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A detailed analysis of the He–NHs3S−d van der Waals complex is presented. We discussab initio
calculations of the potential energy surface and fitting procedures with relevance to cold collisions,
and we present accurate calculations of bound energy levels of the triatomic complex as well as
collisional properties of NH molecules in a buffer gas of3He. The influence of the external magnetic
field used to trap the NH molecules and the effect of the atom–molecule interaction potential on the
collisionally induced Zeeman relaxation are explored. It is shown that minute variations of the
interaction potential due to different fitting procedures may alter the Zeeman relaxation rate at
ultralow temperatures by as much as 50%. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1857473g

I. INTRODUCTION

Molecular physics has recently seen a revival due to the
creation of ultracold molecules.1 The research on ultracold
molecules may lead to controlled chemistry, spectroscopy of
unprecedented precision, and quantum computation. Several
different techniques for producing ultracold molecules have
been investigated with spectacular results.2–16The further de-
velopment and extension of experimental techniques rest
upon a close interaction with theory. Theoretical calculations
in the cold and ultracold regimes necessitate extreme accu-
racy that can only be achieved through correspondence with
observations. Subtle details of quantum chemistry tech-
niques, fitting procedures for potential energy surfaces, and
numerical analysis could significantly influence computation
of collisional properties.

While it is known that the cross section for elastic scat-
tering of molecules at ultracold temperatures may change
from zero to infinity by slight variations of the intermolecu-
lar potential, the sensitivity of ultracold inelastic cross sec-
tions to the interaction potential remains an open question.

Even if one applies the most advanced quantum chemistry
methods with large basis sets to obtain accurate intermolecu-
lar potentials, fitting of the computed energy points by an
analytical expression—necessary for calculations of molecu-
lar dynamics—introduces an uncertainty to the potential en-
ergy surface. A calculation of inelastic collision dynamics
with two interaction potentials based on different fitting pro-
cedures provides an indication of the accuracy that can be
achieved in inelastic scattering calculations at ultracold tem-
peratures.

One of the most promising methods for the production
of ultracold molecules relies on buffer-gas cooling.15,16 Mol-
ecules are slowed down to temperatures near or less than 1 K
by thermalization in a precooled buffer gas, usually3He, and
captured in a magnetic trap with strong field gradients. The
trapping efficiency depends critically on rate constants for
elastic and inelastic collisions of the molecules with the
buffer-gas atoms. The molecules are trapped in their low
field–seeking state, which is the Zeeman level with the high-
est energy, and the efficiency of the buffer-gas loading is
determined by the ratio of the rate constants for elastic scat-
tering scoolingd and Zeeman relaxationstrap lossd in colli-
sions with He atoms. The thermalization of the rotational
levels of the molecules occurs at a rate which is usually
comparable to the rate for cooling of the translational mo-

adElectronic mail: rkrems@cfa.harvard.edu
bdElectronic mail: jakl@theochem.ru.nl
cdElectronic mail: gerritg@theochem.ru.nl
ddElectronic mail: avda@theochem.ru.nl

THE JOURNAL OF CHEMICAL PHYSICS122, 094307s2005d

0021-9606/2005/122~9!/094307/8/$22.50 © 2005 American Institute of Physics122, 094307-1

Downloaded 30 Nov 2012 to 131.174.17.23. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.1857473


tion, and the majority of trapped molecules are in their low-
est rotational state. It is therefore important to identify the
mechanisms by which collisions with He atoms induce Zee-
man transitions in rotationally ground-state molecules in or-
der to predict which molecules are amenable to buffer-gas
cooling. The papers of Volpi and Bohn,17 Bohn,18–20 and
Avdeenkov and Bohn21 are the only previous studies of mag-
netic transitions in atom–molecule and molecular collisions.

