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The KEM-DEM methodology for designing hybrid encryption is being used

in several projects aimed at evaluating or eventually standardizing crypto-

graphic primitives. In this work we revisit one of the elliptic curve based

KEMs studied to become standards, namely PSEC-KEM. Its security is

based on different assumptions related to the elliptic curve discrete loga-

rithm problem. First of all, we point out that PSEC-KEM has a non-tight

security reduction to the Computational Diffie-Hellman (ECDH) problem.

This obvious fact has been surprisingly ignored in the literature, or even

contradicted. This remark has a direct consequence: the security of PSEC-

KEM with the current 160 key bits length for elliptic curve cryptography

is not guaranteed using only the reduction to ECDH. Fortunately, we show

that previous security proofs for PSEC-KEM can be straightforward modi-

fied to obtain a tight reduction to the so-called Gap-ECDH problem. This

seems to be the first time that such a reduction has been released into the

public domain. Finally, we raise some doubts on the widespread opinion

that ECIES-KEM offers less security guarantees than PSEC-KEM.

Keywords: standardization, public-key cryptography, provable security, key en-

capsulation mechanisms, efficient reductions.

INTRODUCTION

A key encapsulation mechanism (KEM) is a probabilistic algorithm that pro-

duces a random symmetric key and an asymmetric encryption of that key. Using

this random key in a suitable encryption scheme (referred to as a data encapsula-

tion mechanism-DEM), a secure hybrid encryption of arbitrary long messages is
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obtained. The problem of designing secure DEMs in the standard model is effi-

ciently solved using well-known cryptographic techniques (cf. [CS03]). Therefore,

designing secure hybrid encryption schemes within the KEM-DEM methodology

is reduced to designing secure KEMs.

Three elliptic curve based KEMs have been under scrutiny for eventual

standardization (for instance in [Sho04, NES03a, CRY03]), namely, ACE-KEM,

ECIES-KEM and PSEC-KEM. Their security relies on different problems related

to the elliptic curve discrete logarithm (ECDL). PSEC-KEM use the Random

Oracle (RO) heuristic [BR93] in its security proof; while ACE-KEM and ECIES-

KEM can be proven secure either in the RO model or the standard model. These

schemes were first proposed as KEMs in [Sho01], the ISO standard draft for public

key encryption by Victor Shoup, while in their original form they were submitted

by IBM, Certicom and NTT corporations, respectively.

From a practical point of view, it is agreed that using a 160 bit key size in

these KEMs suffices to meet the current demanded security level. Thus, this

parameter does not allow to difference between them. Therefore, comparisons

take into account the underlying hard problem used in their security proofs, their

computational cost or their resistance against physical attacks (cf. [NES03a]).

Regarding PSEC-KEM and ECIES-KEM, the literature mostly considers PSEC-

KEM more secure than ECIES-KEM. The main reason argued is that, in the RO

model, the latter reduces to a stronger hardness assumption than the former.

Our contribution. In the first place, we find out that there is no evidence

in the literature supporting that PSEC-KEM with a 160 bits key size results

in a secure implementation for the current security level. This is because its

security reduction to the ECDH is not efficient enough. In fact, we show that

using the existing security reduction, a key size providing security guarantees

should be of roughly 280 bits. Surprisingly, one even finds in the literature claims

stating that PSEC-KEM has a tight security reduction to ECDH (for instance

in [Shi01, Men01]). Our next goal, then, is to find some reasonable security

argument for using a 160 bit key length.

