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T esting H igher Order Functions

P ieter K oopm an and Rinus Plasm eijer

Nijmegen Institute for Computer and Information Science, The Netherlands 
{ p ie te r ,r in u s } S c s .ru .n l

E x ten d ed  A b str a c t

A b stra c t. Automatic testing of first order functions works fine. Testing 
higher order functions automatically is more troublesome, it is harder 
to generate the functions needed as argument automatically, and these 
generated functions cannot be shown when a counterexample is found. 
Nevertheless, higher order functions can contain errors and hence need 
to be tested.
In this paper we present effective and efficient techniques to test higher 
order functions using intermediate data types. This data type mimics and 
controls the structure of the function to be generated. A simple additional 
function transforms this data structure to the function needed. Using 
the data types the test engineer can control the generation of functions 
and print them. We use a continuation based parser library as example. 
Automatic testing reveals errors is the published library that was used 
for a couple of years without problems.

1 In trodu ction

In [4] we in troduced an library  of efficient parser com binators. Using th is library  
it is possible to  w rite concise recursive descent parsers th a t can be am biguous if 
th a t is desired, and are efficient. Basically there are two ingredients th a t makes 
the constructed  parsers efficient. F irst, the  user lim its the  am ount of backtracking 
by a special version of the choice com binator th a t only yields a single result. 
Second, the  im plem entation of the com binators uses continuations instead of 
interm ediate d a ta  structures.

T he price to  be paid for using continuations instead of in term ediate d a ta  
structures, is th a t the  im plem entation of the com binator becomes more compli
cated. Each parser has three continuations, and some of these continuations has 
their own continuation argum ents. T he basic parsers and parser com binators 
m anipulates these continuations in a ra th e r tricky way. T he use of the  combi- 
nators is independent of their im plem entation, and has not changed com pered 
to  the  lib rary  w ith a simple im plem entation using in term ediate d a ta  types. The 
published com binators are checked by the authors, the referees of the associated 
publication, and m any users of the  library. M uch to  our surprise last year some 
errors in the library  were found.

A fter improving the  com binators, we wondered if the m ythical last error was 
removed, or additional errors were hidden in the library. Perhaps, correcting



this error even introduced new errors. Of course some ad hoc testing  of the new 
library  was done, bu t experience showed th a t th is is not enough. System atic 
and au tom atic testing, w ith a tool like Quickcheck [3] or G vst [5], would be 
much be tte r. A utom atic testing  requires appropriate properties, generation of 
the required continuation parsers, and a way to  show these functions if an error 
would be found. Due to  the com plicated types of the parser com binators, the 
assum ptions about the way the continuations are handled, and the  need to  print 
the parser fully au tom atic generation is not feasible. In this paper we will show 
how we can solve these problem s by defining an in term ediate d a ta  type and a 
simple transla tion  function of instances of the  in term ediate d a ta  type to  the 
required functions. For the generation of instances of the  in term ediate d a ta  type 
and showing them , the existing generic capabilities of the test system  are used. 
This approach works in a broad range of situations where one needs to  generate 
specific functions and to  p rin t them  in order test higher order functions.

In section 2 we will shortly  review the continuation based parser combina- 
tors. In the  next sections we will show how these com binators can be tested  
individually. In section 4 we will show how to  test the  entire library  based on 
the generation of a gram m ar. Using a property  of the famous fold-function we 
dem onstrate th a t this approach works also in o ther situations. Finally  there is 
a discussion.

2 Background: C ontinuation  B ased  Parser C om binators

Each continuation parser has four argum ents:

1. The success continuation which determ ines w hat will be done if the current 
parser succeeds. This function gets the result of the  current parser, the other 
continuations and the rem aining inpu t as its argum ents.

2. The X O R-continuation is a function th a t tells w hat has to  be done if only a 
single result of the parser is needed.

3. The O R -continuation determ ines the behavior when all possible results of 
the parser are needed.

4. The list of symbols to  be parsed. In th is paper these symbols will be char
acters. In general also lists of more complex tokens can be parsed.

The result of a parser is a list of tuples containing the rem aining inpu t and the 
results of parsing the  inpu t until th is point.

As an example the type of the  continuation parser p i =  symbol ’* ’, th a t 
succeeds if the first character in the  inpu t is *, is:

p i :: (C har^  ([ ([Char] , a )] ^  [ ( [Char] , a ) ]) ^  [ ( [Char] , a ) ] ^  [Char] ^  [ ( [Char] , a )]) 
^  ([([  Char ] , a)] ^  [([ Char ] , a )])
^  [([Char] ,a )]
^  [Char]
^  [ ([Char] ,a)]

T h a t is the  result of applying begin p i to  the  inpu t [ ’ *abc ’ ] will be [ ([ ’ abc ’ ] , ) ], 
while applying it to  the inpu t [ ’abc’ ] yields the em pty list of results.



