
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is an author's version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/34517

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16121648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/34517

M O B I U S : M o b i l i t y , U b i q u i t y , S e c u r i t y *

Objectives and progress report

Gilles Barthe1, Lennart Beringer2, Pierre Cregut3,
Benjamin Grégoire1, Martin Hofmann2, Peter Müller4,

Erik Poll5, German Puebla6, Ian Stark7, and Eric Vetillard8

1 INRIA Sophia-Antipolis, France
2 Ludwig-Maximilians-Universität München, Germany

3 France Télécom, France
4 ETH Zürich, Switzerland

5 Radboud University Nijmegen, the Netherlands
6 Technical University of Madrid (UPM), Spain

7 The University of Edinburgh, Scotland
8 Trusted Labs, France

Abstract. Through their global, uniform provision of services and their dis­
tributed nature, global computers have the potential to profoundly enhance our
daily life. However, they will not realize their full potential, unless the necessary
levels of trust and security can be guaranteed.
The goal of the MOBIUS project is to develop a Proof Carrying Code architecture
to secure global computers that consist of Java-enabled mobile devices. In this
progress report, we detail its objectives and provide a snapshot of the project
results during its first year of activity.

1 Introduction

Global computers are distributed computational infrastructures that aim at providing
services globally and uniformly; examples include the Internet, banking networks, tele­
phone networks, digital video infrastructures, peer-to-peer and ad hoc networks, virtual
private networks, home area networks, and personal area networks. While global com­
puters may deeply affect our quality of life, security is paramount for them to become
pervasive infrastructures in our society, as envisioned in ambient intelligence. Indeed,
numerous application domains, including e-government and e-health, involve sensitive
data that must be protected from unauthorized parties. Malicious attackers spreading
over the network and widely disconnecting or disrupting devices could have devastat­
ing economic and social consequences and would deeply affect end-users’ confidence
in e-society. In spite of clear risks, provisions to enforce security in global computers
remain extremely primitive. Some global computers, for instance in the automotive in­
dustry, choose to enforce security by maintaining devices completely under the control
of the operator. Other models, building on the Java security architecture, choose to en­
force security via a sandbox model that distinguishes between a fixed trusted computing

* Work partially supported by the Integrated Project MOBIUS, within the Global Computing II
initiative.

2 Barthe et al.

base and untrusted applications. Unfortunately, these approaches are too restrictive to
be serious options for the design of secure global computers. In fact, any security ar­
chitecture for global computing must meet requirements that reach beyond the limits of
currently deployed models.

The objective of the MOBIUS project is to develop the technology for establish­
ing trust and security in global computers, using the Proof Carrying Code (PCC)
paradigm [37,36]. The essential features of the MOBIUS security architecture are:

- innovative trust management, dispensing with centralized trust entities, and allow­
ing individual components to gain trust by providing verifiable certificates of their
innocuousness; and

- static enforcement mechanisms, sufficiently flexible to cover the wide range of
security concerns arising in global computing, and sufficiently resource-aware and
confígurable to be applicable to the wide range of devices in global computers; and

- support for system component downloading, for compatibility with the view of
a global computer as an evolving network of autonomous, heterogeneous and
extensible devices.

MOBIUS targets are embedded execution frameworks that can run third party applica­
tions which must be checked against a platform security policy. In order to maximize
its chances of success, the MOBIUS project focuses on global computers that consist
of Java-enabled devices, and in particular on devices that support the Mobile Informa­
tion Device Profile (MIDP, version 2) of the Connected Limited Device Configuration
(CLDC) of the Java 2 Micro Edition.

2 MIDP

CLDC is a variant of Java for the embedded industry, and stands between JavaCard
and Java Standard Edition. CLDC is a perfect setting for MOBIUS because it has all
the characteristics of a real language: true memory management, object orientation,
etc., but applications developed for it are still closed: there is no reflection API, no C
interface (JNI) and no dynamic class loading (class loading is done at launch time).
Furthermore, CLDC is widely accepted by the industry as a runtime environment for
downloadable code: on mobile phones (MIDP), set-top-boxes (JSR 242) and smart card
terminal equipment (STIP).

The MIDP profile is a set of libraries for the CLDC platform that provides a
standardized environment for Java applications on mobile phones (so-called midlets). Its
wide deployment (1.2 billion handsets) has lead to a consensus on security objectives.
Moreover, MIDP promotes the idea of small generic mobile devices downloading
services from the network and is an archetypal example of the global computing
paradigm.

MIDP defines a simple connection framework for establishing communications over
various technologies, with a single method to open a connection that takes as argument
a URL which encodes the protocol, the target address, and some of the connection
parameters. MIDP offers a graphical user interface implementing the view/controller

MOBIUS: Mobility, Ubiquity, Security 3

paradigm and provides access to specific mobile phones resources (persistent store,
players, camera, geolocalisation, etc.)

MIDP security policy is based on the approval by the end-user of every method
call that can threaten the security of the user (such as opening a network connection).
Depending on the API, the frequency of security screens varies (from once for all to
once for every call).

This scheme, although simple, has several drawbacks: users accept dangerous calls
one at a time and have no idea of the forthcoming calls necessary for the transaction;
there can be too many screens to perform a simple transaction; moreover even a clearly
malicious action will be statistically accepted by some users if the customer basis is large
enough. To mitigate some of these risks, MIDP2.0 proposes to sign midlets. Signing
changes the level of trust of the midlet and reduces the number of mandatory warning
screens. Signing moves the decision of accepting an API call from the end-user to a
trusted entity (the manufacturer, the operator or an entity endorsed by them), but it does
not provide clues to take the decision. One goal of MOBIUS is to develop the necessary
technology for allowing the developer to supply clues and proofs that can help operators
to validate midlets developed by third parties.

Finally, MIDP dynamic security policy does not provide any control on the informa­
tion flow. This is in contrast with the european legislation that puts information control
at the heart of its requirements for computerized systems [38]. The information flow
analysis reported in Section 5.3 provides a first step to provide a technical enforcement
of those regulations.