The buffer-gas loading method was used to produce the
first trapped molecule CaH and experiments are in progress
to trap another polar molecule NH.15,22 The ground elec-
tronic state of CaH has2S+ symmetry, while that of NH has
3S− symmetry. We have recently demonstrated that Zeeman
transitions in collision of rotationally ground-state2S and3S
molecules with He atoms are induced by coupling between
molecular rotational energy levels due to the anisotropy of
the He–molecule interaction.23–26 The Zeeman relaxation in
2S molecules occurs through a three-step mechanism involv-
ing transitions to asymptotically closed rotationally excited
levels and the action of the spin-rotation interaction in the
excited states.23 The Zeeman transitions in collision of3S
molecules with He atoms are induced, on the other hand, by
direct coupling due to the anisotropy of the atom–molecule
interaction potential and the spin-spin interaction in the
molecule.24 The spin-rotation interaction is negligible in
comparison.

In this work, we present an extensive discussion of our
ab initio potential energy surface calculations, fitting proce-
dures suitable for studies of molecular collisions at ultracold
temperatures, bound states of the He–NH complex, and
cross sections for elastic scattering and Zeeman relaxation
over a wide range of collision energies and magnetic fields.
We analyze the difference between the mechanisms of Zee-
man relaxation in2S and3S molecules, and explore the sen-
sitivity of the Zeeman relaxation cross sections to the inter-
action potential. To investigate the accuracy one can hope to
achieve inab initio dynamical calculations, we compute the
Zeeman relaxation cross sections with two analytical fits of
basically the sameab initio potential energy surface. Both
fitting procedures employ large numbers ofab initio data
points and analytical forms based on physical principles, and
they are standard.

II. AB INITIO CALCULATIONS

The electronic potential energy surface for
He–NHsX 3S−d was computed using a supermolecular ap-
proach that defines the intermolecular interaction energy as

DEABsR,ud = EAB
DBsR,ud − EA

DBsR,ud − EB
DBsR,ud. s1d

Using the counterpoise correction method of Boys and
Bernardi27 both the dimer and monomer energies were cal-
culated in the dimer basis. The computations were performed
with theMOLPRO 2000program package.28 TheX 3S− state of
NH is odd under reflection in the plane containing the NH
axis, and for nonlinear He–NH geometries the electronic
ground state of the complex hasA9 symmetry under reflec-
tion in the plane containing all the nuclei.

The geometry of the He–NH complex is described in
Jacobi coordinates: the vectorr joining the atoms in the di-
atomic molecule, the vectorR joining the centers of mass of
NH and He, and the angleu betweenR and r; u=0° corre-
sponds to the NH–He collinear configuration. The NH bond
length was fixed at its equilibrium value ofr =1.0362 Å.29

The potential was calculated independently by two groups
yielding two different sets ofab initio data. Calculations of
potential I were performed for 18 values ofR in the range
from 3.0 to 15.0 bohrssa0d and 19 values ofu ssteps of 10°d
in the interval from 0° to 180°. Potential II was computed on
a grid of 29 points inR and 30 points inu chosen to coincide
with the Gauss–Legendre quadrature points so that the inte-
gration overu required to produce a Legendre expansion of
the potential could be performed without interpolation.

Reference orbitals for spin-restricted coupled-cluster cal-
culations with single, double, and noniterative triple excita-
tions were obtained from spin-restricted Hartree–Fock calcu-
lations. The coupled-cluster calculations were performed in
an all-electron approach. The basis consisted of augmented
correlation-consistent quadruple zeta basis setssdenoted as
aug-cc-pVQZd on the NH molecule and on the He atom. This
basis set was further augmented by a set of bond functions
f3s3p2d2f 1gg centered at the midpoint of the vectorR to
obtain a better description of the dispersion component of the
interaction energy. These bond functions have the following
exponents:sp: 0.9, 0.3, 0.1,df: 0.6, 0.2, andg: 0.3. Addi-
tional calculations with a quintuple zeta aug-cc-pV5Z basis
reproduced well the interaction energy computed with the
aug-cc-pVQZ basis. The minimum computed with this much
larger basis is less than 0.5% deeper.

III. POTENTIAL ENERGY SURFACE

Collisions of molecules at low temperatures are deter-
mined by long-range interaction forces. An analytical form
of the intermolecular potential suitable for studies of ultra-
cold temperature dynamics should provide an adequate de-
scription of the long-range intermolecular potential. Particu-
lar care should be taken with the physical representation of
the angular dependence of the potential energy at large
atom–molecule separations.

