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Incremental Model-Based Clustering for 

Large Datasets With Small Clusters 

Chris Fraley, Adrian Raftery, and Ron Wehrens 

Clustering is often useful for analyzing and summarizing information within large 
dataseis. Model-based clustering methods have been found to be effective for determining 
the number of clusters, dealing with outliers, and selecting the best clustering method in 

datasets that are small to moderate in size. For large datasets, current model-based clustering 
methods tend to be limited by memory and time requirements and the increasing difficulty 
of maximum likelihood estimation. They may fit too many clusters in some portions of the 

data and/or miss clusters containing relatively few observations. We propose an incremental 

approach for data that can be processed as a whole in memory, which is relatively efficient 

computationally and has the ability to find small clusters in large datasets. The method 

starts by drawing a random sample of the data, selecting and fitting a clustering model to 

the sample, and extending the model to the full dataset by additional EM iterations. New 

clusters are then added incrementally, initialized with the observations that are poorly fit 

by the current model. We demonstrate the effectiveness of this method by applying it to 

simulated data, and to image data where its performance can be assessed visually. 

Key Words: BIC; EM algorithm; Image; MRI. 

1. INTRODUCTION 

The growing size of datasets and databases has led to increased demand for good clus 

tering methods for analysis and compression, while at the same time introducing constraints 

in terms of memory usage and computation time. Model-based clustering, a relatively recent 

development (McLachlan and Basford 1988; Banfield and Raftery 1993; McLachlan and 

Peel 2000; Fraley and Raftery 2002), has shown good performance in many applications on 

small-to-moderate-sized datasets (e.g., Campbell et al. 1997, 1999; Dasgupta and Raftery 

1998; Mukherjee et al. 1998; Yeung et al. 2001 ; Wang and Raftery 2002; Wehrens, Buydens, 

Fraley, and Raftery 2004). 
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Direct application of model-based clustering to large datasets is often prohibitively 

expensive in terms of computer time and memory. Instead, extensions to large datasets 

usually rely on modeling one or more random samples of the data, and vary in how the 

sample-based results are used to derive a model for all of the data. Underrating (not enough 

groups to represent the data) and overfitting (too many groups in parts of the data) are 

common problems, in addition to excessive computational requirements. In this article we 

develop an incremental model-based method that is suitable as a general clustering method 

for large datasets that are not too large to be processed as a whole in core (currently up to 

about 100,000 observations for a dataset of dimension 10 or less), and is also able to find 

small clusters if they are present. 

This article is organized as follows. Section 2 gives a brief overview of model-based 

clustering and introduces the incremental method. Section 3 gives results for three large 
datasets. The first is a large simulated dataset with 14 large clusters and 1 small cluster. The 

remaining two examples are images to be segmented automatically by clustering information 

associated with each pixel. One of the images has a prominent feature involving only a 

small number of pixels, making segmentation challenging while at the same time easy to 

assess visually. The other image is a brain MRI dataset where the task is to find features of 

anatomical and clinical interest. Section 4 discusses our results and alternative approaches 

to the problem. 

2. METHODS 

2.1 Model-Based Clustering 

In model-based clustering, the data (xi,... ,xn) are assumed to be generated by a 

mixture model with density 

n G 

where /fc(x? | 0k) is a probability distribution with parameters 0k, and rk is the probability 
of belonging to the kth component or cluster. Most often (and throughout this article) the 

fk are taken to be multivariate normal distributions, parameterized by their means //& and 

covariances ?&: 

/fc(x? I 0 k) 
= 

<fi(xi I /?Jfe^fc) 
= 

|27rE/c|~1/2exp^ 
-x(x* 

- 
?k)T^k\^i -//*)}> 

where 0k 
= 

(/xfc,?fc). 

The parameters of the model are often estimated by maximum likelihood using the 

expectation-maximization (EM) algorithm (Dempster, Laird, and Rubin 1977; McLachlan 
and Krishnan 1997), Each EM iteration consists of two steps, an E-step and an M-step. 
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Given an estimate of the component means ?ij, covariances E j and mixing proportions tj , 

the E-step computes the conditional probability that object i belongs to cluster k: 

G 

zik = 0(x?|/x/e,E/c)/^(/)(x?|/ij,i;j) 
. 

