
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/34463

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16121594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/34463

Timed Automata Based Analysis of Embedded System Architectures

Martijn Hendriks 1 and Marcel Verhoef 1,2

1 Radboud University Nijmegen, ICIS 2 Chess Information Technology B.V.
P.O. Box 9010, 6500 GL Nijmegen, NL P.O. Box 5021, 2000 CA Haarlem, NL

Martijn.Hendriks@cs.ru.nl Marcel.Verhoef@chess.nl

Abstract

We show that timed automata can be used to model and
to analyze timeliness properties of embedded system archi-
tectures. Using a case study inspired by industrial practice,
we present in detail how a suitable timed automata model is
composed. Exact upper bounds on the timeliness properties
can be found with the Uppaal model checker for a num-
ber of usage scenarios. We compare our results with three
other performance modeling techniques. This comparison
shows that if the state space of the model is tractable, Up-
paal gives the most accurate results at similar cost. The pro-
posed modeling strategy can be automated, which alleviates
the difficulty and error-proneness of manually constructing
timed automata models.

1 Introduction

In the area of embedded systems, the market pressure to
reduce the cost price of, for example, consumer electron-
ics is very high. This requires the available resources in the
system to be used to its fullest. It is often not economically
viable any longer to oversize the design to compensate for
unknowns in current and future performance requirements.
This problem is enhanced by the fact that the demand for
functionality is always increasing and the time-to-market
targets for the production of these products are constantly
decreasing. Therefore, designers need to shift their atten-
tion from the informal question “Does the product work?”
to the question “Does the product work, given a set of hard
resource restrictions?”. This increases the importance of
performance analysis in industry, in particular in the early
phases of the system life cycle.

While in the past performance analysis was regarded as
an activity that was primarily needed for the design of hard
real-time systems, it is now recognized to apply to a much
larger class of systems. Higher demands for usability as-
pects require the use of these techniques also in soft real-

time systems, for example to analyze user interface respon-
siveness for gaming consoles or synchronization between
audio and video stream decoding for DVD playback.

Our work is focused on performance evaluation of sys-
tem designs in the early phases of the product life-cycle.
This phase is characterized by its volatility, because there
are still many unknowns that have great potential impact
on the design. Paradoxically, it is also the life-cycle phase
where the major architectural design decisions are taken.
Obviously, performance analysis techniques are needed to
support this decision making process. This support, how-
ever, can only be effective if it is very easy to construct,
modify and analyze such a performance model. The turn-
around time should be short to keep up with the interactivity
of the design process.

In previous work [7], we explored the design of an in-
car radio navigation system using real-time calculus. The
aim of the experiment was to determine which proposed dis-
tributed embedded system architecture is best suited for the
applications and their associated timeliness requirements.
The results inspired us to explore other performance tech-
niques using the same case study. In this paper we investi-
gate timed automata.

Timed automata [1] are considered to be potentially use-
ful for the analysis of systems, because of the expressive-
ness offered by this technique. Wide spread use in indus-
try seems to be hampered by two issues: a) the general ac-
cepted belief that any realistically sized model will lead to
a state space explosion during analysis and b) that despite
its expressiveness, it remains hard to create timed automata
models that reflect a particular design problem.

The AMETIST project has shown that significant
progress has been made to tackle in particular the first
question. Advances in tool development (such as sym-
metry reduction, efficient state representation and partial
order evaluation among others) have enabled analysis of
a number of very challenging industrial case studies, see
http://ametist.cs.utwente.nl. For the second problem, two
solution strategies are proposed in general. First, the timed

automaton framework itself can be extended such that it
provides concepts that are closer to the problem at hand.
Second, another (more domain specific) language can be
used as a front-end; a timed automata model should then be
automatically derived from such a specification.

In this paper we show that the second solution is indeed
possible. We derive timed automata models from UML
sequence diagrams that are augmented with performance
data. Together with the increased performance of the
associated analysis tools, we believe that this improves the
use of timed automata in practice.

