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ABSTRACT
This paper provides a formal framework for the analysis
of information hiding properties of anonymous communica-
tion protocols in terms of epistemic logic. The key ingre-
dient is our notion of observational equivalence, which is
based on the cryptographic structure of messages and re-
lations between otherwise random looking messages. Two
runs are considered observationally equivalent if a spy can-
not discover any meaningful distinction between them. We
illustrate our approach by proving sender anonymity and
unlinkability for two anonymizing protocols, Onion Rout-
ing and Crowds. Moreover, we consider a version of Onion
Routing in which we inject a subtle error and show how our
framework is capable of capturing this flaw.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Protocol verification; F.4 [Mathematical Logic

and Formal Languages]

General Terms
Security, Theory, Verification

Keywords
Anonymity, Unlinkability, Privacy, Epistemic Logic, Knowl-
edge, Cryptography, Formal Methods, Crowds, Onion Rout-
ing

1. INTRODUCTION
There is a growing concern about the amount of personal

information that is being gathered about people’s actions.
Websites habitually track people’s browsing behavior, banks
track people’s financial whereabouts, and current trends in
applications of RFID chips will make it possible to track peo-
ple’s physical location. Furthermore, several European gov-
ernments are considering to oblige Internet Service Providers
to keep traffic logs of all communication on the Internet.
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To protect users from undesired information leaks, there
are various protocols and tools that provide some form of
anonymity, e.g., for web browsing and e-mailing; for instance
Tor [6], Freenet [4], and Mixminion [5].

Anonymizing Protocols In 1981, Chaum [3] pioneered
the idea of what are currently called Chaum mixes. If A
wants to send a message m to B, she chooses a number of re-
lays (cascading mixes, in Chaum’s terminology), say R1, R2,
and sends {|R2, {|B, {|m|}B |}R2

|}R1
to R1. Here {| . . . |}X de-

notes encryption with the public key of X. Relay R1 de-
crypts the first layer of encryption and forwards the mes-
sage {|B, {|m|}B |}R2

to R2, who peels off another layer and
sends the remainder to B. Traffic analysis is complicated
as every relay queues messages until a certain number have
been received and relays them in a batch. Also, dummy
network traffic can be generated if not enough messages are
available. This technique forms the basis of Onion Routing
[9] and its successor Tor [6], a currently running network
of relays providing anonymous communication for instance
with web servers.

Another idea to provide some kind of anonymity is given
by Crowds [16]. Here the message m is sent to a relay R1,
which then probabilistically either forwards the message to
another relay R2, or to its final destination. A key idea here
is that every member of the network can act as a relay.

Various notions of anonymous communication exist and var-
ious attacker models have to be considered. Chaum mixes
typically provide sender anonymity: the ultimate receiver B
of the message m does not know who originated the mes-
sage. It also provides unlinkability: someone observing all
network traffic cannot tell that A and B are communicating.

Crowds does not provide unlinkability: a global eaves-
dropper will be able to see the message m passing through
the whole network and will see the message m moving from
A to B over a number of relays. However, it does provide
sender anonymity even if some of the members of the net-
work are corrupted.

Formal methods For security and authentication, a num-
ber of formal methods and automated tools have been de-
veloped to determine the correctness of security and authen-
tication protocols (see, e.g., [14, 12, 10]). In contrast, the
formalization of anonymity is still in its infancy. This paper
presents a formal framework in which various information
hiding properties can be expressed in a clear and precise
manner. It enables us to formulate competing notions of
anonymity in a uniform fashion and compare them.

Our contribution and related work Starting point of
our approach, also present in [11], is the idea that various



information hiding properties can best be expressed in the
language of epistemic logic. This makes it possible to reason
not only about the messages in a run, but also about the
knowledge agents gain from these messages. For instance,
sender anonymity can typically be formulated as the receiver
not knowing who sent a certain message.

Central in the epistemic framework is our notion of ob-
servational equivalence of runs. An agent knows a fact of a
certain run r if that fact is true in all possible worlds, i.e.,
in all runs that are observationally equivalent to r. In [11],
the observational equivalence is basically assumed, whereas
we actually construct such a relation.

Our notion of observational equivalence takes care of the
cryptographic operations that are defined on the set of mes-
sages. We should remark that other works present simi-
lar equivalence relations on the set of messages, e.g., [13,
1]. Ours is unique in the sense that it not only deals with
whether or not messages are encrypted, but also takes care
of relations between messages. Especially for dealing with
unlinkability this is essential. For example, if an agent A
sends a message {|m|}K and another agent B either sends
the message hash({|m|}K) (for instance, to acknowledge re-
ceipt of A’s message), or the message {|m|}K (for instance,
forwarding it to someone else), then a global observer could
link A and B, even though all messages involved look like
random bit strings to this global observer.

Note that this formal approach is possibilistic in nature: it
only considers whether or not it is possible that A and B are
communicating, but not the probability that they are. There
is another body of literature studying probabilistic aspects
of anonymity, e.g., [18, 17]. These papers generally assume
the correctness of the anonymizing protocols in the formal
message sense and then compute measures of anonymity.

We will show that this epistemic framework allows us
to formally describe and verify various information hiding
properties that are considered in the literature.

Organization of the paper We start in Section 2 with the
definition of the message algebra. Then Section 3 fixes the
network and intruder model and describes the fundamental
notion of observational equivalence of runs. Section 4 intro-
duces the epistemic operators and show how these operators
can be used to express various information hiding proper-
ties, such as sender anonymity and unlinkability, can be ex-
pressed. Finally, to illustrate the power of our approach,
we consider in Section 5 abstract versions of Crowds and
Onion Routing and formally prove their anonymizing prop-
erties. We also consider a version of Onion Routing that
has a subtle error and show how our framework is capable
of detecting this flaw.