Several factors such as handset bugs, different handset capabilities, operational en­
vironment (language, network), etc. lead to a fragmentation of MIDP implementations.
As resources (cpu, memory for heap, code or persistent data) on device are scarce, code
specialization is the only viable alternative to adapt application to handsets. It is not
uncommon to have hundreds of versions of a single application. Whereas some solu­
tions exist for automating the development, the management, and the provisioning to the
handset of so many variants, in practice, validation [32] is still based on a technology
which is unable to cope with multiple versions: black-box testing. Indeed, only the byte­
code is available to test houses, as software companies refuse to disclose their source
code to third parties to protect their intellectual property. MOBIUS outcome should help
to automate the validation process for operators. PCC can be used on the most complex
properties whereas type based techniques could be sufficient on simple ones.

3 PCC Scenarios

Figure 1 shows the basic structure of all certificate-based mobile code security models,
including Proof Carrying Code. This basic model, or scenario, comprises a code
producer and a code consumer. The basic idea in PCC is that the code is accompanied
by a certifícate. The certificate can be automatically and efficiently checked by the
consumer and it provides verifiable evidence that the code abides by a given security
policy. The main difference w.r.t. digital signatures is that the latter allows having
certainty on the origin of the code, whereas PCC allows having certainty about the
behaviour of the code. Different flavours of PCC exist which use different techniques

4 Barthe et al.

PRODUCER CONSUMER

Fig. 1. Certificate-based Mobile Code Security

for generating certificates, ranging from traditional logic-based verification to static
analysis in general and type systems in particular.

In the context of global computing, this initial scenario needs to be extended in a
number of ways to consider the presence of multiple producers, multiple consumers,
multiple verifiers and intermediaries. We have identified a series of innovative scenarios
for applying Proof Carrying Code in the context of global computers [23]; below we
summarize the main scenarios and issues of interest within the context of MOBIUS.

3.1 Wholesale PCC for MIDP devices

Figure 2 depicts the MOBIUS scenario for MIDP devices. It involves a trusted inter­
mediary (typically the mobile phone operator), code producers that are external to the
phone companies, and code consumers (the end users). PCC is used by developers to
supply phone operators with proofs which establish that the application is secure. The
operator then digitally signs the code before distributing it to the user.

This scenario for “wholesale” verification by a code distributor effectively combines
the best of both PCC and trust, and brings important benefits to all participating actors.
For the end user in particular, the scenario does not add PCC infrastructure complexity
to the device, but still allows effective enforcement of advanced security policies.

From the point of view of phone operators, the proposed scenario enables achieving
the required level of confidence in MIDP applications developed by third parties through
formal verification. Although this process is very costly, which often results in third
party code not being distributed, PCC enables operators to reproduce the program
verification process performed by producers, but completely automatically and at a small
fraction of the cost.

From the software producer perspective, the scenario removes the bottleneck of the
manual approval/rejection of code by the operator. This results in a significant increase
in market opportunity. Of course, this comes at a cost: producers have to verify their
code and generate a certificate before shipping it to the operator, in return for access
to a market with a large potential and which has remained rather closed to independent
software companies.

3.2 Retail PCC and on-device checking

Although our main MOBIUS scenario is for wholesale proof-checking by a trusted
intermediary, we are also exploring possibilities for “retail” PCC where checking

MOBIUS: Mobility, Ubiquity, Security 5

Fig. 2. The MOBIUS scenario

takes place on the device itself. Limited computing capabilities rule out full-blown
proof-checking for the moment, but there are other kinds of certificates that support
verification: MIDP already annotates code with basic type information for lightweight
bytecode verification [40], and we aim to extend this with more sophisticated types
to capture security properties, and with the results of other analyses as in abstraction-
carrying code [1]. Complementary to digital signatures, these certificates maintain the
PCC property that clients perform actual verification ofreceived code, by providing rich
type information to make it fast and cheap to do.

3.3 Beyond the MOBIUS scenarios

Though the MOBIUS scenario concerns networks of mobile devices, we believe that
the concept of trusted intermediary and the use of off-device PCC can have a significant
impact in the quality of the applications developed in other contexts. For the case of
general-purpose computers, we believe that our scenario is also applicable, since the
role of trusted intermediary can be played by other organizations such as end-user
organizations, governmental institutions, non-profit organizations, private companies,
etc. Note that this scenario is radically different from the situation today: though some
organizations play the role of trusted intermediaries, they do not have the technology
for formally verifying code and they have to resort to other techniques such as manual
code inspection. Thus, we argue that PCC holds the promise of bringing the benefits of
software verification to everyone. The fact that verified code becomes available at low
cost will increase the demand on verified code, which will in turn encourage software
companies to produce verified code with certificates.

4 Security requirements

A fundamental question in developing a security architecture for global computers is the
inventory of the security requirements that we should be able to express and guarantee.
This has been the one of the first step of the project.

6 Barthe et al.

The choice to focus on the MIDP framework was very helpful, as it allowed us
to consider concrete examples of various kinds of security requirements. Moreover, as
the framework has been actively used for some time, there is considerable experience
with security requirements for MIDP applications. Although inspired by concrete MIDP
setting, or even concrete MIDP ahpplications, the range of security requirements we
have found is representative of the requirements that are important for any distributed
computing infrastructure.

We have considered two, largely orthogonal ways to analyse and classify security
requirements. In a first deliverable [19], we investigated two important classes of
security requirements, namely resource usage and information flow. In a second one
[20] we considered general security requirements that apply to all applications for
the MIDP framework, so-called framework-speciflc security requirements, and security
requirements specific to a given application, so-called application-specific security
requirements. Here we summarise the main conclusions of those reports.

4.1 Resources

Any global computing infrastructure naturally raises issues about identifying and
managing the resources required by mobile code. This is especially true on small
devices, where resources are limited.