Figure 1. In-car radio navigation system

Related work. Petriu and Woodside [6] have shown that
performance models can be generated from a set of scenar-
ios and their use of resources. They take the UML pro-
file for Schedulability, Performance and Time as their basis.
Hence, we have not attempted to automate the model con-
struction process ourselves because we expect that in due
course commercial products will become available. Ben-
nett, Field and Woodside [3] follow a similar approach to
what we propose in this paper, but then using the stochastic
process algebra FSP instead of timed automata (and LTSA
instead of Uppaal respectively). They use a combination of
model checking for verifying functional correctness proper-
ties and discrete event simulation for investigating the per-
formance properties of the system, while we stay within one
technique.

2 The case study

Figure 1 presents an overview of the in-car radio navi-
gation system. The diagram suggests that there are three
processors in the system interconnected by a communica-
tion bus. Each processor is assigned its own cluster of func-
tionality, of which there are three: the man-machine inter-
face (MMI), the navigation functionality (NAV) and the radio
functionality (RAD).

We will consider three independent applications that
run on the system concurrently; ChangeVolume, Address-
Lookup and HandleTMC. We will investigate whether the
combination ChangeVolume and HandleTMC and the com-
bination AddressLookup and HandleTMC will meet the

system-level timeliness requirements for this architecture.
First, we will characterize each application by presenting
a UML sequence diagram that is augmented with perfor-
mance data. In combination with the deployment and per-
formance data shown in Figure 1, it provides sufficient in-
formation for modeling and analysis, which will be pre-
sented in Sections 3 and 4.

 : User
 : MMI : Radio

keyPress()

SetVolume()

HandleKeyPress()

AdjustVolume()

NoticeAudibleChange()

UpdateScreen()

32 events
per second
(at most)

4 bytes
32x second

GetVolume()

NoticeVisualChange()

4 bytes
32x second

V
o

l
K

2
V

 (
K

e
y
p

re
s
s
 t
o

 V
is

u
a

l)
 d

e
la

y
 <

 2
0

0
 m

s
e

c
 a

n
d

V
o

l
A

2
V

 (
A

u
d

ib
le

 t
o

 V
is

u
a

l)
 d

e
la

y
 <

 5
0

 m
s
e

c

Execution time estimates
HandleKeyPress() 1E5 instructions
AdjustVolume() 1E5 instructions
UpdateScreen() 5E5 instructions

Figure 2. The “ChangeVolume” scenario

Figure 2 represents the typical use of the volume control
of the radio. Note that three operations are identified: Han-
dleKeyPress, AdjustVolume and UpdateScreen. Worst-case
execution times, event rates and message sizes are estimated
and annotated in the sequence diagram, together with the
principle timing requirements (K2V and A2V) applicable to
this scenario.

 : RadioStation
 : Radio : Navigation : MMI

 : User

Receive()

Receive()

HandleTMC()

UpdateScreen()

NoticeVisualChange()

300 messages
per 15 minutes
32 bytes each
uniform distribution

300 messages
per 15 minutes
64 bytes each

30 messages
per 15 minutes
64 bytes each

T
M

C
 d

e
la

y
 <

 1
 s

e
c
 f

o
r

u
rg

e
n

t
T

M
C

 m
e

s
s
a

g
e

s

HandleTMC()

DecodeTMC()

Execution time estimates
HandleTMC() 1E6 instructions
DecodeTMC() 5E6 instructions
UpdateScreen() 5E5 instructions

Figure 3. The “HandleTMC” scenario

The TMC message handling scenario is shown in Fig-
ure 3. Note that the radio only receives the TMC messages;
decoding is performed on the navigation subsystem because
the map database is needed for that. Only fully decoded and
relevant messages are presented to the user.

In this paper we analyze the combination of the

“ChangeVolume” and “HandleTMC” scenarios and the
combination of the “AddressLookup” and “HandleTMC”
scenarios. Since the modeling of the scenarios is very
similar, we decided to omit the “AddressLookup” sce-
nario here for brevity and only mention the analysis re-
sults of each combination. The interested reader can find
a detailed informal description of all scenarios on-line at
http://www.mpa.ethz.ch. Of course, in practice many more
applications might be running in parallel to the three con-
sidered here. Note that the approach presented in the next
section is not theoretically limited in the number of applica-
tions that can be analysed.