Notations and terminology Throughout this paper a
secret key is called a symmetric key. In an asymmetric en-
cryption a key pair consists of a public key and a private
key.

We clearly distinguish the verbs to know and to possess:
an agent knows a fact while it possesses a message. The
former acts as an epistemic operator which is applied to a
proposition on the run, while the latter concerns accessibility
to messages via cryptographic operations such as encryption
or decryption.

The set X∗ consists of all the finite lists over X, that
is, X∗ =

‘

n∈N
Xn. For a list r with length |r|, the i-

th element of r is denoted by ri. The head-closed sublist
〈r0, r1, . . . , ri−1〉 of r is denoted by r<i.

2. THE MESSAGE ALGEBRA
In this section we present our model of the message alge-

bra, and introduce the closure operator on a set of messages.
This is done in a standard way similar to [14, 12].

Definition 1. (Message algebra) The set of messages MSG

is the set given by the following BNF notation:

MSG ∋ m ::= name(A) | nonce(n)

|key(K) | enc(m,K)

|hash(m) | 〈m,m〉.

where A is taken from a set of agents, n from a set of nonces
and K from a set of keys. We also assume that there is
a function (−)−1 from keys to keys with the property that
(K−1)−1 = K. If K−1 = K, then K is called a symmetric
key, otherwise one of K and K−1 is called a private key and
the other one a public key.

We abbreviate enc(m,K) to {|m|}K and omit angle brackets
inside encryptions. Typically, an agent A has an associated
public key and we denote encryption with the public key of
A simply by {|m|}A. Terms of the form name(A), nonce(n),
key(K) are said to be primitive. To simplify notation, we
will simply write A instead of name(A), and similarly for
nonces and keys.

There is a natural notion of subterm relation on the set of
messages, which we denote by �. This relation is unaware
of cryptographic operations; e.g., m � {|m|}K and m �
hash(m) always hold. Furthermore, a function π : MSG →
MSG is said to be structure preserving if it maps names
to names, nonces to nonces, keys to keys, encrypted mes-
sages to encrypted messages, hashes to hashes, and satisfies
π(〈m1,m2〉) = 〈π(m1), π(m2)〉 for all messages m1, m2.

The closure U of a set U of messages consists of all the mes-
sages that can be extracted and constructed from those in
U using cryptographic operations such as decryption, en-
cryption, tupling and decomposing tuples. For the formal
definition, see Appendix A. This closure operation is impor-
tant here for two reasons. One reason, which is common in
formal modelling of security protocols, is that an agent may
send only the messages it can construct from what it has
seen (see Definition 5). The other one, which is novel, is
that the closure of the possessions of an agent restricts the
set of runs that the agent considers to be observationally
equivalent to a given run (see Definition 8).

3. RUNS AND OBSERVATIONAL EQUIVA-
LENCE

3.1 Network model
To model anonymity properties, we have to be able to

talk about the sender and receiver of a message. Therefore
we include explicit sender and receiver information in our
notion of event below. In a real world setting, an event
would correspond to an IP package, which has sender and
receiver information in the header and the actual message
in the body.

Definition 2. (Agents, events) We denote by AG a non-
empty set of agents, which has a special element spy for the
intruder. An agent which is not spy is called a regular agent.
An event is a triple (A,B,m) of the sender A, the recipient



B and the delivered message m. To make the intention clear
we denote the above event by (A → B : m). The set of all
events is denoted by Event.

Definition 3. (Runs) A run is a finite list of events, i.e.
an element of the set Run := Event∗. A run describes all
the events that have occurred in a network. The function
msg : Run → P(MSG) extracts all the messages occurring in
a run. That is,

msg
`

(A0 → B0 : m0),

(A1 → B1 : m1),

...

(An−1 → Bn−1 : mn−1)
´

= {m0,m1, . . . , mn−1}.

3.2 Attacker model
It is standard to verify security properties such as authen-

tication or secrecy under the Dolev-Yao intruder model [7].
In that model the network is completely under the control of
the intruder, hence no agent can be sure who sent the mes-
sage it receives, or whether the intended recipient actually
receives the message send.

To model anonymity properties, it is customary to use a
weaker attacker model. We assume that the intruder is pas-
sive, i.e., observes all network traffic, but does not actively
modify it. It is however possible that some regular agents are
corrupted; we will later model this in terms of the keys the
intruder possesses. This setting enables us to express that a
run of a protocol satisfies a certain information hiding prop-
erty as long as certain agents are not corrupted. Contrary
to the intruder, the regular agents are not necessarily aware
of all the events in the run; we adopt the convention that
they only see the events in which they are involved as sender
or receiver.

Definition 4. (Visible part of runs) Let r be a run. For a
regular agent A ∈ AG\{spy} the A-visible part of r, denoted
by r|A, is the sublist of r consisting of all the events that
have A in either sender or receiver field. The spy-visible part
of r, denoted by r|spy, is identical to r.

3.3 Communication protocol
It is important to specify the set of runs of a protocol,

which is the set of possible worlds used in the definition
of knowledge. There, runs which are illegitimate with re-
spect to a protocol are excluded because every agent knows
that those runs cannot happen. In that sense, a protocol
is common knowledge. In this paper a protocol consists of
two components, namely the candidate runs and the initial
possessions.

The set of candidate runs is just a set of runs. Intuitively,
it consists of those runs which fulfill the requirements on
which messages may/must be sent by an agent. In the ex-
amples (see Section 5) we describe the set of candidate runs
by means of inference rules.