Central issues for resource policies are: what resources they should describe;
how resource policies can contribute to security; and what kinds of formalism are
appropriate. Surveying different possible kinds of “resource”, we are looking to identify
those that are both likely to be amenable to formal analysis by current technologies, and
are also clearly useful to real-world MIDP applications. Some of these are classical
instances of computational resources, namely time, where counting bytecodes executed
can be a useful estimate of actual runtime, and space, of stack or heap, which may be
rather limited on a mobile device. The focus on MIDP also allows us to address some
platform-specific kinds of resource, namely persistent store, as file storage space will
be limited, and billable events such as text messages (SMS) or network connections
(HTTP), which have real-money costs for the user. Many of these platform-specific
resources can be unified by treating particular system calls as the resource to be
managed: how many times they are invoked, and with what arguments. This fits neatly
into the existing MIDP security model, where certain APIs are only available to trusted
applications.

Policies to control resources such as these are useful in themselves, but they
also have a particular impact on security. First, some platform-specific resources are
intrinsically valuable — for example, because an operator will charge money for them
— and so we want to guard against their loss. Further, overuse of limited resources on the
device itself may compromise availability, leading to denial of service vulnerabilities.

4.2 Information flow

Information policies can track integrity or confidentiality. We concentrated on the
second, as the former is essentially just its dual. The attacker model is a developer
who leaks sensitive information to untrusted parties, either intentionally (in case of

MOBIUS: Mobility, Ubiquity, Security 7

a malicious developer) or by accident. On the MIDP platform sensitive information
is typically information related to the user: sources include the addressbook, audio
or video capture, the permanent store, and textfields where the user typed in private
data. Untrusted information sinks are network connections and the permanent store,
especially if the store is shared between applications.

4.3 Framework-specific security requirements

Framework-specific security requirements describe generic requirements applicable
to all the applications running on a given framework. In industry there is already
considerable experience with framework-specific security requirements for MIDP. [20]
provides a comprehensive listing of all of these requirements.

Many of these requirements concern critical API methods: both the use of certain
methods (does the application uses the network ?) and possibly also the arguments
supplied to them (for example the URL supplied to open a connection defines the
protocol used). Deciding these questions is already an issue in the current MIDP code­
signing scheme: to decide if signing is safe, it is necessary to know statically which
critical APIs are used and to compute an approximation of the possible values of their
key parameters. There are already some dedicated static analysis techniques for this [16,
24], but there is a limit to what such automated analyses can achieve.

More complicated requirements on API methods are temporal properties that involve
the sequencing of actions, such as a requirement that every file that is opened must be
closed before the program exits. Checking these properties requires a deeper insight
of the control flow of a program, which can be complicated by the possibility of
runtime exceptions, the dependency on dynamic data structures, and the influence of
thread synchronization. Finite state automata are a convenient formalism for specifying
temporal requirements. Such automata can be expressed in the program specification
language JML that we plan to use. Moreover, they are easily understandable by non­
experts.9

4.4 Application-specific security requirements

An individual application may have specific security requirements beyond the generic
requirements that apply to all the applications. These application-specific security re­
quirements may simply be more specific instances of framework-specific security prop­
erties, but can also be radically different. Whereas framework-specific requirements are
often about the absence of unwanted behaviour, security requirements for a particular
application may include functional requirements, concerning the correctness of some
functional behaviour. Application-specific properties are usually more complex than
framework-specific properties and less likely to be certified by fully automatic tech­
niques.

We have selected some archetypical applications representative of classical applica­
tion domains for which interesting security requirements can be expressed. These ap­
plications include a secure private storage provider, an instant messenger client, an SSH

9 In fact, the current industrial standard for testing MIDP applications, the Unified Testing
Criteria [32] already uses finite automata for specification, albeit informally.

8 Barthe et al.

client, and an application for remote electronic voting. All of these have strong security
requirements, including information flow requirements, that go beyond the framework-
specific requirements.

The final two applications selected are in fact core services of the MIDP platform
itself rather than applications that run on the platform, namely a bytecode verifier and
a modified access controller. Note that for these components functional correctness is
one of the security requirements. The specification language JML that we will use in
logic-based verification is capable of expressing such functional requirements, although
extensions to conveniently use mathematical structures in specification, as proposed in
[15], may be needed to make this practical.

5 Enabling technologies

A central component of the technology being developed by MOBIUS is a hierarchy
of mechanisms that allow one to reason about intensional and extensional properties
of MIDP-compliant programs executed on a Java Virtual Machine. The two enabling
technologies that these mechanisms rely on are typing and logic-based verification.
Depending on the security property, and the respective computational resources, code
producer and consumer (or verifier in the case of wholesale PCC) may negotiate about
the level at which the certificate is formulated. For example, the availability of a type
system with an automated inference algorithm reduces the amount of code annotations,
whereas expressive program logics may be applied in cases when type systems are
insufficiently flexible, or when no static analysis is known that ensures the property of
interest. In the sequel, we provide a short overview of the mechanisms developed during
the first year of the project, namely the MOBIUS program logic for sequential bytecode,
and type systems for resources, information flow, and aliasing.

In the following sections we summarise some of the formal systems which we have
developed and outline possible verification approaches.

5.1 Operational model

The lowest level of our hierarchy of formal systems consists of an operational model of
the Java Virtual Machine that is appropriate for MOBIUS. In particular, as a consequence
of the choice to target the MIDP prifile of the CLDC platform, features such as reflection
and dynamic class loading may safely be ignored, as is the case for complex data types.
In addition, our current model is restricted to the sequential fragment of the JVM and
does not model garbage collection.

The operational model builds the basis for all program verification formalisms to be
developed in MOBIUS : all formal systems considered within the MOBIUS project - and
hence the validity of certificates - may in principle be given interpretations that only
refer to the operational judgments defining the model. Like any mathematical proof,
these interpretations may involve some abstractions and definitional layers, including
some more abstract operational semantics which we have defined and formally proven
compatible with the small-step relation.

MOBIUS: Mobility, Ubiquity, Security 9

In order to guarantee the utmost adherence to the official specification, we have
implemented a small step semantics. The corresponding judgement relates two consec­
utive states during program execution. We keep the same level of detail as the official
description, but with some simplifications due to the fact that we concentrate on the
CLDC platform.