An analytic fit to potential I was obtained by a three-step
procedure similar to that described in Ref. 30. First, we fitted
the ab initio points in the interval ofR between 10a0 and
15a0 to a long-range expansion,

VLRsR,ud = o
n=6

7

o
l=0

n−4

Cn,lR−nPlscosud, s2d

Pl being Legendre polynomials. Only even values ofl occur
for n=6, and only odd values forn=7. The fit of the long-
range coefficientsCn,l was obtained using a linear least
squares method with a weighting functionwsRd=R6. Second,
radial fits of the potential energy curves were generated for
every value of the angleu. The parametersC6,0 and C6,2

were fixed at the values obtained in the first step to ensure
the correct long-range behavior. Theab initio points for each
value ofu were fitted to Degli–Esposti–Werner31 functions,
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VsRd = GsRdexps− a1R− a2d − TsRdo
n=6

10

CnR
−n s3d

with polynomials

GsRd = o
j=0

8

gjR
j s4d

and a damping function

TsRd = 1
2f1 + tanhs1 + tRdg. s5d

In this fit, we used the weighting functionwSR wLR with the
short-range part

wSR= flnseV/V0 + e− 1dg−1 s6d

and the long-range part

wLR =
1 + sR/R0d6

V0
, s7d

where V0=C6R0
−6.30 The parameterV0 determines the dis-

tance at which the short-range factor of the weighting func-
tion effectively “switches on.” We set it equal toV0=5uE0u,
whereE0 is the most negativeab initio point, and choseR0

=6.0a0. The parametersai, gj, t, and Cn with n.6 were
optimized for each value ofu with the modified Levenberg–
Marquardt algorithm from theMINPACK set of routines for
nonlinear least squares fitting. The root mean square devia-
tion of one-dimensionals1Dd fits did not exceed 10−3 cm−1.
The error of the radial fit at short range was within 0.01%.
The absolute error in the global minimum region forR
=6.5a0 is 7.2310−5 cm−1 and at R=15.0a0 it is 3
310−4 cm−1. In the region of the van der Waals minimum,
the relative error was 0.0004%, and at long range, it was
smaller than 0.14%, the largest relative error forR=15.0a0.

Finally, using all of the 19 one-dimensional fits, we con-
structed the two-dimensional potential energy surface by ex-
panding the potential in a series of Legendre polynomials
Plscosud,

VsR,ud = o
l=0

11

vlsRdPlscosud. s8d

The coefficientsvlsRd for a givenR were determined from a
linear least squares fit to the data obtained from the previous
1D radial fits. The final error of the expansion in a series of
12 Legendre polynomials of the 19 angular points was about
0.8 cm−1 sor 0.01%d at short rangesR<4.0a0d. In the van
der Waals minimum region atR=6.5a0, the absolute error of
the expansion was about 8310−4 cm−1 or 0.004%, and in the
long range the relative error was 0.01%.

Potential II was directly expanded in a Legendre series
with lmax=11; see Eq.s8d. The potential was computed on a
Gauss–Legendre quadrature grid for the angleu and the ex-
pansion coefficientsvlsRd were obtained by numerical inte-
gration overu, for each point of the radial grid. Next, they
were fitted to the analytical expressions

vlsRd = GlsRdexps− al,1R− al,2d − TlsRd o
n=6

nmax

Cn,lR−n,

s9d

where the coefficientsgl,j in the polynomialGlsRd, of Eq.
s4d, and the parametertl in the damping functionTlsRd, of
Eq. s5d, are selected for each value ofl. For givenl the
values ofn in the long-rangeR−n expansion are restricted by
the condition thatnùl+4 and thatn must be even/odd for
even/oddl. The lowest five values ofn permitted by these
restrictions were included, which makesnmax=23 for l=11.
For the isotropic term withl=0 it was found that terms with
n.8 did not improve the fit, and the long-range expansion
was limited to theR−6 andR−8 terms. In comparison with the
fit of potential I fEq. s3dg, terms with highern were retained
in the asymptotic long-range form. The average error of the
resulting representation of potential II is less than 0.04% and
the maximum error of the analytical fit is 0.83%.

