
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/32615

Please be advised that this information was generated on 2020-09-09 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16120922?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/32615

Implementing Vimes - the broker

component.

Eric D. Schabell
erics@cs.ru.nl

Bas van Gils
basvg@cs.ru.nl

University of Nijmegen, Computing Science Institute, P.O. Box
9010, 6500 GL Nijmegen, The Netherlands

Abstract

This document will discuss the Vimes retrieval architecture broker com-
ponent from the research project Profile Based Retrieval Of Networked Infor-
mation Resources (PRONIR). It will provide an overview of the development
process from requirements investigations done with use cases, on to the ac-
tual design and implementation.

1 Introduction

This document will present a structured look at the Vimes retrieval architecture
broker development project for the research project Profile Based Retrieval Of
Networked Information Resources (PRONIR).

The information retrieval architecture called Vimes was briefly described
in (Gils et al., 2003b). To facilitate experimentation and validation within the
PRONIR project the Vimes retrieval architecture will have to be implemented.

The Vimes retrieval architecture will be implemented in several compo-
nents. Here we will be presenting the broker component, starting with the
results of our requirements investigation using Use Cases. These results lead
into the section where we will present our design choices. This will finish up
with a short discussion of the implementation with the reader being pointed to
the current location of the software.

Furthermore, in the rest of this paper the reader is assumed to be familiar
with at least (Gils et al., 2003a) and (Gils et al., 2004).

2 Requirements

This section will present the results of our requirements investigation based on
Use Cases.

2.1 Problem Statement

To implement the Vimes retrieval architecture as described in the introduction,
a broker component will be needed to mediate between the user, the transfor-

1

mation component and the search component.

2.2 Statement of work

The realization of the broker component will be considered completed when
each and every use case has been implemented. An analysis of the require-
ments will be made using use cases, which will function as the contract with
which we determine completion of the broker component.

2.3 Stakeholders

The following have been identified as stakeholders in this project:

• Bas van Gils - primary researcher who will be validating his research with
the Vimes retrieval architecture.

• Erik Proper - suppervisor for the PRONIR research project of which Bas
van Gils research is a part of.

2.4 Actors

The following list includes all actors that are the initiation point for a use case:

• User (provides search query requests).

• Searcher (component that inputs search results).

• Transformer (component that inputs transformations).

2.5 Defined use cases

The following table shows a listing of use cases as defined for completing the
Vimes broker functionality:

• Process user request.

• Send search request.

• Send transform request.

• Process search results.

• Process transform results.

• Process queue.

• Send user results.

2

2.5.1 Process user request

This use case deals with the incoming data for the users query. It will need to
be registered, queued and processed. Furthermore, the eventual results will
need to be returned to the Vimes user interface component.

Use Case Name: Process user request

Description: The broker will provide a mechanism for pro-
cessing user retrieval requests from the user in-
terface component.

Actors: User

Preconditions:

1. Broker is reachable for User.

2. Database is reachable for the broker
(queue).

Triggers: User requests a search be completed by submit-
ting a query through the user interface compo-
nent.

Basic Course of Events:

1. The User submits a search request through
the user interface component.

2. The request is queued by the broker.

3. The User is notified that the request is ac-
cepted.

Exceptions:

Postconditions:

1. Request for searching has been accepted
and is in the queue.

2. User has been notified.

3

2.5.2 Send search request

The broker will need to interact with theVimes search component. This use case
deals with sending user requests on to the search component for processing.

Use Case Name: Send search request

Description: The broker will provide a mechanism for send-
ing eventual requests on to the search compo-
nent.

Actors: Searcher

Preconditions:

1. Searcher is reachable for broker.

2. Database is reachable for broker (queue).

Triggers: A queue run (processing the queued search
queries).

Basic Course of Events:

1. Broker has job from the queue that needs
to be sent to Searcher.

2. Send job to Searcher for processing.

3. Job queue is updated to reflect being sent
to Searcher.

Exceptions:

Postconditions:

1. Job has been sent to the Searcher.

2. Job queue has been updated.

4

2.5.3 Send transform request

The broker will need to interact with theVimes transformation component. This
use case details the passing of transformation requests on to the transformation
component.