3 Modeling the system

The Uppaal model checker, which we use in this paper,
is a tool for modeling and verifying networks of timed au-
tomata [2]. We assume that the reader has some knowledge
about timed automata and their semantics. We will high-
light where we use Uppaal specific language features. How-
ever, we do not describe the complete model 1, we merely
present the patterns used for modeling.

First, we will provide an informal intuition to the model-
ing approach. We represent each hardware component as a
separate timed automaton. The hardware component is ei-
ther idle or busy computing some function. Similarly, each
communication link is modeled as a timed automaton. Each
link is either idle or busy transporting some data.

A system can then be represented by the network of
timed automata composed of the automata representing the
hardware and the automata representing the communica-
tion links. As a consequence, for each deployment diagram
we need to construct a separate network of timed automata,
because the functionality is distributed differently over the
given hardware.

The external workload of the system is also character-
ized using timed automata; events are generated and in-
serted into the system according to the workload specifi-
cation. The response of the system is observed by the same
automaton such that the timeliness requirements can be ex-
pressed and verified by the model checker.

We will give an example of a hardware component in
Section 3.1. Then, we will show how the communication
is modeled in Section 3.2 and finally, we will present the
automata representing the environment in which the system
operates in Section 3.3.

3.1 Modeling the hardware

Figure 4 presents the basic automaton that models the
behavior of the radio functionality (RAD). From the two

1The Uppaal model and the informal case description is available on-
line at http://www.cs.ru.nl/ita/publications/papers/martijnh/

sequence diagrams (Figures 2 and 3), it can be deduced
that this functionality in fact consists of two operations, Ad-
justVolume and HandleTMC respectively. Each operation is
represented as a location in the automaton. The automaton
has a local clock x and two local constants, HTMC and AV.
These constants represent the execution time of the opera-
tion, which is simply calculated as the worst-case execution
time (expressed by the number of instructions to execute, as
specified in the applicable sequence diagram) divided by the
capacity of the hardware component (which is expressed in
million instructions per second, as specified in Figure 1).

idle
adjust_volume
x<=AV

handle_TMC

x<=HTMC

setvolume>0
hurry!
setvolume--, x=0

rec>0
hurry!
rec--, x=0

x==HTMC
receive_out++

x==AV
notice_audible_change1!
getvolume_out++

Figure 4. The automaton RAD

This calculation is obviously an approximation that in
general does not hold. The peak capacity of modern CPU
architectures can only be achieved for specific types of algo-
rithms; digital signal processors are optimized for repeated
multiply-addition operations that occur frequently in fast
Fourier transformations for example. But despite this ap-
proximation, it suffices for our purpose since we are inter-
ested in high-level analysis of early design models. If we
want to make a more accurate prediction, it is always pos-
sible to benchmark the operation on the target architecture
and use the measured value instead.

The global variables rec and setvolume keep track of the
number of pending calls to HandleTMC and AdjustVolume
respectively. The transition is enabled if either counter is
greater than zero. The hurry! synchronization is so-called
urgent and always available. It thus enforces greedy behav-
ior: transitions with this synchronization must be taken as
soon as they are enabled. This ensures that the model does
not delay when there still are outstanding requests.

Thus, if the RAD automaton is in location idle and the
Receive event arrives (which is modeled by the increment
of the rec variable), then it immediately takes the tran-
sition to the location handle TMC (“immediately” means
that no time elapses between the arrival of the event and
the execution of the transition). The event is removed
from the input queue (by decrementing the global vari-
able rec) and the clock x is reset. The automaton stays for
HTMC time units in location handle TMC and then returns
to the idle location while generating an output event (re-
ceive out is incremented). As we will see in Section 3.2,
the global variables rec, setvolume, receive out and getvol-
ume out are the interface to the communication link. Simi-
larly, we will see in Section 3.3 that the synchronization no-

tice audible change1! is used to emit the completion of the
AdjustVolume operation back to the environment for mea-
suring the response time.

Note that the RAD automaton in Figure 4 models a non-
deterministic non-preemptive scheduler, which is in most
cases not very realistic. The Uppaal language allows to
model many kinds of schedulers. For instance, the automa-
ton in Figure 5 models the radio functionality again, but
now with a fixed priority preemptive scheduling strategy,
in which the AdjustVolume operation has priority over the
HandleTMC operation.

