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M easurem ent o f th e  P seudoscalar D ecay C onstant f Ds U sing  C harm -Tagged E vents in 
e+ e~  C ollisions at ^ /s  =  10.58 GeV
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Using 230.2 fb-1 of e+e-  annihilation data collected with the BABAR detector at and near the peak 
of the Y (4S) resonance, 489 ±  55 events containing the pure leptonic decay D+ ^  have been 
isolated in charm-tagged events. The ratio of partial widths r(D +  ^  vM)/r (D +  ^  0n+) is 
measured to be 0.143 ±  0.018 ±  0.006 allowing a determination of the pseudoscalar decay constant 
f Ds =  (283 ±  17 ±  7 ±  14) MeV. The errors are statistical, systematic, and from the D+ ^  
branching ratio, respectively.

PACS numbers: 13.20.He, 14.40.Nd, 14.60.Fg

M easurem ents of pure leptonic decays of charm ed pseu
doscalar mesons are of particu lar theoretical im portance. 
They provide an unam biguous determ ination  of the  over
lap of the  wavefunctions of the  heavy and light quarks 
w ithin the meson, represented by a single decay constant 
( f M ) for each meson species (M ). The p artia l w idth for 
a D + meson to  decay to  a single lepton flavor (l) and its 
accom panying neutrino (v;), is given by

r ( D +  - +  l + v i )  =  G f ^ CsI f b s m l m D s > W

where and  m ; are the D + and lepton masses, re
spectively, G F is the  Fermi constant, and Vcs is the  
CKM  m atrix  element giving the coupling of the  weak 
charged current to  the c and s quarks [1]. The partia l 
w idth is governed by two opposing term s in mj2. The 
first te rm  reflects helicity suppression in the decay of the 
spin-0 meson, requiring the charged lepton to  be in its 
unfavored helicity sta te . The second term  is a phase
space factor. As a result, the ra tio  of t  : «  : e de
cays is approxim ately 10 : 1 : 0.00002. Lattice calcula
tions have resulted in f Ds =  (249 ±  17) MeV and a ra tio  
f Ds/ f D =  1.24± 0.07 [2]. CLEO-c has recently m easured 
a value for f D =  (223 ±  17) MeV [3].

We present herein the m ost precise m easurem ent to  
date  of the ra tio  r (D +  ^  «+  vM) / r ( D +  ^  ) and 
the decay constant f Ds. The d a ta  (230.2 fb- 1 ) were col
lected w ith the BABAR  detector a t the asym m etric-energy 
e+ e-  storage ring P E P -II a t and below the Y (4S) reso
nance. The BABAR  detector is described in detail else
where [4]. Briefly, the com ponents used in th is analysis 
are the  tracking system  composed of a five-layer silicon 
vertex detector and a 40-layer drift cham ber (DCH), the 
Cherenkov detector (DIRC) for charged n - K  discrim 
ination, the CsI(Tl) calorim eter (EM C) for photon and 
electron identification, and the 18-layer flux re tu rn  (IFR) 
located outside the 1.5 T solenoid coil and instrum ented 
w ith resistive p late  cham bers for m uon identification and 
hadron  rejection.

The analysis proceeds as follows. In order to  m easure 
D + ^  M+vM, the decay chain D*+ ^  yD +, D + ^  «+  vM 
is reconstructed  from D*+ mesons produced in the  hard

fragm entation of continuum  cc events. The subsequent 
decay results in a photon, a high-m om entum  D + and 
daughter m uon and neutrino, lying m ostly  in the  same 
hem isphere of the event. Signal candidates are required 
to  lie in the  recoil of a fully reconstructed  D 0, D + , D + , or 
D*+ meson (the “tag ” ), wherein the tag  flavor, and hence 
the expected charge of the  signal muon, is uniquely deter
mined. To elim inate signal from B  decays, the  m inim um  
tag  m om entum  is chosen to  be close to  the kinem atic 
lim it for charm  mesons arising from B  decays. Tagging 
in th is m anner significantly reduces backgrounds, while 
im proving the missing m ass resolution of the  signal.