Use Case Name: Send transform request

Description: The broker will be able to send transformation
requests based on user preferences (form/for-
mat).

Actors: Transformer

Preconditions:

1. Transformer is reachable for broker.

2. Database is reachable for broker (queue).

Triggers: A queue run.

Basic Course of Events:

1. Broker has job from queue that needs to be
sent to the Transformer.

2. Send job to Transformer for processing.

3. Job queue is updated to reflect being sent
to Transformer.

Exceptions:

Postconditions:

1. Job has been sent to the Transformer.

2. Job queue has been updated.

5

2.5.4 Process search results

The broker will need to interact with theVimes search component. This use
case will detail the process of processing the users search request results that
the search component returns.

Use Case Name: Process search results

Description: The broker will provide a mechanism for receiv-
ing search results from the search component.

Actors: Searcher

Preconditions:

1. Broker component is reachable for
Searcher.

2. Database is reachable for broker (queue).
Triggers: Broker receives the results of a search query from

the Searcher.

Basic Course of Events:

1. Broker receives results of a search query job
from the Searcher.

2. Response is cached if appropriate.

3. Response is evaluated to determine if it
completes the related job or not.

4. Job entry in queue is updated to show new
status.

Exceptions: None.

Postconditions:

1. Results of a job has been registered in the
queue.

2. Results of a job can result in updated cache.

6

2.5.5 Process transform results

The broker will need to interact with theVimes transformation component. This
use case handles the processing of transformation results from the transforma-
tion component.

Use Case Name: Receive transform results

Description: The broker will provide a mechanism for receiv-
ing transformation results from the transform
component.

Actors: Transformer

Preconditions:

1. Broker component is reachable for Trans-
former.

2. Database is reachable for broker (queue).

Triggers: Broker receives the results of a transformation re-
quest from the Transformer.

Basic Course of Events:

1. Broker receives results of a transformation
request from the Transformer.

2. Response is evaluated to determine if it
completes the related job or not.

3. Job entry in queue is updated to show new
status.

Exceptions: None.
Postconditions: Results of a transformation request has been reg-

istered in the queue.

7

2.5.6 Process queue

This use case will describe the processing of the jobs that are still awaiting some
action. These actions can be transformations, search query results or completed
results that need to be returned to the user interface component.

Use Case Name: Process queue

Description: The user submitted search request jobs are pro-
cessed after being submitted into the job queue.
The broker is responsible for all logic involved
with processing the search jobs and for resolving
them into finished results to be sent back to the
user interface component.

Actors: Searcher, Transformer, User

Preconditions:

1. Database is reachable for broker (queue).

2. Queue is not empty.

Triggers:

1. Process user request.

2. Process search results.

3. Process transform results.

Basic Course of Events:

1. Broker retrieves job from queue.

2. Broker checks for job dependencies (all
completed?).

3. As needed, (dependent) job triggers send
search request.

4. As needed, (dependent) job triggers send
transform request.

5. As needed, job status in queue updated.

6. Job completed, triggers send user results.

7. Repeat until end of queue reached.

Exceptions:

1. Searcher is unreachable, re-queue job.

2. Transformer is unreachable, re-queue job.

3. User is unreachable, re-queue job.

Postconditions: Job queue processed, resulting in updated
queue.

8

2.5.7 Send user results

This use case deals with returning the resulting data from a users query. It will
need to be returned to the user and the queue cleaned out.

Use Case Name: Send user results

Description: The broker will be able to send results of user
queries back to the user.

Actors: Searcher, Transform

Preconditions:

1. User is reachable for the broker.

2. Database is reachable for the broker
(queue).

Triggers: Job reaches completed status in the queue.

Basic Course of Events:

1. A job in the queue has reached completed
status.

2. The user search results are returned to the
User.

3. The request is dequeued by the broker.

Exceptions: None.

Postconditions:

1. Requested search result has been returned
to User.

2. Job (all traces) has been removed from the
queue.

9

2.6 Scenarios

Here you will find each use case description with as many scenarios as needed
to quantify the individual use cases.

2.6.1 Process user request

The following scenario details an example usage of the use case including rel-
evant data.