In Figure 5, modeling priorities is achieved by the addi-
tional guard expression setvolume == 0 to the guard of the
transition from location idle to location handle TMC. This
means that TMC messages may only be handled if there are
no outstanding ChangeVolume requests pending. In order to
model preemption, an additional local clock y and a local in-
teger variable D are introduced to the automaton. The tran-
sition from idle to handle TMC sets D to HTMC. Whenever
a AdjustVolume event arrives during the execution of Han-
dleTMC, the transition to hdl pre is taken. Clock y is then
used to measure the execution time of the ChangeVolume
call that interrupted the execution of HandleTMC. When
ChangeVolume is completed, the variable D is incremented
with the delay caused by the preemption. Thus, preemption
can easily be modeled, but it is crucial that it is known in
advance how long a task can be preempted. Furthermore, it
must not be the case that a task can infinitely often be pre-
empted since then D grows to infinity and model checking
is not possible anymore. The model checker can be used to
prove that this is not the case by verifying some finite upper
bound of D (care has to be taken because an integer variable
in Uppaal has a finite domain by definition). The modeling
of the other hardware components follow the same pattern
as described above and are therefore not depicted here.

3.2 Modeling the communication

Modeling the communication links in the system is sur-
prisingly similar to the models we have presented for the
hardware components. For each link, we create a separate
timed automaton. A location is created in the automaton
for each message that is sent between the hardware compo-
nents that communicate through the same communication
link. The location reflects the fact that the message is being
sent.

The location is occupied for as long as the message trans-
fer takes. In Figure 6, we use the constants BYTES4 and
BYTES64 to represent the time to transfer 4 and 64 bytes
respectively over the communication link. This constant
is again simply calculated as the message length (in bits,
which is specified in the augmented sequence diagrams) di-
vided by the baud rate (which is specified in the deployment

idle sending_setvol
x<=BYTES4

sending_getvol
x<=BYTES4

sending_receive
x<=BYTES64

sending_htmc
x<=BYTES64

setvolume_out>0

hurry!

setvolume_out--,
x=0

x==BYTES4
setvolume++

getvolume_out>0
hurry!

getvolume_out--, x=0

x==BYTES4

getvolume++

receive_out>0
hurry!
receive_out--,x=0

x==BYTES64
rec_nav++

handle_tmc_out>0
hurry!
handle_tmc_out--, x=0

x==BYTES64
htmc++

Figure 6. The automaton BUS

diagram). Obviously, this formula can be adapted to com-
pensate for expected protocol overhead.

The hardware components interface to the communica-
tion link using (sharing) the global variables that count the
number of outstanding messages of a particular type that
need to be transfered over the link. If the SetVolume mes-
sage from Figure 2 is to be sent from the MMI to RAD, then
the MMI automaton will simply increment the global setvol-
ume out variable. If the bus is idle (and all other global
variables are zero), then the transition towards the location
sending setvol location is immediately taken (again due to
the hurry! synchronization); this will decrement the setvol-
ume out variable. The location sending setvol is occupied
for BYTES4 time units and then the transition back to idle is
taken; this will in turn increment the global variable setvol-
ume which in turn will enable the corresponding transition
in the RAD automaton, as presented in the previous para-
graph.

Note that we can again use the same strategy for dealing
with priorities. The communication link in Figure 6 is very
simple, if more than one message is available then there will
be non-deterministic choice who will get the turn to claim
the bus. The bus is then blocked for as long as the message
transfer is in progress. This resembles many of the simple
industrial serial bus interfaces such as RS-485 for example.
Analogous to Section 3.1, we can implement priorities by
adding additional guards to the transitions that point out-
ward from the idle location. It is relatively easy to mimic
priority based protocols such as the Controller Area Net-
work (CAN) or time-triggered protocols. For example a so-
lution for a TDMA bus concept is proposed by Perathoner
et al in [5]. Less trivial however is the encoding of proto-
cols that break large messages into pieces to prevent star-
vation. However, the approach presented has another inter-
esting characteristic. If the interface (the global variables)
remains the same, then it would be simple to replace a cer-
tain bus concept by another by merely replacing the bus au-