The correctness of an operational model can not be formally proved, we assert it
axiomatically, and have developed a rigorous mathematical description of it, called
Bicolano, in the Coq proof assistant [43]. In order to get more confidence in our
axiomatization we have also developed an executable version of fragments of Bicolano
which can be used to compare evaluation results with other implementations of the
official specification.

5.2 Program logic

The second layer of our reasoning infrastructure is built by a program logic. This allows
proof patterns typically arising during the verification of recursive program structures
to be treated in a uniform matter. Extending program logics with partial-correctness
interpretations, the MOBIUS logic supports the verification of non-terminating program
executions by incorporating strong invariants [28].

The global specification structure is given by a table M that associates a partial­
correctness method specification ^ and a method invariant p to each defined method,
where the latter relates each state occurring throughout the (finite or infinite) execution
of the method to its initial state. In order to support the modular verification of virtual
methods, the method specification table is required to satisfy a behavioural subtyping
condition which mandates that the specification of an overriding method declaration
must be stronger (i.e. imply) the specification of the overwritten method. In addition,
each program point in a method may be decorated with an assertion that is to be
satisfied whenever the control flow passes through the decorated program point. All
such annotations are collected in a global annotation table Q.

The program logic employs proof judgements of the form G h {A} I { B } (I) where
the program point I (comprising a method identifier M and a label in the definition of
M 's body) is associated with a (local) precondition A, a local postcondition B , a (strong)
invariant I . The types and intended meanings of these components are as follows.

Whenever the execution of M , starting at label 0 and initial state so reaches I
with current state s, and A (s0, s) holds, then

- B (s0, s, t) holds, provided that the method terminates with final state t,
- I (s0, s , H) holds, provided that H is the heap component of any state

arising during the continuation of the current method invocation, including
invocations of further methods, i.e. subframes,

- Q(s0, s') holds, provided that s' is reached at some label (! during the con­
tinuation of the current method invocation, but not including subframes,
where Q(i') = Q.

Moreover, the judgements are supplied with a proof context G . The latter contains
assumptions typically associated with merge-points in the control flow graph. These

10 Barthe et al.

assumptions are used by the logic rules in order to avoid infinite cycling in the proof
derivation. For the technical details of this the reader is referred to [22,9].

In order to give a flavor of what the proof rules look like, we show the rule for basic
instructions (arithmetic operations, load/store,...):

G h [PreM,i(A)} M, s u c m (0 { P o s ì m , i (B) } (Invm , i (I)) 0
G h {A} M , l { B } (I)

Note that the correctness of l depends on the correctness of its successor. Also, the
rule uses predicate transformers PreM,l (A) ,PostM,l (A), and In vM, i (I) which relate
the assertions for the successor instruction with the assertions of instruction l . For the
definition of these transformers, see [9]. Finally, the side condition 0 states that the local
precondition A implies the strong invariant I and any annotation that may be associated
with M, l in the annotation table Q:

0 = V s0 s. A (s 0 , s) ^ (I (s 0 , s, heap (s)) A V Q. Q(M, l) = Q ^ Q (s 0 , s)).

In addition to rules of similar shape for all instruction forms, the logic is also supplied
with logical rules, such as a consequence rule and an axiom rule that extracts assump­
tions from the proof context.

We have proven a soundness theorem for the proof system which ensures that the
derivability of a judgement G h {A} I {B} (I) entails its semantic validity. The latter
is obtained by formulating the above informal interpretation in terms of Bicolano's
operational judgements.

This soundness result may subsequently be extended to programs. We first say that
a program has been verified if each entry in the method specification table is justified
by a derivation for the corresponding method body, and similarly for the entries of
local proof contexts G. The soundness result for programs then asserts that all methods
of a verified program satisfy their specifications: whenever M (M) = (&, p) holds,
any invocation of M is guaranteed to fulfill the method invariant p, with terminating
invocations additionally satisfying the partial-correctness assertion ^.

In order to evaluate our logic experimentally, we have implemented a verification
condition generator (VCgen) that applies proof rules in an automatic fashion and emits
verifications conditions stemming from side conditions such as 0 above, and from the
application of the rule of consequence.

In the next period of the project, we will extend the logic by mechanisms for
reasoning about the consumption of resources and incorporate ghost variables and
associated concepts. This will provide a platform for the encoding of some type systems
that defy the current version of the program logic. A typical example are type systems
that track the number of calls to certain API-methods like sending of SMS messages or
opening files.

5.3 Type systems

In this section we describe MOBIUS work on types for information flow, resources,
and alias control. Classically, types in programming languages are used to check data
formats, but we envisage much broader type-based verification, with specialised systems

MOBIUS: Mobility, Ubiquity, Security 11

to analyse individual security properties. Indeed, Java 5 has annotations that support just
such pluggable type systems [11].

Information flow Work on information flow has focused on the definition of an
accurate information flow type system for sequential Java bytecode and on its relation
with information flow typing for Java source code, as well as on flexible analyses for
concurrency.

Policies Our work mainly focuses on termination insensitive policies which assume
that the attacker can only draw observations on the input/output behavior of methods.
Formally, the observational power of the attacker is captured by its security level (taken
from a lattice S of security levels) and by indistinguishability relations ~ on the semantic
domains of the JVM memory, including the heap and the output value of methods
(normal values or exceptional values).

Then, policies are expressed as a combination of global policies, that attach levels
to fields, and local policies, that attach to methods identifiers signatures of the form

khk v — ► k r , where k v sets the security level of local variables, kh is the heap effect of the
method, and kr is a record of security levels of the form {n : kn , e1 : k e i , . . . en : k en },
where kn is the security level of the return value (normal termination) and each e¿ is an
exception class that might be propagated by the method, and kei is its corresponding
security level.

khA method is safe w.r.t. a signature k v — ► kr if:

1. two terminating runs of the method with -equivalent inputs and equivalent
heaps, yield ~ kr -equivalent results and equivalent heaps;

2. the heap effect of the method is greater than kh, i.e. the method does not perform
field updates on fields whose security level is below k h.