Use Case Name: Process user request

Use Case Steps:

1. User submits a validated search query to Vimes.

2. Data is processed into a request that is queued:

(a) keywords

(b) forms

(c) formats

(d) limits

(e) email

3. Broker queues request.

4. Broker notifies user request has been accepted.

Alternative Path:
1. Broker notifies user that request has not been ac-

cepted, with back button.

10

2.6.2 Send search request

The following scenario details an example usage of the use case including rel-
evant data.

Use Case Name: Send search request

Use Case Steps:

1. Broker retrieves a queued request.

2. Broker sends request to Search component:

(a) request id

(b) keywords

(c) forms

(d) formats

(e) limits

3. Broker annotates request as sent to Search com-
ponent.

4. Broker queues request.

Alternative Path:
1. Broker is unable to send request to Search compo-

nent, just re-queue request unannotated.

11

2.6.3 Send transform request

The following scenario details an example usage of the use case including rel-
evant data.

Use Case Name: Send transform request

Use Case Steps:

1. Broker retrieves a queued request.

2. Broker sends request to Transform component:

(a) request id

(b) results

(c) forms

(d) formats

3. Broker annotates request as sent to Transform
component.

4. Broker queues request.

Alternative Path:
1. Broker is unable to send request to Transform

component, just re-queue request unannotated.

12

2.6.4 Process search results

The following scenario details an example usage of the use case including rel-
evant data.

Use Case Name: Process search results

Use Case Steps:

1. Broker receives a completed search query form
the Searcher:

(a) request id

(b) search results

2. Broker caches response.

3. Broker annotates request in queue as Search com-
pleted.

Alternative Path: 1. None.

13

2.6.5 Process transform results

The following scenario details an example usage of the use case including rel-
evant data.

Use Case Name: Process transform results

Use Case Steps:

1. Broker receives a completed transformation re-
sults form the Transformer:

(a) request id

(b) search results

(c) transform results

2. Broker caches response.

3. Broker annotates request in queue as Transform
completed.

Alternative Path: 1. None.

14

2.6.6 Process queue

The following scenario details an example usage of the use case including rel-
evant data.

Use Case Name: Process queue

Use Case Steps:

1. Broker receives process request queue.

2. Broker processes each queued request for status
changes.

3. Requests processes search results:

(a) Requests back from Searcher but marked for
transformations are sent to Transformer.

(b) Requests back from Searcher not needing
transformations are marked completed.

(c) Requests marked completed are sent back
with results to User via provided email.

4. Requests processes transform results:

(a) Requests back from Transformer are marked
as completed.

(b) Requests marked completed are sent back
with results to User.

5. Any completed results are removed from the
queue.

Alternative Path:

1. Any problems related to requests in the queue al-
ways results in the request not being altered and
left in queue.

15

2.6.7 Send user results

The following scenario details an example usage of the use case including rel-
evant data.

Use Case Name: Send user results

Use Case Steps:

1. Broker retrieves request from queue that has com-
pleted.

2. Broker sends request results to User:

(a) request id

(b) search results

(c) email

3. Broker removes completed request from queue.

Alternative Path:

1. Should Broker be unable to send completed re-
quest results to User, then request remains in
completed status in queue.

16

3 Design

This section will present an overview of our design choices for the Vimes broker
component.

3.1 Class diagrams

An overview of the used classes is given in an general diagram without any de-
tails presented in the classes themselves. Following this, the individual classes
will be presented in more detail with attributes and methods being shown.

Manager

DB

Request

Broker

DataVerificiationManager

GoogleSearchManager

LogManager

MysqlDB

MysqlQueueManager

TransformManager

«interface»

fileLogger

«interface»

syslogger

«interface»

MySql

Figure 1: Class diagram overview

17

3.1.1 Broker

Manager implementation that is responsible for providing services to coordi-
nate all interaction with the Vimes retrieval architecture and the User. The Broker
will ensure that requests are processed and that results are provided to the
User.

