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A bstract
Causal independence modelling is a well-known m ethod both  for reducing 
the size of probability tables and for explaining the underlying mecha­
nisms in Bayesian networks. Many Bayesian network models incorporate 
causal independence assum ptions; however, only the noisy O R  and noisy 
AND, two examples of causal independence models, are used in practice.
Their underlying assum ption th a t either a t least one cause, or all causes 
together, give rise to  an effect, however, seems unnecessarily restrictive.
In the present paper a new, more flexible, causal independence model 
is proposed, based on the Boolean threshold function. A connection is 
established between conditional probability distributions based on the 
noisy threshold model and Poisson binomial distributions, and the basic 
properties of this probability distribution are studied in some depth. The 
successful application of the noisy threshold model in the refinement of a 
Bayesian network for the diagnosis and treatm ent of ventilator-associated 
pneum onia dem onstrates the practical value of the presented theory.

1 Introduction
Bayesian networks offer an appealing language for building models of domains 
with inherent uncertainty. However, the assessment of a probability distribu­
tion in Bayesian networks is a challenging task, even if its topology is sparse. 
This task becomes even more complex if the model has to  integrate expert 
knowledge. While learning algorithms can be forced to  take into account an 
expert's view, for the best possible results the experts must be willing to  recon­
sider their ideas in light of the model’s ‘discovered’ structure. This requires a 
clear understanding of the model by the domain expert. Causal independence 
models can both limit the number of conditional probabilities to  be assessed 
and provide the ability for models to  be understood by domain experts in the 
field. The concept of causal independence refers to  a situation where multiple 
causes independently influence a common effect.

Many actual Bayesian network models use causal independence assump­
tions. However, only the logical OR and AND operators are used in practice 
in defining the interaction among causes; their underlying assumption is that 
the presence of either at least one cause or all causes at the same time give
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rise to  the effect. The resulting probabilistic submodels are called noisy OR 
and noisy AND, respectively. Our feeling is tha t in building Bayesian-network 
models, the expressiveness of the noisy OR and noisy AND is too restrictive. 
In this paper, we discuss a way to  expand the space of causal independence 
models using symmetric Boolean functions. It is known th a t any symmet­
ric Boolean function can be decomposed into threshold functions [15]. Thus, 
threshold functions offer a natural basis for the analysis of causal independence 
models. Causal independence models with the threshold interaction function 
are the main topic of this paper. They will be referred to  as the noisy threshold 
models.

The remainder of this paper is organised as follows. In the following section, 
the basic properties of Bayesian networks are reviewed. Causal independence 
models and Boolean functions are introduced in Section 3 as is the noisy thresh­
old model. In Section 4, we establish a connection between the noisy threshold 
model and Poisson binomial distribution, and provide an interpretation of the 
relevant properties of this distribution. Section 6 offers results on the applica­
tion of the presented theory to  the refinement of an existing medical Bayesian 
network model. Finally, in Section 7, we summarise what has been achieved 
by this research.

2 R eview  of Bayesian N etw orks
A Bayesian network B  =  (G, Pr) represents a factorised joint probability dis­
tribution on a set of random variables V. It consists of two parts: (1) a qualita­
tive part, represented as an acyclic directed graph (ADG) G =  (V(G), A(G)), 
where there is a 1-1 correspondence between the vertices V(G) and the ran­
dom variables in V , and arcs A(G) represent the conditional (in)dependencies 
between the variables; (2) a quantitative part P r consisting of local probability 
distributions P r(V  | n (V )), for each variable V  G V  given the parents n (V ) 
of the corresponding vertex (interpreted as variables). The joint probability 
distribution P r is factorised according to  the structure of the graph, as follows:

P r(V ) =  [ J  P r(V  | n (V )).
V ev

Each variable V G V  has a finite set of mutually exclusive states. In this 
paper, we assume all variables to  be binary; as an abbreviation, we will often 
use v to  denote V =  T  (true) and v to  denote V =  ±  (false). Variables V can 
either act as free variables, in which case their binding is arbitrary, or they can 
act as bound variables, where bindings are established by associated operators. 
Furthermore, an expression such as

g (h , . . . , I n )

stands for summing over all possible values of g (I1, . . . ,  I n) for all possible values 
of the variables I k for which the constraint r̂ ( I 1, . . . ,  I n) =  e holds.
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Figure 1: Detailed structure of part of the VAP model. Only three of the seven 
bacteria included in the model are shown. Boxes stand for collections of similar 
vertices. Solid arcs stand for atemporal stochastic influences, whereas dashed 
arcs indicate temporal influences. Abbreviations of names of bacteria: PA =  
Pseudomonas aeruginosa, HI =  Haemophilus influenzae, SP =  Streptococcus 
pneumoniae.

Consider the Bayesian network, shown in Figure 1, th a t provides motivation 
for the methods developed in this paper. Ventilator-associated pneumonia, or 
VAP for short, is a low-prevalence disease occurring in mechanically-ventilated 
patients in critical care and involves infection of the lower respiratory tract. 
VAP is associated with signs and symptoms such as fever, sputum production, 
abnormal chest X-ray and high numbers of white blood cells. As diagnosing and 
treating a disorder in medicine involves reasoning with uncertainty, a Bayesian 
network was constructed as the primary tool for building a decision-support 
system to support clinicians in the diagnosis and treatm ent of VAP [11]. The 
Bayesian network models the temporal process of colonisation of the mechani­
cally ventilated patient by bacteria during stay in the critical care unit, which 
may, but need not, give rise to  VAP with its associated signs and symptoms. 
This process is represented in the left part of the network. In addition, the ef­
fects of particular antimicrobial drugs, represented by the vertex ‘antibiotics’, 
is modelled in the network in terms of coverage of the bacteria by these an­
tibiotics (each bacterium is only susceptible to  some antibiotics and not too 
all). If a particular antibiotic covers many bacteria it is said to  have a broad 
spectrum; otherwise, its spectrum is narrow. Prescription of broad spectrum 
antibiotics promotes the creation of resistance of bacteria to  antibiotics, and 
should therefore be avoided if possible. Thus, the problem for the clinician is 
to  ensure th a t the spectrum of antibiotic treatm ent is as narrow as possible, in
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Figure 2: Causal independence model.

order to  prevent the occurrence of resistance, while still covering as many of 
the bacteria as possible.

The Bayesian network model shown in Figure 1 includes two vertices where 
probabilistic information has been expressed in terms of logical operators; the 
conditional probability distribution defined for the variable ‘pneumonia’ was 
defined in term s of a logical OR, whereas the distribution for the variable 
‘coverage’ was defined in term s of the logical AND. We will return to  the 
meaning of these definitions below.

3 C ausal M odelling and B oolean Functions

3.1 C ausal ind ep endence

Causal independence (also known as independence of causal influence) [6, 16] 
is a popular way to  specify interactions among cause variables. The global 
structure of a causal independence model is shown in Figure 2; it expresses 
the idea th a t causes C 1, . . .  ,C n influence a given common effect E  through 
intermediate variables I 1, . . . ,  I n and a deterministic function f , called the in­
teraction function. The impact of each cause Ci on the common effect E  is 
independent of each other cause Cj , j  =  l. The intermediate variable I i is 
considered to  be a contribution of the cause variable Ci to  the common effect 
E. The function f  represents in which way the intermediate effects Ii, and 
indirectly also the causes C i, interact to  yield the final effect E. Hence, the 
function f  is defined in such a way th a t when a relationship, as modelled by the 
function f , between I i; l =  1 , . . . ,  n, and E  =  T  is satisfied, then it holds tha t 
e =  f  ( I i , . . . ,  I n). It is assumed th a t Pr(e | I 1, . . . ,  I n) =  1 if f  (I1, . . . ,  I n) =  e, 
and Pr(e | I 1, . . . , I n) =  0 if f  (I1, . . . , I n ) =  e. The smallest possible causal 
independence model has two cause variables.