The definition of heap equivalence adopted in existing works on information flow for
heap-based language, including [8], often assumes that pointers are opaque, i.e. the
only observations that an attacker can make about a reference are those about the object
to which it points. However, Hedin and Sands [29] have recently observed that the
assumption is unvalidated by methods from the Java API, and exhibited a Jif program
that does not use declassification but leaks information through invoking API methods.
Their attack relies on the assumption that the function that allocates new objects on the
heap is deterministic; however, this assumption is perfectly reasonable and satisfied by
many implementations of the JVM. In addition to demonstrating the attack, Hedin and
Sands show how a refined information flow type system can thwart such attacks for a
language that allows to cast references as integers. Intuitively, their type system tracks
the security level of references as well as the security levels of the fields of the object
its points to.

Bytecode verification for secure information flow We have defined a lightweight
bytecode verifier that enforces non-interference of JVM applications, and proved
formally its soundness against Bicolano [8]. The lightweight bytecode verifier performs

12 Barthe et al.

a one-pass analysis of programs, and checks for every program point that the instruction
verifies the constraints imposed by transition rules of the form

P[i] = in s con stra in ts (ins, st, s t ' , r)

r , i h s t ^ s t'

where i is an index consisting of a method body and a program point for this body,
and the environment r contains policies, a table of security signatures for each method
identifier, a security environment that maps program points to security levels, as well
as information about the branching structure of programs, that is verified independently
in a preliminary analysis. For increased precision, the preliminary analysis checks null
pointers (to predict unthrowable null pointer exceptions), classes (to predict target of
throw instructions), array accesses (to predict unthrowable out-of-bounds exceptions),
and exceptions (to over-approximate the set of throwable exceptions for each method);
the information is then used by a CDR checker that verifies control dependence regions
(cdr), using the results of the PA analyser to minimise the size of regions.

Relation with information flow type system for Java JFlow [34] is an information flow
aware extension of Java that enforces statically flexible and expressive information
policies by a constraint-based algorithm. Although the expressiveness of JFlow makes
it difficult to characterize the security properties enforced by its type system, sound
information flow type systems inspired from JFlow have been proposed for exception-
free fragments of Java.

JFlow offers a practical tool for developing secure applications but does not address
mobile code security as envisioned in MOBIUS since it applies to source code. In order
to show that applications written in (a variant of) JFlow can be deployed in a mobile code
architecture that delivers the promises of JFlow in terms of confidentiality, [7] proves
that a standard (non-optimizing) Java compiler translates programs that are typable in a
type system inspired from [5], but extended to exceptions, into programs that are typable
in our system.

Concurrency Extending the results of [8] to multi-threaded JVM programs is necessary
in order to cover MIDP applications, but notoriously difficult to achieve. Motivated
by the desire to provide flexible and practical enforcement mechanisms for concurrent
languages, Russo and Sabelfeld [41] develop a sound information flow type system that
enforces termination-insensitive non-interference in for a simple concurrent imperative
language. The originality of their approach resides in the use of pseudo-commands to
constrain the behavior of the scheduler so as to avoid internal timing leaks. One objective
of the project is to extend their ideas to the setting of the JVM.

Declassification Information flow type systems have not found substantial applications
in practice, in particular because information flow policies based on non-interference
are too rigid and do not authorize information release. In contrast, many applications
often release deliberately some amount of sensitive information. Typical examples of
deliberate information release include sending an encrypted message through an un­
trusted network, or allowing confidential information to be used in statistics over large

MOBIUS: Mobility, Ubiquity, Security 13

databases. In a recent survey [42], A. Sabelfeld and D. Sands provide an overview of
relaxed policies that allow for some amount of information release, and a classification
along several dimensions, for example who releases the information, and what informa­
tion is released. Type-based enforcement mechanisms for declassification are presented
in [12].

Resource analysis In §4.1 we identified requirements for MOBIUS resource security
policies, as well as some notions of “resource” relevant to the MIDP application domain.
Here we survey work within the project on analyses to support such policies, with
particular focus on the possibility of formally verifying their correctness: essential if
they are to be a basis for proof-carrying code.

Memory usage The Java platform has a mandatory memory allocation model: a stack
for local variables, and an object heap. In [9] we introduce a bytecode type system
for this, where each program point has a type giving an upper limit on the number of
heap objects it allocates. Correctness is proved via a translation into the MOBIUS logic,
and every well-typed program is verifiable [21, Thm. 3.1.1]. Using the technique of
type-preserving compilation we can lift this above the JVM: we match the translation
from a high-level program F to bytecode [F J with a corresponding translation of types;
and again for every well-typed program its bytecode compilation is verifiable in the
MOBIUS logic [21, Thm. 3.1.3]. Even without the original high-level source program
and its types, this low-level proof can certify the bytecode for PCC.

Work in the MRG project [4] demonstrated more sophisticated space inference for
a functional language, using Hofmann-Jost typing [30] to give space bounds dependent
on argument size, and with these types used to generate resource proofs in a precursor
of the MOBIUS logic. We have now developed this further, into a space type system for
object oriented programming based on amortised complexity analysis [31].

Billable events Existing MIDP security policies demand that users individually au­
thorise text messages as they are sent. This is clearly awkward, and the series of con­
firmation pop-up screens is a soft target for social engineering attacks. We propose a
Java library of resource managers that add flexibility without compromising safety[21,
§3.3]: instead of individual confirmation, a program requests authorisation in advance
for a series of activities. Resource security may be assured either by runtime checks,
or a type system for resource accounting, such that any well-typed program will only
attempt to use resources for which it already has authorisation.

We have also used abstract interpretation to model such external resources [10].
From a program control-flow graph, we infer constraints in a lattice of permissions:
whenever some resourceful action takes place, the program must have acquired at least
the permissions required. Automated constraint solving can then determine whether this
condition is satisfiable.

Execution time Static analysis to count instructions executed can be verified in bytecode
logic using resource algebras [3]. We have recently developed a static analysis frame­
work [?] which provides a basis for performing cost analysis directly at the bytecode

14 Barthe et al.

level. This allows obtaining cost relations in terms of the size of input arguments to
methods. In addition, platform-dependent factors are a significant challenge to predict­
ing real execution time across varied mobile platforms. We have shown how param-
eterised cost models, calibrated to an individual platform by running a test program,
can predict execution times on different architectures [33]. In a PCC framework, client
devices would map certified platform-independent cost metrics into platform-dependent
estimates, based on fixed calibration benchmarks.