In second place, we show that the security proofs for PSEC-KEM can be

straightforward modified to obtain a tight reduction to an easier but still conjec-

tured hard problem, namely, the Gap-ECDH problem. The new reduction does

not appear in the previous literature and enables the use of the short key size

with security guarantees.
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Finally, we review the security comparison between ECIES-KEM and PSEC-

KEM at the light of these new considerations. It is generally agreed that PSEC-

KEM offers better security guarantees than ECIES-KEM. The main reason ar-

gued to support this (see [Men01, Shi01, Den02, NES03b] is that the security

of ECIES-KEM in the RO model is reduced to the Gap-ECDH problem, while

PSEC-KEM is reduced to the potentially harder ECDH problem. However, the

only practical reduction known for PSEC-KEM is the one we present, and that

means using the tight reduction to the Gap-ECDH problem. On the other hand,

security arguments in the standard model are known for ECIES-KEM, but not for

PSEC-KEM. Our point of view is that we can not claim that one of the schemes

is more secure than the other from a provable security point of view with the

information currently available.

The rest of this work is organized as follows. In Section 2, the key ingredi-

ents about PSEC-KEM and ECIES-KEM are summarized as well as their main

security properties found in the literature. In Section 3, a secure key size for

PSEC-KEM is computed using the inefficient security reduction to the ECDH

problem. Since the key size obtained is longer than desired, in Section 4 we show

the reduction of PSEC-KEM to the Gap-ECDH problem, which provides secu-

rity guarantees in the Random Oracle model for this KEM with a short key size.

Finally, we end in Section 5 with some remarks about the security comparison

between PSEC-KEM and ECIES-KEM.

PSEC AND ECIES SECURITY PROPERTIES AVAILABLE IN THE LITERA-
TURE

We first summarize some notation. If p is a positive integer, then |p| denotes

the length of its binary representation. If A is a non-empty set, then x, y ← A

denotes that x, y have been uniformly and independently chosen from A. On the

other hand, if A is a probabilistic polynomial time (PPT) algorithm, then x← A
denotes that x is the output of A. Hash and KDF denote a hash function and

a key derivation function, respectively (cf. [CS03]). Let us recall the definition

of Key Encapsulation Mechanism (KEM).

Preliminaries

Definition 1 (Key Encapsulation Mechanism) A KEM consists of three al-

gorithms:
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– A key generation algorithm K, a probabilistic algorithm which takes as

input a security parameter 1` and outputs a public/secret-key pair (pk, sk).

– An encapsulation algorithm E, a probabilistic algorithm taking as inputs

a security parameter 1` and a public key pk and returning an encapsulated

key-pair (K,C), with K ∈ {0, 1}p(`), C ∈ {0, 1}q(`), for some polynomials

p, q ∈ Z[`].

– A decapsulation algorithm D, a deterministic algorithm that, on inputs a

security parameter 1`, an encapsulation C and a secret key sk; outputs a

key K or a special symbol ⊥ meaning there was a failure in the execution

of the algorithm.

It is required to be sound, that is, for almost all (pk, sk)← K(1`), and almost all

(K, C)← E(1`, pk) we have that K = D(1`, C, sk).

Roughly speaking, a KEM is said to have indistinguishability against chosen-

ciphertext attacks (IND-CCA) if an adversary with access to a decapsulation

oracle can not distinguish between encapsulations of a fix and a randomly gener-

ated key (see [CS03] for details).

Elliptic curve discrete logarithm problems. Let Ea,b(Fq) denote the group

of points of the elliptic curve

Ea,b : y2 = x3 + ax + b

over the prime finite field Fq, q > 3. For finite fields with characteristic 2 or 3, the

equation defining an elliptic curve takes different forms [Men93]. Let Gp = 〈P 〉
be a cyclic group of prime order p, where P ∈ Ea,b(Fq). Then:

– The discrete logarithm (ECDL) is the problem of finding u when given

(P, uP ), where u← Zp.

– The computational Diffie-Hellman problem (ECDH) is the problem of find-

ing uvP when given (P, uP, vP ), where u, v ← Zp.

– The decisional Diffie-Hellman problem (ECDDH) is the problem of distin-

guishing (P, uP, vP, uvP ) from (P, uP, vP, wP ), where u, v, w ← Zp.

– The Gap Diffie-Hellman problem (Gap-ECDH) is the problem of finding

uvP when given (P, uP, vP ) and an oracle O that correctly solves the de-

cisional Diffie-Hellman problem, where u, v, w ← Zp.

