
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is an author's version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/32303

Please be advised that this information was generated on 2018-07-07 and may be subject to

change.

http://hdl.handle.net/2066/32303

T esting H igher Order Functions

P ieter K oopm an and Rinus Plasm eijer

Nijmegen Institute for Computer and Information Science, The Netherlands
{ p ie te r ,r in u s } S c s .ru .n l

E x ten d ed A b str a c t

A b stra c t. Automatic testing of first order functions works fine. Testing
higher order functions automatically is more troublesome, it is harder
to generate the functions needed as argument automatically, and these
generated functions cannot be shown when a counterexample is found.
Nevertheless, higher order functions can contain errors and hence need
to be tested.
In this paper we present effective and efficient techniques to test higher
order functions using intermediate data types. This data type mimics and
controls the structure of the function to be generated. A simple additional
function transforms this data structure to the function needed. Using
the data types the test engineer can control the generation of functions
and print them. We use a continuation based parser library as example.
Automatic testing reveals errors is the published library that was used
for a couple of years without problems.

1 In trodu ction

In [4] we in troduced an library of efficient parser com binators. Using th is library
it is possible to w rite concise recursive descent parsers th a t can be am biguous if
th a t is desired, and are efficient. Basically there are two ingredients th a t makes
the constructed parsers efficient. F irst, the user lim its the am ount of backtracking
by a special version of the choice com binator th a t only yields a single result.
Second, the im plem entation of the com binators uses continuations instead of
interm ediate d a ta structures.

T he price to be paid for using continuations instead of in term ediate d a ta
structures, is th a t the im plem entation of the com binator becomes more compli
cated. Each parser has three continuations, and some of these continuations has
their own continuation argum ents. T he basic parsers and parser com binators
m anipulates these continuations in a ra th e r tricky way. T he use of the combi-
nators is independent of their im plem entation, and has not changed com pered
to the lib rary w ith a simple im plem entation using in term ediate d a ta types. The
published com binators are checked by the authors, the referees of the associated
publication, and m any users of the library. M uch to our surprise last year some
errors in the library were found.

A fter improving the com binators, we wondered if the m ythical last error was
removed, or additional errors were hidden in the library. Perhaps, correcting

this error even introduced new errors. Of course some ad hoc testing of the new
library was done, bu t experience showed th a t th is is not enough. System atic
and au tom atic testing, w ith a tool like Quickcheck [3] or G vst [5], would be
much be tte r. A utom atic testing requires appropriate properties, generation of
the required continuation parsers, and a way to show these functions if an error
would be found. Due to the com plicated types of the parser com binators, the
assum ptions about the way the continuations are handled, and the need to print
the parser fully au tom atic generation is not feasible. In this paper we will show
how we can solve these problem s by defining an in term ediate d a ta type and a
simple transla tion function of instances of the in term ediate d a ta type to the
required functions. For the generation of instances of the in term ediate d a ta type
and showing them , the existing generic capabilities of the test system are used.
This approach works in a broad range of situations where one needs to generate
specific functions and to p rin t them in order test higher order functions.

In section 2 we will shortly review the continuation based parser combina-
tors. In the next sections we will show how these com binators can be tested
individually. In section 4 we will show how to test the entire library based on
the generation of a gram m ar. Using a property of the famous fold-function we
dem onstrate th a t this approach works also in o ther situations. Finally there is
a discussion.

2 Background: C ontinuation B ased Parser C om binators

Each continuation parser has four argum ents:

1. The success continuation which determ ines w hat will be done if the current
parser succeeds. This function gets the result of the current parser, the other
continuations and the rem aining inpu t as its argum ents.

2. The X O R-continuation is a function th a t tells w hat has to be done if only a
single result of the parser is needed.

3. The O R -continuation determ ines the behavior when all possible results of
the parser are needed.

4. The list of symbols to be parsed. In th is paper these symbols will be char
acters. In general also lists of more complex tokens can be parsed.

The result of a parser is a list of tuples containing the rem aining inpu t and the
results of parsing the inpu t until th is point.

As an example the type of the continuation parser p i = symbol ’* ’, th a t
succeeds if the first character in the inpu t is *, is:

p i :: (C har^ ([([Char] , a)] ^ [([Char] , a)]) ^ [([Char] , a)] ^ [Char] ^ [([Char] , a)])
^ ([([Char] , a)] ^ [([Char] , a)])
^ [([Char] ,a)]
^ [Char]
^ [([Char] ,a)]

T h a t is the result of applying begin p i to the inpu t [’ *abc ’] will be [([’ abc ’] ,)],
while applying it to the inpu t [’abc’] yields the em pty list of results.