Tag candidates are reconstructed  in the follow
ing modes: D 0 ^  K - n+ (n0) ,K - n + n + n - , D + ^  
K - n + n +  (n0), K!0n+ (n0), K !0n+n+n- , K + K - n + , KS?K +, 
D +  ^  KS0K +, <p+, and D *+ ^  n+  D 0, w ith D 0 ^  
K ° n + n - (n 0) ,K ° K + K - ,KS?n0. Kaons are identified 
using inform ation from the DCH and the DIRC. Re
quirem ents on the vertex probability  of the  tag  decay 
products are imposed. For each tag  m ode a signal region 
and sideband regions in the  tag  mass d istribu tion  are 
defined. The signal region spans ± 2  stan d ard  deviations 
(^tag) around the m ean (/«tag), determ ined from fits to  
the tag  mass d istribu tion  in d a ta  events. The sidebands 
extend from 3 to  6 <rtag on either side of « tag (Fig. 1).

For each event a single tag  candidate is chosen and then 
used in the  subsequent analysis. To pick this tag  among 
m ultiple candidates w ithin an event (there are 1.2 candi
dates on average in events w ith a t least one candidate) 
modes of higher pu rity  are preferred. In events where 
two tag  candidates are reconstructed  in the same mode, 
the quality  of the  vertex fit of the D  meson is used as 
a secondary criterion. After sub tracting  com binatorial 
background there are 5 * 105 charm  tagged events w ith a 
m uon am ongst the recoiling particles.

The signature of the  decay D*+ ^  yD +  is a narrow  
peak in the  d istribu tion  of the  m ass difference A M  =  
M (« vy) — M (« v ) a t 143.5 MeV/c2. The D*+ signal is re
constructed  from a m uon and a photon candidate in the 
recoil of the tag. Muons are identified as non-showering 
tracks penetra ting  the IFR . The m uon m ust have a mo
m entum  of a t least 1.2 GeV/c in the center-of-mass (CM) 
frame and have a charge consistent w ith the tag  flavor.
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FIG. 1: Tag mass distribution, showing the signal and side
band regions, in events with a recoil muon. All tag modes 
are combined, scaling their mass and width to that of the 
D 0 ^  K - n+ mode.

Muons used in this analysis are identified w ith an average 
efficiency of «  70 %, while the pion m isidentification rate  
is «  2.5 %. C lusters of energy in the  EM C not associated 
w ith charged tracks are identified as photon candidates. 
The photon  CM energy m ust exceed 0.115 GeV.

The CM missing energy (E * iss) and m om entum  (pmiss) 
are calculated from the four-m om enta of the incoming 
e+ e-  , the  tag  four-m om entum , and the four-m om enta 
of all rem aining tracks and photons in the event. The 
energy of the charged particles th a t do not belong to  
the tag  is calculated from the track  m om entum  under 
a pion m ass hypothesis. Assigning a mass according to  
the m ost likely particle hypothesis has negligible effect 
on the missing energy resolution. Since the neutrino  in 
the signal decay leads to  a large missing energy in the 
event, the requirem ent E * iss >  0.38 GeV is made.

The neu trino  CM four-m om entum  (pV =  (|PV|,PV)) 
is estim ated from the m uon CM four-m om entum  (p*) 
and p*miss, using a technique adopted from Ref. [5]. The 
difference |pmiss — P* l is minimized, while the invariant 
m ass of the neutrino-m uon pair is required to  be the 
known m ass of the D + [6]. Studies of sim ulated decays 
of signal and background cc events show th a t the quan
tity  pcorr =  |p*miss l — |PV l is centered a t 0 for signal de
cays, while for the  cc events it peaks a t a negative value 
significantly separated  from the signal. A requirem ent 
p corr >  —0.06 GeV/c is imposed. To reduce contributions 
from background events where particles are lost along the 
beam  pipe in the forward direction, a requirem ent on the 
neutrino  CM polar angle 0* >  38 ° is made. The muon 
CM four-m om entum  (p*) is combined w ith p*V to  form 
the D + candidate. Unlike the signal D + , a large num 
ber of random  D + com binations have the m uon candi
date  aligned w ith the D + flight direction. A requirem ent 
cos(a* ,Ds) <  0.90 is m ade on the angle between the  muon 
direction in the  D + frame and the D + flight direction in 
the CM frame. The D + candidate is then  combined w ith 
a photon candidate to  form the D*+. The CM momen
tu m  of correctly reconstructed  D *+ is typically higher

th an  th a t of random  com binations; signal candidates are 
required to  have |pD*+1 >  3.55 GeV/c. The resulting sig-

D s

nal detection efficiency in tagged events is esig =  8.13%.

