linear models of (Harrison and 
Stevens 1976), The proposed model features both a top-level (average) time 
series and a set of parallel or lower-level time series. Each series is modeled 
through a dynamic linear model (see e.g. (Harrison and Stevens 1976; West 
and Harrison 1997)), At each time t, the probability of ’lower-level’ states 0¿it, 
corresponding to the parallel time series, depends both on the previous state, 
6i¿ -1  and on the top-level state 90.t at the same time. The latter dependence 
includes the hierarchical model approach of e.g. (Lindley and Smith 1972) into 
the dynamic hierarchical model that we present in this article,

A similar combination has been proposed in (Gamerman and Migon 1993), 
This combination models the top-level states through a d l m  and the lower- 
level states are inferred from the top-level states. The latent states of the 
lower-level time series in this model feature no direct inter-dependences. In this 
article we add these dependences, which will be shown to have a smoothing 
effect on the dynamics of the lower-level d l m s , and lead to better predictions 
of future observations.

The addition of these dependences makes inference infeasible for larger num
bers of parallel d l m s . We therefore present two approximating methods to 
perform inference on the proposed model. The first approximation makes use 
of the so-called variational approach (see also (Jaakkola and Jordan 2000)): we 
construct an approximating model which consists of a single, independent d l m  

for each parallel time series, and one independent top-level d l m . This approx
imating model is optimized through minimization of its Kullbaek-Leibler ( k l ) 

divergence to the exact model. The second approximation is closely related 
to a local optimization method introduced in (Boven and Koller 1998), where 
the approximating model consists of independent probability distributions for 
each individual state, including the top-level states.

We present our version of the dynamic hierarchical model in Section 2, In 
Sections 3,1 and 3,2 we describe the aforementioned approximate inference
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methods. The extension of the model and its approximations to higher-level 
hierarchical models is discussed in Section 4 and a summary of related work is 
presented in Section 5, We evaluate the proposed techniques in Section 6, This 
evaluation is based on forecasting results on two databases, one with artificially 
generated data, and one that concerns single copy newspaper sales. In this 
evaluation we use an expectation-maximization (EM)-algorithm to estimate 
the parameters of the forecasting models. The expectation step of the EM- 
algorithm uses either exact inference, one of the two approximating methods 
or a DHM as described in (Gamerman and Migon 1993), and thus we compare 
the various approaches. Section 7 concludes the article with a summary and 
an outlook on future work.

2 A HIERARCH ICAL TIM E SERIES MODEL

2.1 The Extended Model

We consider a collection of n parallel time series indexed by i, each character
ized by T  combinations of a covariate x¿it and a response yiit. The response is 
modeled as a linear function of corresponding covariates x¿it with additional 
Gaussian noise €i)t\

Hi J =  “ I“  ( /'./ ; ( 1 )

where we assume all noise terms eiyt to be independent of each other and nor
mally distributed around zero, with variance a2. is the (time-dependent) 
regression parameter, which plays the role of a dynamic latent variable. The 
prediction for each new state is a weighted average of the old state, propagated 
through the evolution matrix A, and the corresponding top-level state:

where the noise £i t is assumed to be normally distributed around zero with 
variance £ , and B  is the weight (matrix) for the top-level state. The top-level 
state thus couples the dynamics of the lower-level d l m s . The evolution of the 
top-level states obeys

0 ¡ j  — l ö (./ i +  B M t +  , (2)

M t =  GMW  +  7 t , (3)
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where the noise j t is also assumed to be normally distributed around zero, 
with variance E m - Initial conditions are:

~  EMl) and 0¿i ~  Af(6i,  ¿ i)  (4)

For computational reasons, we choose B  = 1 — A  for the implementations 
in this article. Other values for B  are possible, but they make the approxi
mate inference methods that are described in this article more complex, and 
lead to increased computation times. We have observed no improvement in 
performance when B  is left free to choose.

For our particular extension of the standard dynamic hierarchical model we 
have chosen to use model parameters A (i.e. evolution matrices G and A, 
variances and initial values M i and 0i) that are: 1) independent of time, and 2) 
identical for each parallel d l m . Time-dependent versions of several parameters 
within A would be tedious but doable. This generalization is however outside 
the scope of the present article. Moreover, the much larger number of time- 
dependent model parameters may easily lead to an ’overfitting’ on the training 
data (when the number of observations per model parameter becomes too 
small, the model may specialize too much on the observed data, which leads 
to poor generalization).

Parameters that differ between parallel d l m s  would undermine the idea of 
learning parallel tasks. In this paper these shared model parameters strengthen 
the bond between different d l m s , whereas this connection would be lost when 
parameters become task-dependent.

The model is visualized in Figure 1, A directed graphical model like this rep
resents each latent state by a separate node (ellipse). Lines between nodes 
represent conditional independences. Unconnected nodes are said to be con
ditionally independent. Take for example nodes 0>., i . 0>., and y2,t- Node y2,t 
is connected to 0>.,. but not to 02,t-i. Therefore we can say that y2,t is condi
tionally independent of 02,t- 1 given 0 2J. or -P(y2,t |02,t- i ,  02>t) =  -P(y2,t|02,t)- 
More information on graphical models can be found e.g. in (Pearl 1988),

2.2 Maximum Likelihood Estimation

We implement an M L  estimation of the model parameters, which are shared be
tween the parallel d l m s .  This requires the maximization of log P ( Y \ . . t \ A, -X"i..t)  5 
the (log) probability of all observations Yi..t =  [2/1,1, . . . ,  yn,T], given the model 
parameters

A =  {£, E m , c , A, G , M 1; EMl, 0i • ¿ 1} , (5)
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Figure 1. Graphical model. The shaded areas represent the observations m j , the 
open ellipses represent the latent states. The top-level states (upper ellipses) are 
connected to all of the lower-level states (lower ellipses). Covariates are left out 
for clarity.

and all covariates A"L.T =  [xlt l l , , ,  ,x „ /_/•]. We will assume from here on that 
Xi"T is fixed and given, and omit it from our notation. Further, we define a 
super state

Zt =  [Mi+i, Oy , , , , ,  0„t] , (6)

and denote by Z ^ T all latent states in the model up to time T.