Alias control Alias characterisations simplify reasoning about programs [26]: they
enable modular verification, facilitate thread synchronisation, and allow programmers
to exchange internal representations of data structures. Ownership types [18,17] and
Universe types [35] are mechanisms for characterising aliasing in object oriented
programming languages. They organise the heap into a hierarchical structure of nested
non-overlapping contexts where every object is contained in one such context. Each
context is characterised by an object, which is said to own all the objects contained
directly in that context. Figure 3 illustrates the ownership structure of a linked list with
iterator.

Fig. 3. Object structure of a linked list. The LinkedList object owns the nodes of the doubly-
linked list. The iterator is in the same context as the list head. It has a peer reference to the list
head and an any reference to the Node object at the iterator position.

In the Universe Type System [35,26], a context hierarchy is induced by extending
types with Universe annotations, which range over rep , peer, and any. A field typed
with a Universe modifier rep denotes that the object referenced by it must be within the
context of the current object; a field typed with a Universe modifier peer denotes that the
object referenced by it must be within the context that also contains the current object;
a field typed with a Universe modifier any is agnostic about the context containing the
object referenced by the field.

So far, we have concentrated on the following three areas:

MOBIUS: Mobility, Ubiquity, Security 15

- Universe Java: The formalisation and proof of soundness of a minimal object-
oriented language with Universe Types.

- Generic Universe Java: The extension of Universe Java to Generic Java.
- Concurrent Universe Java: The use of Universe Types to administer race conditions

and atomicity in a concurrent version of Universe Java.

UJ - Universe Java As a basis for the other two work areas, we formalized Universe
Java and proved the following key properties:

- Type safety: The Universe annotations rep and peer correctly indicate the owner
of an object.

- Encapsulation: The fields of an object can only be modified through method calls
made on the owner of that object (owner-as-modifier discipline).

GUJ - Generic Universe Java We extended Universe Java to handle generics, which
now form part of the official release of Java 1.5. In Generic Java, classes have parameters
which can be bound by types: since in Universe Java, types are made up of a Universe
modifier and a class, GUJ class parameters in generic class definitions are bound by
Universe modifiers and classes. Generic Universe Java provide more static type safety
then Universe Java by reducing the need for downcasts with runtime ownership checks.
We proved that GUJ is type safe and enforces encapsulation.

UJ and Concurrency The Universe ownership relation in UJ provides a natural way to
characterise non-overlapping nested groups of objects in a heap. We therefore exploit
this structure in a Java with multiple concurrent threads [25] to ensure atomcity and
absence of data races.

6 Towards certificate generation and certificate checking

An important part of a PCC infrastructure is concerned with certificates. For the code
producer one of the main tasks is to generate a certificate ensuring that his program
meets the security policy of the client. In contrast, the code verifier/consumer needs to
convince himself that the transmitted program respects his security policy.

In the scenario of Fig. 2 we assume that operators send compiled code, i.e. bytecode,
to their customers, but this leaves the question of whether code producers will supply
source code or bytecode to the operator. In MOBIUS, we concentrate on the latter, since
this avoids the inclusion of the compiler in the trusted code base and does not require
code producers to provide access to their source code.

6.1 Certificate generation

The MOBIUS project focuses on two approaches for the generation of certificates, logic-
based verification and type-based verification. By exploring both approaches, we hope
to complement the rigorousness of our formalization by flexibility and automation.

The first technique (logic-based verification) is the concept of a proof transforming
compiler [6], where properties can be specified and verified at the source code level and

16 Barthe et al.

are then guaranteed to be preserved by the compilation, analogously to the way that
type-preserving compilation guarantees the preservation of properties in the context of
type systems. In addition to a program written in the source language, such a compiler
expects a proof that the source program satisfies a (high-level) specification. Its output
consist of the bytecode program and a proof (certifícate) that this program satisfies
the translation of the original specification into a formalism appropriate for bytecode.
Logic-based verification is particularly suitable for functional correctness properties, but
we have already shown in previous work how to generate JML annotations for a large
class of high-level security properties [39]. Interactive usage of the proof assistant, for
example in order to discharge side conditions emitted by the VCgen, is also admissible.
To be able to write such a proof transforming compiler for Java programs annotated
with JML, we have developed a dedicated annotation language for Java bytecode: the
Bytecode Modeling Language (BML) [13].

The second technique for the generation of specifications and certificates, type-based
verification, rests on automated (and in general conservatively approximate) program
analysis. Here, certificates are derived from typing derivations or fixed-point solutions
of abstract interpretations, as outlined in the previous section and in the philosophy of
lightweight bytecode verification.

6.2 Certificate checking

For the code verifier/consumer, the goal is to check that the received program meets its
specification (i.e. check the validity of the certificate) and to ensure that the specification
is compliant with his security policies. Both parts should be fully automatic, and the
machinery employed for this task is part of the trusting computing base (TCB).

The size of TCB is one of the main difficulties in a PCC architecture. Foundational
PCC [2] minimizes the TCB by modeling the operational semantics of the bytecode in a
proof assistant, and by proving properties of programs w.r.t. the operational semantics.
Then deductive reasoning is used to encode program logic rules or typing rules. FPCC
allows to remove the VCgen and type checkers for the application type systems from the
TCB, but the deductive reasoning to encode proof rules or typing rules leads to bigger
certificates than using a VCgen or a type checker.

One ambitious goal is to merge both approaches, and to get a small TCB and small
certificates. Ultimately, a MOBIUS certificate is always a Coq proof of desired property
phrased in terms of semantics. Apart from the proof assistant itself, Bicolano represents
the trusting computing base of MOBIUS reasoning infrastructure. By representing
formal systems in a proof assistant, we firstly increase the confidence in the validity
of our checkers. Secondly, these representations allow us to exploit the infrastructure of
the proof assistant when verifying concrete programs and their certificates.