J'=l 

In the M-step, parameters are estimated from the data given the conditional probabili 

ties zik (see, e.g., Celeux and Govaert 1995). The E-step and M-step are iterated until 

convergence, after which an observation can be assigned to the component or cluster corre 

sponding to the highest conditional or posterior probability. Good initial values for EM can 

be obtained efficiently for small-to-moderate-sized dataseis via model-based hierarchical 

clustering (Banfield and Raftery 1993; Dasgupta and Raftery 1998; Fraley 1998). 
Banfield and Raftery (1993) expressed the covariance matrix for the kth component or 

cluster in the form 

?& = 
XkDkAkDk , 

where Dk is the matrix of eigenvectors determining the orientation, Ak is a diagonal matrix 

proportional to the eigenvalues determining the shape, and Xk is a scalar determining the 

volume of the cluster. They used this formulation to define a class of hierarchical cluster 

ing methods based on cross-cluster geometry, in which mixture components may share a 

common shape, volume, and/or orientation. This approach subsumes a number of existing 

clustering methods. For example, if the clusters are restricted to be spherical and identical 

in volume, the clustering criterion is the same as that which underlies Ward's method (Ward 

1963) and /c-means clustering (MacQueen 1967). Banfield and Raftery (1993) developed 
this class of models in the context of hierarchical clustering estimated using the classifica 

tion likelihood, but the same parameterizations can also be used with the mixture likelihood. 

A detailed description of the 14 different models that are possible under this scheme can be 

found in Celeux and Govaert (1995). 
Several measures have been proposed for choosing the clustering model (parameter 

ization and number of clusters); see, for example, McLachlan and Peel (2000, chap. 6). 

The BIC approximation to the Bayes factor (Schwarz 1978), which adds a penalty to the 

log-likelihood based on the number of parameters, has performed well in a number of 

applications (e.g., Dasgupta and Raftery 1998; Fraley and Raftery 1998, 2002). 
The following strategy for model-based clustering has been found to be effective for 

datasets of up to moderate size: 

Basic Model-Based Clustering Strategy 

1. Specify the minimum and maximum number of clusters to consider, (Gm?n, Gmax), 

and a set of candidate parameterizations of the Gaussian model. 

2. Do EM for each parameterization and each number of clusters Gmin, , Gmax, 

starting with conditional probabilities corresponding to a classification from uncon 

strained model-based hierarchical clustering. 
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3. Compute BIC for the mixture likelihood with the optimal parameters from EM for 

Crnin,..., C7max clusters. 

4. Select the model (parameterization/number of clusters) for which BIC is maximized. 

For a review of model-based clustering, see Fraley and Raftery (2002). 

A limitation of the basic model-based clustering strategy for large datasets is that the 

most efficient computational methods for model-based hierarchical clustering have storage 

and time requirements that grow at a faster than linear rate relative to the size of the initial 

partition, which is usually the set of singleton observations. Banfield and Raftery (1993) 
used hierarchical model-based clustering to cluster a random sample of the data in a large 

image, and then extended the results to the rest of the data using discriminant analysis. 

Similarly, the basic model-based clustering strategy can be extended to large datasets in 

several ways using a random sample of the data. For example, Step 2 of the basic model 

based clustering strategy can be modified to do hierarchical clustering only on a random 

sample of the data, rather than on the whole dataset (Fraley and Raftery 1998, 2002). The 

corresponding parameter estimates are then used as initial values for EM on the whole 

dataset. We call this method Strategy W. 

Strategy W (model from the whole dataset) 

1. As in the basic model-based clustering strategy. 

2. Do EM for each parameterization and each number of clusters C7min ? , Cmax, start 

ing with parameters obtained from an M-step with conditional probabilities corre 

sponding to a classification from unconstrained model-based hierarchical clustering 

on a random sample of the data. 

3, 4. As in the basic model-based clustering strategy. 

Strategy W is of limited practical interest because of its excessive computational require 

ments (e.g., Wehrens et al. 2004), and we consider it here only for comparison purposes. 

Another sample-based alternative is to apply the basic model-based clustering strategy 

to a random sample of the data to choose the model and number of clusters, and then extend 

that model via EM to the whole of the data (Fraley and Raftery 1998, 2002). We call this 

method Strategy S. 

Strategy S (model from a sample) 

1. Apply the basic model-based clustering strategy to a random sample of the data. 

2. Extend the result to the whole dataset via EM. [Extension is possible via a single 

E-step (in which case the whole of the data need not be in core) or one or more EM 

iterations.] 

