
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is an author's version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/32549

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

http://hdl.handle.net/2066/32549

Generic Generation of Elements of Types

Pieter Koopman and Rinus Plasmeijer
Institute for Computing and Information Science,
Radboud University Nijmegen, The Netherlands

{ p i e t e r , r i n u s } @ c s . r u . n l

Abstract
For a model based automatic test system it is essential to generate elements of the
used data types automatically. In this paper we introduce an elegant algorithm that is
able to generate a list of all elements of arbitrary types using generic programming
techniques. In order to allow exhaustive testing for finite types we need to be able
to determine that all elements of type are generated. This is done by systematic
generation of the elements of a type.
In order to improve the results of testing we also show a variant of the generation
algorithm that yields the elements in a pseudo random order. Both algorithms are
very efficient and lazy; only the elements actually needed are generated.
Using the interface functions of restricted data types, like search trees, and the algo­
rithms introduced here it is also possible to generate instances of these types. The
elements stored in an instance of the search tree are generated by the default generic
algorithm.

1 IN TR O D U C TIO N

In this paper we describe an elegant generic algorithm that yields a list of all ele­
ments o f a type. Such an algorithm was needed in our model based test tool Ga st
[7, 8, 16]. Also in other application areas it is handy or necessary to be able to
generate one or more instances o f an arbitrary type. For instance in Generic Edi­
tor Components [1], where the data generation is used to create an instance for all
arguments o f a chosen constructer o f an algebraic data type.

Generic programming is a programming technique where manipulations o f
data types are specified on a general representation o f the data types instead o f
the data types themselves. Usually the system takes care o f the conversion be­
tween the actual types and their generic representation and vice versa. There are
various variants o f generic programming for functional programming described.
M ost implementations o f generics in functional programming languages are based
on the ideas o f R alf Hinze [5, 6]. There are various implementations in Haskell,
like Generic Haskell [4] and the scrap your boilerplate approach [10, 11]. In this
paper we will use generic programming in C le a n [12] as introduced by [2].

Basically a test system represents a predicate o f the form Vx £ T. P(x) by a
function P :: T ^ Bool. Test systems like QuickCheck [3] and G a s t evaluates
this function for a fixed number N o f elements o f type T. In order to do this the
test system has to be able to generate elements o f this type. If the system generates

an element tc o f type T such that P(tc) yields F a lse , the test system has found
a counterexample: the property does not hold. W hen the property holds for all
generated test data the property passes the test. I f the size o f type T is less than N,
the property can even be proven by exhaustive testing. In G a s t this is achieved by
generating each instance o f the type exactly once.

A popular way to generate elements o f a type is by some pseudo random algo­
rithm. Experience shows that a well chosen pseudo random generation and suffi­
cient number o f tests most likely covers all interesting cases and hence discovers
counterexamples if they exists. Tools like QuickCheck and Torx [13] use pseudo
random generation o f test data. In Ga st we use a systematic generation o f test
data for logical properties. The main advantage o f this approach is that it is easy
to detect that all elements o f the type are generated and hence that the property is
proven by exhaustive testing. An additional advantage is that systematic test data
generation is that it makes testing more effective. In pseudo random testing it can­
not be avoided that tests are repeated (the same test value is generated again), but
this repetition o f the test does not give any additional information in a referential
transparent context.

Experiments have not shown examples where fully random data generation is
more efficient that systematic data generation. There are plenty examples where
the systematic data generation that starts with common boundary values is more
effective. Since the systematic data generation is also very efficient, this way of
testing is usually more effective than testing using pseudo random data.

For the implementation o f the generation algorithm in a functional program­
ming language a class is the m ost obvious language construct. The user has to
define an instance o f this class for each new type used in the predicates. This is
some work for the test engineer. QuickCkeck uses this approach in the generation
o f test data. Experience indicates that it requires at least some practice to write an
effective test data generation algorithm for new types in this way. Using a generic
programming approach has as advantage that the instance o f a new type can be
derived instead o f coded by hand for each new data type. Only for data types with
more restrictions than imposed by the type system, like balanced search trees, a
manual implementation needs to be provided. Even for those types the generic
algorithm can be used to determine the values to be inserted in the instance o f the
restricted type.