The function begin tu rns a continuation parser into a parser, here of type 
[Char] ^  [ ( [Char] ,Char)], by providing appropriate initial continuations.

See [4] for more inform ation in th is extended abstract. The full paper will 
contain a more com plete review of the  continuation based parser com binators.

3 T esting Parser C om binators

The parser com binator library  contains a num ber of basic com binators for tasks 
like recognizing symbols in the  input and yielding specific values. As an example 
we consider the  parser com binator symbol :: s ^  CParser s s t  | == s th a t 
should recognize the  given symbol s in the input. A desirable property  of symbol 
is th a t it should yield a single success when the inpu t list s ta r ts  w ith the given 
symbol. For characters as inpu t tokens, th is can be specified in CvST as:

propSymbol : : Char [Char] ^  Bool
propSymbol c l  =  begin (symbol c ) [c : l ] == [ ( l , c )]

Using begin ( symbol c) instead of symbol c in the  test makes it possible to  com
pare parse results (lists of tuples), instead of com paring higher order functions.

This property  can be tested  d irectly  by GvST. The result of the test is th a t 
it passes any num ber of tests. W hen we restric t the inpu t to, for instance, lists 
of two characters such a property  can even be proven. The property  for inputs 
of exactly two character reads:

propSymbolF : : Char Char ^  Bool
propSymbolF c d =  begin ( symbol c ) [ c , d ] == [([ d] , c )]

W ithin  one second GvST proves this p roperty  by executing all possible tests.
A lthough this kind of properties sta tes clearly the  intended sem antics of 

the basic parser com binators and the  associated tests are useful, th is does not 
capture the signaled problem s w ith the com binator library.

Also for the  parser com binators th a t compose continuation parsers, one can 
specify properties. The com binator <|> indicates a choice between the  parsers 
given as left and right argum ents. In the framework of nondeterm inistic parsers 
this implies th a t the  result of applying p <|> q to  some inpu t is equal to  the 
concatenation of results from p to  th a t inpu t and applying q to  th a t input. 
S tated  as property  for GvST this is:

propOR p q input =  begin (p <|> q ) input == begin p input ++ begin q input

Again we use begin p input ra ther th an  p to  be able to  com pare resulting d a ta  
structu res instead of com paring higher order functions.

In th is p roperty  p and q are continuation parsers and inpu t is list of input 
tokens. GvST has no problem s w ith the generation of lists of characters th a t can 
be used as input.

After the first versions of GvST, the possibility of generating functions was 
removed. The generation of functions caused serious overall degrease of perfor
m ance and works only satisfactory in a lim ited num ber of situations. C ontin
uation  based parser com binators heavily relay on the proper trea tm en t of the



continuations by each and every parser. Not every function having the type of a 
parser is a correct parser. This implies th a t generic generation of parsers by the 
default generic algorithm  of G vst is not adequate, even it would be reintroduced 
in G v st .

Nevertheless, a num ber of suitable parsers is needed for the  variables p and q 
in order to  test the  property  propOR. Specifying these parsers by hand  is u n a ttrac 
tive since it requires unnecessary hum an effort, and lim its the testing to  the listed 
parsers. Moreover, the  listed functions cannot be printed. This implies th a t if an 
counterexam ple would be found by G v st , it can only p rin t the argum ent p and 
q as <function>.

Using some low-level wizarding w ith cycles it is possible to  define an infinite 
list of more and more complex continuation parsers and their tex tual represen
ta tion . A lthough th is solves the  current problem , it is inelegant and hard  to  port 
to  o ther situations.

Using an d a ta  type representing the gram m ar to  be recognized by the  parser 
and a simple conversion function from the d a ta  type to  the parser, the problem  
of generating continuation parsers can be solved elegantly. A d a ta  type th a t 
represents parsers th a t consumes lists of characters and yield a character is:

: : Sym =  Char Char / /  Symbols are just characters

The generation of instances of these d a ta  types is straightforw ard. The default 
generic generation algorihm  ggen is used for the  d a ta  type P representing the 
structu re  of the parser. For the  type symbol we use only the characters ’a ’ and 
’x ’ in order to  lim it the num ber of characters used in the  tests. This increases 
the num ber of more com plicated parses used in a finite num ber of tests.

derive ggen P
ggen {| Sym |} n r  =  [ Char ’a ’ , Char ’x ’ ]

Via a direct m apping instances of the  d a ta  type P can be transform ed to  the 
corresponding continuation parsers.