An initial possession function IPo : AG → P(MSG) assigns
to each agent the set of messages the agent possesses before
communication takes place. Typically an agent’s initial pos-
sessions consists of its private key and the public keys of all
agents. We require that, for every agent A, IPo(A) consists
of only primitive messages.

We denote by PossIPo(r,A, i) the set of the messages that
an agent A possesses at stage i of the run r. It is the clo-
sure of the union of: 1) A’s initial possession IPo(A); 2)
the messages A has seen up to this point, msg

`

(r<i) |A
´

;
3) the nonces and secret keys A has freshly generated at
stage i. For a formal definition, see Appendix B. The set
PossIPo(r,A, i) consists of all messages the agent A can pos-
sibly construct after have seen the first i messages of the
run.

Definition 5. A run r ∈ Run is said to be legitimate with
respect to an initial possession function IPo : AG → P(MSG)
if, for every i ∈ [0, |r|−1], mi ∈ PossIPo(r,A, i), where (Ai →
Bi : mi) = ri.

Definition 6. (Protocols and runs of protocol) A protocol
is a pair (cr, IPo) consisting of a set of candidate runs cr and
an initial possession function IPo. A run r ∈ Run is said to
be a run of a protocol (cr, IPo) if r ∈ cr and is legitimate
with respect to the initial possession function IPo. The set
of runs of a protocol (cr, IPo) is denoted by Runcr,IPo.

Note that in the literature (e.g., [8]) a protocol is often
given locally, by specifying what kind of messages an agent
can send in a certain situation. For our theory, the way of
specifying a protocol is unimportant; therefore we abstract
from this specification by considering a given set of candi-
date runs.

3.4 Observational equivalence
If an agent receives an encrypted message for which it

does not have the decryption key, this message looks just
like a random bit string. This section formalizes this idea by
defining the notion of observational equivalence. Intuitively,
two sequences of messages look the same to an agent if they
are the same for the messages the agent understands and
if a message in one sequence looks like a random bit string
to the agent, then the corresponding message in the other
sequence also looks like a random bit string. Matters are
slightly more complicated: we have to take care of the case
where a specific random looking bit string occurs more than
once in a sequence of messages; we have to take care of the
possibility for someone to understand only a submessage of a
message; we also have to take care of the case where certain
messages look like random bit strings to the agent, but are
still somehow related. For example, if the agent does not
possess the symmetric keyK, two messages m1 = {|m|}K and
m2 = hash({|m|}K) both look like random bit strings. Still
the agent can derive a relationship between them, namely
m2 = hash(m1).

This motivates our definition of observational equivalence
below. The definition is typically applied with U being equal
to PossIPo(r,A, |r| − 1), the set of messages that an agent A
possesses after the run has finished.

Definition 7. (Reinterpretations of messages) Let π be a
structure preserving permutation on the set MSG of mes-
sages and let U ⊆ MSG be a set of messages. The map π is
said to be a semi-reinterpretation under U if it satisfies the
following conditions:

π(p) = p for primitive terms p

π({|m|}K) = {|π(m)|}K if m, K are in U , or

if {|m|}K , K−1 are in U

π(hash(m)) = hash(π(m)) if m is in U .



The map π is called a reinterpretation under U if it is a semi-
reinterpretation under U and if π−1 is a semi-reinterpretation
under π(U) as well.

The above definition says that as far as an agent can observe
(i.e., for all the messages in U), the permutation π pre-
serves structural and cryptographic relationships between
messages. We extend reinterpretations naturally to events
(applying π to the message field of an event) and to runs
(applying π to the message field of every event in a run).

Lemma 1. Let U be a set of messages.

1. The identity map on the set of messages is a reinter-
pretation under U .

2. For every reinterpretation π under U , its inverse π−1

is a reinterpretation under π(U).

3. For all reinterpretations π under U and π′ under π(U),
their composition π′ ◦ π is a reinterpretation under U .

Proof. Trivial. Note that 3 is already true for semi-
reinterpretations.

Definition 8. (Observational equivalence of runs) Let r, r′

∈ Runcr,IPo be two runs of a protocol (cr, IPo) and let A ∈ AG

be an agent. Two runs r and r′ are said to be observationally
equivalent for an agent A, denoted by r ∼=A r′, if there
exists a reinterpretation π under PossIPo(r,A, |r| − 1) such
that π(r|A) = r′|A . Such a reinterpretation will be called
a reinterpretation for A.

Lemma 2. For each agent A ∈ AG, the binary relation
∼=A on Runcr,IPo is an equivalence relation.

Proof. This follows immediately from Lemma 1. Note
that π

`

PossIPo(r,A, |r|−1)
´

= PossIPo(π(r), A, |r|−1)
´

since
IPo(A) consists solely of primitive messages and since a rein-
terpretation does not change the sender and receiver fields
of events.

Example 1. Consider the following two runs in which A
and A′ are sending the messages m and m′ to B via a single
relay, or Chaum mix, M . Below n and n′ are fresh nonces.

r r′

(A→M : {|n,B, {|m|}B |}M ) (A→M : {|n′, B, {|m′|}B |}M )

(A′ →M : {|n′, B, {|m′|}B |}M ) (A′ →M : {|n, B, {|m|}B |}M )

(M → B : {|m|}B) (M → B : {|m|}B)

(M → B : {|m′|}B) (M → B : {|m′|}B)

Assume that the spy knows the identities of all agents,
all public keys and also the private key of B. Then these
runs are still observationally equivalent for the spy; we can
take a reinterpretation that exchanges {|n,B, {|m|}B |}M and
{|n′, B, {|m′|}B |}M and leaves {|m|}B and {|m′|}B fixed. It is
important to realize that a reinterpretation π for the spy
must satisfy π({|m|}B) = {|π(m)|}B (since B’s private key
is compromised), but does not necessarily have to satisfy
π({|n,B, {|m|}B |}M ) = {|n,B, π({|m|}B)|}M (and similarly for
m′).