The problem solved here is unlike the scrap your boilerplate approach, since
there is not data type to be traversed. Instead the elements o f data type have to be
generated out o f thin air. It should be fairly easy to express the described algorithm
in Generic Haskell [4].

In the next section we shortly review the original systematic data generation
o f Ga s t . In section 3 we introduce basic generic data generation algorithm. In
section 4 we show how the order o f test data generated can be changed in pseudo
random way. Since the data generation algorithm uses only the type information,
it cannot work correctly for restricted data types like search trees, balanced trees,
AVL-trees et cetera. In section 5 we show how instances o f these types can be

generated. Finally there are some conclusions. The reader is assumed to be familiar
with generic programming in functional languages.

2 PR EV IO U S W O R K

One o f the distinguishing features o f Ga st is that it is able to generate test data
in a systematic way. This guarantees that test are never repeated, which is useless
in a referential transparent language like C l e a n . For finite data types it is even
possible to prove properties using a test system: a property is proven if it holds for
all elements o f the finite data type. Ga st has used a systematic generic algorithm
to generate test data from the very beginning. In this section we will review the
original algorithm and the design decisions behind it.

In general it is impossible to test a property for all possible values. The number
o f values is simply too large (e.g. for the type In t), or even infinite (for every
recursive data type). Boundary value analysis is a well-known technique in testing
that tells that not all values are equally interesting for testing. The values where
the specification or implementation indicates a bound and the values very close to
such a bound are interesting test values. For numbers values like 0, 1 and —1 are
the most frequently occurring test values. For recursive types the non-recursive
constructor ([] for lists and Leaf for trees) and small instances are the obvious
boundary values. Therefor, these values have to be in the beginning o f the list
o f data values generated. W hen specific boundary values for some situation are
known, it is easy to include these in the tests, see [8] for details.

The initial algorithm [7] was rather simple, but also very crude and inefficient.
The basic approach o f the initial data generation algorithm was to use a tree to
record the generic representations o f the the values generated. For each new value
to be generated the tree was extended according to the new value. In order to
generate all small values early, the tree was extended in a breadth-first fashion.
The definition o f the tree used is:
:: Trace = Empty

| U nit
| P a ir [(T race,T race)] [(T race,Trace)]
| E ith e r Bool Trace Trace
| I n t [In t]
| Done

The constructor Empty is used to indicate parts o f the tree that are not yet visited.
Initially, the entire tree is not yet visited. The constructor U nit indicates that a
constructor is generated here. The two list o f tuples o f traces in a P a ir together
implement an efficient queue o f new traces to be considered. The E ith e r pairs the
traces corresponding to the generic constructors LEFT and and RIGHT. The Boolean
indicates the direction where the first extension ought has to be sought. For basic
types, like integers, special constructors, like In t, are used to record the values
generated. W hen the generation algorithm discovers that some part o f the tree

cannot be extended it is replaced by Done, in order to prevent fruitless traversals in
future extensions o f the tree. See [7] for more details.

3 G E N E R IC DATA GEN ERA TIO N : BASIC A PPRO A CH

The new generic data generation algorithm presented in this paper does not use a
tree to record generated values. The use o f the tree can be very time consuming.
For instance the generation o f all tuples o f two characters takes nearly 20 minutes
on a windows pc.