– The Oracle Diffie-Hellman problem (ODH) is the problem of distinguishing

(P, uP, vP, H(uvP )) from (P, uP, vP, K), where H : {0, 1}∗ → {0, 1}hlen is
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a suitable hash function, u, v ← Zp, K ← {0, 1}hlen , and an oracle Hv

which answers H(zvP ) when queried with zP is available. The query uP

is not allowed.

It is assumed that u, v, w ← Fq. Notice that all three KEMs are intended

to be performed on random elliptic curves [BSS99], so all these problems are

assumed to be intractable. All of them are well established, except for the gap-

ECDH problem, which was formally introduced in [OP01]. It is an open problem

to establish all the relations between them. In fact, we rigorously know little more

than the obvious reductions, which are ECDDH infeasible⇒ ECDH infeasible⇒
ECDL infeasible; Gap-ECDH infeasible ⇒ ECDH infeasible and ODH infeasible

⇒ ECDH infeasible. Thus, the best way known to attack these problems in a

general elliptic curve is to solve ECDL. The fastest method for solving ECDL on

a random elliptic curve is the Pollar % method [Pol78], which runs in exponential

time
√

πq/2 for a group with q elements. It is unknown whether there exist

groups for which the ECDH problem is substantially easier than the ECDL prob-

lem, while the ECDDH problem appears to be easier than the ECDH problem in

general. We refer the reader interested in the state of the art to [MW00].

Criterion 2 (Concrete security) The efficiency of a reduction is the relation-

ship between an attacker who breaks the cryptosystem with probability at least ε

in time t, doing less than qD calls to a decryption oracle, and less than qK calls to

an oracle for a hash or a KDF function; and the implied (t′, ε′) solver against the

corresponding trusted cryptographic assumption. Such an attacker is referred as

a (t, ε, qD, qOi
) attacker for short. Following the usual terminology, the security

reduction is tight if t′

ε′ ≈ t
ε
, and not tight if t′

ε′ > qD
t
ε
. The tighter is the reduc-

tion, the smaller is the gap between the computational efforts needed to break the

scheme and to solve the underlying problem. The optimal tightness is achieved

with very tight reductions.

Criterion 3 (Security level) To be consistent with the time units commonly

used in the literature, we use the sentence a problem P has a 2t security level to

say that, an attacker against P , running in time less than 2t 3-DES encryptions

(cf. [LV01]), has a negligible success probability. The current demanded security

level is 280.
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Previous security claims

A schematic description of these algorithms can be found in Table 1. The first

step of the key generation algorithm in the schemes studied is to build a suitable

curve E, together with a point P that generates a secure cyclic subgroup Gp of

E, with prime order p. Moreover, p is of size `, where ` is the security parameter.

So we will assume that the key generation algorithm takes the group parameters

(E, P, p, `) as input.

ECIES-KEM

(pk, sk)← K(E,P, p, `) (K, C)← E(pk) K ← D(C, sk)
1. s← Z∗

p 1. r ← Z∗
p 1. Q := sC

2. W := sP 2. C := rP 2. If Q = O
3. pk := (E,P, p,W, `) 3. Set x the output ⊥ and halt
4. sk := (s, pk) x-coordinate of rW 3. Set x x-coord. of rW
5. Output (pk, sk) 4. K = KDF (C||x) 4. K = KDF (C||x)

5. Output (K, C) Output K

PSEC-KEM

(pk, sk)← K(E,P, p, `) (K, C)← E(pk) K ← D(C, sk)
1. s← Z∗

p 1. r ← {0, 1}` 1. Parse C as (C1, C2)
2. W := sP 2. H := KDF (032||r) 2. Q := sC1

3. pk := (E,P, p,W, `) 3. Parse H as t||K 3. r := C2 ⊕KDF (132||C1||Q)
4. sk := (s, pk) 4. α := t mod p 4. H := KDF (032||r)
5. Output (pk, sk) 5. Q := αW 5. Parse H as t||K