The main difference between the fitting procedures of
the two potentials is the order of the radial and angular fitting
and, consequently, in the truncation of the series of analytical
fitting functions. Figure 1 displays the small differences of
the potentials I and II.sResults presented in the preceding
communication25,26 were obtained using potential II.d Since
we had available these two potentials computed and fitted
independently by two groups, which may both be considered
to be quite accurate, we used them to study the sensitivity of
the elastic and inelastic collision cross sections at very low
temperatures to subtle variations of the potential surface
caused by differences in the fitting procedure and the differ-
ent choice of theab initio points.

A contour plot of potential surface I is shown in Fig. 2.
The global minimum with energy −19.84 cm−1 is found for a
skew T-shaped geometry withR=6.33a0 and u=62.3°.
Saddle points occur at both linear geometries. The lower
saddle point with energy −16.58 cm−1 appears atR=7.20a0

FIG. 1. Difference between the potentials: potential I minus potential II
scm−1d. The cross indicates the position of the minimum in potential I; see
Fig. 2.
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when the He atom approaches the H atom, and the other
saddle point with energy −15.34 cm−1 on the N side occurs
at R=6.74a0.

IV. BOUND STATE CALCULATIONS

To obtain the rovibrational energy levels of the3He–NH
and4He–NH molecules with theX 3A9 potential energy sur-
face, we used the methodology described by Tennyson and
Mettes32 and by Jansenet al.33 The He–NH Hamiltonian can
be written in the space-fixedsSFd coordinate system as fol-
lows:

H =
− "2

2mR

]2

]R2R+
L2

2mR2 + bNHN2 + 2l0s3Sz
2 − S2d/3

+ g0N ·S+ VsR,ud, s10d

wherem is the reduced mass of the complex,N is the rota-
tional angular momentum of NH, andL is the angular mo-
mentum describing the rotation of the vectorR; bNH

=16.343 cm−1 is the rotational constant of NH in its ground
vibrational level;34 l0=0.920 cm−1 andg0=−0.055 cm−1 are,
respectively, the spin-spin and spin-rotation interaction con-
stants for NH.34 The operatorSz gives the component of the
electronic spinS on the NH molecular axis; the expression
for the spin-spin coupling term in SF coordinates is

2l0s3Sz
2 − S2d/3 =

2

3
l0F4p

5
G1/2

Î6

3o
q

s− 1dqY2,−qsr̂dfS ^ Sgq
s2d, s11d

wherer̂ represents the polar angles that describe the direction
of r in the SF frame. The second rank spherical tensor
fS^ Sgs2d is the tensorial product ofS with itself.35 The Leg-
endre expansion in Eq.s8d of the potentialVsR,ud can be
explicitly written in SF coordinates using the spherical har-
monic addition theorem,36

Plscosud = S 4p

2l + 1
Do

ml

s− 1dmlYl,−ml
sR̂dYl,ml

sr̂d, s12d

with R̂ representing the polar angles ofR in the SF frame.
The total angular momentum of the diatomic molecule

j =N+S is a good quantum number atR=`. The spin-spin
and spin-rotation interactions are much smaller than the ro-
tational constantbNH so that the NH molecule is a Hund’s
casesbd system. This implies thatN is approximately a good
quantum number atR=`. The eigenvalues and eigenfunc-
tions of the HamiltonianH are determined variationally with
the basis

xqsRdussNSd jLdJMJl, s13d

wherexqsRd are radial basis functions andussNSd jLdJMJl are
the rotational and spin bases. The basisussNSd jLdJMJl is
obtained by successive Clebsch–Gordan couplings: first the
spherical harmonicsYNMN

sr̂d are coupled with the spin func-
tionstSMS

, then the resulting functions labeled withj andmj

are coupled withYLML
sR̂d to obtain eigenfunctions ofJ2 and

Jz. The total angular momentum operator isJ= j +L and Jz

gives thez component ofJ in the SF frame. The conserved
quantum numbers areJ, its SF projectionMJ, and the total
parity p=s−1dN+L+1. States withNøNmax=10 were included
in the basis setussNSd jLdJMJl. The quantum numbersj andL
take all values allowed by the triangular rule for coupling to
a given value ofJ and parityp. For the radial basisxqsRd we
used 25 Morse oscillator type functions.37 The nonlinear pa-
rametersRe=11.50a0, De=20.90 cm−1, and ve=10.08 cm−1

in this basis were optimized in calculations with a smaller
basis. A grid of 40 points was used for the radial numerical
integration.