The generic function gen generates the lazy list o f all values o f a type by gen­
erating all relevant generic representations [2] o f the members o f that type.
generic gen a :: [a]
For the type UINT there is only one possibility: the constructor UNIT.
gen {|UNIT|} = [UNIT]
For a PAIR that combines two kinds o f values a naive definition using a list-com -
prehension would be [P a ir a b \ \ a ^ f , b ^ g] . However, we do not want the
first element o f f to be combined with all elements o f g before we consider the
second element o f f, but some fair mixing o f the values. This is also known as
dovetailing. Suppose that f is the list [a, b, c,..] and g the list [u, v, w,..]. The de­
sired order o f pairs is PAIR a u, PAIR a v, PAIR b u, PAIR a w, PAIR b v, PAIR cu,..
rather than PAIR a u, PAIR a v, PAIR aw,.., PAIR b u, PAIR b v, PAIR bw,... The di-
agonalizing list comprehensions from M irandatm [15] and the function diag2 from
the C le a n standard environment exactly do this job. The function diag2 is type
[a] [b] ^ [(a , b)], i.e. it generates a list o f tuples with the elements o f the argu­
ment lists in the desired order. Using a simple map function, or list comprehension
the tuples are transformed to pairs.
gen{|PAIR|} f g = [PAIR a b \ \ (a ,b)^ d ia g 2 f g]
For the choice in the type EITHER we use an additional Boolean argument to merge
the elements in a nice interleaved way. The definition o f the function Merge is
somewhat tricky in order to avoid that it becomes strict in one o f its list arguments.
If the function Merge becomes strict in one o f its list arguments it generates all
possible values before the current value is yielded. This causes a Heap f u l l error.
gen {|EITHER} f g = Merge True f g
where

Merge :: ! Bool [a] [b] ^ [EITHER a b]
Merge l e f t as bs

| l e f t
= case as of

[] = map RIGHT bs
[a : a s] = [LEFT a : Merge (no t l e f t) as bs]

= case bs of
[] = map LEFT as
[b :b s] = [RIGHT b : Merge (no t l e f t) a s bs]

In order to let this merge algorithm terminate for recursive data types we assume
that the non recursive case (like N il for lists, Leaf for trees) is listed first in the
type definition. Using some insight knowledge o f the generic representation o f
allow us to make the right initial choice in gen {| EITHER |} . In principle the generic
representation contains sufficient information to find the terminating constructor
dynamically, but this is more expensive and does not add any additional power.
Since the order o f constructors in a data type does not have any other significance
in C lea n the assumption on the order o f constructors is not considered a serious
one.

The actual implementation o f generics in C lea n uses some additional con­
structors in order to store additional information about constructors, fields in a
record etcetera. The associated instances for the generic function gen are:
gen {| CONS |} f = map CONS f
gen{|OBJECT} f = map OBJECT f
gen {|FIELD} f = map FIELD f

Finally we have to provide instances o f gen for the basic types o f Cl e a n . Some
examples are:
g e n { |In t |} = [0 : [i \ \ n ^ [1 . .m a x in t] , i ^ [n , —n]]]
gen {|Bool|} = [False,T rue]
gen {|Char|} = map toChar ([32 .. 126] ++ [9,10,13]) / / the printable characters
gen { |S tr in g } = map to S tr in g l i s t s
where

l i s t s : : [[C har]]
l i s t s = gen{|*|}

After these preparations the generation o f user defined type like
: : Color = Red | Yellow | Blue
: : Rec = { c : : C olor, b : : Bool, i : : I n t }
: : ThreeTree = ThreeLeaf | ThreeNode ThreeTree ThreeTree ThreeTree
: : Tree x = Leaf | Node (T ree x) x (T ree x)
and predefined types like two and three tuple can be derived by
derive gen C olor, Rec, ThreeTree, T ree, (,) , (, ,)
Unfortunately the order o f elements in the predefined type list does not obey the
give assumption. The predefined Cons constructer is defined before the N il con-
structer. This implies that gen would always chooses the Cons constructer if generic
generation would be derived for lists.