The selection requirem ents on E * iss, a * ,Ds, p corr, 0*, 
and |p* *+1 are optim ized using sim ulation to  maximize

D  s

the significance s /V s  +  6, where s and b are the  sig
nal and background yields expected in the  d a ta  set. 
Backgrounds arise from several distinct sources. The 
first class of background are events e+ e-  ^  f f ,  where 
f  =  u, d, s, b, or t , which do not contain a real charm  tag. 
The contribu tion  of these events is estim ated from d a ta  
using the tag  sidebands. In addition there are events 
e+ e-  —>■ cc where the tag  is incorrectly reconstructed. 
A lthough these events potentially  contain the signal de
cay, they  are also sub trac ted  using the tag  sidebands. 
These two sources am ount to  «  42 % of the background.

The second class of background events («  26 %) are 
correctly tagged cc events w ith the recoil m uon coming 
from a sem ileptonic charm  decay or from t  + ^  «+  v* z/T. 
This includes events D*+ ^  yD +  ^  Y t + vT, t  + ^  
«+  v * vT . To estim ate the  size and shape of th is back
ground contribution, the  analysis is repeated, su b stitu t
ing a well-identified electron for the  muon. Except for a 
small phase-space correction, the w idths of weak charm  
decays into m uons and electrons are assum ed to  be equal. 
QED effects such as brem sstrahlung (e+ ^  Ye+) energy 
losses and photon conversion (y ^  e+ e- ), where the 
m uon equivalents have a much lower rate , are explicitly 
removed. In particular, brem sstrahlung photons found 
in the vicinity of an electron track  are combined with 
the track. The small num ber of events w ith an elec
tro n  from a converted photon th a t survive the selection 
are suppressed by a photon conversion veto, using the 
vertex and the known radial d istribu tion  of the m ate
rial in the  detector. The m uon selection efficiency as a 
function of m om entum  and direction is m easured using 
e+ e-  ^  « + « - y events, while radiative B habha events 
are used to  quantify  the electron efficiency. The ra tio  
of m uon to  electron efficiencies is applied as a weight to  
each electron event.

The rem aining backgrounds are estim ated from simu
lation. These include events ( «  20 %) w ith pure leptonic 
decays of a D + or D + meson, D +  ^  «+v*, where the 

is produced either directly  in cc fragm entation or in 
decays of D *+ , excluding the signal decay chain. If the 
photon used in the  reconstruction originates from a n 0 of 
a D*+ decay, the A M  d istribu tion  peaks sharply around 
70 MeV/c2; otherwise it is flat. A small background 
(~  1 %) arises from decays D*+ ^  yD + ^  y t+ vT w ith 
t + ^  n + (n 0)vT and the charged pion being misidentified 
as a muon. Its A M  d istribu tion  peaks close to  th a t of 
the signal. O ther backgrounds («  10%) include signal 
events w ith an incorrectly  chosen photon candidate, and 
hadronic cc events w ith one of the final s ta te  hadrons,
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FIG. 2: A M  distribution of charm-tagged events passing the 
signal selection. The tag can be from the tag signal region 
(solid lines) or the sidebands (dashed lines). In the bottom 
plot the signal muon is replaced with an electron to estimate 
the semileptonic charm and t decay background.

AM (GeV/c2)

FIG. 3: A M  distribution after the tag sidebands and the 
electron sample are subtracted. The solid line is the fitted 
signal and background distribution (NSigf Sig +  NBkgd f Bkgd ), 
the dashed line is the background distribution (NBkgd f Bkgd ) 
alone.

usually a n+  or a K  +, being misidentified as a muon. 
These backgrounds have a flat A M  distribution.