A well-know method for ML estimation in such latent-variable models is the 
EM algorithm (see e.g. (Rubin 1991)), The EM algorithm is an iteration of two 
steps:

• E-step: we calculate {\ogP(Zi„T, 1 i./i,|A ))p^1 T\yi r ,A'). the expectation value 
of the log probability of the latent states and the observations given A', the 
current best estimate for A, The set of model parameters A' is initialized 
(as A0) at random at the start of the algorithm,

• M-step: we obtain a new estimate for the model parameters by choosing 
Anew =  argm ax(logP(ZL/i-,lí./i -|A))p(iíl T|Vl r .A').

A

After each iteration A' is set to Anew, until the EM algorithm converges (when 
Anew is longer significantly different from A'), The EM algorithm is guaran
teed to converge to a (local) maximum of log P (ll..r |A ), The expression that 
is maximized in the M-step is a quadratic expression in A, which makes this
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step relatively easy. The more involved part of the algorithm is the inference 
in the E-step, In 2,3 we give expressions for the required probability distribu
tions, and in Sections 3,1 and 3,2 we describe approximations to perform this 
inference in linear time.

2.3 Inference

The ML estimation in Section 2,2 requires the calculation of the joint prob
ability P(Zi"T,Yi"T I A) and of the posterior probability of the latent states 
P(Zi"T \Yi"T, A), The latter is directly related to the joint probability:

P (Zl  Æ  T A) = ___ /,(Z |- r - V|- r A)___  (7)
1 I  dZl ..TP ( Z l..T,Y . .T \A) ' U

The joint probability itself can be written as a product of ’two-slice potentials’

I ’iZi.j-. V|..y- A) =  n ^ ( Z t- i ,Z t |A) , (8)
t

with, for the hierarchical model of Figure 1,

% ( Z t- U Zt |A) =  P(Yt |Zt , A)P(Zt \Zt^ ,  A) (9)
=  P(Yt |0 t, A) P( 0¿1 , M t, A) ,

where 0 t =  [0i it, , , , ,  0„ît] and we can further decompose

P ( Y \ e t ,A) = l [ P ( y ht\0ht,A) and
i

P ( e t |0 t_!, M*, A) =  n P{0i,t\0i,t-u M t, A ). (10)
i

The potential on the boundary t = 1 is slightly different:

^ (Z o , Z1; A) =  ^ i (Z 1; A) =  P(Yl \ e l , A ) P ( e l ,A) , (11)

where P (0 i)  is defined through Equation 4,

If we look at our dynamic hierarchical model in terms of the super state Zt 
defined in Section 2,2, we can express the model as one large d l m  and, in 
principle, we can apply the standard procedures for forecasting, filtering and
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smoothing. The evolution equation for Zt reads

 ̂M t+1 ^ '  G 0 .......... 0^

0 i ,  t 1 - A i  # : 0 1 , i - l

02,t = 1 - i O  A  : 02./ 1 +

: : o

\ @n,t y V1 -  A  0 • • • 0 A j y 0 ji,t—1 y

(1 2 )

where the noise covariance matrix T is of the form

■‘M

(13)

Equations 12 and 13 describe a vector auto-regression VAR process (see e.g. 
(Chatfield 1989)), This process is stationary when the eigenvalues of the large 
evolution matrix in Equation 12 have absolute values that are smaller than 1, 
We do not explicitly constrain A  and G to ensure stationaritv; we do however 
maximize the likelihood of fixed observations 1i..t that have values within a 
fixed, finite range. Evolution matrices that lead to non-stable time series with 
extreme expectation values for Zi„t  (and for 1 i ..t ) are therefore unlikely to 
occur.

It is possible to perform exact inference on Z,  since all relationships are linear 
and all noise components are additive and normally distributed. However, 
the methods involved in this procedure require the inversion of matrices of 
size (n +  1 ) • n dim x  (n +  1 ) • «dim, with n the number of parallel d l m s  and 
ndim the dimension of the latent states. Such calculations become practically 
infeasible for large n: for many real-world problems an n >  1 would lead to 
unacceptable computation times. This is why in Sections 3,1 and 3,2 we will 
introduce two methods for approximate inference that scale linearly with the 
number of parallel series.

3 Approxim ations to the D ynam ic Hierarchical M odel

The combination of dependences between latent states within one d l m  and 
between top- and lower-level d l m s  in the model that is discussed in this article
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(a) Graphical structure of the (b) Graphical structure of the 
approximate model used in approximate model used in 
the variational approximation the factorial approximation

Figure 2. Graphical structure of the approximate models used in the variational ap
proximation (left) and the factorial approximation (right). Ellipses represent latent 
states Mt for the top-level DLM and for the lower-level time DLMs. Observations 
are left out for clarity. The dashed lines in the right graph indicate that although 
the approximate model is fully factorized, the connections between states are incor
porated in each iteration step.

makes inference infeasible for large numbers of parallel time series. We there
fore propose not to use the exact model to perform inference, but to use an 
approximation instead. We present two such approximations, a variational ap
proximation and a factorial approximation. Both approximations feature only 
one, or even none of the aforementioned dependences explicitly. This makes it 
possible to perform inference within a reasonable time, even for larger numbers 
of parallel time series. Both approximations do however include both types of 
dependences implicitly, as will be shown in the remainder of this Section. In 
Section 6 we will show that the use of these approximate inference methods 
does not significantly affect performance.