To verify our results we repeated the computations of the
rovibrational energy levels in a body-fixedsBFd basis using a
parity-adapted Hund’s casesad representation for the NH
monomer functions withjmax=8. The radial basis in the BF
program consisted of 25 contracted sinc–discrete variable
representation functions38,39 on a grid that ranges fromR
=3.34a0 to 30a0 with step size 0.086a0. The R-dependent
reference potential for the contraction was the isotropic po-
tential, supplemented with a term linear inR. The isotropic
potential has only one bound state and the linear term is
added in order to localize the radial basis in the region of
interest; its slope of 0.2mEH /a0 was variationally optimized
for the bound levels of the complex.

V. SCATTERING CALCULATIONS

The cross sections and rate constants for collisions of
NH molecules with He atoms in a magnetic field were com-
puted using the methodology described in detail by Krems
and Dalgarno.24 The interaction of the molecule with the
magnetic field is added to the Hamiltonian of Eq.s10d in the
form gm0B ·S, whereg=2.0023,m0 is the Bohr magneton,
andB is the magnetic field vector. The total wave function is
expanded in products of rotational and spin functions of the
diatomic molecule and the eigenfunctions of theL2 operator
as follows:

FIG. 2. Contour plot of the He–NHsX 3S−d potential surface—potential I
sin cm−1d. For a 3D plot of potential II, see Ref. 25.

094307-4 Cybulski et al. J. Chem. Phys. 122, 094307 ~2005!

Downloaded 30 Nov 2012 to 131.174.17.23. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



C = o
N

o
MN

o
S

o
MS

o
L

o
ML

FNMNSMSLML
sRdYNMN

sr̂dtSMS
YLML

sR̂d,

s14d

whereMN, MS, andML denote the projections ofN, S, andL
on the magnetic field axis. In contrast with the bound state
calculations in the preceding section, an uncoupled rotational
and spin basis was used here, since the total angular momen-
tum J is not conserved in the presence of an external mag-
netic field.

The matrix elements of the interaction potentialV of
Eqs.s8d ands12d in the SF basis of Eq.s14d can be evaluated
by means of the Wigner–Eckart theorem.40 They are given in
Eq. s12d of Ref. 24. Also the matrix elements of the spin-spin
interaction of Eq.s11d in the uncoupled SF basis have been
evaluated in Ref. 24, Eq.s16d. The matrix elements of the
spin-rotation operator can be readily obtained using the iden-
tity

g0N ·S= g0fNzSz + 1
2sN+S− + N−S+dg , s15d

whereN± andS± are ladder operators.40 They are explicitly
given in Eq.s13d of Ref. 24.

The Hamiltonian matrix atR=` was diagonalized to
yield the collision channelsuaLMLl. They are products of
eigenfunctions of the NH monomer Hamiltonian, labeled by

a, and spherical harmonicsYLML
sR̂d. They are related to the

basis of Eq.s14d by the transformation matrixC, the eigen-
vector matrix atR=`. The scattering cross sections were
then evaluated from the solution of the close coupled equa-
tions at each total energyE,

F d2

dR2 −
LsL + 1d

R2 + 2mEGFaLML
sRd

= 2m o
a8L8ML8

fCTUCgaLML;a8L8ML8
Fa8L8ML8

sRd. s16d

The coupling matrixU comprises the potential energy, the
NH rotational term, the spin-spin and spin-rotation interac-
tion terms, and the Zeeman term in the basis of Eq.s14d.