Events th a t pass the  signal selection are grouped into 
four sets, depending on w hether the tag  lies in the  sig
nal region or the sideband regions, and on w hether the 
lepton is a m uon or an electron (Fig. 2 ). For each lepton 
type the sideband A M  d istribu tion  is sub tracted . The 
electron distribution, scaled by the relative phase-space 
factor (0.97) appropria te  to  sem ileptonic charm  meson 
decays and leptonic t  decays is then  sub trac ted  from 
the m uon d istribution. The resulting A M  distribution  
is fitted  w ith a function (Nsigfsig +  NekgdfBkgd)(AM ), 
where f sig and f Bkgd describe the sim ulated signal and 
background A M  distributions. The function fsig is a 
double G aussian distribution . The function fBkgd con
sists of a double and a single G aussian d istribu tion  de
scribing the two peaking background com ponents, and 
a function [7] describing the flat background com ponent. 
The relative sizes of the  background com ponents, along 
w ith all param eters except N sig and N Bkgd are fixed to  
the values estim ated from sim ulation. The x 2 fit yields 
N sig =  489 ±  55(stat) signal events and has a fit proba
bility  of 8.9%  (Fig. 3 ).

The branching fraction of D + — M+v* cannot be de-
(*) +term ined directly, since the production  ra te  of Ds 

mesons in cc fragm entation is unknown. Instead  the par
tia l w idth ra tio  r (D +  — M + v*)/r(D +  — ^ n + ) is m ea
sured by reconstructing  D*+ — yD +  — Y^n+ decays. 
The D + — m+ v* branching fraction is evaluated using 
the m easured branching fraction for D + — ^ n + .

C andidate ^  mesons are reconstructed  from two kaons 
of opposite charge. The ^  candidates are combined w ith 
charged pions to  form D + meson candidates. B oth  times 
a geom etrically constrained fit is employed, and a mini
m um  requirem ent on the fit quality  is made. The ^  and 
the D + candidate masses m ust lie w ithin 2 a  of their 
nom inal values, obtained from fits to  sim ulated events 
and data . P ho ton  candidates are then  combined w ith

the D + to  form D*+ candidates. The same require
m ents on the CM photon energy and D*+ m om entum  
as in the D + — M+v* signal selection are made. The 
D *+ — Yd + — Y^n + selection efficiency in tagged 
events is =  9.90%. D ata  events th a t  pass the selec
tion  are grouped into two sets: the tag  signal and side
band  regions. After the  tag  sideband has been sub trac ted  
from the tag  signal A M  distribution, the rem aining dis
tribu tion  is fitted  w ith ( N ^ f < ^ + N 0nBkgdf0nBkgd)(AM), 
where f^ n is a triple Gaussian, describing the simu
lated  D*+ — yD +  — Y^n+ signal, and f^ nBkgd con
sists of a broad  G aussian centered a t 70 MeV/c2 and 
a function [7] describing the sim ulated background A M  
distributions. The G aussian describes the  background 
D*+ -  n 0D + — n °^ n +  where the photon candidate 
originates from the n 0. The relative sizes of the  back
ground com ponents, along w ith all param eters except 

, N ^nBkgd, and the m ean of the  peak are fixed to  
the values estim ated from sim ulation. The x 2 fit yields 

=  2093 ±  99 events and has a probability  of 25.0% 
(Fig. 4 ). From  sim ulation 48 ±  23 events D*+ — yD +  — 
Yf0(9 8 0 )(K + K - )n+ are expected to  contribute to  the 
signal, where the error is m ostly from the uncertain ty  in 
the D + — f 0(9 8 0 )(K + K - )n+ braching ratio.

Precise knowledge of the efficiency of reconstructing 
the tag  is not im portan t, since it m ostly cancels in the 
calculation of the  p artia l w idth ratio . However, the pres
ence of two charged kaons in D + — ^n+  events leads 
to  an increased num ber of random  tag  candidates, com
pared to  D + — M+v* events, which decreases the chances 
th a t the correct tag  is picked. The size of the correction 
for this effect to  the efficiency ra tio  (e0n /e sig) is deter
m ined to  be —1.4% in sim ulated events.