The function begin tu rns a continuation parser into a parser, here of type
[Char] ^ [([Char] ,Char)], by providing appropriate initial continuations.

See [4] for more inform ation in th is extended abstract. The full paper will
contain a more com plete review of the continuation based parser com binators.

3 T esting Parser C om binators

The parser com binator library contains a num ber of basic com binators for tasks
like recognizing symbols in the input and yielding specific values. As an example
we consider the parser com binator symbol :: s ^ CParser s s t | == s th a t
should recognize the given symbol s in the input. A desirable property of symbol
is th a t it should yield a single success when the inpu t list s ta r ts w ith the given
symbol. For characters as inpu t tokens, th is can be specified in CvST as:

propSymbol : : Char [Char] ^ Bool
propSymbol c l = begin (symbol c) [c : l] == [(l , c)]

Using begin (symbol c) instead of symbol c in the test makes it possible to com
pare parse results (lists of tuples), instead of com paring higher order functions.

This property can be tested d irectly by GvST. The result of the test is th a t
it passes any num ber of tests. W hen we restric t the inpu t to, for instance, lists
of two characters such a property can even be proven. The property for inputs
of exactly two character reads:

propSymbolF : : Char Char ^ Bool
propSymbolF c d = begin (symbol c) [c , d] == [([d] , c)]

W ithin one second GvST proves this p roperty by executing all possible tests.
A lthough this kind of properties sta tes clearly the intended sem antics of

the basic parser com binators and the associated tests are useful, th is does not
capture the signaled problem s w ith the com binator library.

Also for the parser com binators th a t compose continuation parsers, one can
specify properties. The com binator <|> indicates a choice between the parsers
given as left and right argum ents. In the framework of nondeterm inistic parsers
this implies th a t the result of applying p <|> q to some inpu t is equal to the
concatenation of results from p to th a t inpu t and applying q to th a t input.
S tated as property for GvST this is:

propOR p q input = begin (p <|> q) input == begin p input ++ begin q input

Again we use begin p input ra ther th an p to be able to com pare resulting d a ta
structu res instead of com paring higher order functions.

In th is p roperty p and q are continuation parsers and inpu t is list of input
tokens. GvST has no problem s w ith the generation of lists of characters th a t can
be used as input.

After the first versions of GvST, the possibility of generating functions was
removed. The generation of functions caused serious overall degrease of perfor
m ance and works only satisfactory in a lim ited num ber of situations. C ontin
uation based parser com binators heavily relay on the proper trea tm en t of the

continuations by each and every parser. Not every function having the type of a
parser is a correct parser. This implies th a t generic generation of parsers by the
default generic algorithm of G vst is not adequate, even it would be reintroduced
in G v st .

Nevertheless, a num ber of suitable parsers is needed for the variables p and q
in order to test the property propOR. Specifying these parsers by hand is u n a ttrac
tive since it requires unnecessary hum an effort, and lim its the testing to the listed
parsers. Moreover, the listed functions cannot be printed. This implies th a t if an
counterexam ple would be found by G v st , it can only p rin t the argum ent p and
q as <function>.

Using some low-level wizarding w ith cycles it is possible to define an infinite
list of more and more complex continuation parsers and their tex tual represen
ta tion . A lthough th is solves the current problem , it is inelegant and hard to port
to o ther situations.

Using an d a ta type representing the gram m ar to be recognized by the parser
and a simple conversion function from the d a ta type to the parser, the problem
of generating continuation parsers can be solved elegantly. A d a ta type th a t
represents parsers th a t consumes lists of characters and yield a character is:

: : Sym = Char Char / / Symbols are just characters

The generation of instances of these d a ta types is straightforw ard. The default
generic generation algorihm ggen is used for the d a ta type P representing the
structu re of the parser. For the type symbol we use only the characters ’a ’ and
’x ’ in order to lim it the num ber of characters used in the tests. This increases
the num ber of more com plicated parses used in a finite num ber of tests.

derive ggen P
ggen {| Sym |} n r = [Char ’a ’ , Char ’x ’]

Via a direct m apping instances of the d a ta type P can be transform ed to the
corresponding continuation parsers.