Instead o f changing the assumption, or the implementation o f C l e a n , we sup­
ply a specific instance o f gen for lists, instead o f deriving one. A straight forward
implementation is de direct translation o f the general algorithm, where the order o f
constructors is reversed (first the empty list []).
gen{| [] } f = [[] : [[h : t] \ \ (h , t) ^ d ia g 2 f (g e n { |* ^ * |} f)]]
Here the parameter f is the list o f all elements that should be placed in the generated
lists. The value o f this list will be provided by the generic system. A somewhat

type values
[Color] [Red, Yellow, Blue]
[In t] [0, 1 ,-1 ,2 ,- 2 ,3 ,- 3 ,4 ,- 4 , 5 ,-5 , 6 ,-6 , 7 ,-7 ,8 ,-8 , 9, •••
[(C olor, Color)] [(Red,Red), (Yellow,Red), (Red,Yellow)

, (B lue,R ed), (Yellow,Yellow), (Red,Blue)
, (B lue,Y ellow), (Y ellow ,B lue), (B lue,B lue)]

[[Color]] [[] ,[Red], [Yellow], [Red, R ed], [Blue]
, [Yellow,Red], [Red,Yellow], [Blue,Red]
, [Yellow,Yellow], [Red,Red,Red], • • •

[[In t]] [[] , [0] , [1] ,[0, 0],[- 1] , [1, 0] , [0, 1] , [2],[- 1 ,0]
,[1,1] ,[0, 0, 0],[- 2] ,[2, 0],[- 1 ,1] ,[1, 0, 0], •••

[Rec] [(Rec Red F a lse 0) ,(Rec Yellow F a lse 0)
,(Rec Red True 0) ,(Rec Blue F a lse 0)
,(Rec Yellow True 0) ,(Rec Red F a lse 1)
,(Rec Blue True 0) ,(Rec Yellow F a lse 1), •••

[Tree Color] [Leaf ,(Node Leaf Red Leaf)
,(Node (Node Leaf Red Leaf) Red Leaf)
,(Node Leaf Yellow Leaf)
, (Node(Node(Node Leaf Red Leaf)Red Leaf)Red Leaf)
,(Node (Node Leaf Red Leaf) Yellow Leaf)
,(Node Leaf Red (Node Leaf Red L ea f)) , •••

TABLE 1. Examples of lists of values generated by gen

more efficient implementation uses a cycle to use the generated lists as the tails o f
new lists.
gen{| [] } f = l i s t where l i s t = [[] : [[h : t] \ \ (h , t) ^ d ia g 2 f l i s t]]
Here the function diag2 is used again to get the desired m ix extending existing lists
and generating new lists with elements that are not used until now.

3.1 Exam ples
In order to illustrate the behavior o f this algorithm we show (a part of) the list o f
values generated for some o f the example types introduced above. The list o f all
values o f type can be generated by an appropriate instance o f gen. For instance the
list o f all elements o f the type Color can be generated by:
l i s t :: [Color]
l i s t = gen{|*|}
The list o f values generated by l i s t with the indicated types are are show in table
1. For the types Rec and Tree Color the list o f values is infinite, only an initial
fragment o f these lists is shown. Also for I n t only an initial fragment o f the list o f
values can be shown.

Note that the order o f elements for parameterized types like (Color, Color) and
[Color] reflects the dovetail behavior o f the generation algorithm.

This algorithm is efficient. Generating 106 elements o f a type takes typical 2 to
7 seconds on a basic windows PC, depending on the type o f elements generated.

This algorithm generates all 9604 pairs o f printable characters within 0.01 sec­
onds, while the original algorithm outlined in section 2 needs 1136 seconds. This
is five orders o f magnitude faster.

4 PSEUDO RANDOM DATA GEN ERA TIO N

The actual algorithm used in Ga st is slightly more complicated. It uses a stream of
pseudo random numbers to make small perturbations to the order o f elements gen­
erated. Basically the choice between L eft and R ight in ggen {| E ith e r } becomes a
pseudo random one instead o f strictly interleaved.