6. C1 := αP 6. α := t mod p
7. C2 := r ⊕KDF (132||C1||Q) 7. If C1 6= αP,
8. C := (C1, C2) output ⊥ and halt
9. Output (K, C) 8. Output K

Figure 1: Description of ECIES-KEM and PSEC-KEM

A so-called key derivation function KDF has been used in these KEMs. This

function can be considered as a hash function for our purposes. In Table 1 We

summarize the exact security results known for the KEMs we are interested in,

along with the reference where these results come from. In these expressions, qK

denotes the number of queries made to the KDF oracle, LG is the time needed

to check a Diffie-Hellman triple in G, and SRq is the time needed to compute a

square root modulo q. We point out that in the ECIES-KEM security reduction

claimed in [Den02], the authors do not take into account the time to compute
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Scheme Assumption Reduction Random Reference
Oracle

ECIES-KEM gap-ECDH ε′ ≈ 2ε Yes [CS03, Den02]
t′ ≈ t + qK(2LG + SRq)

ODH ε′ ≈ 2ε No [ABR01]
t′ ≈ t

PSEC-KEM ECDH ε′ ≈ 2
qD+qK

ε Yes [Sho01]
t′ ≈ t

Table 1: IND-CCA KEMs exact security

a square root in Fq, which is needed in order to obtain the two points in E(Fq)

that have a given x-coordinate.

Since the ODH problem is a non-traditional Diffie-Hellman related problem,

it has been paid more attention to the security of ECIES-KEM in the RO model.

As we can see, ECIES-KEM presents a very tight reduction to the Gap-ECDH

problem; while PSEC-KEM has a non tight reduction to the ECDH problem, due

to the factor qD + qK dividing ε. However, this feature in the reduction for PSEC

has been mostly ignored by the literature, and even one can find claims stating

that this reduction is tight (see [Men01, Shi01]). In this way, in Table 2 we find

lengths for some parameters related to these KEMs that have been proposed for

the 280 IND-CCA security level in each scheme. To compute them, the usual way

is to set that in a random curve Gap-ECDH or ECDH problems have complexity

similar to the ECDL problem. The table assumes that the field size is similar

to the group size p ∼ q which is usually assumed in the applications. However,

we point out that in the proposals for a security parameter for PSEC-KEM in

the literature has not been taken into account its security reduction. Indeed, we

show in the next section that a larger parameter is needed if the only security

argument available is the reduction to ECDH.

KEM Problem Exponentiations (K, C) length Security
in Enc/Dec 16-Byte Keys parameter

ECIES Gap-ECDH 2/1 36 160
PSEC ECDH 2/2 56 160

Table 2: Claimed performance features over random curves (byte lengths using a point
compression technique)
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COMPUTING THE SECURITY PARAMETER FOR PSEC-KEM UNDER ECDH
PROBLEM

Let us assume that the IND-CCA security of PSEC-KEM is (t, qD, qK , ε)-

broken by some adversaryA. Since this adversary can be run repeatedly (with the

same input and indepedent internal coin tosses), the expected time to distinguish

a real encapsulation from random with advantage roughly 1 is t/ε. Thus, the

security parameter of the scheme is nPSEC = log(t/ε) = n + m, where n = log t

and m = log(1/ε).

Usually, qD ≤ 230 (that is, up to one billion decryption queries are allowed),

and qK ≤ t = 260. We also consider that evaluating a KDF function is a unit

operation. Setting m = 0 and n = 80, we obtain nPSEC = 80, that is, a 280

security level in each scheme. Using the reduction in Table 1, we obtain an

algorithm B that solves ECDH with

t′ ≈ t = 280 and ε′ ≈ 1/260.