3.1 A Variational Approximation

The variational approximation ’cuts’ the dependences between the top-level 
states M t and the lower-level states (see Figure 2a). The resulting approx
imation Q(Z i"T) of the posterior distribution reads
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Q(Zi..t) = Q o ( M l .t ) n  Q ¿ ( 0 ¿,i ..t )
i

n

= n  « . ( e . , ( h )
¿=0

where for notational convenience we defined #o,t =  M t, (See e.g. (Ghahramani 
and Jordan 1996; Jaakkola and Jordan 2000) for more details on this type of 
approximation.) This distribution uncouples the dynamics of the lower-level 
d l m s  and the top-level d l m  but does still take into account temporal de
pendences, The dependence between top- and lower-level states does however 
re-enter the equation when we minimize the KL-divergenee between Q ( 2 ' i ..t ) 

and the exact posterior:

KL[Q, P] = j  dZi^TQ(Zi^T)[\og Q(Z i t̂ ) -  \ogP{Z1..T \YL..T, A)] . (15)

This minimization provides us with the closest (and thus presumably the 
best) approximation of the posterior, given the restrictions that we imposed 
on the functional form of Q(Z i„t )- Although the approximating model does 
not feature all dependences explicitly, the minimization of the KL-divergenee 
does incorporate their effect in the approximation.

We minimize KL[Q,P] for (the parameters of) one function Q ¿ ( 0 ¿ , i ..t ) at a 
time, where we keep all other parameters fixed. The optimal Q ¿ ( 0 ¿ , i ..t ) can 
thus be expressed (see Appendix A) through a so-called ’mean field’ equation:

Qì(0ì,i..t) oc exp(logP(ZL.T, Yí..t))q_í , (16)

where {..)q_i denotes the average over the distribution

n

Q - i ( z 1..T) =  II < 2 ; ( 0 ; , i ..t ) -  (17)
j=0\j^i

One step of the approximation procedure includes the minimization of all 
functions Q ¿ ( 0 ¿ , i ..t ) (one by one). Since the optimal choice for Q ¿ ( 0 ¿ , i ..t ) de
pends on all other functions Q_¿(2'i..t ) through the expectation value in (16), 
we have to iterate this step until convergence, i.e. until there is no significant 
change in any of the functions Q ¿ ( 0 ¿ , i ..t )-

The mean field equations for the two-level hierarchical model take the following 
form. Let us first consider optimizing Q ¿ ( 0 ¿ , i ..t ) for one of the lower-level d l m s  

(i ^  0), Substituting (9) and (10) in (16), we obtain

Q%(0%,i . . t )  oc n ^ ( y ¿ , í | 0 ¿ )í) e x p ( l o g P ( 0 i ) í | 0 i)í_ i , M í ) ) Qo ■ ( 1 8 )
i
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This can be interpreted as the posterior of a standard d l m  (as defined through 
Equations 1 and 2) with transformed states and observations A de
tailed description is presented in Appendix A,

Similarly, with all Q ¿ ( 0 ¿ , i ..t ) fixed, the optimal Q0(Mi..t ) can be found to 
obey

Q o ( M l .t ) oc J J P ( M í | M í _ i ) I I e x p ( l o g - P ( 0 i ) í | 0 i)í_ i , M í ) ) Q i . (19)
t i

This can also be interpreted as the posterior of a d l m  if we can define an 
observation equation P(ÿt \Mt) and observations fjt such that

P(yt \Mt) oc JJexp(logF(0¿>t|0¿>t_i, M í))qí . (20)

P(ÿt |M t) and ÿt are defined in Appendix A, The standard form (a d l m )  of the 
partial posterior distributions Q ¿ ( 0 ¿ , i ..t ) makes it relatively straightforward to 
calculate the expectation values (0n)n ,a x, which we will exploit in the 
next part of this Section,

A more detailed observation of Equations 18 and 19 shows that each Q ¿ ( 0 ¿ , i ..t ) ,

(i 7  ̂ 0) depends on Q0(M L.T) only through the expectation values (M t)Q0(Ml T), 
and vice versa: Q0(M!..T) depends on the lower-level approximations only 
through the expectation values T y  This, and the fact that each
approximation can be written in the form of a d l m , facilitates the following 
iterative optimization procedure:

(1) Start with random values for (M t)Q0(Ml T),
(2) Construct the posterior of the lower-level states given (M t)Q0(Ml T),
(3) Infer (@i,t)q.(Q. 1 T) from this posterior, for i =  l..n.
(4) Construct the posterior of the top-level states given (Qi,t)q.(0.1 T y

(5) Infer (M í)q0(Mi t ) from this posterior,
(6) Repeat from step 2 until convergence.

In each iteration step we perform inference on n + 1 independent d l m s : once 
for the top-level states and n times for the lower-level states. The approximate 
distribution obtained in this way is a first-order Markov model, and is visu
alized in Figure 2a, Inference is performed through a method called ’Kalman 
smoothing’ (see e.g. (Havkin 2001)), This method is standard for d l m s , and 
it is linear in T.

It can be shown (see Appendix B) that the marginal means
t );(M í)q0(m1 t) under the (converged) approximating distribution 

are identical to the marginal means under the exact distribution. Any diserep-
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ancy between approximate and exact inference is therefore due to the error 
made in the estimation of the variances.

3.2 A Factorial Approach

As an alternative to the variational approximation, we consider a method 
known as ’expectation propagation’ (see (Minka 2001)), which is an iterative 
variant of a local optimization algorithm introduced by (Boven and Koller 
1998), We approximate the posterior P ( Z i„t \Yi ..t) with a distribution of the 
form

Note that this distribution is fully factorized, i.e. does not contain any links 
between consecutive states. We further decompose Q into

and similarly for ¡j,t {Zt).

At first sight, this factorized distribution seems to be less powerful than the 
approximation in (14) for the variational approach since no dependences what
soever remain. This fully factorized approximation will be fitted to the exact 
dynamic hierarchical model again and, like in the variational approximation, 
the various dependences will be brought back implicitly into the approximat
ing model.