Broker

+ __construct(manager : string) : Broker

+ doSearch(request : Request) : bool

+ doTransform(request : Request) : bool

+ processQueue()

+ replyUser(request : Request) : bool

+ requestQueued(request : Request) : bool

+ requestRemoved(request : Request) : bool

+ showRequests()

+ requestResultsUpdated(request : Request) : bool

+ requestStatusUpdated(request : Request) : bool

Manager

Request

Figure 2: Broker class diagram

18

4 Implementation

The implementation of the Broker is to be done in PHP (version 5), using object
oriented design principles. We have a running prototype with only limited
access at:

http://osiris.cs.kun.nl/vimes/vimes_ui/vimes.php
For the complete overview of all generated class documentation we refer

you to the online documentation at:
http://osiris.cs.kun.nl/vimes/vimes_classdocs

4.1 Broker implementation

Listing 1: Broker Class

1

2 <?
3

4 /**
5 * @author Eric Schabell <erics@cs.ru.nl>
6 * @copyright Copyright 2005, GPL
7 * @package VIMES
8 */
9

10 // const defines.
11 //
12 require_once("const.inc");
13

14 /**
15 * Broker class - deals with user requests and makes use of the rest of

the Vimes
16 * framework for searching and transforming retrieval results. This

class
17 * is a sub-class of Manager.
18 * @access public
19 *
20 * @package VIMES
21 * @subpackage Manager
22 */
23 class Broker extends Manager
24 {
25 /**
26 * Constructor - initialize the Broker.
27 * @access public
28 *
29 * @param string Type is Broker.
30 * @return Broker Broker object.
31 */
32 public function __construct($manager="Broker")
33 {
34 parent::__construct($manager);
35 }
36

37 /**
38 * doSearch - sends a request off to the Search component for
39 * processing and updates status of the request. Should the

Broker
40 * be unable to contact the Search component (returns false)

then
41 * the job will remain in the queue and the status will not be

changed.
42 * @access public
43 *
44 * @param Request The request object to be sent.
45 * @return bool True if request search done, otherwise False.

19

46 */
47 public function doSearch($request)
48 {
49 $dataArray = $request->getRequestData();
50

51 // pass request off to the search component.
52 //
53 $gsm = new GoogleSearchManager;
54

55 // set our search info.
56 //
57 $gsm->setKey("6KDTjCDfy0oGl/n+QC7GZQsveJkQw8bT");
58 $gsm->setQueryString($dataArray[’keywords’]);
59 $gsm->setMaxResults($dataArray[’limits’]);
60 $gsm->setSafeSearch(TRUE);
61

62 // do the search.
63 //
64 $search_results = $gsm->doSearch();
65 if (!$search_results)
66 {
67 // errors occurred.
68 //
69 parent::setErrorMsg($gsm->getError());
70 return FALSE;
71 }
72 else
73 {
74 // success, set status to search, save results

and update status.
75 //
76 $request->setRequestStatus(REQUEST_SEARCH);
77 $request->setRequestResults(array(

$search_results));
78

79 if (! $this->requestStatusUpdated($request)
)

80 {
81 parent::setErrorMsg("Search completed

, but unable to set status to
searched, leaving in queu marked
as queued...");

82 return FALSE;
83 }
84 elseif (! $this->requestResultsUpdated(

$request))
85 {
86 parent::setErrorMsg("Search done, but

unable to save results, leaving
in queue marked as search..");

87 return FALSE;
88 }
89 else
90 {
91 $request->setRequestStatus(

REQUEST_SEARCHED);
92 if (! $this->requestStatusUpdated(

$request))
93 {
94 parent::setErrorMsg("Search

completed, set results,
but unable to set status
to final searched status
...");

95 return FALSE;
96 }
97 }
98 }
99 // search completed, results saved, status on final

searched.

20

100 //
101 return TRUE;
102 }
103

104 /**
105 * doTransform - sends a request off to the Transform component

for
106 * processing and updates status of the request. Should the

Broker
107 * be unable to contact the Transform component (returns false)

then
108 * the job will remain in the queue and the status will not be

changed.
109 * @access public
110 *
111 * @param Request The request object to be sent.
112 * @return bool True if request transformation done, otherwise

False.
113 */
114 public function doTransform($request)
115 {
116 // pass request off to the search component.
117 //
118 $transform = new TransformManager;
119 $transform_results = $transform->doTransform($request

);
120

121 if (!$transform_results)
122 {
123 // errors occurred.
124 //
125 parent::setErrorMsg($transform->getError());
126 return FALSE;
127 }
128 else
129 {
130 // check success, set status to transformed,

update status,
131 // requeue request.
132 //
133 if ($request->getRequestStatus() ==

REQUEST_TRANSFORM)
134 {
135 $request->setRequestStatus(

REQUEST_TRANSFORMED);
136

137 if (! $this->requestStatusUpdated(
$request))

138 {
139 parent::setErrorMsg("

Transform completed, but
unable to queue status to
searched, leaving in queue
with nothing updated...")
;

140 return FALSE;
141 }
142 /**
143 // TODO: implement update once we

actually do something... think it
will not be here but in Transform
class.