It is a widespread believe among testers that pseudo random generation o f test
values is needed in order to find issues1 quickly. This seems somewhat in contra­
diction with rule that boundary values should be tested first. W hen we consider a
predicate with multiple universal quantified variables o f the same type, it can make
sense to try the elements type in a somewhat different order for the various vari­
ables. We have encountered a number o f examples where this indeed finds issues
faster. On the other hand it is very easy to create examples where any perturbation
o f the order o f test data delays the finding o f counterexamples. In order to achieve
the best o f both worlds Ga st uses a systematic generation o f data values with a
pseudo random perturbation o f the order o f elements discussed in section 3.

Is simple solution would be to randomize the generated list o f elements based
on a sequence o f pseudo random numbers. This implies that test values will be
generated (long) before they are actually used in the tests. This consumes just
space and is considered undesirable in a lazy language like C l e a n .

As indicated above, the solution used in Ga st is to replace the strict interleaved
order o f the choice in the instance o f gen for EITHER by a pseudo random choice.
The change o f selecting LEFT o f R ight deserves some attention. A t first sight a
chance o f 50% seems fine. This works also very well for nonrecursive type like
Color, and recursive types like list and Tree form section 3.

For a type like ThreeTree this approach fails. If we chose the constructor
ThreeLeaf with probability 50% than the change that all three arguments o f the
constructor ThreeNode terminate becomes too low. In practise such an algorithm
generates too much huge or infinite data structures.

This problem can be solved by an elaborated analysis o f the types involved in
the data generation. Due to the possibility o f nested and mutually recursive data
types this analysis is far from simple. Fortunately, the is again a simple solution.

'A counterexample found by testing is called an issue until that it is clear that it is actually an
error in the implementation. Other possible sources of counterexamples are for instance incorrect
specifications and inaccuracies of the test system.

We still assume that nonrecursive constructor is the first constructor o f a data type
(if it exists). By increasing the probability o f choosing the left branch in the re­
cursive calls we can ensure that the small instance are near the beginning o f the
generated list o f values.

In order to implement this we give the generic function ggen two arguments.
The first is an integer indicating the recursion depth, the second one is a list o f
pseudo random numbers guiding the choice between left and right.
generic ggen a : : I n t [In t] ^ [a]
The instance o f this generation function for EITHER is the only one that changes
significantly.
ggen {|EITHER} f g n rnd = Merge n 1 (f n r 3) (g (n+1) r4)
where

(r 1 , r 2) = s p l i t rnd
(r3 ,r4) = s p l i t r2
Merge : : I n t RandomStream [a] [b] ^ [EITHER a b]
Merge n [i : r] as bs

| (i rem n) = 0
= case as of

[] = map RIGHT bs
[a : a s] = [LEFT a : Merge n r a s bs]

= case bs of
[] = map LEFT as
[b :b s] = [RIGHT b : Merge n r as bs]

The functions s p l i t splits a random stream into two independent random streams.
Also the order o f elements in the predefined data types is changed in a pseudo

random way. For enumeration types like Bool and Char the given order o f elements
is randomized.
ggen{|B ool} n rnd = randomize [F alse ,T rue] rnd 2 (1 _ .[])
ggen {| Char } n rnd
= randomize (map toChar [3 2 . .126]++[9,10 ,13]) rnd 98 (1 _ .[])

randomize :: [a] [I n t] I n t ([I n t] ^ [a]) ^ [a]
randomize l i s t rnd n c = rand l i s t rnd n []
where

rand [] rnd n [] = c rnd
rand [] rnd n [x] = [x :c rnd]
rand [] rnd n l = rand l rnd n []
rand [a : x] [i : rnd] n l

| n==0 | | (i rem n) == 0
= [a :ran d x rnd (n—1) l]
= rand x rnd n [a : l]

For integers and reals we even generate pseudo random values after the common
boundary values. This introduces the possibility that tests are repeated, but for

these types it is usually less work than preventing duplicates. Due to the size o f
these types proofs are not feasible anyway.
g g e n { |In t} n rnd = randomize [0 ,1 ,- 1 ,m axint,m inint] rnd 5 id
This algorithm appears to be very effective in practise. It works also for some
types that does not obey the rule that the nonrecursive constructor is the first one.
Termination depends on the ratio between the number o f points o f recursion in the
type and the number o f constructors. One o f the examples is the type list. This
implies that this generation for lists can be derived in the from the general generic
algorithm. In contrast to the previous algorithm, no hand coded definition is needed
here.
derive ggen []

Ga st uses the Marsenne Twister algorithm [14] from the C l ea n libraries for
the generation o f pseudo random numbers.