The factorial approach does not (explicitly) minimize a distance measure 
between the approximate and the exact posterior distribution, but instead 
equates parts of the approximation to parts of the exact distribution. Con
sider the approximate posterior as described in Equations 21 and 22, and the 
exact posterior as described in (7) and (8), In each step of the factorial ap
proximation process we equate part of the approximating distribution to the 
exact potential ^ ¿ ( Z ^ ,  Zt), yielding:

(21)

(22)

with
At( z t) — A0,t(Mt) JJ A¿jt(0¿jt) ,
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where the approximating functions At(Zt) and have been replaced
by the exact potential ^ t(Zt_i, Zt), The optimal estimates for At(Zt) and 
Ht-i(Z t_!) are found through a number of marginalization steps. First, we 
calculate the joint distribution of Z t- i  and Zt:

Qt-i:t(Zt-i, Zt) =  — At_i(Zt_i)^t(Zt_i, Zt)fj,t (Zt) , (23)
Ct

where ct is a normalization constant. Further marginalization straightfor
wardly leads to expressions for each function À¿,t(0¿,t) and //¿,t-i(0¿,t-i). For 
example, integration of Qt_i;t(Zt_i, Zt) over Zt_i and Z (./ (all elements of Zt 
except 0¿it) yields the update formula for A¿it:

\ / i » ' !  Q o ,t(M ¿ ) j  \ / / j  \ Q i A Gw  /d i ',Ao,t(Mt) — and À¿,t(0¿,t) — r  , (24)

where Q0,t and are the marginal distributions for M t and 0¿it, respectively. 
Similarly, integration over Z | and Zt yields

— — Tj—j: r- and ~ 77. r  ■ (25)
l1VAt-i J m -i;

In principle the choice of the ordering of the updates is free. However, it makes 
sense to iterate going forward and backward in time: first compute all A’s from 
t =  1 to T, then all //’s from t = T  to 1, then update all A’s from t =  1 to T, 
and so forth until convergence.

At convergence, we can improve upon the fully factorized approximation by 
computing the two-slice distributions

Qo,t-i:t(Mt_i, M t) =  J  d 0 i¿ - i . . .  dOnyt-idOiyt . . .  d0n¿Qt-i:tfát-i, Zt) ,(26)

with Qt-i:t(Zt- i ,  Zt) as defined in Equation 23, and similarly for 
Qi,t-i:t(Qi,t-i, Qi,t) and Q0,¿,t(Mt, 0 ¿ít), By construction, the single-slice 
marginals <2o,t-i(Mt_i), Q0ît(M t), and Q¿,t (0¿,t) are consistent
with these two-slice marginals.

The factorial approach can be called ’greedy’, since it iterates over local es
timation steps instead of performing one global estimation. Each iteration 
step involves an update, where (part of) the factorial distribution is fitted to 
Equation 8 , The factorial approximation has very few functional constraints: 
each marginal probability Q¿,t(0 ¿,t) can in principle be fitted independently 
from all the others. This, in combination with the local, greedy optimiza
tion algorithm, is expected to yield very close approximations to the exact
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marginal probabilities P(M t|li..T, A), P(0 iít\Yi„T, A), P (M t_i, M t|Yi..T, A), 
P(O i¿- i ,  Oi,t\Y\..T, A) and P(M t, A), which are used in the learning
algorithm that is described in Section 2,2, We will show (in Appendix C) that 
the means in the factorial approximation coincide with the means of the ex
act posterior. Another way to show that this approximation features exact 
means is presented in (Rusmevichientong and Van Roy 2001), In Section 6 
we further show that (for our example) the factorial approach makes a closer 
approximation of the variance than the variational approximation does.

4 G eneralization to M ore than Two Levels

It is straightforward to generalize the exact hierarchical method and the two 
approximations to more than two levels. We outline the extension to a three- 
level model (see also Figure 3), Addition of subsequent higher levels proceeds 
in the same way.

Parameters at the lowest level, which refer to the lower-level d l m s  and couple 
directly to the observations, are denoted , These parameters represent 
latent states that, as before, depend on the previous states an<i 011 a
mid-level state, denoted These mid-level states are part of an ensemble 
of ‘mid-level d l m s ’, that constitute the second level. Each state on this level is 
connected to a selection from the lowest-level states (all with the same index 
i), to a top-level state M t and of course to its predecessor i_

In the variational approximation we now iterate over three levels. The ap
proximations for the two outer levels are expressed as before, for the two-level 
model. The solution for the middle level contains averages over both lowest
and mid-level dynamics:

exp(log P(<i>i!j¿\<i>i,j,t-ii @í¿))qí,} X
t

e^p{\ogP(ei.t \ei.t^l , M f) } Qo . (27)

The obvious iteration scheme is lower-middle-top-middle-lower-middle-top and 
so on.

The factorial approach proceeds in much the same way as before. The two- 
slice potential ^ t(Zt_i, Zt) now contains terms from three levels. These terms 
include connections within each level as well as connections between lowest
and mid-level states, and between mid- and top-level states. For the three-level 
model of Figure 3 this potential reads

13



Figure 3. Three-level model. The top ellipses represent the latent states of the 
top-level states Mt. The latent states which are connected to Mt, are on the 
second level. Each of these states is connected to a set of latent states t on 
the lowest level. Observations (left out for clarity) are connected to the lowest-level 
states.

Z t) — P  (Yt \Zit) P  (28)
= p{Yt \$t) p { $ t \$t- 1, e t) p { e t \ e t- 1, M t) p { M t \Mt- 1) ,

where we can further decompose
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i j = 1 
rn

P ( $ t \ $ t - u  B/ ) = Il II 0?-,t) and
i j= l

/'(<->/<->/ i- M t) =  n  P { 0 i M , t - u  M t) ,
i

where rii is the number of lower-level d l m s  that is connected to the mid
level d l m  0iit. Forward and backward passes are performed in the same way 
as before, where marginalization now yields factorized distributions Q0,t(Mt), 

a n d  •

ì l i

5 R elated Work

We have already mentioned the work of Gamerman and Migon (Gamerman 
and Migon 1993), which describes a top-level d l m  with latent states M t, and 
lower-level latent states that are inferred from the top-level states M t (via 
a hierarchical model). This model does feature no direct dependences between 
different states 0iit. The subject of hierarchical dynamic models has of course 
been treated in a wider context, Cargnoni, Müller and West (1997) presented 
a model with the same hierarchical structure as (Gamerman and Migon 1993), 
but for non-normal multivariate time series. The non-normality of this model 
prevents exact inference, and sampling methods are proposed to simulate the 
posterior.