To m easure the effect of a difference between the 
D*+ m om entum  spectrum  in sim ulated and d a ta  events, 
D*+ — yD +  — Y^n+ events are selected in d a ta  w ith 
the D*+ m om entum  requirem ent removed. The sample is 
purified by requiring the CM m om entum  of the charged
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FIG. 4: A M  distribution of selected D*+ ^  ^  Y0n+ 
events after the tag sideband is subtracted. The solid line 
is the fitted signal and background distribution (N^n +  
N<̂ nBkgd f>nBkgd ), the dashed line is the background distribu
tion (N^nBkgd f ^nBkgd) alone.

pion to  be a t least 0.8 GeV/c. The efficiency-corrected 
D *+ m om entum  d istribu tion  in d a ta  is com pared to  th a t 
of D*+ in sim ulated D*+ — yD +  — Y^n+ events. A 
harder m om entum  spectrum  is observed in data . The de
tection efficiencies for signal and D*+ — yD +  — Y^n+ 
events are re-evaluated after weighting sim ulated events 
to  m atch the D *+ m om entum  d istribu tion  m easured in 
data . The correction to  the efficiency ra tio  is +1 .5% .

W ith  bo th  corrections applied, the p artia l w idth  ra
tio  is determ ined to  be r * V/ r ^ n =  (N /e )sig/ ( N /e ) 0n x 
B (^  — K + K - ) =  0.143 ±  0.018(stat), w ith B (^  — 
K + K - ) =  49.1%  [6].

The combined system atic uncerta in ty  due to  the cor
rections applied, taken  as half the size of each correction, 
is 1.0 %. The system atic error in the  signal efficiency due 
to  selection criteria  insensitive to  the D *+ m om entum  
is evaluated using reconstructed  D *0 — y D 0 — y K - n+ 
events. The conditions present in the signal are em ulated 
by removing the charged pion, taken to  represent the neu
trino, from these events. The signal reconstruction and 
selection steps are repeated, and the  selection efficiencies 
com pared between sim ulated and  d a ta  events. The as
signed system atic uncerta in ty  is 1.4 %. For the D + — 
^n +  selection, requirem ents on the D + and ^  vertex fit 
p robability  contribute a system atic uncertain ty  of 0.7 %, 
estim ated from com parisons of D + — ^n+  events in sim
ulation  and data . C ontrol samples of e+e-  — m+M- Y 
and D*+ — n + D 0 — n+  K - n+  events are used to  m ea
sure the particle identification efficiencies of m uons and 
charged kaons and pions in data , and to  correct the  sim
ulated  signal and D*+ — yD +  — Y^n+ efficiencies. An 
uncertain ty  of 0.7 % is associated w ith these corrections, 
m ainly due to  the lim ited sta tistics of the control sam 
ples. The system atic uncertainties in the track  recon
struction  efficiency cancel partia lly  in the D + — M+v* 
to  D + — ^n +  ra tio  and contribute 1.2%. An additional 
uncertain ty  of 1.1 % is due to  the sta tistica l lim itations 
of the sim ulated signal and D + — ^n +  event samples.

Sim ulation studies are used to  evaluate the  system atic 
uncertainties arising from a possible inadequate param 
eterization of the signal (0.9% ) and background (2.3% ) 
shapes. Sim ulations are also used to  determ ine the sys
tem atic uncerta in ty  associated w ith the sub traction  of 
the electron sample (0.4 %). The error on the branching 
ra tio  B (^  — K  + K - ) is 1.2%, the uncerta in ty  on the 
D + — f 0(980)n+ background is 1.1%. The to ta l sys
tem atic uncerta in ty  on r (D +  — m+ v * ) /r (D +  — ^ n + ) 
is 3.9% .

Using the BABAR  average for the branching ra tio  
B (D +  — ^ n + ) =  (4.71 ±  0.46) % [8][9], we ob tain  the 
branching fraction B (D + — m+ v*) =  (6 .74± 0 .83± 0 .2 6 ±  
0.66) x 10-3  and the decay constant f Ds =  (283 ±  17 ±  
7 ±  14) MeV. The first and second errors are sta tistical 
and system atic, respectively; the  th ird  is the uncertain ty  
from B (D +  — ^ n + ). The ra tio  of our value for f Ds to  f D 
from the CLEO-c m easurem ent, f Ds/ f D =  1.27 ±  0.14, 
is consistent w ith la ttice  QCD.

Using B (D + — ^n +  )pdg  =  (3.6 ±  0.9)%  [6], the 
branching fraction is B (D + — m+ v*) =  (5.15 ±  0.63 ±  
0.20 ±  1.29) x 10-3  and the decay constan t f Ds =  (248 ±  
15 ±  6 ±  31) MeV. s
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