Without the nonces, however, the runs are not observa-
tionally equivalent.

r r′

(A→M : {|B, {|m|}B |}M ) (A→M : {|B, {|m′|}B |}M )

(A′ →M : {|B, {|m′|}B |}M ) (A′ → M : {|B, {|m|}B |}M )

(M → B : {|m|}B) (M → B : {|m|}B)

(M → B : {|m′|}B) (M → B : {|m′|}B)

This is due to the fact that π must satisfy π({|B, {|m|}B |}M ) =
{|B, π({|m|}B)|}M (and similarly form′). Note how this nicely
captures the fact that, from the viewpoint of the spy, the
messages {|B, {|m|}B |}M and {|B, {|m′|}B |}M can indeed be
distinguished: at the end of the run the spy possesses the
messages {|m|}B and {|m′|}B and he can simply encrypt the
messages 〈B, {|m|}B〉 and 〈B, {|m′|}B〉 with the public key of
M . This does not hold for the version with the nonces, since
the spy never possesses these nonces.

4. FORMULAS AND EPISTEMIC OPERA-
TORS

In this section we introduce the epistemic (or modal) lan-
guage as our specification language. The semantics of epis-
temic operators is defined in a standard way [8], taking
the set Runcr,IPo of runs of a protocol as the set of possible
worlds equipped with observational equivalence ∼=A. Note
that our language is semantics-based : a formula is identi-
fied as a {T,F}-valued function over a model, rather than
a syntactically-defined entity.

4.1 Formulas
With a formula we want to express not only a fact about

a run but also that an agent knows/does not know a certain
fact about a run.

Definition 9. (Formulas) A formula ϕ is a function which
takes as its arguments a protocol (cr, IPo) and a run r ∈
Runcr,IPo of that protocol, and returns either T or F. The
set of all the formulas is denoted by Form. We follow the
tradition of logic to denote the fact ϕ(cr, IPo, r) = T, where
r ∈ Runcr,IPo, by cr, IPo, r |= ϕ. Often the protocol (cr, IPo)
under consideration is clear from the context, in which case
we abbreviate cr, IPo, r |= ϕ to r |= ϕ. Logical connectives
on formulas such as ∧, ∨, → and ¬ are defined in an obvious
way. A formula ϕ is said to be valid if cr, IPo, r |= ϕ for all
cr, IPo and r.

We will use the following abbreviations Sends, Possesses, and
Originates repeatedly in the rest of the paper. They express
fundamental properties of runs.

Definition 10. The formula A Sends m to B means: at
some stage in the run, A sends a message to B which con-
tains m as a subterm.

r |= A Sends m to B
def
⇐⇒

∃i ∈ [0, |r| − 1].
`

m � m
′ where (A→ B : m′) = ri

´

.

We will also use A Sends m to mean that A sends the mes-
sage m to someone.

r |= A Sends m
def
⇐⇒ ∃B. A Sends m to B.

The formula A Possesses m means: after the run has fin-
ished, A is capable of constructing the message m.

r |= A Possesses m
def
⇐⇒ m ∈ PossIPo(r,A, |r| − 1).

The formula A Originates m means that: A Sends m, but
A is not relaying. More precisely, m does not appear as a



subterm of a message which A has received before.

r |=A Originates m
def
⇐⇒

∃i ∈ [0, |r| − 1]. ∃B.
“

m � m
′ where (A→ B : m′) = ri

∧ ∀j ∈ [0, i− 1].
`

m 6� m̂ where (A′ → A : m̂) = rj

´

”

.

4.2 Epistemic operators
Using the observation equivalence relations over over the

set Runcr,IPo of possible worlds defined in Section 3.4, we can
now introduce epistemic operators in the standard way (see
e.g., [8]).

Definition 11. (Epistemic operators) Let (cr, IPo) be a
protocol. For an agent A ∈ AG, the epistemic operator
2A : Form → Form is defined by:

cr, IPo, r |=2Aϕ
def
⇐⇒

∀r′ ∈ Runcr,IPo.
`

r
′ ∼=A r =⇒ cr, IPo, r

′ |= ϕ
´

.

The formula 2Aϕ is read as “after the run is completed, the
agent A knows that ϕ is true”. The formula 3Aϕ is short for
¬2A¬ϕ and read as “after the run is completed, the agent
A suspects that ϕ is true”.

Lemma 3 (2A is the S5-modality). For each agent
A ∈ AG, the operator 2A satisfies the following properties.

• (Necessitation) For each set of candidate runs cr and
each initial possession function IPo, if

`

∀r ∈ Runcr,IPo.

r |= ϕ
´

, then
`

∀r ∈ Runcr,IPo. r |= 2Aϕ
´

.

• The following formulas are all valid: (Distribution)
2A(ϕ → ψ) → (2Aϕ → 2Aψ); (T) 2Aϕ → ϕ; (4)
2Aϕ→ 2A2Aϕ; (5) 3Aϕ→ 2A3Aϕ.

In short, the operator 2A is so-called an S5-modality.

Proof. Since the epistemic operator 2A is defined via an
equivalence relation ∼=A on Runcr,IPo. See e.g., [2].

4.3 Expressing information hiding properties
There are a number of properties which are referred to as

information hiding properties (see e.g., [15]), and a desired
property might be different from one application to another.
As stated in the introduction, we aim at, rather than a de-
cisive definition of “anonymity”, a framework in which we
can formulate and analyze various different properties in a
uniform and straightforward manner.