An alternative method to modeling parallel time series has been presented by 
Zhang, Lin, Eaz and Sowers (1998), Each parallel time series is modeled as the 
sum of a common (for all time series) smoothing spline function, a regression 
term (or fixed effect) x f tß on the covariates x¿it and a series-dependent random 
effects term z^tb¿, where z is the subset of the covariates that corresponds to 
the random effect.

More work on time series modeling through the use of random effects has been 
done by Aguilar and West (1998), Here, the fixed effect is modeled through a 
d l m  structure, whereas the random effects are not linked through time,

Camargo and Gamerman (2000) have combined a hierarchical model structure 
with a d l m  structure within parallel time series through a mixture model. The 
mixture elements are the hierarchical model of (Gamerman and Migon 1993), 
and independent d l m s  for each parallel series. The probability of the mixture 
components is a time-dependent Bernoulli distribution.

An example of a more traditional approach can be found in the work of Bunn
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and Vassilopoulos (1999), who implement a combination of individual and 
group seasonal estimation for short-term sales forecasting of multiple retail 
products.

The work presented in this article is to our knowledge the first implementation 
of a graphical model that features dependences both between lower-level states 
at subsequent times and between top-level and lower-level states.

6 R esults

D escription of the data. We tested our model on two databases, one cre
ated artificially, the other containing real-world data. The covariates x¿it and 
the initial state means 0i,M x in the artificial database were drawn from a 
normal distribution with zero mean and unit variance. Propagation matrices 
for the lower-level d l m s  and the top-level d l m  and covariance matrices for 
the three sources of noise (on the top-level state predictions, on the lower- 
level state predictions and on the observations) were also generated randomly. 
The latent states were 3-dimensional, Given these parameters, observations 
Ui¿ were generated according to Equations 1, 2 and 3,

The second database contains sales figures for single copy newspaper sales 
in the Netherlands, The observations represent the numbers of newspapers 
sold on 156 consecutive Saturdays, at 343 separate outlets throughout the 
Netherlands, The covariates contain information about the weather, season, 
short-term previous sales (four to six weeks ago) and long-term previous sales 
(54 to 56 weeks ago). Results from previous studies (see e.g. (Bakker and 
Heskes 2003)) were used to implement a lower-dimensional (3-dimensional) 
representation of the input covariates. Both covariates and observations are 
scaled per outlet to have zero mean and unit variance.

A pplication of the extended m odel. Figure 4 shows the means over time 
for the first dimension of the three-dimensional latent state vectors for four 
parallel newspaper outlets and the top-level d l m .  Plots are drawn for the 
model we propose here and for the d h m  as decribed in (Gamerman and Migon 
1993), i.e. without direct dependences between lower-level latent states. It can 
be seen that under the latter model the dynamics for the parallel d l m s  are less 
smooth than for our approach. This is due to the fact that lower-level states 
in the standard d h m  are not linked through time. The new dependences also 
translate to better predictions, as will be shown later in this section.

Q uality o f the approxim ations. For both the top-level d l m  and the lower- 
level d l m s  we inferred the single state marginals P(0¿ít|Yi..T, A) using the 
exact posterior, the variational approach or the factorial approximation. We
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Figure 4. Means for the first elements of the latent states over time for 4 outlets 
from the newspaper data set, and the corresponding top-level DLM. Dotted lines 
correspond to lower-level states, solid lines represent top-level states. The left panel 
plots the exact means for the hierarchical model presented in this article, means 
inferred from the standard hierarchical model are plotted in the right panel.

rated the quality of both approximations through the KL-divergenees between 
the approximated and the exact marginals. Inference was performed on ran
dom selections of series, taken from the artificial data set. For each random 
draw we selected n (varying from 10 to 50) different series of 80 consecu
tive observations and covariates. The parameters A for the generating model 
were chosen randomly for each draw, and for each n we performed inference 
on 10 independent draws. The mean-dependent parts of the KL-distanees for 
both approximations were always zero after convergence, as expected (see Ap
pendix B and C). The variance-dependent parts of the KL-distanees (averaged 
over the 10 independent draws) are shown in Figure 5, as a function of n. The 
factorial approximation is clearly more accurate than the variational approx
imation for any number of tasks, although the difference does get smaller for 
increasing n. An example of the difference between the estimated variances 
for the two approximations is given in the lower panels of the same figure.

0

Forecasting. For both databases we applied the EM algorithm to find ML 
model parameters for different numbers of parallel tasks (n). For the inference 
step in this algorithm we used either exact inference, or one of the approximat
ing methods. For the newspaper database we also applied inference based on 
the d h m  without connections between subsequent lower-level states. For each 
number of tasks, and for each inference method, we performed 10 indepen
dent ML estimations, where each time we took a random selection of n tasks 
to be used for ML estimation and evaluation. The first 80 observation/eovariate 
pairs of each task were used for estimation of the model parameters, one-step- 
ahead forecasting was performed on the subsequent 20 data samples (x¿it,y¿it 
for t =  8 1 ...  100). That is, we obtained ML parameters A vu., and used them 
to calculate

(29)
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KL-divergence between the approximated and the exact top-level DLM KL-divergence between the approximated and the exact lower-level DLM
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Figure 5. Top: Average variance-dependent parts of the KL-divergences between the 
approximated marginals and the exact marginals. The left panel plots the average 
divergences between marginals of the top-level DLM. the right panel plots the average 
divergences between the marginals of the lower-level DLMs. The dash-dotted line 
plots the divergence between the variational approach and the exact model, the 
dashed line the divergence for the factorial approach. Bottom: the variance in the 
first dimension of the top-level state (left) and one from a set of 10 lower-level states 
(right) over time. Solid lines correspond to the exact model, dash-dotted lines to 
the variational approximation and dashed lines to the factorial approximation.