VI. RESULTS AND DISCUSSION

The bound energy levels of the3He–NH and4He–NH
complexes computed with both potentials are listed in Table
I. Energies are relative to the ground state energy of
NHsX 3S−d. They agree to within about 10−4 cm−1 with the
levels from the calculation in the BF Hund’s casesad repre-
sentation. The intermolecular potential is weakly anisotropic,
and an analysis of the energy levels and the wave functions
shows that to a good approximation the SF quantum numbers
N, j , andL are conserved. Since the binding energyD0 of the
complex, 4.417 and 4.427 cm−1 for the two potentials, is
small in comparison with the rotational constantbNH

=16.343 cm−1, all bound levels correspond to the ground ro-
tational state of NH withN=0 andj =S=1. Stretch excitation
is not allowed and the excited energy levels correspond to
nonzero angular momentumL. There are only ten bound
levels in the complex with4He and seven bound levels in the
complex with 3He. The ground level is characterized byL
<0, odd parity, and total angular momentumJ=1. The ex-
cited levels of4He–NH correspond toL<1,2,3 with an
end-over-end rotational constantBHe–NH of the complex of
0.321 cm−1 and a distortion constant of 0.0013 cm−1. The
3He–NH complex withL<3 is unbound.

The structure of the He–NH complex has been recently
characterized via laser excitation of bands associated with
the NH X 3S-A 3P transition.41 The measurement deter-
mined the rotational constant of the4He–NH complex in the
ground state to beBHe–NH=0.334s2d cm−1, in good agree-
ment with our calculations.

In the absence of the spin-spin and spin-rotation interac-
tions, the levels are threefold degenerate. The spin-spin and
spin-rotation interactions split the levels by not more than
0.004 cm−1. The levels in potential II are consistently more
deeply bound than those in potential I by about 0.01 cm−1.
This is remarkable since the well of potential II, withDe

=19.80 cm−1, is slightly shallower than that of potential I
with De=19.84 cm−1. It can be understood, however, since
potential II is slightly more attractive than potential I forR
values larger than the minimum, cf. Figs. 1 and 2, and the

TABLE I. Bound levels of4He–NH on potential Isin column 4d and potential IIsin column 5d and of3He–NH
on potential Isin column 6d. All the levels correspond to the approximate quantum numbersN=0 andj =1. The
approximate quantum numberL, with the values indicated in column 3, is nearly conserved. Energies are
relative to the ground-state energy of NHsX 3S−d, which is −0.0077 cm−1. Energies in parentheses in column 4
are obtained with the spin-spin and spin-rotation interaction constantsl0 andg0 set to zero.

4He–NH 3He–NH

J Parity L Energyscm−1d Energyscm−1d Energyscm−1d

1 − 0 −4.4174s−4.4174d −4.4266 −3.5218
0 + 1 −3.7790s−3.7818d −3.7883 −2.7692
1 + 1 −3.7832s−3.7818d −3.7925 −2.7727
2 + 1 −3.7815s−3.7818d −3.7909 −2.7713
1 − 2 −2.5365s−2.5375d −2.5462 −1.3256
2 − 2 −2.5385s−2.5375d −2.5481 −1.3268
3 − 2 −2.5372s−2.5375d −2.5469 −1.3260
2 + 3 −0.7536s−0.7538d −0.7634
3 + 3 −0.7542s−0.7538d −0.7640
4 + 3 −0.7537s−0.7538d −0.7636
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bound states have their largest probability in this region, see
Fig. 3. Averaging the difference potential of Fig. 1 over the
density of Fig. 3 reproduces the level shift of about
0.01 cm−1 to within 1%. Figure 3 shows the density distribu-
tion corresponding to the ground-state wave function of
4He–NH with J=1 andL<0, obtained from the calculation
in the BF frame. It is weakly anisotropic and has its maxi-
mum not at the minimum of the potential but atu=0°, where
the potential has its lowest saddle point. The other bound
states withJ=1 sL<1,2d and the state withJ=0 sL<1d
have similar density distributions. The observation of scatter-
ing resonances in3He–NH cold collisions will provide a
further sensitive test of the presentab initio calculations.