A causal independence model is defined in terms of the causal parameters 
P r ( I  | Ci), for l =  1 , . . . ,  n. An assumption underlying the causal independence 
models introduced in [12] is th a t absent causes do not contribute to  the effect. 
In term s of probability theory this implies th a t it holds th a t P r( ii | vi) =  0. As 
a consequence, it holds tha t Pr(vi | vi) =  1. In this paper we make the same 
assumption.

The conditional probability of the occurrence of the effect E  given the causes 
C1, . . . ,  Cn, i.e., Pr(e | C1, . . . ,  Cn), can be obtained from the causal parameters
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P r(I l | Cl) as follows [12, 16]:

n
Pr(e | C1, . . . ,C n )  =  e  n Pr(Ii | Ci). (1)

In this paper we assume tha t the function f  in Equation (1) is a Boolean 
function. Systematic analyses of the global probabilistic patterns in causal 
independence models based on restricted Boolean functions was presented in
[12] and [8]. However, there are 22 different n-ary Boolean functions [4, 15]; 
thus, the potential number of causal interaction models is huge. However, if 
we assume th a t the order of the cause variables does not m atter, the Boolean 
functions become symmetric [15] and the number reduces to  2n+1.

An im portant symmetric Boolean function is the exact Boolean function ei , 
which has function value true, i.e. ei(I1, . . .  , I n) =  T, if X j =1 v (I j) =  l with 
v (I j) equal to  1, if I j is equal to  true and 0 otherwise. Symmetric Boolean 
function can be decomposed in term s of the exact functions ei as follows [15]:

where Yi are Boolean constants only dependent on the function f . For example, 
for the Boolean function defined in terms of the OR operator we have y0 =  ±  
and Y1 =  . . .  =  Yn =  T.

Another useful symmetric Boolean function is the threshold function Tk, 
which simply checks whether there are at least k trues among the arguments, 
i.e. Tk (I1, . . . ,  I n) =  T, if X j =1 v (Ij ) > k with v (Ij ) equal to  1, if I j is equal 
to  true and 0 otherwise. To express it in the Boolean constants we have: 
Y0 =  ■ ■ ■ =  7 fc_1 =  X and Yk =  ■ ■ ■ =  yp =  T. Obviously, any exact function 
can be written as the subtraction of two threshold functions and thus any 
symmetric Boolean function can be decomposed into threshold functions.

The interaction among variables modelled by the pneumonia and coverage 
variables, as shown in Figure 1, was modelled by assuming f  to  be an OR and 
an AND, respectively. This corresponds to  threshold functions Tk with k =  1 
for the OR, and k =  n for the AND. Hence, these two Boolean functions can 
be taken as two extremes of a spectrum of Boolean functions based on the 
threshold function. As by definition a patient has pneumonia independent of 
the specific bacterium causing pneumonia, the logical OR appeared to  be the 
right way to  model the interactions between the pneumonia variables. However, 
as argued before, clinicians need to  be careful in the prescription of antibiotics 
as they have a tendency to  prescribe antibiotics with a spectrum th a t is too 
broad. This casts doubts about the appropriateness of the logical AND for the 
modelling of interactions concerning coverage of bacteria by antibiotics. Using 
the threshold function Tk with k =  1,n, may result in a better model. In 
the following we therefore investigate properties of the threshold function, and 
subsequently study its use in improving the Bayesian network model shown in 
Figure 1.

n
(2)
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3.2 T he noisy  th reshold  m odel

Using the property of Equation (2) of the symmetric Boolean functions, the con­
ditional probability of the occurrence of the effect E  given the causes C 1, . . . ,  Cn 
can be decomposed in term s of probabilities th a t exactly l intermediate vari­
ables I 1 , . . . , In are true, as follows:

n
Pr(e | C 1, . . . , C n ) =  £  ] T  J j P r ( I i  | Ci). (3)

0 < i < n ei(Ii,...,In) i=1
Y l

Thus, Equation (3) yields a general formula to  compute the probability of the 
effect in terms of exact functions in any causal independence model where an 
interaction function f  is a symmetric Boolean function.