In this subsection we formulate some common examples
of information hiding properties in our epistemic language.
We use the standard notion of an anonymity set : it is a
collection of agents among which a given agent is not identi-
fiable. The larger this set is, the more anonymous an agent
is.

Sender anonymity Suppose that r is a run of a protocol
in which an agent B receives a message m. We say that
r provides sender anonymity with anonymity set AS if it
satisfies

r |=
^

X∈AS

3B(X Originates m).

This means that, as far as B is concerned, every agent in
the anonymity set could have sent the message.

Unlinkability We say that a run r provides unlinkability
for users A and B with anonymity set AS if

r |=
`

¬2spyϕ0(A,B)
´

∧
^

X∈AS

3spyϕ0(X,B) ,

where ϕ0(X, Y ) = ∃n.
`

X Sends n ∧ Y Possesses n
´

. In-
tuitively, the left side of the conjunction means that the
adversary is not certain that A sent something to B. The
right side means that every other user could have sent some-
thing to B. Similarly, unlinkability between a user A and
a message m could be defined as |= ¬2spy(A Sends m) ∧
V

X∈AS
3spy(X Sends m).

Plausible deniability In certain circumstances (e.g., re-
lays), agents might be interested in showing that they did
not know that they had some sensitive information m. This
might be modelled by the following epistemic formula:

r |= 2spy¬(2A(A Possesses m)) .

This formula is read as: the spy knows that A does not know
that she possesses m.

5. EXAMPLES
To illustrate the applicability of the theory, we analyze the

anonymity of simplified versions of Crowds and Onion Rout-
ing. For Crowds, we focus on proving sender anonymity,
whereas for Onion Routing we are concerned with unlinka-
bility.

Before starting, we need a convenient way of specifying the
candidate runs of the various protocols we will be consid-
ering. We describe them with the following inference style
rules:

e1, . . . , en

e [c]
e1, . . . , en

e [c]

The first of these rules means that, under the side condition
c, if a run contains events e1, . . . , en, then later the event e
may appear in the run. For the second it means that e must
appear later in the run.

For example, in a simple version of Chaum mixes, the
following rule would describe the action of a router:

(X →M : {|Y,m|}M )

(M → Y : m)
[X, Y,M pairwise distinct, M router]

In normal language this means that if X sends the message
{|Y,m|}M to M , then M must forward the message m to Y .
The side condition says that this only applies if X, Y and
M are three distinct agents and if M has been designated
as a router.

Note that this way of specifying runs of a protocol is no
integral part of the theory; it only serves as a convenient
way of presenting the protocols (or, more accurately, the
candidate runs) in the examples in the remainder of this
section.

5.1 Crowds
The Crowds system [16] is a system for doing anonymous

web transactions based on the idea that anonymity can be
provided by hiding in a crowd. When someone wants to
send a request to a server, she randomly selects a user from
a crowd of users and asks this user to forward the request for
her to the server. This user then either forwards the request
to the server, or selects another random user from the crowd



to do the forwarding. (Note: this only describes the request
part; not the reply part). For simplicity reasons, we model
requests as nonces.

Schematically, we can model this as follows:

(A→ R : 〈S, n〉)

(A→ R : 〈S, n〉)

(R→ S : n) or (R→ R′ : 〈S, n〉)

This obviously provides sender anonymity, in the sense that
the server cannot tell from who the request really originated.
In the formal framework this can be formulated as follows:

Theorem 1. Let r be a run of Crowds in which (A→ S :
n) occurs with A 6= S. Then

r |=
^

B∈AS

3S(B Originates n),

where the anonymity set AS is equal to AG \ {S}.

Proof. Let B ∈ AS and take r′ = (B → A : n), r, i.e.,
r augmented by a fictitious event (B → A : n). Then r′ is
also a valid run and obviously r′ |= B Originates n. Because
S 6= A,B, we have r′|S = r|S and therefore r′ ∼=S r. So
r |= 3S(B Originates n).

Against a global eavesdropper, i.e., someone who can ob-
serve all network traffic, this does not provide anonymity.
This is, of course, also remarked in [16].

Theorem 2. Let r be a run of Crowds in which A freshly
sends n to S over a relay R. I.e., the run contains

(A→ R : 〈S, n〉)

and the nonce n is fresh in A → R : 〈S, n〉. Then r |=
2spy(A Originates n).

Proof. Suppose that r |= ¬2spy(A Originates n). Then
there is a run r′ satisfying r ∼=spy r

′ where the formula r′ |=
¬(A Originates n) holds. Let π be the reinterpretation for
spy such that π(r) = r′. Note that π(n) = n and π(S) = S.
Since A did not originate n in r′, there must be an event
B → A : m with n as subterm appearing in m before the
event A → R : 〈S, n〉. This message m must be of the form
n or of the form 〈C, n〉 for some agent C, since the protocol
does not allow the sending of messages of any other form
and since it must have n as subterm. However, this means
that B → A : π−1(m) occurs in r before A → R : 〈S, n〉.
Note that π−1(m) is of the form π−1(n) = n or of the form
π−1(〈C,n〉) = 〈C, n〉 for some agent C. This contradicts the
fact that n appears freshly in the event A→ R : 〈S, n〉.

5.2 Onion Routing
Chaum mixes were already mentioned in the introduction.

Users construct messages of the form {|R2, {|B, {|m|}B |}R2
|}R1

(called onions, because of the layered encryptions) and use
relays (R1, R2) that decrypt one layer (peel the onion) and
forward the remainder. In this section we analyze the un-
linkability of a very simple version.