EM is applied to the full dataset only once for a given initial sample in Strategy S, in 
contrast to Strategy W, in which EM is run to convergence on the whole dataset for each 

model/number of clusters combination. 
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Wehrens et al. (2004) showed that Strategy S can be improved upon by considering 
several candidate models and several EM steps (rather than just one) in the extension to the 

full dataset. However, a drawback of Strategy S is that it may miss clusters that are small 

but nevertheless significant. 

2.2 Incremental Model-Based Clustering 

In order to improve on the ability to detect small clusters, we propose an incremental 

procedure which starts with a model that underestimates the number of components (e.g., 

a model obtained from Strategy S), and successively attempts to add new components. EM 

is initialized with the observations that have the lowest density under the current model in 

a separate component, and with the rest of the observations initially in their current most 

probable component, and iterated to convergence. The idea is that the new component would 

consist largely of observations that are poorly fit by the current mixture model. The process 

is terminated after an attempt to add a component results in no further improvement in BIC. 

We call this method Strategy I: 

Strategy I (incremental model-based clustering) 

1. Obtain an initial mixture model for the data that underestimates the number of 

components (e.g., from Strategy S). 

2. Choose a set Q of observations with the lowest densities under the current mixture 

model (e.g., those corresponding to the lowest 1% of densities). 

3. Run one or more steps of EM starting with conditional probabilities corresponding 

to a discrete classification with observations in Q in a separate group, and the rest 

of the observations grouped according to the current model. 

4. If Step 3 results in a higher BIC, go to Step 2. Otherwise fit a less parsimonious 
model (if possible) starting with the current classifiation and go to Step 2. 

5. If the current model is unconstrained, and BIC decreases in Step 4, stop and take 

the highest-BIC model to be the solution. 

The choice of an initial model is required in Step 1. In the examples shown here, we used 
a model from Strategy S, which extends a model-based clustering of a randomly selected 

sample of the data to the whole dataset via EM. We tried several alternatives for initialization 

based on random partitions of the data, but the resulting clusterings were not as good as 

those from initialization with Strategy S, and had lower BIC values. 

In Step 2, we used the observations with the lowest 1 % of densities under the current 

model to initialize the new component. We experimented with other specifications, both 

adaptive and nonadaptive, and found that using the lowest 1 % worked as well as or better 

than alternatives. 

The model change provision in Step 3 attempts to preserve parsimony in the model as 

much as possible; in practice the algorithm often terminates with an unconstrained covari 

ance model. 
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3. RESULTS 

Whenever a random sample of the data was required in the algorithms, we used a sample 
of size 2,000, based on the practical limitation on sample size due to the initial hierarchical 

clustering, as well as on extensive experiments in both real and simulated datasets for 

Strategies S and W and some variants (Wehrens et al. 2004). EM was run to convergence 

throughout, as defined by a relative tolerance of 10-5 in the log-likelihood. 
We used the MCLUST software (Fraley and Raftery 1999, 2003) for both model-based 

hierarchical clustering and EM for mixture models. For the image data, only the equal shape 
VEV (varying (V) volume, equal (E) shape, and varying (V) orientation) and unconstrained 

VW model were considered, because these seemed to be the only models chosen for these 

data (Wehrens et al. 2004). 
For examples we use two-dimensional simulated data, as well as two different real 

image datasets, to allow visual assessment. Because each method starts by drawing a random 

sample of observations from the data, we repeated the computations for 100 different initial 

samples, so that our conclusions do not depend on the particular sample drawn. 

3.1 Simulated Data 

These data, shown in Figure 1, consist of 50,000 data points generated from a mixture 

of 14 multivariate normal clusters with equal volume and shape, plus an additional 10-point 

-10 -5 0 5 10 

Figure I. Data simulated from a multivariate normal mixture in which the components have equal volume and 

shape. There are 50,000 points in 14 clusters away from the center, and 10 points in the cluster near the center. 

Larger symbols are used for the points near the center to improve visibility. The data consist of spatial coordinates 

only and do not include color information. Colors are shown here to indicate the true clustering. 
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Table 1. Results for the Model-Based Clustering Strategies on the Simulated Data. One hundred dif 
ferent random initial samples were used; "sd" denotes the standard deviation. 451,600 was 
added to all the BIC values for legibility*. Strategy S misses the small central cluster for many 
of the initial samples. Strategy W fits more components than are present in the underlying 
mixture model in some cases. Strategy I obtains the global maximum-likelihood estimate for 
all initial samples. 