It was shown in our previous communication25,26that the
rate constant for elastic collisions of NH with3He is much
larger than the rate constant for collisionally induced Zeeman
sinelasticd relaxation of NH at a temperature of 0.5 K and an
external magnetic field of 100 G=0.01 T. The large values
of the elastic-to-inelastic ratios indicated that the buffer-gas
loading of NH will not be impeded by collisional spin depo-
larization. The magnetic traps of the buffer-gas loading ex-
periments have an inhomogeneous field that varies from 0 to
4 T. In order to make definitive predictions as to the effi-
ciency of the buffer-gas loading, an analysis of the elastic-
to-inelastic ratio as a function of collision velocity and mag-
netic field over a wide range of these variables is needed.
Figure 4 presents the ratio of rate constants for elastic scat-
tering and Zeeman relaxation in NH–3He collisions in mag-
netic fields from 0 to 3 T and collision energies from 10−4 to
1 K. The inelastic cross section was summed over both the
Ms8=0 and Ms8=−1 Zeeman relaxation channels of
NHsN<0,S=1,MS=1d. The elastic scattering rate constant
is independent of the magnetic field. It has a magnitude of
the order of 10−10 cm3 s−1 at temperatures 0.5–1 K.

The energy transport rate constant that is usually mea-
sured in the buffer-gas cooling experiments is similar to the
elastic rate constant. At 0.5 K, it is smaller than the elastic
rate constant by about 30%.25 In the limit of low tempera-
tures, the elastic cross section is independent of the collision

energy and the rate constant is proportional toÎT.42 Zeeman
transitions must be accompanied by a change of the orbital
angular momentum in the collision. So the Zeeman relax-
ationsor reorientation of the magnetic momentd cannot occur
at zero temperature in the absence of a magnetic field. In a
finite magnetic field, the Zeeman relaxation is an inelastic
process and the Zeeman transitions are determined by the
centrifugal barrier only in the incoming collision channel.
Thus, the threshold behavior of the inelastic rate constant
changes from~T5/2 at zero magnetic field to a temperature
independent constant at finite magnetic fields.42,43The results
shown in Fig. 4 clearly reflect this behavior. The elastic-to-
inelastic ratio decreases to a great extent in the vicinity of a
scattering resonancescf. Fig. 2 of Ref. 25d indicating that the
inelastic cross section is much more sensitive to resonances
than the elastic cross section.

In order to explore the sensitivity of the Zeeman relax-
ation to the interaction potential, we computed the cross sec-
tions at the magnetic field strength of 0.01 T in the energy
interval between 10−6 and 2 cm−1 using both potentials. Al-
though the potentials I and II are very similar, the Zeeman
relaxation cross sections computed with potential II are
larger than the cross sections obtained with potential I by as
much as 40%–50% in the limit of zero collision energy. The
difference becomes smaller at higher energies and is less
than 10% at collision energies greater than 0.2 cm−1.

We have demonstrated previously23–25 that the mecha-
nism driving Zeeman transitions in rotationally ground state
S molecules depends on the spin multiplicity of the elec-
tronic state. In2S molecules24 the coupling between the Zee-
man energy levels must originate from the spin-rotation op-
erator in Eq. s15d and there is no coupling between the
Zeeman levels at very low temperature when only the ground
state withN=0 is populated. The Zeeman transitions occur
through a three-step mechanism involving rotationally ex-
cited molecular levels and the action of the spin-rotation in-
teraction in the excited states.23,24 The Zeeman levels in3S
molecules are coupled directly by the interaction potential24

due to the spin-spin interaction in the molecule, Eq.s11d, that
mixes the rotational levels withN=0 andN=2. The coupling

FIG. 3. Contour plot of the density distribution corresponding to the ground
state withJ=1 andL<0. The density is obtained by integrating the square
of the wave function over all coordinates exceptu andR.

FIG. 4. Ratio of cross sections for elastic scattering and Zeeman relaxation
in collisions of rotationally ground-state NH molecules with3He atoms.
1 K=0.695 cm−1, note the misprint in the figure captions of Ref. 25.

094307-6 Cybulski et al. J. Chem. Phys. 122, 094307 ~2005!