From this expression, an advantage roughly 1 in the IND-CCA game implies that

the solver computes ECDH successfully with probability roughly 2−60 in time

t′ = 280. However, an algorithm solving ECDH with probability roughly 1 is

needed to find the parameter length. The reason is that in practice the compu-

tational hardness of these problems is estimated for algorithms effectively giving

a solution. Running the algorithm B with independent internal coin tosses 260

times and returning the most frequent answer, ECDH is solved with probability

roughly 1. The computational effort needed to do this is 260 · 280 = 2140. Then

PSEC-KEM reduction to ECDH is only meaningful for subgroups in which the

best way known to solve ECDH requires at least 2140 basic operations. Assuming

that ECDH and ECDL problems have equivalent hardness over a random elliptic

curve, we conclude that PSEC-KEM needs a subgroup Gp with |p| ≈ 280, since

the best attack known runs in exponential time
√

p.

Obviously, we are interested in using PSEC-KEM with a shorter security

parameter, namely, with a 160 bits security parameter. To do this, a new security

argument is needed, this time with a tight reduction.
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PSEC-KEM UNDER THE GAP-ECDH ASSUMPTION

In the case of the PSEC-KEM security proof in [Sho01], the solver of the

ECDH problem makes use of a (t, qD, qK , ε) adversary against the IND-CCA

security of PSEC-KEM to generate a list of qD + qK elements containing the

solution uvP to the instance (P, uP, vP ) with probability roughly ε. Since in a

random curve the ECDDH problem is assumed to be intractable, we were forced

to output an element of the list chosen uniformly at random, so the probability

was decreased by a factor qD + qK . The reduction is then not tight. However, if

we are given access to a DDH oracle solver, then we can find the correct value

uvP by testing the entries on the list, obtaining thus a solver of the Gap-ECDH

problem with probability roughly ε within time t+(qK + qD)LG, where LG is the

time needed to check a Diffie-Hellman tuple. Therefore, PSEC-KEM has a tight

security reduction to the Gap-ECDH problem.

It is possible to give another security reduction, this time using the DDH

oracle inside the reduction. It suffices with applying Theorem 3 in [Den03], but

giving all parties DDH oracle access. In fact, the theorem by Dent gives a security

reduction for a generalization of PSEC-KEM using an asymmetric encryption

scheme with suitable properties.

Let us compute its security parameter for the 280 security level under the

Gap-ECDH problem. We can assume that evaluating the ECDDH oracle takes a

time unit. Then, as done in the previous section, we set nPSEC = 80 and m = 0,

obtaining t′ ≈ 280 +260 and ε′ ≈ 1/2, obtaining a solver for the Gap-ECDH prob-

lem with expected time 280. Assuming that Gap-ECDH and ECDL problems

have similar complexity, a 160 bits key size is enough to guarantee PSEC-KEM

security, since the best attack known against ECDL is Pollard % method.

IS PSEC-KEM MORE SECURE THAN ECIES-KEM?

There is a widespread opinion that PSEC-KEM is more secure than ECIES-

KEM. As already explained in the introduction, it is argued that ECDH as-

sumption is more reliable than Gap-ECDH assumption, and then PSEC-KEM

offers more security than ECIES-KEM. Indeed, this argument was crucial in the

decision in the NESSIE project to not include ECIES-KEM in its portfolio of rec-

ommended cryptographic primitives [NES03b]. Several sources from where the

preference for PSEC-KEM can be traced are [Men01, Shi01, Den02].
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However, the only argument for secure efficient implementations of PSEC-

KEM is the reduction to the Gap-ECDH problem, which we have presented in

this work. We think it is not longer possible to maintain that the assumptions

supporting the security of PSEC-KEM are more reliable than the assumption

of ECIES-KEM, since the former uses one of the assumptions of the latter to

argue its security in efficient implementations. On the other hand, very little

attention has attracted the fact that ECIES-KEM is a derivative of the scheme

DHIES [ABR01], which has been proven secure in the standard model under a

non-standard discrete logarithm related assumption. As far as we know, there is

no security argument for PSEC-KEM in the standard model.

For these reasons, we think that it can not be set up a strict security compar-

ison between these schemes with the information currently available. We hope

that the concerns raised in this work will help to better fix the security properties

of these schemes.
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