An agent in the set AG belongs to one of the following
families: 1) Onion routers who try to disguise causal rela-
tions between incoming and outgoing messages by peeling
onions (i.e., removing one layer of encryption) and forward-
ing them.

The router collects incoming messages until it has received
k messages. Then, the messages are permuted and sent in

Actual run r Similar run r′

A ((◦))

((QQQQQQ B

M

(◦) 66mmmmmm

(•) ((QQQQQQ

A′ ((•))

66nnnnnn

B′

A ((◦))

((QQQQQQ B

M

(•) 66mmmmmm

(◦) ((QQQQQQ

A′ ((•))

66nnnnnn

B′

Figure 1: Onion Routing

batch to their respective intended destinations. 2) Users
who try to communicate with one another unlinkably, with
the help of the onion router. 3) The intruder denoted by
spy.

In the sequel we assume that there is only a single router
denoted by M . and furthermore the initial possession func-
tion IPo is such that, for each agent X, IPo(X) consists of
the private key of X and the public keys of all agents. For
now, no agent is corrupt, so also spy does not possess any
private keys other than his own.

Again we specify the candidate runs of the protocol in the
form of inference rules. The first rule says that every user
X can initiate sending a message n to another user Y by
building an onion and submitting it to the router M . The
second says that users may also send random messages to
the router M , padding the network with dummy messages.
These messages will be ignored by the router; they only
serve to obscure the relation between incoming and outgoing
messages if not enough real traffic is available.

(X →M : {|n0, Y, {|n|}Y |}M )

»

X,Y,M pairwise distinct
n0, n fresh

–

(X →M : {|n|}M )
[n fresh]

The last one is

(Xi →M : {|ni, Yi,mi|}M ),
(Xj →M : {|nj |}M )

(M → Yi : mi)

2

6

6

4

Xi,Xj , Yi,M
pairwise distinct

i = 1 . . . l
j = l + 1 . . . k

3

7

7

5

It means that when the router has received l onions and
k − l padding messages, it “peels” the onions and forwards
the messages to the intended recipients. Note that l is a free
variable and can be instantiated by any value 1 ≤ l ≤ k,
whereas k is a constant. Also note that this inference rule
poses no condition on the ordering of the messages. Now
we investigate under what condition onion routing ensures
unlinkability, that is, which runs r of onion routing make
the formula ¬2spyϕ0(A,B) ∧

V

X∈AS
3spyϕ0(X,B) true. Re-

member that we abbreviate the formula ∃n.
`

X Sends n ∧

Y Possesses n
´

to ϕ0(X,Y ).

Example 2. Consider a run r in which a user A is sending
a message to a user B via the router M . Intuitively, un-
linkability of A and B is ensured by showing that there is
another run r′ that looks similar to r (i.e., is observation-
ally equivalent to r), but in which another user A′ is actu-
ally communicating with B (and A is communicating with
someone else, B′). This situation is illustrated in Figure 1.
There ((◦)) represents a two-layered onion {|n0, B, {|n|}B |}M .
When peeled the resulting one-layered onion is denoted by



(◦). ((•)) is a two-layered onion with another nonce in its
core.

The following theorem gives a necessary condition for a
run of Onion Routing to provide unlinkability. It says that
if a user A sends a message to B via the router M , then
every user has to send a message to the router M to provide
unlinkability of A and B.

Theorem 3. Let r be a run of Onion Routing which con-
tains the events

e1 = (A→M : {|n0, B, {|n|}B |}M ) , e2 = (M → B : {|n|}B)

in this order. If r |= ¬2spyϕ0(A,B) ∧
V

X∈AS 3spyϕ0(X,B),
then r contains before e2, for every user X, an event of the
form (X →M : {|m|}M ) for some message m.

Proof. Suppose we have a run r such that

r |= ¬2spyϕ0(A,B) ∧
^

X∈AS

3spyϕ0(X,B).

Then r |=
V

X∈AS 3spyϕ0(X,B). Now take X ∈ AS. Then
r |= 3spyϕ0(X,B), which means that there is a run r′ with
r′ ∼=spy r such that r′ |= ϕ0(X,B). Hence r′ |= X Sends m
for some message m. Hence, r′ should contain an event e of
the form (X → M : {|m′|}M ), with m � m′, given the infer-
ence rule for X (users can only send encrypted messages to
M). Then, r must contain an event π−1(e′), which finishes
the proof.

Now we give a sufficient condition for unlinkability. It says
that if there are enough messages in the network, then A
and B cannot be linked.

Theorem 4. Let r be a run of Onion Routing which con-
tain events

e = (A→M : {|n0, B, {|n|}B |}M ) , e′ = (M → B : {|n|}B)

in this order. Then, there exist an anonymity set AS such
that r |= ¬2spyϕ0(A,B) ∧

V

X∈AS
3spyϕ0(X,B), with |AS| ≥

k. Recall that k is the size of the router’s queue.

Proof. We first prove the left hand side of the conjunc-
tion. That is, we want to prove that r |= ¬2spyϕ0(A,B).
This means that there should be a run r′ with r′ ∼=spy r
such that r′ |= ¬ϕ0(A,B). Let e1 . . . eq be all the mes-
sages in r originated by A which have B as final destina-
tion, i.e., each ei has the form ei = (A → M : mi) where
mi = {|n̂i, B, {|ni|}B |}M . To keep the notation easy, we only
consider the case where q = 1; the general case goes analo-
gously.