Downloaded 30 Nov 2012 to 131.174.17.23. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



can be expressed in terms of the matrix elements of the an-
isotropic interaction potential, cf. Eqs.s8d ands12d, connect-
ing theN=0 andN=2 levels. The splitting between the ro-
tational levels with differentN depends on the rotational
constant of the diatomic molecule and, therefore, the rate of
the Zeeman relaxation in both2S and3S molecules must be
sensitive to the magnitude of the rotational constant.

Figure 5 shows the dependence of the cross sections for
the Zeeman relaxation in collisions of a diatomic molecule
BC with 3He on the rotational constantb of BC. The He–NH
interaction potential and the computer program for3S
molecule–He collisions were used for this calculation. The
lower curve corresponds to the calculation in which the spin-
spin interaction in the Hamiltonian is omitted. This omission
makes the electronic state of the BC molecule to be effec-
tively of 2S molecular symmetry. The cross section is ap-
proximately proportional to 1/b2 for the 3S molecule and to
1/b4 for the 2S molecule, as for CaH.

It is instructive to compare the cross sections for Zeeman
relaxation in CaH–3He and NH–3He collisions. The ground
electronic state of CaH is2S+. The reduced masses of the
CaH–3He and NH–3He complexes are similar. The equilib-
rium distance of CaH is 3.80a0 and that of NH is 1.96a0. As
a result, the rotational constant of CaH is about 1/4 of the
rotational constant of NH. Figure 6 compares the cross sec-
tions for Zeeman relaxation in CaH–3He and NH–3He col-
lisions. The spin-spin interaction in NH was omitted for this
calculation. The cross section for Zeeman transitions in CaH
is more than five orders of magnitude larger. According to
the 1/b4 dependence in the cross section for2S molecules
the factor of1

4 in the rotational constant would suppress the
cross section by a factor of 256. The fact that the actual ratio
is much largers<105–106d is due to the different anisotro-
pies of the He–NH and He–CaH interaction potentials. The
CaH molecule is more stretched than NH and the interaction
potential of the He–CaH complex is much more anisotropic

than the He–NH potential. The calculation with the spin-spin
interaction and a magnetic field of 100 G reveals a similar
dependence of zero energy Zeeman relaxation on the inter-
action anisotropy: the cross section computed with the
He–CaH potential is about five to six orders of magnitude
larger than the cross section obtained with the He–NH po-
tential. These tests indicate that the Zeeman relaxation in
collisions of rotationally ground-state2S and 3S molecules
with He atoms is extremely sensitive to the anisotropy of the
atom–molecule interaction potential.

VII. SUMMARY

We have completed a comprehensive study of the
He–NH complex. We have generated an accurate potential
for the He–NH interaction and computed bound energy lev-
els of the complex. The effects of the molecular fine structure
on the energies of the bound states have been investigated;
future spectroscopic measurement of these energies will pro-
vide a sensitive test of the potential surface. A detailed study
of elastic and inelastic collisions of NH with3He is pre-
sented. We have discussed the mechanisms of the Zeeman
relaxation in collisions of diatomic molecules in the2S and
3S states with structureless atoms such as He and analyzed
the effects of external magnetic fields on the collisionally
induced Zeeman relaxation in molecules. While the elastic
cross section is independent of the magnetic field in the in-
terval between 0 and 3 T, the Zeeman relaxation cross sec-
tion rapidly increases with the magnetic field strength at ul-
tralow collision energies. Both the rotational constant of the
diatomic molecule and the anisotropy of the He–diatomic
molecule interaction potential appear to have a strong influ-
ence on the rate constants for Zeeman relaxation. The Zee-
man relaxation cross section at ultralow energies is ex-
tremely sensitive to the atom–diatomic molecule interaction

FIG. 5. Zeeman relaxation in collisions of a diatomic molecule BC with3He
as a function of the rotational constant of BC. Circles, accurate calculations;
squares, calculations without the spin-spin interaction. The rotational con-
stant is given in units ofbNH.

FIG. 6. Zeeman relaxation in collisions of CaH with Hessolid curved and
NH with He sdashed curved at zero magnetic field. The spin-spin interaction
of NH is omitted for these calculations.
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potential: a slight variation of the potential surface due to
differences in fitting procedures modifies the inelastic cross
section at zero energy by as much as 50%.
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