PtoPC :: P ^ (CParser Char Char Char)
PtoPC F a il = f a i l
PtoPC (Yield (Char c)) = y ie ld c
PtoPC (Symbol (Char c)) = symbol c
PtoPC (Or p q) = PtoPC p <|> PtoPC q
PtoPC (XOr p q) = PtoPC p <!> PtoPC q
PtoPC (ANDR p q) = PtoPC p &> PtoPC q
PtoPC (ANDL p q) = PtoPC p <& PtoPC q

: : P
F a il
Yield Sym
Symbol Sym
Or P P
XOr P P
ANDR P P
ANDL P P

/ / basic operator: fails for any input
/ / basic operator: yields the specified symbol for any input
/ / basic operator: recognize the specified symbol, see above
/ / concatenation of the successes of both parsers
/ / successes of second parser if first parser fails
/ / results of 2nd parser if parsers can be applied in given order
/ / results of 1st parser if parsers can be applied in given order

Now we can sta te a property th a t can be used to test the parser com binator
< | > w ith G v st :

propOR :: P P [Char] ^ Bool
propOR x y chars = begin (p <|> q) chars == begin p chars ++ begin q chars
where p = PtoPC x ; q = PtoPC y

Since x and y are instances of the d a ta type P, prin ting them by the generic
m echanism of G vst reveals the s truc tu re of the com binator parsers used in the
actual test clearly.

Testing such a property in G vst is quick. Testing th is p roperty for the first
1000 com binations of argum ents takes only 0.6 seconds on a quite m odest PC.

In the same spirit we can test the o ther com binators in the original combi
nato r library. For instance the or-com binator <!>, th a t only applies the second
parser if the first one fails has to obey the property:

propXOR :: P P [Char] ^ Bool
propXOR x y chars

| isEmpty (begin p chars)
= begin (p <!> q) chars == begin q chars
= begin (p <!> q) chars == begin p chars

where p = PtoPC x ; q = PtoPC y

Testing th is p roperty reveals the problem s w ith the original parser com binator
library. One of the counterexam ples found is for (Or (Yield (Char ’x ’)) F a il)
as the value of x (Yield (Char ’a ’)) for ys, and the em pty inpu t []. This is
equivalent to the reported error th a t initiates th is research.

In the same way we specified properties for the o ther operators. Using these
properties we did not found any counterexam ples in the new version of the
library. This is considered as a strong indication th a t changes of the library are
really an improvem ent.

4 T esting Parsers

The approach outlined in the previous section works fine, bu t can be improved
at some points. M ost of the generated inputs will be rejected by the generated
parsers. In order to test effectively wether the parsers yield the correct results we
can generate inputs based on the gram m ar to be accepted. All inputs accepted
by a gram m ar can be generated by:

PtoInput : : P
PtoInput F a il

I Char]

PtoInput
PtoInput
PtoInput
PtoInput
PtoInput
PtoInput

(Y ield (Char c))
(Symbol (Char c))
(Or p q)
(XOr p q)
(ANDR p q)
(ANDL p q)

= removeDup (PtoInput p ++ PtoInput q)
= removeDup (PtoInput p ++ PtoInput q)
= [i++j \ \ i ̂ P to In p u t p , j ̂ P to In p u t q]
= [i++j \ \ i ̂ P to In p u t p , j ̂ P to In p u t q]

--»

= II c

Since our gram m ars only contain or- and and-com binators, each gram m ar ac
cepts only a finite am ount of inputs. If the list of inputs can be infinite, for
instance if we include a Kleene s ta r in the gram m ar, in order to guarantee te r
m ination.

Given a gram m ar and an input, it is easy to determ ine w hat the result of the
parser should be:

re s u l ts :: P [Char] ^ [([Char] , Char)]
r e s u l ts F a il chars = []
r e s u l ts (Y ield (Char c)) chars = [(c h a rs , c)]
r e s u l ts (Symbol (Char c)) [] = []
r e s u l ts (Symbol (Char c)) [d : r]

| c == d
= [(r , c)]
= []

r e s u l ts (Or p q) chars = re s u l ts p chars ++ re s u l ts q chars
r e s u l ts (XOr p q) chars
= case r e s u lts p chars of

[] = r e s u lts q chars
r = r

r e s u l ts (ANDR p q) chars
= [t \ \ (c2 ,_) ^ r e s u l t s p c h a rs , t ^ r e s u l t s q c2]

r e s u l ts (ANDL p q) chars
= [(c3 , a) \ \ (c2 , a) ^ r e s u l t s p chars , (c3 , _) ^ r e s u l t s q c2]

Using these tools it is very easy to verify the parsers associated to some
syntax tree directly. For all inputs to be accepted by the parser, the results
calculated by the function r e s u lts above should be equal to the results obtained
by applying the parser associated to the gram m ar to th a t input:

propP :: P ^ Bool
propP t = and [r e s u l ts t i == begin (PtoPC t) i \ \ i^ P to ln p u t t]

Also this p roperty finds the counterexam ples for the original version of the library
very quickly.

In order to verify the error detecting capacity of th is approach we made, by
hand, 25 m utan ts of the lib rary th a t are approved by the type system . Test
ing these libraries revealed counterexam ples for each of these libraries w ithin 2
seconds.