for t =  8 1 ... 100, starting with t = 81. After prediction of each y.¡¿ we used 
the true value for y¡j to update the posterior, where we kept the old values for 
Aml- In each trial we used the same inference method (exact or approximate) 
both for ML estimation and for posterior updates. Each of the trials was rated 
through the average squared error

n 100

E  = [20 • I » ] - 1 ]T  ]T  ((yu)  -  ft.,)2 . (30)
¿=1 ¿=81

and computation time. Since the outputs y¡j for both data sets have zero 
mean and unit variance, an error of E  =  1 corresponds to a model that always 
predicts y¡j =  0.
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Figure 6. Average squared error (left) and computation time (right) as a function 
of the number of parallel tasks for the variational approximation (dash-dotted line), 
the factorial approximation (dashed line) and the exact model (solid line).

Figure 6 shows the average squared error and required computation time as a 
function of the number of parallel d l m s  for the artificial data set. Results are 
displayed for the two approximation methods and for exact inference. It can 
be seen that, whereas the computation time for exact inference grows strongly 
with the number of parallel tasks, for either form of approximate inference it 
grows only linearly. This gain of speed infers but a small loss of accuracy: the 
average squared error of the approximate inference methods is not significantly 
higher than the error incurred through exact inference. Similar results were 
obtained from the newspaper data. Note that, since the means in both ap
proximate inference methods are identical to the exact means (given identical 
model parameters A), the expectation values for the responses y^L are exact as 
well: an approximation of the optimized exact model (i.e., approximate infer
ence on a model with parameters A that were obtained using exact inference) 
would feature the exact same responses, and have the same error. The differ
ence in performance between the exact model and the approximations is due 
to the fact that the approximations are made during M L  estimation (in the 
E-step of the E M  algorithm), and not afterwards.

For very small numbers of tasks, the results for exact inference are actually in
ferior to those for approximate inference. This is due to a form of ’overfitting’: 
although the observations that were used for M L  estimation have a high like
lihood under the model with parameters Aml, the model generalizes poorly 
for new observations. This effect appears to be weaker in both approximate 
methods. Xote however that parallel time series modeling is aimed at larger 
numbers of parallel tasks, where this problem is no longer an issue.

Performance on the newspaper data is presented in Figure 7. We consider 
the average performance of four different forecasting methods on 10 randomly 
chosen sets of parallel tasks (i.e. sales outlets). Forecasting performance, which 
is extremely poor (E æ 1) when we use only a single task, improves strongly
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sum-squared error on the newspaper data

Figure 7. The average squared error on the newspaper data for the variational 
approximation (bar 2), the factorial approximation (bar 3) and the standard DHM 

(bar 4). The performance of the extended model with exact inference is represented 
by bar 1. Each error is an average over 16 parallel tasks; a larger number of parallel 
tasks did not further decrease the sum-squared error.

with increasing numbers of tasks n, until n = 16. None of the methods that we 
considered showed significant further improvement in performance for larger 
numbers of parallel tasks. The first three methods include the dynamic hier
archical model that is described in this article, once with exact inference in 
the expectation step of the EM-algorithm, once using the variational approach 
and once using the factorial approximation. The fourth method involves the 
DHMwithout dependences between the lower-level latent states. The ML esti
mation process appears not to be hindered by the use of approximate inference 
instead of exact inference. The standard dhm however, incurs a clearly higher 
error than all of the methods presented in this article.

7 D iscussion

In this article we have presented a dynamic hierarchical model with depen
dences between the lower-level states in each time series. We have showed that 
such dependences are beneficial on a database of real-world data: predictions 
based on the new model were more accurate than those based on a similar 
model without these dependences.

Exact inference in the connected model is not practically feasible for large 
numbers of parallel time series. We therefore presented two methods for ap
proximate inference and showed that both methods, although they are ap
proximations, do feature exact means for the latent states. Comparison of the 
approximations to exact inference on two different databases confirmed that 
whereas the required computation time for exact inference is cubic in the num
ber of parallel time series, for the approximating methods it is only linear. The
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performance after approximate inference was shown to be competitive with 
the performance after exact inference.

The two approximating methods were compared two each other, both in terms 
of KL-divergence between approximate and exact marginals and in terms of 
forecasting and required computation time. Inference through the slightly 
slower factorial approximation was shown to be closer to exact inference than 
inference through the variational approximation. This superiority with respect 
to inference did however not cash out in the form of better predictions (since 
both approximations did not perform significantly worse than exact inference 
anyway). Nevertheless, other, more demanding datasets may still benefit from 
a closer approximation.

Interesting work on the clustering of groups of parallel time series has been 
done by Smyth (1997) and Gaffney and Smyth (1999), They present a method 
to detect similarities between parallel time series, which are used to group these 
series into meaningful clusters. This idea of ’time series clustering’, which is 
primarily concerned with finding a meaningful structure inside the parallel 
series, may be successfully combined with multitask learning, which is aimed 
at making better predictions. Multitask learning could be more effective when 
the full set of parallel tasks is divided into smaller subsets (or clusters), and 
different sets of hyperparameters are used for different clusters.