144 elseif (! $this->
requestResultsUpdated($request)
)

145 {
146 // need to roll back status

update.
147 //

21

148 $request->setRequestStatus(
REQUEST_SEARCHED);

149 if (! $this->
requestStatusUpdated(
$request))

150 {
151 // something wrong,

don’t set errorMsg
as we are

152 // interested in what
the method called
has to say

153 // about this error.
154 return FALSE;
155 }
156 parent::setErrorMsg("

Transform unable to save
results, rolled back queue
to searched status...");

157 return FALSE;
158 }
159 */
160 }
161 }
162 // transform processed, results saved, status final

transformed.
163 //
164 return TRUE;
165 }
166

167 /**
168 * replyUser - send results to user via email provided.
169 * @access public
170 *
171 * @param Request The request to be sent to user.
172 * @return bool True if sent, otherwise False.
173 */
174 public function replyUser($request)
175 {
176 // get email.
177 //
178 $dataArray = $request->getRequestData();
179 $email = $dataArray[’email’];
180

181 // get results array.
182 //
183 $resultsArray = $request->getRequestResults();
184 $search_result = $resultsArray[0];
185

186 // build email.
187 //
188 $message = "Results from your Vimes Retrieval

request:\n\n";
189 $message .= " Request number: " . $request->

getRequestID() . "\n";
190 $message .= " Keywords: " . $dataArray[’

keywords’] . "\n";
191 $message .= " Forms: " . $dataArray[’forms’]

. "\n";
192 $message .= " Formats: " . $dataArray[’formats

’] . "\n";
193 $message .= " Limits: " . $dataArray[’limits

’] . "\n\n";
194 $message .= "

=== ";
195

196 // now add the results elements.
197 //
198 $re = $search_result->getResultElements();
199 foreach($re as $element)

22

200 {
201 $message .= "\n\n";
202 $message .= " Title: " .

$element->getTitle() . "\n";
203 $message .= " URL: " .

$element->getURL() . "\n";
204 $message .= " Snippet: " .

$element->getSnippet() . "\n";
205 $message .= " Summary: " .

$element->getSummary() . "\n";
206 $message .= " Host Name: " .

$element->getHostName() . "\n";
207 $message .= "Related Info Present: " .

$element->getRelatedInformationPresent() .
"\n";

208 $message .= " Cached Size: " .
$element->getCachedSize() . "\n";

209 $message .= " Directory Title: " .
$element->getDirectoryTitle() . "\n";

210

211 $dircat = $element->getDirectoryCategory();
212

213 $message .= " Full Viewable Name: " . $dircat
->getFullViewableName() . "\n";

214 $message .= " Special Encoding: " . $dircat
->getSpecialEncoding() . "\n";

215 }
216

217 // send to user.
218 $headers = "From: Vimes Retrieval Architecture

prototype <basvg@cs.ru.nl>\r\n";
219 if (!mail($email, "Vimes Retrieval Results Report",

$message, $headers))
220 {
221 parent::setErrorMsg("Unable to send user mail

with results, leaving request in queue
...");

222 return FALSE;
223 }
224

225 // set to finished and remove from queue.
226 //
227 $request->setRequestStatus(REQUEST_FINISHED);
228 if (! $this->requestStatusUpdated($request))
229 {
230 $msg = "Mail sent to user with results, but

unable to ";
231 $msg .= "update request number ’" . $request->

getRequestID();
232 $msg .= "’to status FINISHED, leaving in queue

... ";
233 parent::setErrorMsg($msg);
234 return FALSE;
235 }
236

237 // results returned, status updated, removed from
queue.