Strategy_Mean_sd_min_max 

Shifted BIC 
S -514 296 -752 -76 
I -76 0 -76 -76 

W -101 49 -267 -76 

Number of clusters 
S 14.4 .5 14 15 
I 15 0 15 15 

W_1^3_.7_15_18_ 
* 
Because BIC is on the logarithmic scale, the main interest is in the differences between values. Adding a constant 

to all BIC values does not change the conclusions drawn. 

cluster centered at the origin, generated from a multivariate normal distribution with the 
same volume and shape. 

Results for Strategies S, I, and W on the simulated data of Figure 1 are shown in Table 

1. Strategy S chose a model with 14 clusters for 67 out of 100 different random initial 

samples, missing the small cluster in the middle. In these 14-cluster groupings, each point 
in the small central cluster is assigned to one of the larger surrounding clusters (Figure 2). 

?l-i-?1-1-r 

-10 -5 0 5 10 

Figure 2. Fourteen-group classification produced by strategy S. Each of the 10 points in the small central cluster 

is assigned to one of the larger surrounding clusters. Larger symbols are used for the central points to make them 

visible. 
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o J 

o 
y 

-10 10 

Figure 3. Al 7-cluster re suit from applying strategy W to the simulated data of Figure 1. In addition to the central 

cluster, there are two other small clusters (also shown in black) away from the center. Larger symbols are used 

for the three small clusters to improve visibility. 

Strategy I classified the data correctly for 100 out of 100 initial samples. 

Although it might seem that results from Strategy W would be close to the best achiev 

able, it has shortcomings that go beyond its computational requirements. For the simulated 

data of Figure 1, Strategy W did not always select the mixture model for which BIC is max 

imized (see Table 1). Despite considerable extra computation, Strategy W found a model 

with BIC lower than the maximum in 27 out of 100 cases, due either to local minima in 

the likelihood surface, or to unusually slow convergence of EM. In 14 of these cases, the 

resulting classification was virtually indistinguishable from the maximum BIC classifica 

tion: either the equal shape VEV model was chosen instead of the underlying equal-shape 

equal-volume model, or else the number of components in the mixture was greater than 15, 

but the conditional probabilities mapped into the correct classification. In 13 other cases, 

Strategy W classified the data into more than 15 clusters; for an example, see Figure 3. 

3.2 St. Paulia Flower Image Data 

These data describe an RGB (three-band) image of a St. Paulia flower shown in Fig 
ure 4. [These data were obtained from J. Noordam, Agrotechnology Innovations B. V., 

Wageningen, The Netherlands, and are available for downloading from http://www.cac. 

science.ru.nl/people/rwehrens/suppl/mbc.html.] There are 46,656 pixels after background 
removal. The small yellow flower centers are particularly eye-catching. 

Results for the model-based clustering strategies on the flower image of Figure 4 are 
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Figure 4. RGB image of a St. Paulia flower. There are 46,656 data pixels after background removal. Note the 

small yellow flower centers. 

Table 2. Results for the Model-Based Clustering Strategies on the St. Paulia Flower Image Data. One 

hundred different random initial samples were used; "sd" denotes the standard deviation. 

1,188,000 was added to all the BIC values. Segmentations produced by Strategy S miss the 

yellow flower centers for all of the initial samples. Segmentations produced by Strategy W 

reveal the yellow centers in only 15 out of 100 initial samples. Segmentations produced by 

Strategy I reveal the yellow centers for 99 out of 100 different samples. 

Strategy_Mean_sd_mjn_max 

Shifted BIC 
S -8577 1646 -14644 -5031 
I -858 344 -2976 -435 

W -568 145 -1053 -317 

Number of clusters 

S 9.6 1.5 7 13 
I 22.3 1.9 16 28 

W 30.0 3.4 25 39 
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Strategy S (9 groups) Strategy I (22 groups) 

Strategy W (34 groups) RGB image (ground truth) 

Figure 5. Results for the model-based clustering strategies on the flower image for the same random initial sample. 
The colors for the clusters were obtained by using the mean RGB value for each group. The yellow flower centers 

are clearly visible in the segmentation produced by Strategy I, but not in those produced by strategies S and W. 

summarized in Table 2. By design, both the BIC values and numbers of clusters are larger 
for Strategy I than for Strategy S. In fact, Strategy I yielded models with substantially more 

clusters and higher BIC values than Strategy S. Moreover, while none of the segmentations 
from Strategy S revealed the yellow flower centers, they were clearly visible in the segmen 

tations produced by Strategy I for 99 out of 100 random initial samples. A representative 

example is shown in Figure 5. 