5 T esting other H igher Order Functions

In order to show th a t this approach can also be used for o ther higher order
functions a property of the famous fold function will be tested.

The property is based on the universal p roperty of the fold as s ta ted by Mal-
com [6] and is based on the Bird-M eertens theory of lists [1,7]. For any function
f , elem ents v and e, and list l we require th a t fold f v [e : l] = f e (fold f v l). In
order to test several im plem entations of the fold function we make it an argum ent
of the p roperty in G v s t. We w ant to specify this argum ent in an actual test.

The other argum ents are intended as universal quantified variables and need to
be generated by G v s t. The type CLEANa a ^ a indicates the type of the higher
order function f th a t needs to be generated in the tests.

propFold :: ((a a ^ a) a [a] ^ a) (a a ^ a) a [a] a ^ Bool | == a
propFold fo ld f v l e = fo ld f v [e : l] == f e (fo ld f v l)

In order to test this w ith G vst we need to choose same d a ta type for a. We will
use integers here, and choose v to be zero.

propFoldInt :: ((In t I n t ^ I n t) In t [In t] ^ I n t) Expr [In t] In t ^ Bool
propFoldInt fo ld ex l e = propFold fo ld (toFun ex) 0 l e

Similar to above, the d a ta type Expr is used to represent the functions to be
generated:

:: Expr
= X
|Y
| ConstOne
| SUM Expr Expr
| DIFF Expr Expr

The functions toFun converts instances of th is type to functions:

toFun :: Expr ^ (In t In t ^ In t)
toFun X = Ax y.x
toFun Y = Ax y.y
toFun ConstOne = Ax y.1
toFun (SUM a b) = Ax y.toFun a x y+toFun b x y
toFun (DIFF a b) = Ax y.toFun a x y-toFun b x y

As we m ight expect the functions fo ld r from the stan d ard lib rary appears to be
a valid fo ld function if we test it with:

S ta r t = t e s t (propFoldInt fo ld l)

The function fo ld l however, does not obey th is p roperty for functions like,
f x y = x, f x y = y, and f x y = x+x. A lthough th is result in itself is not new,
it dem onstrates the power of th is approach to test higher order functions.

6 D iscu ssion

The test system s G vst was very suited to test properties over first order func
tions. G enerating the functions needed for testing properties over higher order
functions was troublesom e. In th is paper we have shown th a t th is can be solved
by generating a gram m ar for the desired functions as d a ta type, and a very
simple function th a t transform s this d a ta type to the corresponding function.

The sta ted properties identified the errors in the original version of the li
brary, as well as more th an two dozen of different errors injected deliberately in
order investigate the power of autom atic testing.

This approach can be used also in o ther situations where higher order func
tions needs to be tested in order to generate and show the needed functions as
test argum ent.

A ck n o w led g em en t

We thank Erik Zuurbier and Arjen van Weelden for indicating problem s with
the parser library in itiating th is research.

R eferences

1. Richard Bird. Constructive Fununctional Programming, Proc. MArktoberdorf In
ternational Summerschool on Constructive Methods in Computer Science ,1989.

2. A. Alimarine, R. Plasmeijer. A Generic Programming Extension for Clean.
IFL2001, LNCS 2312, pp.168-185, 2001.

3. K. Claessen, J. Hughes. QuickCheck: A lightweight Tool for Random
Testing of Haskell Programs. ICFP, ACM, pp 268-279, 2000. See also
www.cs.chalmers.se/~rjmh/QuickCheck.

4. Pieter Koopman and Rinus Plasmeijer: Efficient Combinator Parsers In Proc. of
Implementation of Functional Languages (IFL ’98), K. Hammond, A.J.T. Davie
and C. Clack (Eds.), LNCS 1595, pp. 120-136. 1999

5. Pieter Koopman, Artem Alimarine, Jan Tretmans and Rinus Plasmeijer: Gast:
Generic Automated Software Testing, in Ricardo Pena: IFL 2002, Implementation
of Functional Programming Languages, LNCS 2670, pp 84-100, 2002.

6. Grant Malcom. Algebraic Data Types and Program Transformations, Ph.D. Thesis,
1990.

7. Lambert Meertens. Algorithmics: Towards programming as a mathematical acitvity,
Proc. CWI Symposium 1983.

8. Rinus Plasmeijer and Marko van Eekelen: Concurrent Clean Language Report (ver
sion 2.1.1), 2005. w w w .cs.ru .n l/~ clean .

http://www.cs.chalmers.se/~rjmh/QuickCheck
http://www.cs.ru.nl/~clean