238 //
239 return TRUE;
240 }
241

242 /**
243 * processQueue - runs the contents of the queue, processing

each request based on the
244 * actions still to be performed in this order; Search ->

Transform -> Reply -> Delete.
245 * @access public
246 *
247 * @return void
248 */

23

249 public function processQueue()
250 {
251 // process the entire current queue
252 //
253 $mqm = new MysqlQueueManager;
254 $log = new LogManager;
255

256 if (count($queueArray = $mqm->getQueued()) == 0)
257 {
258 // nothing in the queue.
259 //
260 $msg = "Nothing in queue, number of entries: "

. count($queueArray);
261 $log->fileLogger($msg);
262 return;
263 }
264

265 // loop thru jobs, checking for states; SEARCH,
SEARCHED, TRANSFORM, TRANSFORMED,

266 // FINISHED and deal with them.
267 //
268 foreach ($queueArray as $request)
269 {
270 switch ($request->getRequestStatus())
271 {
272 case 0: // REQUEST_START.
273

274 // need to do a search.
275 //
276 if (! $this->doSearch($request))
277 {
278 // failed, log this.
279 $log->fileLogger($this->

getErrorMsg());
280 break;
281 }
282

283 // success, log this.
284 //
285 $msg = "Search completed for this

queued request: " . $request->
getRequestID();

286 $msg .= " / " . $request->
getRequestStatus();

287 $log->fileLogger($msg);
288 break;
289

290 case 1: // REQUEST_SEARCH.
291

292 // need to do a search.
293 //
294 if (! $this->doSearch($request))
295 {
296 // failed, log this.
297 $log->fileLogger($this->

getErrorMsg());
298 break;
299 }
300

301 // success, log this.
302 //
303 $msg = "Search completed for this

queued request: " . $request->
getRequestID();

304 $msg .= " / " . $request->
getRequestStatus();

305 $log->fileLogger($msg);
306 break;
307

308 case 2: // REQUEST_SEARCHED.

24

309

310 // need to do a transform.
311 //
312 if (! $this->doTransform($request)

)
313 {
314 // failed, log this.
315 $log->fileLogger($this->

getErrorMsg());
316 break;
317 }
318

319 // success, log this.
320 //
321 $msg = "Transform completed for this

queued request: " . $request->
getRequestID();

322 $msg .= " / " . $request->
getRequestStatus();

323 $log->fileLogger($msg);
324 break;
325

326 case 3: // REQUEST_TRANSFORM.
327

328 // need to do a transform.
329 //
330 if (! $this->doTransform($request)

)
331 {
332 // failed, log this.
333 $log->fileLogger($this->

getErrorMsg());
334 break;
335 }
336

337 // success, log this.
338 //
339 $msg = "Transform completed for this

queued request: " . $request->
getRequestID();

340 $msg .= " / " . $request->
getRequestStatus();

341 $log->fileLogger($msg);
342 break;
343

344

345 case 4: // REQUEST_TRANSFORMED.
346

347 // need to reply to user.
348 //
349 if (! $this->replyUser($request))
350 {
351 // failed, log this.
352 $log->fileLogger($this->

getErrorMsg());
353 break;
354 }
355

356 // success, log this.
357 //
358 $msg = "Replied to user completed for

this queued request: " . $request
->getRequestID();

359 $msg .= " / " . $request->
getRequestStatus();

360 $log->fileLogger($msg);
361 break;
362

363 case 5: // REQUEST_FINISHED.
364

25

365 // need to remove this job.
366 //
367 if (! $this->requestRemoved($request

))
368 {
369 // failed, log this.
370 $log->fileLogger($this->

getErrorMsg());
371 break;
372 }
373

374 // success, log this.
375 //
376 $msg = "Removed request : " .