Details of the iterations for Strategy I for the sample corresponding to the results shown 

in Figure 5 are shown in Table 3. In these iterations, Strategy S chooses a nine-component 
VEV model in which the mixture components or clusters share a common shape. The number 

of clusters increases by one at each iteration except at the ninth iteration when BIC can no 

longer be increased by adding a component in the VEV model and the model changes to 

the unconstrained model VW. Note that the numbers of observations in the smallest and 

largest clusters are not monotonie functions of the iteration number. 
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Table 3. Iterations of Incremental Model-Based Clustering for the St. Paulia Flower Data. 1,188,000 
was added to all the BIC values. "Smallest cluster" is the number of pixels in the smallest 

cluster; similarly for "largest cluster." 

Iteration Model 
No. of 
clusters 

Shifted 
BIC 

Smallest 
cluster 

Largest 
cluster 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

VEV 
VEV 
VEV 
VEV 
VEV 
VEV 
VEV 
VEV 
VEV 
VVV 
VVV 
VVV 
VVV 
VVV 
VVV 

9 
10 
11 
12 
13 
14 
15 
16 
17 
17 
18 
19 
20 
21 
22 

-9186 
-7531 
-7380 
-7051 
-7024 
-4786 
-4696 
-3797 
-3064 
-1710 
-1627 
-1313 
-1254 
-867 
-860 

726 
708 
450 
389 
142 
555 
339 
282 
318 
305 
141 
66 
65 
65 
66 

11674 
12104 
11978 
12128 
12124 
12785 
12772 
12170 
12291 
7615 
7484 
7308 
7301 
7281 
7297 

3.3 Brain MRI Data 

These data describe a four-band MRI of a brain with a tumor, shown in gray scale in 

Figure 6. [These data were obtained from Professor A. Heerschap of the Radboud University 
Medical Center, Nijmegen, The Netherlands.] There are 23,712 pixels. 

Results for the model-based clustering strategies on the brain MRI (Figure 6) are 

summarized in Table 4. As for the flower data, Strategy I leads to models with more clusters 

and higher BIC values than does Strategy S. Clusterings for the three model-based clustering 

strategies for the same random initial sample are shown in Figure 7. In this case the tumor 

is large enough to be detected by Strategy S with sample size 2,000. One thing to note is 

that, for Strategy I, the light blue area at the periphery of the tumor region is confined to 

the tumor area, while for Strategy S it is scattered over other regions of the brain. Another 

observation is that the segmentation from Strategy I is smoother and more appealing to the 

eye than the fragmented segmentation from Strategy W. 

4. DISCUSSION 

Incremental model-based clustering is a conceptually simple EM-based method that 

finds small clusters without subdividing the data into a large number of groups. It can be 

combined with any in-core method for improving performance of EM for large dataseis. 

A further advantage of the incremental approach is that the evolution of the clusters can 

be monitored and the process stopped or interrupted as clusters of interest emerge. For 

complex dataseis, such as the image data shown here, incremental model-based clustering 

improves on the ability of the simple sample-based approach to reveal significant small 
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Figure 6. The four bands of the brain MRI shown in gray scale. There are 23,712 pixels. Lesions are evident in 

the tumor region (at the lower right in each image). 

clusters without adding severely to the computational burden, and without overfitting. 
It is clear from Tables 2 and 4 that the results do vary with the initial sample. Based on 

extensive experiments in both real simulated datasets, Wehrens et al. (2004) showed that as 

long as the initial random sample is not too small, stability of the classification of pixels over 

different samples is directly reflected in the uncertainty of the probabilistic classification. 

Recall that EM for mixtures produces a conditional probability that an observation belongs 
to each component or cluster, rather than a discrete classification. 

Table 5 gives a rough indication of the computational effort associated with the different 

strategies. These timings should not be interpreted as a rigorous algorithmic comparison, 
because the code has not been optimized for speed, and because it is not possible to separate 
the timing overhead due to the interpreted R interface (which would be considerable for 

datasets of this size) from the time it takes to do the actual computations. 