idle

adjust_volume
x<=AV

handle_TMC
x<=D

hdl_pre
y<=AV

setvolume>0
hurry!
setvolume--, x=0

rec>0 && setvolume==0
hurry!
rec--, x=0, D=HTMC

x==D
D=0, receive_out++

x==AV
notice_audible_change1!
getvolume_out++

setvolume>0
hurry!
setvolume--, y=0

y==AV
notice_audible_change1!
getvolume_out++,
D+=AV

Figure 5. The automaton RAD-preemptive

tomata. It would not affect the hardware components at all.
We can then easily investigate the impact of different bus
protocols for a given deployment.

3.3 Modeling the environment

There are two actors that exercise the system from
the environment: (i) a user who initiates the ChangeVol-
ume scenario and (ii) a radiostation that initiates the Han-
dleTMC scenario. There are two timed automata for each
actor: a “normal” automaton and a “measuring” automaton.
Which one is included in the system (the network of timed
automata we analyze using Uppaal) depends on the worst
case execution time we want to investigate. If we want
to measure the response time of the ChangeVolume sce-
nario, we add the “measuring” automaton for the user and
the “normal” automaton for the radiostation. Vice versa, if
we want to measure the response time of the HandleTMC
scenario, then we add the “measuring” automaton for the
radiostation and the “normal” automation for the user.

We consider four basic kinds of event arrival models:
(i) periodic, (ii) sporadic, (iii) periodic with jitter and (iv)
bursty event streams. For the strict periodic event model,
an offset can be specified to force a phase shift in the sig-
nal (start of the first period). The periodic and sporadic
event models can be expressed by automata as shown in
Figure 7 (a-c). The event model for periodic behavior with
jitter (where the jitter must be smaller than or equal to the
period) can elegantly be expressed by the model proposed
by Perathoner et al in [5], which is shown in Figure 7 (d).

The behavior of events is called bursty when the jitter
becomes larger than the period of the event. This can be
modeled, but it is much more involved than the previous
model of periodic behavior with small jitter. The reason is
that the subsequent intervals in which an event can occur
now overlap. Figure 8 shows the Uppaal model for bursty
behavior with period P , jitter J and a minimal seperation
time between events of D.

This automaton has two local variables, pending and snd.
The variable pending is incremented every P time units (us-
ing clock x) which models that an event may be sent. The
clock y is used to keep track of the next deadline for send-
ing an event. If an event may be sent (i.e., z > D which

L0

x<=F L1
x<=P

x==F
rec++, x=0

x==P
rec++, x=0

notice_visible_change3?

(a) Strictly periodic events with offset F

L1
x<=P

L0

x<=P

x==P
rec++, x=0

notice_visible_change3?
rec++, x=0

(b) Strictly periodic events with an undefined offset

L1

L0

x>=P
rec++, x=0

notice_visible_change3?
rec++, x=0

(c) Sporadic events

L1
x<=J

L2
x<=P

L0

x<=P

rec++

x>=P x=0

x=0

notice_visible_change3? notice_visible_change3?

(d) periodic with jitter where J ≤ P

Figure 7. Example environment automata

models the inter-event seperation time and pending > 0),
then the event is sent and snd is incremented. This signals
that the deadline for the next event may be incremented by
P time units. This is modeled by the reset of clock y after
J (for the first event) or after P (for the other events) time
units. Note that this automaton is not very nice for the state
space of the model: it has three local clocks (but if D = 0
then z can be left out) and two local integer variables that
both can count up to J

P + 1.

Every event automaton also has a “measuring” variant
which is used to record the WCRT of a generated event.

x<=P && y<=Px<=P && y<=J

notice_visible_change3?notice_visible_change3? x==P
pending++, x=0

z>D && pending>0
pending--, rec++,
snd++, z=0

y==P && snd>0
snd--, y=0

y==J && snd>0
snd--, y=0pending++

x==P
pending++, x=0

z>D && pending>0
pending--, rec++,
snd++, z=0

Figure 8. environment automaton describing event bursts

These automata seem complicated at first sight, but are in
fact very logical in structure. All measuring variants can
therefore be automatically generated.