$request->getRequestID();
377 $msg .= " / " . $request->

getRequestStatus() . " as finished
processing!";

378 $log->fileLogger($msg);
379 break;
380 }
381 }
382 }
383

384 /**
385 * requestQueued - adds new request to request queue.
386 * @access public
387 *
388 * @param Request The request object to be added to the queue.
389 * @return bool True if request queued, otherwise False.
390 */
391 public function requestQueued($request)
392 {
393 $mqm = new MysqlQueueManager;
394 $log = new LogManager;
395

396 if (! $mqm->enqueued($request))
397 {
398 parent::setErrorMsg("Unable to enqueue the

given Request...");
399 return FALSE;
400 }
401

402 $msg = "Request enqueued: " . $request->getRequestID()
. " / " . $request->getRequestStatus();

403 $log->fileLogger($msg);
404 return TRUE;
405 }
406

407

408 /**
409 * requestRemoved - deletes request from the request queue.
410 * @access public
411 *
412 * @param Request The request object to be removed from the

queue.
413 * @return bool True if request is remvoed from queue,

otherwise False.
414 */
415 public function requestRemoved($request)
416 {
417 $mqm = new MysqlQueueManager;
418 if (! $mqm->dequeued($request))
419 {
420 parent::setErrorMsg("Unable to dequeue the

given Request...");
421 return FALSE;
422 }
423

424 return TRUE;

26

425 }
426

427

428 /**
429 * showRequests - print queue listing.
430 * @access public
431 *
432 * @return void
433 */
434 public function showRequests()
435 {
436 // dump queue to stdout.
437 //
438 $mqm = new MysqlQueueManager;
439 $mqm->printQueueToScreen();
440 return;
441 }
442

443 /**
444 * requestResultsUpdated - updates the request results of queue

entry in
445 * database.
446 * @access public
447 *
448 * @param Request Request object to be updated.
449 * @return bool True if updated, otherwise false.
450 */
451 public function requestResultsUpdated($request)
452 {
453 $serial_results = serialize($request->

getRequestResults());
454

455 $update = "UPDATE queue ";
456 $update .= " SET requestresults= ’" . $serial_results

. "’ ";
457 $update .= "WHERE requestid = ’" . $request->

getRequestID() . "’;";
458

459 $db = new MysqlDB();
460

461 if (! $db->connected())
462 {
463 parent::setErrorMsg("Unable to connect to

database...");
464 return FALSE;
465 }
466

467 // update returns nr affected rows, should only be one
!

468 //
469 $results = $db->execute($update);
470

471 if ($results != 1)
472 {
473 parent::setErrorMsg("Update of request

results did not affect a single row as it
should have...");

474 return FALSE;
475 }
476

477 // results updated.
478 //
479 return TRUE;
480 }
481

482 /**
483 * requestStatusUpdated - updates the request status from queue

entry in
484 * database.
485 * @access public

27

486 *
487 * @param Request Request object to be updated.
488 * @return bool True if updated, otherwise false.
489 */
490 public function requestStatusUpdated($request)
491 {
492 $update = "UPDATE queue ";
493 $update .= " SET requeststatus = ’" . $request->

getRequestStatus() . "’ ";
494 $update .= "WHERE requestid = ’" . $request->

getRequestID() . "’;";
495

496 $db = new MysqlDB();
497

498 if (! $db->connected())
499 {
500 parent::setErrorMsg("Unable to connect to

database...");
501 return FALSE;
502 }
503

504 // update returns nr affected rows, should only be one
!

505 //
506 $results = $db->execute($update);
507

508 if ($results != 1)
509 {
510 parent::setErrorMsg("Update of request status

did not affect a single row as it should
have...");

511 return FALSE;
512 }
513

514 // status updated.
515 //
516 return TRUE;
517 }
518 }
519

520 ?>

References

Gils, B. v., Proper, H., and Bommel, P. v. (2003a). A conceptual model for infor-
mation suppy. Data & Knowledge Engineering, 51:189–222.

Gils, B. v., Proper, H., Bommel, P. v., and Schabell, E. (2003b). Profile-based
retrieval on the world wide web. In Bra, P. d., editor, Proceedings of the
Conferentie Informatiewetenschap (INFWET2003), pages 91–98, Eindhoven,
The Netherlands, EU.

Gils, B. v., Proper, H., Bommel, P. v., and Vrieze, P. d. (2004). Transformation se-
lection for aptness-based web retrieval. Technical report, Radboud Univer-
sity Nijmegen Institute for Computing and Information Science. accepted
for publication in: Australian Database Conference 2005 (ADC-2005).

28

View publication statsView publication stats

https://www.researchgate.net/publication/241046536