By the inference rule of the router, r contains, k events
e′j = (Xj → M : {|mj |}M ), j = 1 . . . k, one of which is
e1. These are the messages that the router M received in
the same batch as e1. Choose one of the events e′j that is
different from e1 and define a reinterpretation π such that
π(m′

j) = m1, π(m1) = m′
j , extending it in a natural way

to the rest of the domain. Now r′ = π(r) is a run of the pro-
tocol (because the router processes messages in batches).
Moreover, by the inference rule of the router, the final desti-
nations of e′j , j = 1 . . . k are pairwise distinct and therefore
B 6� π(mi). This implies r′ 6|= ϕ0(A,B).

Now we are going to prove the right side of the conjunc-
tion. Given that e′ is in r, by the inference rule, there

must be k events ei = (Xi → M : mi) with i = 1 . . . k
in r. Moreover, one of these events must be e, say ej . Take
AS = {Xi | i = 1 . . . k}. Note that |AS| = k, since the
Xi are all distinct. To show that r |=

V

X∈AS
3spyϕ0(X,B)

part it suffices to show that for a fixed Xi, there is a run
r′ = π(r) such that r′ |= ϕ0(Xi, B). Now take π such that
π(mi) = mj , π(mj) = mi, and the obvious extension to the
rest of the domain. As before, r′ is a run of the protocol
and r′ |= ϕ0(Xi, B).

Finally, let us consider the case where the private key of the
router is compromised, i.e., IPo(spy) now contains K−1

M . In
this case it is easy to see that unlinkability always fails.

Theorem 5. For any run r run of Onion Routing which
contains the events

e1 = (A→M : {|n0, B, {|n|}B |}M ) , e2 = (M → B : {|n|}B)

in this order, unlinkability fails. That is, r |= 2spyϕ0(A,B).

Proof. Let r′ be a run such that r′ ∼=spy r. Say π is a
reinterpretation for spy such that π(r) = r′. Since K−1

M ∈
IPo(spy), we have π({|n0, B, {|n|}B |}M ) = {|n0, B, π({|n|}B)|}M .
Because r′ is a valid run of onion routing, π({|n|}B) = {|n′|}B

for some nonce n′. Then r′ |= A Sends n′ ∧ B Possesses n′,
and therefore r′ |= ϕ0(A,B).

5.3 Onion Routing with subtle flaw
We now propose a version of Onion Routing that has a

subtle error, and then show that unlinkability fails. As far
as we are aware, this is the first framework that detects this
kind of subtle flaws.

Imagine a modified version of Onion Routing where each
channel in each path is assigned a nonce as an identifier
(maybe for establishing a bi-directional communication).
These nonces are reused every time that a message is sent
through this channel.

The following 〈e0, e1, . . . , e7〉 is an example of a run:

e0 = (A→M : 〈n11, ((n))〉) e4 = (A→M : 〈n11, ((n
′′))〉)

e1 = (B → M : 〈n21, ((n
′))〉) e5 = (B →M : 〈n31, ((n

′′′))〉)

e2 = (M → C : 〈n12, (n)〉) e6 = (M → C : 〈n12, (n
′′)〉)

e3 = (M → C : 〈n22, (n
′)〉) e7 = (M → E : 〈n32, (n

′′′)〉)

where ((−)) or (−) denotes an onion like in Section 5.2,
whose ultimate destination is clear from the way it is re-
layed. In e2, M generates a nonce (an identifier) n12 and
remembers the correspondence between n11 and n12. When
M relays another onion which comes with the same identi-
fier n11 (in e4), it includes the corresponding nonce n12 (in
e6). B uses a new identifier n31 in e5 because the destination
of the onion is different from e1. From C’s point of view,
since the nonces n and n′′ come with the same identifier n12,
they are from the same originator. Nevertheless the actual
originator A is disguised to C.

Notice that both runs 〈e0, . . . , e3〉 and 〈e4, . . . , e7〉 ensure
unlinkability in themselves. However, when combined, in
the run 〈e0, . . . , e7〉 the users A and C are linkable, but only
because the combination of identifiers n11 and n12 occurs
twice in the run.

In the following we put this flaw formally. The candi-
date runs for Flawed Onion Routing should be clear from
the above example. A user can originate an onion with an
identifier, and the router M relays a peeled onion with a
suitable identifier. The identifiers are either freshly gener-
ated or reused in the way illustrated in the above example.



In general, to attain unlinkability from A to B, there must
be another fixed user C who immediately imitates the be-
havior of A: if A sends an onion bound for B, before the
onion is relayed, C must send an onion bound for fixed a
D. This condition is fairly unrealistic. The following the-
orem formally put this (unrealistic) necessary condition for
unlinkability, for the case where A sends two onions.

Theorem 6. Let r be a run of Flawed Onion Routing
which contains the events

e1 = (A→M : 〈nA, {|n0, B, {|n|}B |}M 〉),

e2 = (M → B : 〈nM , {|n|}B〉),

e3 = (A→M : 〈nA, {|n
′

0, B, {|n
′|}B |}M 〉),

e4 = (M → B : 〈nM , {|n′|}B〉)

in this order. If r |= ¬2spyϕ0(A,B) then, r contains be-
fore e2 and e4, events (X → M : 〈nX ,m1〉) and (X →
M : 〈nX ,m2〉) respectively, for some user X 6= A, messages
m1,m2.

Proof. Suppose we have a run r such that

r |= ¬2spyϕ0(A,B),

which means that there is a run r′ such that r′ ∼=spy r and
r′ |= ¬ϕ0(A,B). Let π be a reinterpretation for spy such
that π(r) = r′. By Definition 7, r′ must contain events e′2 =
π(e2) = (M → B : 〈nM , π({|n|}B)〉) and e′4 = π(e4) = (M →
B : 〈nM , π({|n′|}B)〉). Therefore, by the inference rule as to
correspondence of identifiers, r′ must contain events e′1 and
e′3 of the form e′1 = (X → M : 〈nX , π({|n0, B, {|n|}B |}M )〉)
and e′3 = (X → M : 〈nX , π({|n′

0, B, {|n
′|}B |}M )〉), for some

common sender X. Now r′ |= ¬ϕ0(A,B) implies X 6= A,
which finishes the proof.