L0

L1

seen

rec++, m=n, n++,
y=0, x=0

rec++, n++, x=0

x>=P
n++, rec++, x=0

m!=0
notice_visible_change3?
m=(m<0?m:m-1), n--

m==0
notice_visible_change3?
m=-1, n--

x>=P && m==-1
m=n, n++, rec++,
y=0, x=0

Figure 9. The measuring variant “rstat-m”

The automaton in Figure 9 is the measuring variant of
the automaton of Figure 7(c). It has two additional integer
variables, m (initially -1) and n (initially 0) and an addi-
tional clock variable y. This automaton can generate in-
put events in the same way as the automaton in Figure 7(c)
by using the upper transition from L0 to L1 and the upper-
left and lower self-loop of L1. The variable n keeps track
of the number of events that have been fed into the system
and for which no response (a synchronization over the no-
tice visible change3 channel in this case) has been received
yet. The automaton can also arbitrarily choose an event to
measure the worst case response time (WCRT) by the lower
transition from L0 to L1 and the upper-right self-loop of L1.
(It is assumed that all queues are FIFO queues, i.e., events
do not overtake each other, they are order preserving and
that events are never dropped.) On those transitions y is re-
set to 0 and m is reset to the value of n. Hence, m counts
the number of responses that need to be seen before the one
is een that is used for the measurement. Note that at most
one measurement can be in progress and that m = -1 if no
measurement is in progress. If m == 0 then the response
of the event that is being measured is expected. If the re-
sponse occurs, then the transition to seen is taken. This is
the so-called “committed” location in which no time may

elapse. The WCRT of the HandleTMC scenario can thus be
found using Uppaal by finding the smallest C (using a sim-
ple binary search strategy manually) such that Property 1 is
satisfied.

AG(rstat-m.seen −→ rstat-m.y < C) (1)

The modeling of the other actors follows the same pat-
tern as explained above and are therefore not depicted here.

4 Analysis of the Uppaal model

The Uppaal model has been analyzed for 5 different re-
quirements and 5 different sets of environment models. The
results have been collected in Table 1. (Uppaal version 3.6-
alpha-1 has been used with default options.) The rows in-
dicate which requirement is measured and in what context
(combination of applications) the analysis was performed.

The first column shows the results for strictly periodic
event streams with a user-defined offset of 0 for all events
(po, F = 0), which reflects fully dependent (synchronous)
environment models. In the second column, the results are
shown for strictly periodic event streams with an unknown
offset for all events (pno), which reflects fully indepen-
dent (asynchronous) environment models. The third col-
umn presents the analysis results for sporadic event streams
(sp) where only a lower bound is specified for the event inter
arrival time. In the fourth column we show periodic event
streams with small jitter (pj, J = P) for the “radio station”
environment model and sporadic events for the others. And
finally, we use bursty event streams (bur, J = 2P , D = 0)
for the “radio station” and sporadic event streams for the
others in the last column.

Analysis of the HandleTMC and AddressLookup scenar-
ios proved to be no problem. The verification times for po,
pno and sp where so small (typically less than a second)
that a binary search could easily be performed. The pj and
bur scenarios took a bit more effort, but still a binary search
was feasible (verification times typically in the order of a
few minutes). The HandleTMC scenario in combination
with ChangeVolume proved to be a problem for the pj and

Table 1. Uppaal worst-case response time analysis results (in milliseconds)���������������Requirement
Event model

po (F = 0) pno sp pj (J = P) bur (J = 2P , D = 0)

HandleTMC (+ ChangeVolume) 357.133 381.632 382.076 > 400.000 (df) > 500.000 (rdf)
HandleTMC (+ AddressLookup) 172.106 239.080 239.080 329.989 420.898
K2A (ChangeVolume + HandleTMC) 27.716 27.716 27.716 > 27.715 (bf) > 27.715 (bf)
A2V (ChangeVolume + HandleTMC) 41.796 41.796 41.796 > 41.795 (bf) > 41.795 (bf)
AddressLookup (+ HandleTMC) 79.075 79.075 79.075 79.075 79.075

bur scenarios. This is due to the large difference in time
scales of the event automata: the period of the “radiosta-
tion” events is in the order of seconds whereas the period of
the “change volume” events is in the order of milliseconds.
Such differences are bad for the symbolic representation of
clock values that is used by Uppaal.