4.1 Exam ples
The exact effect o f the pseudo random data generation depends on the pseudo ran­
dom numbers supplied as argument. By default the random numbers are generated
by the function genRandInt from the CLEAN library MersenneTwister. The seed
can be fixed to obtain repeatable tests, or for instance be obtained from the clock
to obtain different test values for each run. The list o f all pairs o f colors with 42 as
seed for the random number generation is generated by:
l i s t :: [(C olor,C olo r)]
l i s t = ggen{|*|} 2 (genRandInt 42)
In table 2 we show the effects using the default random stream o f Ga s t .

Note that the generated lists o f values contain the same elements as the lists
generated by the algorithm gen in section 3.1. The property that all instances o f
a type occur exactly once is preserved2. This algorithm needs about 40% more
time to generate the same number o f elements for a type compared to the function
gen, but it is still very efficient. The test system Ga st spends it time on evaluating
predicates and the administration o f the test results, but not on generating test data.

5 R E ST R IC T E D DATA TYPES

Types like search trees, balanced trees, AVL-trees, ordered lists have more restric­
tions than the type system imposes. Since the generic algorithm does not know

2The shown instance for integers is the only exception. It generates pseudo random numbers
with period 219937 - 1, and the 623-dimensional equidistribution property is assured. The type is so
large that a proof by exhaustive testing in not feasible, preventing duplicated integers in more
expensive than repeating the test for the duplicates if they might be generated. It is easy to change
this definition, if that would be desired.

type values
[Color] [Red, Blue, Yellow]
[In t] [0,-2147483648,2147483647,-1,1,684985474

,862966190,-1707763078-930341561,-1734306050
,-114325444,-1262033632,-702429463,-913904323, • • •

[(C olor, Color)] [(Red,Red) ,(Yellow,Red) ,(Red,Blue)
, (Blue,Red) ,(Y ellow ,B lue), (Red,Yellow)
, (B lue ,B lu e), (Yellow,Yellow), (Blue,Yellow)]

[[Color]] [Red] , [] , [Y ellow], [Red,Red], [B lue], [Yellow,Red]
, [Red,Yellow],[B lue,R ed], [Yellow,Yellow]
, [Red,Red,Red,Red,Red], [Blue,Yellow] ,. .

[[In t]] [[1] ,[] ,[-2147483648] ,[1 ,1] ,[- 1] ,[-2147483648,1]
,[1 ,-1] , [0],[- 1 , 1],[-2147483648,-1] ,
,[1,1,2147483647,-1,0] ,[1 ,-1] ,[0] ,[- 1 ,1] , •••

[Rec] [(Rec Red F a lse 2147483647)
,(Rec Yellow F a lse 2147483647)
,(Rec Red True 2147483647)
,(Rec Blue F a lse 2147483647),•••

[Tree Color] [Leaf
,(Node (Node Leaf Red (Node (Node Leaf Yellow

(Node Leaf Red L eaf)) Red L eaf)) Yellow (Node
Leaf Red (Node (Node Leaf Red Leaf) Red L eaf)))

,(Node Leaf Yellow (Node Leaf Red
(Node (Node Leaf Red Leaf) Red L e a f))) , •••

TABLE 2. Examples of lists of values generated by ggen

these restrictions, it cannot cope with them. The generic algorithm will generate
instance that are type correct, but may or may not obey the additional constraints.