PtoPC :: P ^  (CParser Char Char Char)
PtoPC F a il =  f a i l
PtoPC (Yield (Char c )) =  y ie ld  c
PtoPC (Symbol (Char c )) =  symbol c
PtoPC (Or p q ) =  PtoPC p <|> PtoPC q
PtoPC (XOr p q ) =  PtoPC p <!> PtoPC q
PtoPC (ANDR p q ) =  PtoPC p &> PtoPC q
PtoPC (ANDL p q ) =  PtoPC p <& PtoPC q

: : P
F a il
Yield Sym 
Symbol Sym 
Or P P 
XOr P P 
ANDR P P 
ANDL P P

/ /  basic operator: fails for any input
/ /  basic operator: yields the specified symbol for any input 
/ /  basic operator: recognize the specified symbol, see above 
/ /  concatenation of the successes of both parsers 
/ /  successes of second parser if first parser fails 
/ /  results of 2nd parser if parsers can be applied in given order 
/ /  results of 1st parser if  parsers can be applied in given order



Now we can sta te  a property  th a t can be used to  test the  parser com binator 
< | > w ith G v st :

propOR :: P P [Char] ^  Bool
propOR x y chars =  begin (p <|> q ) chars == begin p chars ++ begin q chars 
where p =  PtoPC x ; q =  PtoPC y

Since x and y are instances of the  d a ta  type P, prin ting them  by the generic 
m echanism  of G vst reveals the s truc tu re  of the  com binator parsers used in the 
actual test clearly.

Testing such a property  in G vst is quick. Testing th is p roperty  for the  first 
1000 com binations of argum ents takes only 0.6 seconds on a quite m odest PC.

In the same spirit we can test the  o ther com binators in the  original combi
nato r library. For instance the or-com binator <!>, th a t only applies the  second 
parser if the first one fails has to  obey the  property:

propXOR :: P P [Char] ^  Bool 
propXOR x y chars

| isEmpty (begin p chars)
=  begin (p <!> q) chars == begin q chars 
=  begin (p <!> q) chars == begin p chars 

where p =  PtoPC x ; q =  PtoPC y

Testing th is p roperty  reveals the problem s w ith the original parser com binator 
library. One of the  counterexam ples found is for (Or (Yield (Char ’x ’ )) F a il) 
as the  value of x (Yield (Char ’a ’ )) for ys, and the em pty inpu t []. This is 
equivalent to  the  reported  error th a t initiates th is research.

In the same way we specified properties for the o ther operators. Using these 
properties we did not found any counterexam ples in the  new version of the 
library. This is considered as a strong indication th a t changes of the library  are 
really an improvem ent.

4 T esting Parsers

The approach outlined in the  previous section works fine, bu t can be improved 
at some points. M ost of the generated inputs will be rejected by the  generated 
parsers. In order to  test effectively wether the parsers yield the correct results we 
can generate inputs based on the gram m ar to  be accepted. All inputs accepted 
by a gram m ar can be generated by:

PtoInput : : P 
PtoInput F a il

I Char ]

PtoInput
PtoInput
PtoInput
PtoInput
PtoInput
PtoInput

( Y ield ( Char c ) )
( Symbol ( Char c ) )
(Or p q )
(XOr p q)
(ANDR p q )
(ANDL p q )

=  removeDup (PtoInput p ++ PtoInput q)
=  removeDup (PtoInput p ++ PtoInput q)
=  [ i++j \ \  i  ̂ P to In p u t p , j  ̂ P to In p u t q ] 
=  [ i++j \ \  i  ̂ P to In p u t p , j  ̂ P to In p u t q ]

--»

=  II c



Since our gram m ars only contain or- and and-com binators, each gram m ar ac
cepts only a finite am ount of inputs. If the  list of inputs can be infinite, for 
instance if we include a Kleene s ta r in the gram m ar, in order to  guarantee te r
m ination.