However, Uppaal can still be used as a “structured test-
ing” tool with its options for the search order (df = depth
first, rdf = random depth first). The verifier will try to find
a counterexample of the property. If it finds one, then the
constant C in the property is a lower bound on the WCRT
of the event. This is indicated by the “greater than” symbols
in Table 1.

Note that the AddressLookup and ChangeVolume worst-
case response time values remain constant since (i) they
have priority over the “radiostation” related events and (ii)
their event model parameters are such that events are never
queued for processing. For example, each AddressLookup
event is fully processed before the next event arrives. If we
would allow jitter to the AddressLookup scenario, such that
two events might overlap, then the bound of 79.075 would
increase.

Note that the results for po and pno are not identical,
which indicates that a phase shift between the environment
models does matter in this case. We get this result almost for
free, neither the modeling nor the analysis effort is much in-
fluenced. The approach shown here can treat asynchronous
and synchronous environment models by simply removing
an invariant from the appropriate environment models.

5 Comparison with other techniques

In our earlier work [7], we have computed the worst-
case response time results for several different distributed
architectures using Modular Performance Analysis, but in
this paper we only performed the analysis and comparison
of the architecture shown in Figure 1. The main reason for
this is that the timed automata models are constructed by
hand which is a slow and very error prone process. We do
believe that it is possible to automate the construction of
these models, which is future work.

We did compare our analysis results with a few other

techniques that were applied to the same case study. The
results are summarised in Table 2. For space reasons it is
not possible to discuss any of these models in detail. Note
that the results for the other techniques where provided to
us by other researchers that can be considered expert users
for each respective tool.

The parallel object-oriented specification language
(POOSL, http://www.es.ele.tue.nl/poosl/) and its SHESIM
support tool was used to build a discrete event simulation
model, which is typically used in industry nowadays. The
simulation run of the periodic case with an unknown offset
(pno) shows that the worst-case response time is not nec-
essarily found by simulation, which is due to the fact that
infinitely many values can be chosen for the offset param-
eter. Moreover, simulation runs typically took minutes to
several hours.

Symbolic timing analysis for systems (SymTA/S,
http://www.symtavision.com) is a performance and timing
analysis tool based on formal scheduling analysis tech-
niques and symbolic simulation. The tool supports het-
erogeneous architectures, complex task dependencies, con-
text aware analysis, and combines optimization algorithms
with system sensitivity analysis for rapid design space ex-
ploration [4]. The results found by SymTA/S were on par
with the results found by Uppaal, with the exception of the
periodic event streams with zero offset. In-depth discus-
sions with the SymTA/S experts learned us that this type of
event streams can in fact be handled but the specific tech-
nique needed is not yet fully implemented in SymTA/S. In
stead, the pno results are used, which provides a safe upper
bound for the WCRT.

Modular performance analysis is a deterministic
queuing theory based on real-time calculus (MPA,
http://www.mpa.ethz.ch). Again, the results found with
MPA are quite similar to Uppaal and SymTA/S. The results
are slightly more conservative mainly because context in-
formation is lost due to the transformation from the time to
the time interval domain which is used by real-time calcu-
lus. The phase shift disappears when this transformation is
performed. Therefore, it is not possible to get tight bounds
for the po case with MPA, it will always yield the more con-
servative pno results.

Table 2. Worst-case response time results – comparison with other tools
����������Requirement

Tool
Uppaal (po) Uppaal (pno) POOSL (pno) SymTA/S (pno) MPA (pno)

HandleTMC (+ ChangeVolume) 357.133 381.632 266.94 382.086 390.0862
HandleTMC (+ AddressLookup) 172.106 239.080 244.26 253.304 265.8491
K2A (ChangeVolume + HandleTMC) 27.716 27.716 27.7067 27.717 28.1616
A2V (ChangeVolume + HandleTMC) 41.796 41.796 41.7771 41.798 42.2424
AddressLookup (+ HandleTMC) 79.075 79.075 78.8989 79.076 84.066