The interface o f such a restricted type will contain functions to create an initial
instance o f the type, e.g. an empty tree, and to add elements to a valid instance o f
the restricted type. Using these constructor functions and the generic generation o f
elements to be included in the instance o f the restricted type, we can easily generate
instances o f the generic type.

As example we will consider a search tree o f integers. A typical interface to
this abstract data type is:
: : SearchTree

empty : : SearchTree
in s :: I n t SearchTree ^ SearchTree
d e le te :: I n t SearchTree ^ SearchTree
occurs :: I n t SearchTree ^ Bool
Using the functions in s and empty appropriate trees can be constructed. This can

be used in the instance o f gen or ggen by inserting lists o f integers in the empty
tree. These lists o f integers are generated by the ordinary generic algorithm.
gen {| SearchTree } = map (fo ld r in s empty) gen{|*|}
The initial part o f the list o f values is (using E for the empty tree and N as constructor
for binary nodes):
[E, N E 0 E, N E 1 E, N E 0 E, N E - 1 E, N E 0 (N E 1 E) ,N (N E 0 E) 1 E
,N E 2 E, N (N E - 1 E) 0 E , N E 1 E, N E 0 E, N E - 2 E, N E 0 (N E 2 E) ,
,N (N E - 1 E) 1 E, N E 0 (N E 1 E) , N E - 1 (N E 0 E) , N E 3 E, •••

For the algorithm with pseudo random changes in the order, only the additional
arguments o f the function ggen have to be passed around.

This approach is applicable to every ordinary restricted data type, since they all
have an initial value and an insert operator. Depending on the restricted type it is
possible that duplicated values are generated by a naive implementation following
this scheme.

6 RELA TED W O R K

Any test tool that wants to do more than only executing predefined test scripts,
needs to generate these scripts. For any specification that contains variables, it is
necessary to generate values for these variables. To the best o f our knowledge this
is the first approach to generate these values based on the type definition only.

The other tool that is able to test properties over types in a functional program­
ming language is QuickCheck [3]. Its data generation is based on an ordinary class
instead o f on generic programming. This implies that the user has to define an in­
stance o f the generation class for each type used as in an universal quantification.
Moreover, the generation algorithm uses pseudo random data generation without
omitting duplicated elements. As a consequence Quickcheck is not able determine
that all elements o f a type are used in a test. Hence, Quickcheck cannot stop at that
point, nor conclude that it has achieved a proof by exhaustive testing.

In [9] we show how functions can be generated based on the grammar o f the
body o f the functions. This grammar is a recursive algebraic data type. Hence the
grammars used to describe the instances o f the functions can be generated by the
algorithm described in this paper.

7 D ISCUSSION

This paper introduces an efficient and elegant generic algorithm to generate the
members o f arbitrary data types. The elements are generated from small to large
as required for effective testing based on boundary values. We show also a vari­
ant o f this algorithm that imposes a pseudo random perturbation o f the order, but
maintains the basic small to large order and avoids omissions or duplicates. This is
believed to make finding counterexamples on average faster.

This algorithm is an essential component o f the test tool Ga s t . The property
that test data are not duplicated makes testing more efficient, evaluating a property
two times for the same value will always yield an identical result in a functional
context. The avoidance o f omissions and duplicates makes it possible to proof
properties for finite types by exhaustive testing.

The presented algorithms are efficient. Each o f the algorithms is able to gen­
erate hundreds o f thousands elements o f a type within one second on a fairly basic
Windows PC.

Apart from a very useful algorithm in the context o f an automatic test sys­
tem, it is also an elegant application o f generic programming. The test system
Ga st follows the trend towards constructing general usable algorithms by generic
programming techniques also for more traditional applications as comparing and
printing values.

R E FE R EN C E S
[1] Peter Achten, Marko van Eekelen, Rinus Plasmeijer. Compositional Model-Views

with Generic Graphical User Interfaces. In Jayaraman, ed. Proceedings Practical
Aspects of Declarative Programming, PADL04, 2004. LNCS 3057.