The current model features only continuous latent states, and all distributions 
are Gaussian, Interesting work may be done in the implementation of switching 
Kalman filters, discrete state variables and non-normal distributions.
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A PPE N D IX  A: TH E VARIATIONAL A PPR O A C H

The variational approach features an approximation of the posterior P(Zi„t \Yi..t, A) 
in the form of Q{Z^ .t )  — n?=0Q A i..T ) . We find those parameters for Q(.) 
that minimize

KL[Q, P] = j  dZi..TQ(Zi..T)[log Q(Zi"T) -  l o g V ,  A)] . (31)

This minimization is performed iteratively with respect to (the parameters 
of) each Q¿(0¿,i..t) in turn. The part of the KL-divergence that depends on 
Qi(0i,i.:r) reads

KL[Q i ,P ]=  J  dZl j r Q (Z l .:r)[\ogQl (dhl..T) ^

log > i - A)]

oc J  d0iíi..TQi(0i,i..T)[logQi(0iíi..T) -  (32)

ƒ dZ_¿íi..TQ_¿(Z_¿íi..T)logP(Z i..T|FL.T, A)] ,

where <5-¿(2'-¿,i..t) is the product over all Qj  .t )  except for j  = i. The 
last line is in fact the KL-divergence between Q¿(0¿,i..t) and

exp[ƒ  dZ_¿íL.TQ_¿(Z_¿íL.T)lo g P (Z L.T|li..T, A)] . (33)

Minimization of the KL-divergence with respect to Q¿(0¿,i..t) therefore implies 

Qi{6i,i.:r) = exp(logP(ZL.T|Yi..T, A))q_. . (34)

Each step of the iterative ML estimation process minimizes the KL-divergence 
between the approximating and the exact distribution with respect to one of
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the distributions Qí(0í,i..t). The optimum for each Q¿(0¿,i..t) can be inter
preted as the posterior of a standard Kalman filter model under the proper 
variable transformations. In the following we show what transformations are 
required both for i > 0 and for Qo(0q,i ..t ), the top-level d l m .

The variational approximation for the lower-level d l m s  with index i,

Carefully writing out the terms in Equation (35) and substituting +  ott for 
Qi¿ yields

a d l m  with states 0iyt and observations ÿiyt.

The approximation for the top-level d l m  Q 0 ( M i . . t ) can be interpreted as the 
posterior of a d l m  with evolution equation

and observation equation P (ÿ t |M t,A), The observations ÿ t and the observa
tion covariance matrix are defined as

can be written as the posterior of a standard d l m  with

0 ¡.t  —  O í.! — Ott 5 (36)

where

a i  =  0 (a vector of zeros) ,
at, =  . la / i +  (1 — A ) (M/) for t > 1 ,

(37)
(38)

and

ÿi,t — Vi,I ’X-ijOLt ■ (39)

t= 2 i= 1

M t =  GM¡_i +  7 1

(41)

(42)
i

ÿ i  =  0
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and

f jy1 =  n ( l  — A)t £ -1(1 — A) , (43)

Since y t is a vector, we define covariate matrices Ct (instead of covariate 
vectors x t). These matrices contain only zeros for I =  1 and are defined as the 
unity matrix otherwise. Inserting these transformed parameters, we obtain

P (y t |M t, A) =  n < 'x p { ! o g m ,  i- Mt, A))q .
i

<xexp(^ly[Èÿlÿt + ÿJÊ~1CtM t
-! m  ~ nrt ~ -j ~

X ¡’(y, 0,j .  C,. . \)  . (44)

an observation equation of the form 1 with predictions

f t  =  C¿Mt +  0 t , /•;((-),(-)/ ) =  . (45)

Note that in the second line we dropped all terms that do not depend on M t, 
and added a term ÿ ƒ x-(/1 ÿi ■ which does not depend on M t either.
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A PPE N D IX  B: EXACT M EANS IN TH E
VARIATIONAL A PPR O A C H

It can be proven that the means that are inferred from the variational ap
proximation coincide with the exact means. In the variational approximation 
the KL-divergence between the approximate posterior and the exact posterior 
is minimized. Both distributions can be rewritten as a normal distribution 
over one large state that contains all latent states present in the model. The 
means under the two posterior distributions will be shown to coincide when 
the KL-divergence between the distributions is minimized.

Both the exact and the approximate posterior can be written as one large 
normal distribution of ZL.T, which is a vector of length 
L =  «inputs • (n +  1) • T  and strings together all states at all times:

Z i / =  [Zi, , , , ,  Zt ] , (46)

where Zt is the super state for time t , defined in Section 2,2,

The exact posterior reads:

/ >( Zi / > i . A) =  A (m .\ y  ) , (47)

where is a block matrix of dimension L x L, defined through:

I  r - 1 r - 1 
1 0,0 1 0,1

r - i  r - 1
1 i,o 1 1,1

p - i  p - i  
\  1 n,0 1 n,l

r -i \  
0,n

F - 1 1 l,n

p  — 1
n,n /

(48)

and the blocks are ninputs • T  x ninputs • T  matrices corresponding to the 
inverse covariance of =  [0¿ii , , , , ,  0iiT\ and (~)¡ =  0 _____0j,T\- The ele
ments of this matrices follow from Equations 1 through 4 and Equations 7 
through 11, The same equations define the means m.

For the variational approximation we can define a similar distribution. The 
approximate posterior reads

/ >(Zi / ) i /-. A) =  jV(m, Êz ) , (49)
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with

TiZ
o rf - 1 ■, 

1 1,1 (50)
0

where the blocks f  ¿ /  and the elements of m are free to choose (provided that 
is positive definite).

Note that for both the exact and the approximating distribution, it does not 
m atter whether we write it in the form of a (series of) d l m ( s ) ,  or as one large 
normal distribution. The inferred means, for example, are the same for both 
ways of writing.

The KL-divergence between Q and P  has a mean-dependent term that reads 

KLmean =  |(m  — rh)T£ z(m  — m) , (51)

and a term that depends only on the variances. Since there are no constraints 
on what values m may take, it is clear that minimization of the KL-divergence, 
and therefore minimization of the above mean-dependent term with respect 
to m, infers that the approximating means m are identical to the exact means 
m.