Based on this, and complementing FPCC, the following two proof methodologies
for type-based verification are considered within MOBIUS.

Derived Assertions The Derived Assertions-Approach pioneered in MRG associates
with each typing judgement an assertion in the program logic, the derived assertion.
For each (schematic) typing rule one then proves a derived program logic proof rule

MOBIUS: Mobility, Ubiquity, Security 17

operating on these derived assertions and possibly involving semantic, e.g. arithmetic,
side conditions to be discharged by the proof assistant. Given a concrete typing
derivation, a proof of the derived assertion corresponding to its conclusion can then
be obtained by a simple tactic which invokes these derived rules mirroring the typing
derivation. The typing derivation itself will typically be obtained using an automatic
type inference which then need not be part of the TCB.

Reflection Recent versions of Coq come with a powerful computational engine [27]
derived from the OCAML compiler. This allows computationally intensive tasks to be
carried out within the proof assistant itself. A prominent example thereof is Gonthier-
Werner’s self-contained proof of the four-color theorem within Coq. This feature can be
harnessed for our purposes in the following way using the reflection mechanism:

- we encode a type system T as a boolean-valued function typableT on programs,
and prove that the type system is sound in the sense that it enforces some expected
semantic property interpT. Formally, soundness is established by proving the
lemma

TypeCorrect : VP : prog. typableT (P) = true = ^ interpT(P)

- to prove that interpT(P0) holds for a particular program P 0, we just have to apply
the TypeCorrect lemma, and prove that typableT (P0) = true holds.

- if your checker allows you to reason by computation (i.e. two propositions are equal
if they are computationally equal) and if the program P 0 is typable, the proposition

typableT (P0) = true

is equal (i.e. reduces) to true = true which is trivial to prove.

The Coq proof assistant allows such a reasoning mechanism. In Coq, the representation
of such a proof is TypeCorrect P (refLequal true), where (refLequal true) is a proof of
true = true.

Similar to this reflectional approach to PCC is the technique we presented in [14],
where lattice abstract interpretation is used to verify bounded memory use. Significantly,
here both the algorithm and its correctness proof are expressed within the Coq proof
assistant, such that we may extract a certified checker from the proof itself. This allows a
novel realisation of proof-carrying code, where a fast program verifier is trusted because
it is obtained from its own proof of correctness.

7 Next steps

After a year activity, the MOBIUS project is well on tracks. Scientific progress is pro­
ceeding as expected: security requirements and the PCC scenarios for global computing
have been defined, and significant advances in enabling technologies have been re­
ported in deliverables and scientific publications. For further information, please consult
http://mobius.inria.fr.

http://mobius.inria.fr

18 Barthe et al.

References

1. E. Albert, G. Puebla, and M. V. Hermenegildo. Abstraction-carrying code. In F. Baader
and A. Voronkov, editors, LPAR, volume 3452 of Lecture Notes in Computer Science, pages
380-397. Springer-Verlag, 2004.

2. A. W. Appel. Foundational proof-carrying code. In J. Halpern, editor, Proceedings of the
Sixteenth Annual IEEE Symp. on Logic in Computer Science, LICS 2001, page 247. IEEE
Computer Society Press, June 2001. Invited Talk.

3. D. Aspinall, L. Beringer, M. Hofmann, H.-W. Loidl, and A. Momigliano. A program logic
for resource verification. In Proceedings ofTPHOLs’04, LNCS. Springer, 2004.

4. D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile Resource
Guarantees for Smart Devices. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and
T. Muntean, editors, Proceedings of CASSIS’04, volume 3362 of Lecture Notes in Computer
Science, pages 1-27, 2005.

5. A. Banerjee and D. Naumann. Stack-based access control for secure information flow.
Journal of Functional Programming, 15:131-177, Mar. 2005. Special Issue on Language-
Based Security.

6. G. Barthe, B. Grégoire, C. Kunz, and T. Rezk. Certificate translation for optimizing com­
pilers. In SAS’06: Proceedings of Static Analysis Symposium, Lecture Notes in Computer
Science. Springer-Verlag, 2006.

7. G. Barthe, D. Naumann, and T. Rezk. Deriving an information flow checker and certifying
compiler for java. In Symposium on Security and Privacy, 2006. IEEE Press, 2006.

8. G. Barthe, D. Pichardie, and T. Rezk. A certified lightweight non-interference java bytecode
verifier. In R. D. Niccola, editor, Proceedings of ES0P’07, volume 4xxx of Lecture Notes in
Computer Science. Springer, 2007.

9. L. Beringer and M. Hofmann. A bytecode logic for JML and types. In Programming
Languages and Systems: Proceedings of the 4th Asian Symposium, APLAS 2006, Lecture
Notes in Computer Science 4279, pages 389-405. Springer-Verlag, 2006.

10. F. Besson, G. Dufay, and T. P. Jensen. A formal model of access control for mobile
interactive devices. In ESORICS ’06: Proceeding of 11th European Symposium On Research
In Computer Security, Lecture Notes in Computer Science. Springer-Verlag, 2006.

11. G. Bracha. Pluggable type systems. Presented at the OOPSLA 2004 Workshop on Revival
of Dynamic Languages, Oct. 2004.

12. N. Broberg and D. Sands. Flow locks: Towards a core calculus for dynamic flow policies.
In P. Sestoft, editor, Proceedings of ESOP ’06, volume 3924 of Lecture Notes in Computer
Science, pages 180-196. Springer, 2006.

13. L. Burdy, M. Huisman, and M. Pavlova. Preliminary design of BML: A behavioral
interface specification language for Java bytecode. In FASE ’07: Proceedings of Fundamental
Approaches to Software Engineering, Lecture Notes in Computer Science, 2007. To appear.

14. D. Cachera, D. P. T. Jensen, and G. Schneider. Certified memory usage analysis. In Proc. of
13th International Symposium on Formal Methods (FM’05), number 3582 in Lecture Notes
in Computer Science, pages 91-106. Springer-Verlag, 2005.

15. J. Charles. Adding native specifications to JML. In ECOOP workshop on Formal Techniques
for Java-like Programs (FTfJP ’2006), 2006.