[2] Artem Alimarine and Rinus Plasmeijer. A Generic Programming Extension for
Clean. In: Arts, Th., MohnenM.: IFL 2001, LNCS 2312, pp 168-185, 2002.

[3] Koen Claessen, John Hughes. QuickCheck: A lightweight Tool for Ran­
dom Testing of Haskell Programs. ICFP, ACM, pp 268-279, 2000. See also
w w w .c s .c h a lm e rs .s e /~ r jm h /Q u ic k C h e c k .

[4] Ralf Hinze and Johan Jeuring. Generic Haskell: Practice and The­
ory, Summer School on Generic Programming, 2002. See also
h t t p : / / w w w . g e n e r i c - h a s k e l l . o r g / .

[5] R. Hinze, and S. Peyton Jones Derivable Type Classes, Proceedings of the Fourth
Haskell Workshop, Montreal Canada, 2000.

[6] Ralf Hinze. Polytypic values possess polykinded types, Fifth International Conference
on Mathematics of Program Construction, LNCS 1837, pp 2-27, 2000.

[7] Piete Koopman, Artem Alimarine, Jan Tretmans and Rinus Plasmeijer. G ast:
Generic Automated Software Testing. In R. Peña, IFL 2002, LNCS 2670, pp 84­
100, 2002.

[8] Pieter Koopman and Rinus Plasmeijer. Testing reactive systems with G as t. In
S. Gilmore, Trends in Functional Programming 4, pp 111-129, 2004.

[9] Pieter Koopman and Rinus Plasmeijer. Testing Higher Order Functions. Draft pro­
ceedings 17th International Workshop on Implementation and Application of Func-
tionalLanguages, IFL05, 2005. See also h t t p s : / / w w w . c s . t c d . i e / i f l 0 5 / .

[10] Ralf Lammel and Simon Peyton Jones Scrap your boilerplate: a practical design
pattern for generic programming, ACM SIGPLAN Notices, 38, 3, pp 26-37, mar,
2003, Proceedings of the ACM SIGPLAN Workshop on Types in Language Design
and Implementation (TLDI2003).

http://www.cs.chalmers.se/~rjmh/QuickCheck
http://www.generic-haskell.org/
https://www.cs.tcd.ie/ifl05/

[11] Ralf Lammel and Simon Peyton Jones, Scrap more boilerplate: reflection, zips, and
generalised casts, Proceedings of the ACM SIGPLAN International Conference on
Functional Programming (ICFP 2004), ACM Press, 2004, pp 244-25.

[12] Rinus Plasmeijer, Marko van Eekelen. Clean language report version 2.1.
w w w .c s . r u .n l /~ c le a n , 2005.

[13] Jan Tretmans. Testing Concurrent Systems: A Formal Approach. In J. Baeten and
S. Mauw, editors, CONCUR’99 - 10th, LNCS 1664, pp 46-65, 1999.

[14] M. Matsumoto and T. Nishimura, Mersenne Twister: A 623-dimensionally equidis-
tributed uniform pseudorandom number generator, ACM Trans. on Modeling and
Computer Simulation, Vol. 8, No. 1, January pp 3-30 , 1998.

[15] Miranda is a trademark of Research Software Limited of Europe. David Turner
Miranda: a non-strict functional language with polymorphic types, Proceedings
FPLCA, LNCS 201, pp 1-16, 1985.

[16] Aijen van Weelden, Martijn Oostdijk, Lars Frantzen, Pieter Koopman, Jan
Tretmans: On-the-Fly Formal Testing o f a Smart Card Applet, In Ryoichi
Sasaki and Sihan Qing and Eiji Okamoto and Hiroshi Yoshiura: Proceedings
o f the 20th IFIP TC11 International Information Security Conference SEC 2005
h t tp : / /w w w .s e c 2 0 0 5 .o r g / , pp 564-576, Springer 0-387-25658-X, 2005.

http://www.cs.ru.nl/~clean
http://www.sec20