Strategy W is by far the most expensive strategy in terms of computing time. Strategy 
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Table 4. Results for the Model-Based Clustering Strategies on the Brain MRI Data. One hundred 
different random initial samples were used; "sd" denotes the standard deviation. 755,000 was 
added to all the BIC values. 

Strategy Mean sd min max 

Shifted BIC 
S -6675 1165 -8601 -3794 
I -2418 447 -3825 -1658 

W -867 69 -1025 -670 

Number of Clusters 
S 9.1 1.7 7 14 
I 17.6 1.7 13 22 

W 33.7 3.5 26 40 

I takes somewhat more time than Strategy S, but considerably less time than Strategy W, 
while producing better results. It should be kept in mind that timings for Strategy S and 

Strategy W depend on the maximum number of components considered. 

Several other approaches to clustering large datasets based on forming a model from 

a sample of the data have been proposed. Fayyad and Smyth (1997, 1999) suggested a 

methodology for discovering small classes in large datasets, in which a model is first con 

structed based on a sample, and then applied to the entire dataset. Observations that are 

well-classified by the model are retained along with a stratified sample of the rest of the 

observations, and the procedure is repeated until all observations are well classified. 

Bradley, Fayyad, and Reina (1998) developed a one-pass (exclusive of sampling) 
method based on EM for mixture models that divides the data in to three classes: records that 

can be discarded (membership certain), records that can be compressed (known to belong 

together), and records that must be retained in memory for further processing (membership 

uncertain). Records in the first two classes are represented by their sufficient statistics in 

subsequent iterations. Records to be compressed are determined by /c-means. Several can 

didate models can be updated simultaneously. The number of clusters present in the data is 

assumed to be known in advance. 

Maitra (2001) proposed a multistage algorithm that clusters an initial sample using a 

mixture modeling approach, filters out observations that can be reasonably classified by 

these clusters, and iterates the procedure on the remainder. Sample size can be adjusted to 

accomodate available computational resources. The method requires only a few stages on 

very large datasets, but produces many clusters. One reason for the large number of clusters 

is the assumption that mixture components have a common covariance, a requirement of 

the hypothesis test used to determine representativeness of the identified clusters. 

Of course, any sampling-based strategy can be applied to the data for a number of sam 

ples, increasing the chances that a good model for the data will be found. Meek, Thiesson, 

and Heckerman (2001) gave a strategy for determining sample size in methods that extend 
a sample-based approach to the full dataset. The basic idea is to apply a training algorithm 

to larger and larger subsets of the data, until expected costs outweigh the expected benefits 

associated with training. The premise is that the best results come from the training algo 

rithm applied to all of the data. A decision-theoretic framework for cost-benefit analysis is 
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Strategy S (11 groups) 

Strategy 1(17 groups) 

Strategy W (32 groups) 

Figure 7. Results for the three model-based clustering strategies on the MRI image for the same random initial 

sample. For Strategy I, the light blue area around the periphery of the tumor is confined to the tumor region, while 

for Strategy S it is dispersed over the image. Strategy Wfits many more components in the tumor region. No spatial 

information was used in clustering the data. 
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Table 5. Approximate Timings (minutes) for the St. Paulia Flower RGB Image and the Brain MRI. 
The maximum number of components considered is 15 for Strategy S and 40 for Strategy 
W. Timing for Strategy I includes Strategy S for initialization. Fortran code with R interface; 
Pentium 4 2.4 GHz processor. 

_Strategy S_Strategy I_Strategy 
W 

flower image 1.5 10.4 119.7 
brain MRI 1.0 3.4 63.3 

proposed, in which cost is given in terms of computation time, and benefit or accuracy is 

the value of the log-likelihood. Situation and data-dependent scaling issues are discussed. 

It is assumed that the number of components in the mixture model is known. 

There are also several approaches that are not based on a model derived from a sample. 

DuMouchel et al. (1999) proposed strategies for scaling down massive datasets so that 

methods for small to moderate sized numbers of observations can be applied. The data are 

first grouped into regions, using bins induced by categorical variables and bins induced 

either by quantiles or data spheres for quantitative variables. Moments are then calculated 

for the elements falling in those regions. Finally, a set of squashed data elements is created 

for each region, whose moments approximate those of the observations in that region. This 

produces a smaller dataset to be analyzed which consists of the squashed data elements and 

induced weights. The squashed data can then be analyzed by conventional methods that 

accept weighted observations. A potential problem is that small clusters may be missed, 

although the authors point out that the initial grouping could be constructed in a partially 

supervised setting to detect small clusters with known characteristics. 