Given a gram m ar and an input, it is easy to  determ ine w hat the  result of the 
parser should be:

re s u l ts  :: P [Char] ^  [ ( [Char] , Char)] 
r e s u l ts  F a il chars =  []
r e s u l ts  (Y ield (Char c )) chars =  [ ( c h a rs , c )] 
r e s u l ts  (Symbol ( Char c ) ) [ ] =  [ ] 
r e s u l ts  (Symbol (Char c )) [d : r ]

| c == d
=  [ ( r ,  c)]
=  []

r e s u l ts  (Or p q ) chars =  re s u l ts  p chars ++ re s u l ts  q chars 
r e s u l ts  (XOr p q ) chars 
=  case r e s u lts  p chars of 

[ ] =  r e s u lts  q chars 
r  =  r

r e s u l ts  (ANDR p q) chars
=  [ t  \ \  (c2 ,_ ) ^ r e s u l t s  p c h a rs , t ^ r e s u l t s  q c2] 

r e s u l ts  (ANDL p q) chars
=  [ ( c3 , a ) \ \  (c2 , a ) ^ r e s u l t s  p chars , ( c3 , _ ) ^ r e s u l t s  q c2]

Using these tools it is very easy to  verify the parsers associated to  some 
syntax  tree directly. For all inputs to  be accepted by the parser, the results 
calculated by the function r e s u lts  above should be equal to  the results obtained 
by applying the parser associated to  the  gram m ar to  th a t input:

propP :: P ^  Bool
propP t  =  and [ r e s u l ts  t  i  == begin (PtoPC t ) i  \ \  i^ P to ln p u t t  ]

Also this p roperty  finds the counterexam ples for the original version of the library  
very quickly.

In order to  verify the error detecting capacity  of th is approach we made, by 
hand, 25 m utan ts  of the  lib rary  th a t are approved by the type system . Test
ing these libraries revealed counterexam ples for each of these libraries w ithin 2 
seconds.

5 T esting other H igher Order Functions

In order to  show th a t this approach can also be used for o ther higher order 
functions a property  of the  famous fold  function will be tested.

The property  is based on the universal p roperty  of the  fold  as s ta ted  by Mal- 
com [6] and is based on the Bird-M eertens theory  of lists [1,7]. For any function 
f , elem ents v and e, and list l we require th a t fold f  v [e : l] =  f  e (fold f  v l). In 
order to  test several im plem entations of the  fold  function we make it an argum ent 
of the  p roperty  in G v s t. We w ant to  specify this argum ent in an actual test.



The other argum ents are intended as universal quantified variables and need to  
be generated by G v s t. The type CLEANa a ^ a  indicates the  type of the higher 
order function f  th a t needs to  be generated in the  tests.

propFold :: ( ( a a ^ a ) a [ a ] ^  a ) (a a ^ a ) a [ a ] a ^  Bool | == a 
propFold fo ld  f  v l  e =  fo ld  f  v [e : l ] == f  e ( fo ld  f  v l )

In order to  test this w ith G vst we need to  choose same d a ta  type for a. We will 
use integers here, and choose v to  be zero.

propFoldInt :: ( ( In t I n t ^ I n t ) In t  [ In t  ] ^  I n t ) Expr [ In t  ] In t  ^  Bool 
propFoldInt fo ld  ex l  e =  propFold fo ld  (toFun ex) 0 l  e

Similar to  above, the d a ta  type Expr is used to  represent the functions to  be 
generated:

:: Expr 
= X  
|Y
| ConstOne 
| SUM Expr Expr 
| DIFF Expr Expr

The functions toFun converts instances of th is type to  functions:

toFun :: Expr ^  (In t In t ^  In t)  
toFun X =  Ax y.x
toFun Y =  Ax y.y
toFun ConstOne =  Ax y.1
toFun (SUM a b ) =  Ax y.toFun a x y+toFun b x y 
toFun (DIFF a b ) =  Ax y.toFun a x y-toFun b x y

As we m ight expect the functions fo ld r  from the stan d ard  lib rary  appears to  be 
a valid fo ld function if we test it with:

S ta r t  =  t e s t  (propFoldInt fo ld l)

The function fo ld l however, does not obey th is p roperty  for functions like, 
f  x y  =  x, f  x y  =  y, and f  x y =  x+x. A lthough th is result in itself is not new, 
it dem onstrates the power of th is approach to  test higher order functions.

6 D iscu ssion

The test system s G vst was very suited  to  test properties over first order func
tions. G enerating the functions needed for testing  properties over higher order 
functions was troublesom e. In th is paper we have shown th a t th is can be solved 
by generating a gram m ar for the desired functions as d a ta  type, and a very 
simple function th a t transform s this d a ta  type to  the corresponding function.

The sta ted  properties identified the errors in the  original version of the li
brary, as well as more th an  two dozen of different errors injected deliberately in 
order investigate the power of autom atic testing.

This approach can be used also in o ther situations where higher order func
tions needs to  be tested  in order to  generate and show the needed functions as 
test argum ent.
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