16. A. S. Christensen, A. Meller, and M. I. Schwartzbach. Precise analysis of string expressions.
In Proc. 10th International Static Analysis Symposium, SAS ’03, volume 2694 of LNCS,
pages 1-18. Springer-Verlag, June 2003. Available from http://www .brics.dk/JSA/.

17. D. G. Clarke and S. Drossopoulou. Ownership, Encapsulation and the Disjointness of Type
and Effect. In OOPSLA, pages 292-310,2002.

http://www.brics.dk/JSA/

MOBIUS: Mobility, Ubiquity, Security 19

18. D. G. Clarke, J. M. Potter, and J. Noble. Ownership Types for Flexible Alias Protection. In
Proceedings of the 13th Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA-98), volume 33:10 of ACM SIGPLAN Notices, pages 48-64,
New York, Oct. 18-22 1998. ACM Press.

19. M. Consortium. Deliverable 1.1: Resource and information flow security requirements.
Available online from http://mobius.inria.fr, 2006.

20. M. Consortium. Deliverable 1.2: Framework-specific and application-specific security
requirements. Available online from http://mobius.inria.fr, 2006.

21. M. Consortium. Deliverable 2.1: Intermediate report on type systems. Available online from
http://mobius.inria.fr, 2006.

22. M. Consortium. Deliverable 3.1: Bytecode specification language and program logic.
Available online from http://mobius.inria.fr, 2006.

23. M. Consortium. Deliverable 4.1: Scenarios for proof-carrying code. Available online from
http://mobius.inria.fr, 2006.

24. P. Cregut and C. Alvarado. Improving the security of downloadable Java applications
with static analysis. In Workshop on Bytecode Semantics, Verification, Analysis and
Transformation (Bytecode 2005), volume 141 of Electronic Notes in Theoretical Computer
Science. Elsevier Science, Inc., 2005.

25. D. Cunningham, S. Drossopoulou, S. Eisenbach, W. Dietl, and P. Müller. CUJ: Universe
Types for Race Safety. Preliminary version at http://slurp.doc.ic.ac.uk/pubs.html#cuj06.

26. W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of Object
Technology (JOT), 4(8):5-32, Oct. 2005.

27. B. Grégoire and X. Leroy. A compiled implementation of strong reduction. In ICFP’02:
Proceedings of the International Conference on Functional Programming, pages 235-246.
ACM Press, 2002.

28. R. Hahnle and W. Mostowski. Verification of safety properties in the presence of transac­
tions. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, editors, Proceedings,
Construction and Analysis of Safe, Secure and Interoperable Smart devices (CASSIS ’04)
Workshop, volume 3362 of Lecture Notes in Computer Science, pages 151-171. Springer­
Verlag, 2005.

29. D. Hedin and D. Sands. Noninterference in the presence of non-opaque pointers. In
Proceedings of the 19th IEEE Computer Security Foundations Workshop. IEEE Computer
Society Press, 2006.

30. M. Hofmann and S. Jost. Static prediction of heap space usage for first-order functional
programs. In POPL ’03, Proceedings of the 30rd Annual. ACM SIGPLAN - SIGACT
Symposium. on Principles of Programming Languages, pages 185-197. ACM Press, Jan.
2003.

31. M. Hofmann and S. Jost. Type-based amortised heap-space analysis. In Proceedings of
ESOP2006, pages 22 - 37, 2006.

32. U. T. Initiative. Unified testing criteria for Java technology-based applications for mobile
devices. Technical report, Sun Microsystems, Motorola, Nokia, Siemens, Sony Ericsson,
May 2006. Version 2.1.

33. E. Mera, P. Lopez-Garcia, G. Puebla, M. Carro, and M. Hermenegildo. Combining Static
Analysis and Profiling for Estimating Execution Times. In Ninth International Symposium
on Practical Aspects of Declarative Languages, LNCS. Springer-Verlag, January 2007. To
appear.

34. A. Myers. JFlow: Practical mostly-static information flow control. In POPL ’99, Proceedings
of the 26rd Annual. ACM SIGPLAN - SIGACT. Symposium. on Principles of Programming
Languages, pages 228-241. ACM Press, 1999.

35. P. Müller. Modular Specification and Verification of Object-Oriented Programs. PhD thesis,
FernUniversitat Hagen, 2001.

http://mobius.inria.fr
http://mobius.inria.fr
http://mobius.inria.fr
http://mobius.inria.fr
http://mobius.inria.fr
http://slurp.doc.ic.ac.uk/pubs.html%23cuj06

20 Barthe et al.

36. G. C. Necula. Proof-carrying code. In POPL ’97: Proceedings o f the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of programming languages, pages 106-119, New York,
NY, USA, 1997. ACM Press.

37. G. C. Necula and P. Lee. Safe kernel extensions without run-time checking. In Proceedings
of Operating Systems Design and Implementation (OSDI), pages 229-243, Seattle, WA, Oct.
1996. USENIX Assoc.

38. E. Parliement and E. Council. Directive 95/46/ec of the european parliament and of the
council of 24 october 1995 on the protection of individuals with regard to the processing of
personal data and on the free movement of such data. In Official Journal of the European
Communities, number L 281, pages 31-50, october 1995.

39. M. Pavlova, G. Barthe, L. Burdy, M. Huisman, and J.-L. Lanet. Enforcing high-level
security properties for applets. In P. Paradinas and J.-J. Quisquater, editors, Proceedings
ofCARDIS ’04, Toulouse, France, August 2004. Kluwer Academic Publishers.

40. E. Rose. Lightweight bytecode verification. Journal of Automated Reasoning, 31(3-4):303-
334, 2003.

41. A. Russo and A. Sabelfeld. Securing interaction between threads and the scheduler. In
Proceedings of CSFW’06, 2006.

42. A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In Proceedings of
CSFW’05. IEEE Press, 2005.

43. The Coq development team. The coq proof assistant reference manual v8.0. Technical
Report 255, INRIA, France, mars 2004. http://coq.inria.fr/doc/main.html.

http://coq.inria.fr/doc/main.html