Meek et al. (2002) proposed a stagewise procedure that uses reweighted data to fit a new 

component to the current mixture model. As in our method, the new component is accepted 

only if it results in an improvement in BIC. Unlike in our method, observations that are not 

well-predicted in the current model are given more weight in fitting the new component, 

while previous components remain fixed. The authors point out that the method could be 

combined with backfitting procedures that could update all components of the model. The 

method requires an initial estimate for mixing proportions and model parameters of new 

component at each stage, whereas our method starts each stage with a new classification of 

the data that separates out observations of low density. 

Posse (2001) extended model-based hierarchical clustering to large datasets by using 

an initial partition based on the minimum spanning tree. Although the minimum spanning 

tree can be computed quickly, it tends to produce groups that are too large to be useful, so 

the method is supplemented with strategies for subdividing these groups prior to clustering. 

Once an observation is grouped in the initial partition, it cannot be separated from that group 

in hierarchical clustering. Also, there are no methods for choosing the number of clusters 

in model-based hierarchical clustering that are comparable to those available for mixture 

models. However, this approach could be combined with the mixture modeling approach 

as a starting scheme for a strategy similar to Strategy W. 

Tantrum, Murua, and Stuetzle (2002) extended model-based hierarchical clustering 
to large datasets through "refractionation," which splits the data up into many subsets or 
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"fractions." The fractions are clustered by model-based hierarchical clustering into a fixed 

number of groups and then summarized by their means into meta-observations. These meta 

observations are in turn grouped by model-based clustering, after which a single EM step 

is applied to the conditional probabilities defined by the classifications to approximate a 

mixture likelihood for computing the BIC, which is used to determine the number of clusters. 

Initially the data are divided randomly, but in subsequent iterations, clusters larger than a 

fixed fraction size are split into fractions. Observations are assigned to the cluster with the 

closest mean, and the procedure is iterated until successive partitions cease to become more 

similar. 

Recently, a number of techniques have been developed for speeding up the EM al 

gorithm on large datasets. Incremental model-based clustering, which relies on the EM 

algorithm, can be implemented in combination with any of these. Several of these methods 

are based on a partial E-step. In incremental EM (Neal and Hinton 1998; Thiesson, Meek, 

and Heckerman 2001 ), the E-step is updated in blocks of observations. For normal mixtures, 

the M-step can be efficiently implemented to update sufficient statistics in blocks. Lazy EM 

(McLachlan and Peel 2000; Thiesson et al. 2001) identifies observations for which the max 

imum posterior probability is close to 1 and updates the E-step only for the complement 

of this subset for several iterations. A full E-step must be performed periodically to ensure 

convergence. In sparse EM (Neal and Hinton 1998), only posterior probabilities above a 

certain threshold are updated for each observation. In the M-step, only the contribution of 

the corresponding sufficient statistics need be updated. As for lazy EM, a full E-step needs 

to be performed periodically to ensure convergence. Moore (1999) organized the data in a 

multiresolution /cd-tree, that allows fast approximations to the E-step in the EM algorithm by 

eliminating computations that are considered ignorable. The gain in efficiency diminishes 

as the dimension of the data increases. Another approach for large datasets is a componen 

twise EM for mixtures (Celeux, Chr?tien, Forbes, and Mkhadri 2001) in which parameter 
estimates are decoupled so as to reduce the size of the missing data space computed in the 

E-step. 

The EM algorithm is well known to have a linear of rate of convergence, which can 

sometimes be very slow. Redner and Walker (1984) suggested using a few steps of EM to 

start a maximization procedure with faster asymptotic convergence. Superlinearly conver 

gent methods would certainly be useful in this context from the point of view of reducing the 

overall number of iterations (each of which is costly due to the amount of data involved), as 

well as for assurance that a local maximum has indeed been reached (the latter being diffi 

cult to determine for slow linearly convergent methods). Although robust implementations 

of such methods are not available in the public domain, good software is available commer 

cially (see, e.g., http://www-fp.mcs.anl.gov/otc/Guide/SoftwareGuide/index.html). State 

of-the-art methods can easily handle problems with large numbers of parameters such as 

those that arise here, provided good starting values are available. The objective and con 

stants are specified using a modeling language such as AMPL (Fourer, Gay, and Kernighan 

2002), which allows automatic differentiation that exploits sparsity and reuse of computa 

tional expressions. 
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