The variance-dependent term reads

where Tr M  and \M\ represent the trace of M  and the determinant of M,  
respectively. Minimization of this term with respect to Êz  would yield the 
exact variance if the elements of Èz  were completely free to choose. This 
is however not the case: the variational approximation excludes dependences 
between states and 0j¿> for i ^  j ,  and the corresponding elements of Èz  
must be zero. The approximate total variance Èz  can therefore not be identical 
to the exact variance £ z , and the marginal variances Èz ,u and do not

KTlvlJvarianee |T r  E Z2ÈZE Z2 -  I  log |ÊZ (52)

coincide.
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A PPE N D IX  C: EXACT M EANS IN TH E
FACTORIAL A PPR O A C H

The means inferred through the factorial approximation are identical to the 
exact means as well. To show this, we first note that fixed points of expecta
tion propagation as performed in Section 3,2 correspond to fixed points of the 
’Bethe free energy’ (see (Minka 2001)), which reads

F (* ,Q )  =  - £  f  dZtQt (Zt) log Qt(Zt) 
t=i J

+  £  I  1og[Q ‘- 1:‘f ‘- » ) ] . (53 )
t = l J

where
n

Qt{Zt) = H  (54)
¿=o

and

Qt-i:t(Zt-i,t) — U \ , t -1 (55)
¿=o

as in Section 3,2, and is the potential defined in (9),

The integral ƒ dZQ(Z)  log Q(Z), where Q(.) is a multivariate normal distri
bution, is in fact independent of the parameter values of Q(.). The larger part 
of the above expression for F(ty, Q) therefore has no influence on the fixed 
points and can be ignored, leaving the Q(.) dependent part

t  »

^ ^ 2  dZt-l¿Qt-l:t{Zt-l,t) l°g ■
i= i J

Equation 53 can be re-expressed further as

F (tt, Q) = -K L (Q (Z 1..t ) |P (Z 1..t)) (56)
+KL(Q even ( Z ^ P Í Z ^ t ))

+KL(Qodd(Zl..T)\P(Zl..T)) + C ,

the sum of three KL-divergenees, each between an approximating distribution 
and the exact posterior distribution for the extended dhm. The distributions 
in Equation 56 are defined through:
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Q(Zi,:r)  =  J [ Q t (Zt) ,
i

Q e v en  Qt-v.t ( z t - l , i )  ;
t=even

Q oAa { Z i ..t ) — IJ Qt-l:t(Zt-l,t) ,
t=odd

and

t= i

Minimization of (the mean-dependent part of) this sum of KL-divergenees will 
be shown to imply exact means for the factorial approximation.

The equality (56) follows directly when we write out the expressions for the 
three KL-divergenees:

where C\ is a constant.

The KL-divergence between the exact posterior and the ’even’ approximation 
reads

KL(Q(Z1..t)|P (Z 1..t ))

(57)

t=i

Ci dZt_i ¿Qt_i ( Zt_i ) Qt ( Zt) ,

KL(Qeven(ZL.T) |P (Z L.T)) (58)

t=event=even

t=even

t=odd
l o g * t(Zt
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The expression log\I/t (Zt_iit) contains terms that are linear or quadratic in 
Zt_i and Zt (including cross terms between the two). Since convergence of the 
factorial approach implies that

In the sum of KL-divergenees in Equation 56 the first lines in Equations 59 
and 60 combine to form the Q(.) dependent part of Equation 53, whereas the 
second lines are exactly canceled by the term from KL(Q(2'1..T)|P (2 '1..T)),

As in Appendix B we can write out the mean-dependent terms of each of 
the three KL-divergenees, These terms are in fact identical, since each KL- 
divergence features the same exact mean m  and, due to the convergence prop
erties of the factorial approach, have identical approximate means m  as well. 
Therefore,

KLmean =  |( m  — rh)T£ z (m  — m) , (61)

the exact same term as in 51, where now m  is the mean of Q(Zi„t) (and of 
Q e v e n ( Z \ . . t ) and Q odd(^l.t))■ Minimization of (61) infers exact means in the 
factorial approach.

Similarly, we can express the variance-dependent term as

(Zi)<2t:t+1 (Zt) Qt ,

and
( ( ^ t — l ^ t )  Q t - 2 : t - l  ' ìQt i t+l  ( Z t — l ) Q t _ t ( Z t ) Q t , 

we can simplify Equation 58 to

KL(QeveD(Zl..T)\P(Zl..T)) = C2

~ E / dZt-l, tQt-l:t(Zt- l , t ) l°g ^ ( ^ t - l . t )
t= even

(59)

t= o d d ^

Similarly, we find that

K L(Q oM(Z1.. t ) \P (Z 1..t )) = C3 (60)

t= o d d
F , / dZt-ijQt-i-.t{Zt-i,t) log^t(2't-i,t)
_~ A A J

t=even
F, J  dZt_i,íQí_i(Zt_i)Qí(Zí)\oĝ t{Zt-i,t)
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_ !   ̂  ̂  ̂ _ i  

I n v a r i a n c e  — '2 ' I * ^Z  (Ëz,even ¿Z,odd ) ' - /
1 i f "  I 1 I V1 1 1 1■ log I Eleven I ~  ö ^°ë Pz,odd| +  Ö ^°S \^z\

where ÊZ)odd, ¿¿¿en  and Ê /  read

/  p - i
1 1,1

f - i  f - i
1 2,2 1 2,3

f -1 f -1
1 3,2 1 3,3

f -1 f -1 
T  2 T  2 T  2 T  1

r -i r; -i
T  1 T  2 T  1 T  1

r IJ1 IJ1 y

f -1  f -1
1,1 1,2

f - 1  f -1
1 2,1 1 2,2

f -1 f -1
1 3,3 1 3,4

f -1 f -1
1 4,3 1 4,4

r. -i
T  1 T  1 T  1 Tr; -i

f - i
T* T* 1

f - i
T* T*
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and
Í  p - i  

1 i ,i
p - 1 ■,
1 2,2

-p -i 
■ 1 3,3

p - i
1 4,4

\

r -i
T  1 T  1

f - 1 
T  T  j

respectively, where the blocks are ninputs • n x ninputs • n matrices corre
sponding to the approximate inverse covariance of Ot =  [0i¿, ■ ■ ■, Qn,t\ and 
@i' =  [ # i ■ ■ ■ ; Qn,t']- Although the approximated variance in the factorial ap
proach does contain non-block-diagonal terms (as opposed to the variational 
approximation), the variance dependent term KLvarjance will generally still 
not be zero.
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