6. CONCLUSIONS AND FUTURE WORK
We have presented a framework for verifying a variety

of information hiding properties, using modal logic. This
framework provides a well defined epistemic language where
various competing information hiding properties can be ex-
pressed and verified uniformly at semantical level. Our fine-
grained definition of message reinterpretation captures sub-
tleties that would not be captured in other state of the art
frameworks.

Several extensions of our framework still remain. An obvi-
ous one is the consideration of a stronger adversarial model
(e.g., active corrupt agents, Dolev-Yao), which should arise
straightforwardly. It would also be interesting to consider
applications to other fields like secure multiparty computa-
tion, and to other security properties besides information
hiding, such as secrecy. From a practical perspective, proofs
are slightly complicated, even with small examples. There-
fore, having a tool which can perform this proofs in an au-
tomatic or semi-automatic fashion, would significantly im-
prove the usability of the framework.
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APPENDIX

A. CLOSURE
For the formal definition of the closure U of a set U of

messages, we use two functions analz, synth : P(MSG) →
P(MSG) which are defined much like in [14]. The analyzing
function analz extends the input set by adding all the sub-
terms obtained via decryption and decomposing tuples. For
example if K is a symmetric key, we have

analz
“

˘

K, {|〈A, hash(n)〉|}K

¯

”

=
˘

K, {|〈A, hash(n)〉|}K , 〈A,hash(n)〉, A, hash(n)
¯

.

Note that the nonce n is not included in the output. The
synthesizing function synth outputs the set of messages which
can be constructed by encryption and tupling using mes-
sages in the input set. For example if both m and the key
K are in U , then {|m|}K is in synth(U).

Definition 12. (Analyze and synthesize) Let U be a set
of messages. The analysis of U , notation analz(U), is the
smallest set of messages satisfying

1. U ⊆ analz(U);

2. if {|m|}K ,K
−1 ∈ analz(U), then m ∈ analz(U);

3. if 〈m1,m2〉 ∈ analz(U), then m1,m2 ∈ analz(U).

Similarly, the synthesis of U , notation synth(U), is the small-
est set of messages satisfying

1. U ⊆ synth(U);

2. if m,K ∈ synth(U), then {|m|}K ∈ synth(U);

3. if m ∈ synth(U), then hash(m) ∈ synth(U);

4. if m1,m2 ∈ synth(U), then 〈m1,m2〉 ∈ synth(U).

Definition 13. (Closure) Let U be a set of messages. The
set synth(analz(U)) is called the closure of U and is denoted
by U .

Theorem 7. The operator U 7→ U is indeed a closure

operator. That is, for any U, V ∈ MSG: U ⊆ U , U = U ,
and U ⊆ V =⇒ U ⊆ V .

B. POSSESSED MESSAGES

Definition 14. (Fresh nonces/keys) A nonce or key is said
to be fresh for an initial possession function IPo, a run r and
i ∈ [0, |r|−1], if it (and its inverse, in the case of a key) does
not occur in r<i nor in the initial possession IPo(A) of any
agent A. The set of fresh nonces and keys for IPo, r, i is
denoted by FreshIPo(r, i).

Definition 15. (Possessed messages) Let IPo : AG →
P(MSG) be a initial possession function, r a run, A an agent
and i ∈ [0, |r|−1]. The set of possessed messages for IPo, r,A
at stage i, denoted by PossIPo(r,A, i), is defined inductively
on i. For every i, let ri be (Ai → Bi : mi). For a regular
agent A ∈ AG \ {spy},

PossIPo(r,A, 0) = IPo(A) ,

PossIPo(r,A, i+ 1) =
8

>

>

>

<

>

>

>

:

{v ∈ FreshIPo(r, i) | v � mi} ∪ PossIPo(r,A, i)

if Ai = A, (∗)

{mi} ∪ PossIPo(r,A, i) if Bi = A,

PossIPo(r,A, i) otherwise.

For the intruder spy,

PossIPo(r, spy, 0) = IPo(spy) ,

PossIPo(r, spy, i+ 1) =
8

>

<

>

:

{v ∈ FreshIPo(r, i) | v � mi} ∪ PossIPo(r, spy, i)

if Ai = spy, (∗)

{mi} ∪ PossIPo(r, spy, i) otherwise.

This definition says that if fresh nonces/keys occur as sub-
terms in a sent message (i.e., if the sender freshly generates
nonces/keys), then these generated terms are added to the
sender’s possessed messages. This complicated definition
can be understood with the following example. If an agent A
sends at stage i the public-key encryption {|n|}B of a freshly
generated nonce n, A is supposed to possess the nonce n
(that A has generated herself) from then on. However, with-
out the above clause (∗), when A does not possess the private
key, the nonce n would not be in PossIPo(r,A, i+ 1).

When an agent sees a message (whether as the receiver or
as an eavesdropper), the message is added to the ingredients
the agent can use to construct messages. For example, if an
agent receives at stage i an encryption of a nonce {|n|}K

which the agent cannot decrypt at that time, and later at
stage j(> i) the agent receives the decryption key K−1,
then from stage j + 1 on the agent can use the nonce n to
construct messages it sends.

The definition for spy differs from that for a regular agent
because spy is a global eavesdropper and hence sees every
message in the network.