6 Conclusion

We have shown that timed automata can be used to an-
alyze timeliness properties of embedded system architec-
tures. The proposed modeling approach is straightforward
and can be automated. The benefit is that if the state space
explosion problem can be controlled then exact and hard up-
per bounds are found during analysis, while this cannot in
general be guaranteed for other techniques. Table 2 shows
that the results found by our approach are indeed competi-
tative to others. Some specific conclusions can be drawn
from our experiments:

Uppaal is a very generic tool. Many model types and
scenarios can be expressed (i.e. event models, communica-
tion, computation, mix of preemptive and non-preemptive
elements) and analysed. However, manual construction and
maintenance of these models is error prone and should be
automated to be useful in an industrial setting.

When the time scales of the environment models do not
differ too much, then Uppaal is quite suitable for case-
studies of this size. Of course, model checking still suffers
from the state space explosion problem. Nevertheless it can
also be used as a “massive simulation” tool: let the model
checker search (e.g. random-depth-first) for any trace that
gives a lower bound on the response time.

The comparison shows that the results fit the theoretical
picture; the simulation-based approaches give values that
are smaller than those computed by Uppaal (the worst-case
instance is not necessarily reached) while SymTA/S and
MPA provide values that are larger than those computed by
Uppaal (hard but not necessarily tight values are computed).

Uppaal was able to find more accurate results with sim-
ilar modeling and analysis effort for most scenarios of this
case study. In fact, some results found by simulation could
be falsified by showing the counter example from the model
checker while searching for that particular outcome. Cur-
rently, however, Uppaal lacks the features that are necessary
to conveniently perform a parameter sweep; something that
MPA and SymTA/S are capable of.

Comparing the various tools has not been easy. The key
difficulty has been to ensure that all models have the same
semantics and deal with modeling assumptions in a similar

way. Using the Uppaal verification engine, these assump-
tions could be checked mechanically which helped to im-
prove all specifications.

Acknowledgments. The authors would like to thank
Ernesto Wandeler, Simon Perathoner, Kai Richter, Menno
de Hoon, Frits Vaandrager, Jozef Hooman and the anony-
mous reviewers for their valuable comments to this paper.
Verhoef works for the BODERC project under the respon-
sibility of the Embedded Systems Institute. This project is
partly supported by the Netherlands Ministry of Economic
Affairs under the Senter TS program. Hendriks has been
supported by the EC project IST-2001-35304 AMETIST,
http://ametist.cs.utwente.nl .

References

[1] R. Alur and D. L. Dill. A theory of timed automata. Theoret-
ical Computer Science, 126:183–235, 1994.

[2] G. Behrmann, A. David, and K. G. Larsen. A Tutorial on
UPPAAL. In Formal Methods for the Design of Real-time
Systems, volume 3185 of Lecture Notes in Computer Science,
pages 200–236. Springer, 2004.

[3] A. J. Bennet, A. J. Field, and M. C. Woodside. Experimen-
tal Evaluation of the UML Profile for Schedulability, Perfor-
mance and Time. In �UML� 2004 – The Unified Modeling
Language, volume 3273 of Lecture Notes in Computer Sci-
ence, pages 143–157. Springer, 2004.

[4] A. Hamann, R. Henia, R. Racu, M. Jersak, K. Richter, and
R. Ernst. SymTA/S - Symbolic Timing Analysis for Systems.
In WIP Proc. Euromicro Conference on Real-Time Systems
2004 (ECRTS ’04), 2004.

[5] S. Perathoner, E. Wandeler, and L. Thiele. Timed au-
tomata templates for distributed embedded system architec-
tures. Technical Report 233, ETH Zurich, November 2005.

[6] D. B. Petriu and M. C. Woodside. A Metamodel for Gener-
ating Performance Models from UML Designs. In �UML�
2004 – The Unified Modeling Language, volume 3273 of Lec-
ture Notes in Computer Science, pages 41–53. Springer, 2004.

[7] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse. System
Architecture Evaluation Using Modular Performance Analy-
sis - A Case Study. In International Symposium on Lever-
aging Applications of Formal Methods – ISOLA 2004, pages
209–220. Department of Computer Science - University of
Cyprus, 2004.