Let us denote a conditional probability of the effect E  given causes C 1, . . . ,  Cn 
in a noisy threshold model with interaction function Tk as P rTk (e | C1, . . . ,  Cn). 
Then, from Equation (3) it follows that:

n
Pr Tk (e | C1 , . . . , C n ) =  £  ] T  [ ] P r ( I i  | Ci). (4)

k<i<n ei(Ii,...,I„) i=1

4 The Poisson B inom ial D istribution
It turns out th a t causal independence models defined in terms of the Boolean 
threshold function, as discussed above, are closely connected to  the so-called 
Poisson binomial distribution known from statistics. Before establishing this 
connection, we review some its its relevant properties and discuss what these 
properties mean.

4.1 Its  defin ition  and relationsh ip  to  th e  noisy threshold  
m odel

Let l denote the number of successes in n independent trials, where pi is a 
probability of success in the ith  trial, i =  1 , . . . ,  n; let p =  (p1, . . . ,  pn). The 
trials are then called Poisson trials [5], and B(l; p) denotes the Poisson binomial 
distribution [3, 10]:

B(l; p ) = { n (1 - pi ^  e  n ^ jpj-  (5)
li=1 J 1<ji<...<ji<n z=1 j-

The Poisson trials have mean, defined as ß  =  1 ^IL i. pi , and variance, defined 
as <r2 =  1 n=1 (pi —ß )2. When the variance ct2 =  0, i.e., the success probability 
pi is a constant p, the trials are called Bernoulli trials and B(l; p) reduces to 
the binomial distribution: B(l;p) =  (! )p l(1 — p)n_ l.

As it was assumed th a t absent causes do not contribute to  the effect it 
follows th a t the conditional probabilities P rTk (e | C1, . . . ,  Cn) depend only on
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the ‘active’ causes, i.e., causes Ci th a t are equal to  T. Let L =  {l | Ci =  T, l =
1 , . . . ,  n}, and let r  be a bijective renumbering function, r  : L ^  { 1 , . . . ,  |L|}, 
th a t respects the to tal order < on the natural numbers, i.e., if l < l', l , l ' G L, 
then r(l) < r(l') . Then, p (C 1 , . . . ,C n )  =  {P  (ii | ci) | l G L} =  {p1 , . . .  ,p |L |}, 
where P r(ii | ci) =  pr(i), for each l G L.

Then, the connection between the Poisson binomial distribution and the 
causal independence model using the noisy threshold function is as follows.

P ro p o s itio n  1 It holds that:

PrTk (e | C 1 , . . . ,C n ) =  B(l; p(C1 , . . . ,C n ) )  (6)
k<i<|p(Ci,...,C„)|

P ro o f: Note th a t in Section 3.2 ^ ei(Ii I ) n r =1 P r(I i | Ci) was defined as 
the probability th a t exactly l intermediate variables I 1;. . . , I n are true. An 
intermediate variable I i can be seen as an independent trial which has a prob­
ability of success p i =  P r(ii | Ci), which is equal to  0 if Ci =  ± , and otherwise 
equal to  P r(ii | ci). Thus, in order to  find the probability th a t exactly l in­
termediate variables are true it is enough to  look only at those intermediate 
variables th a t have a corresponding active cause. The set of the probabilities 
of such intermediate variables has been defined as p (C 1;. . . ,  Cn). Considering 
the definition of the Poisson binomial distribution in Equation (5), Equation
(4) yields what is stated in the premise of this proposition. □

If the number of active cause variables is smaller than  the threshold k the 
conditional probability of the effect equals zero as it is shown in the following 
corollary.

C o ro lla ry  1 Let |p (C 1;. . . ,  Cn) | < k, 1 < k < n, then P rTk (e | C1, . . . ,  Cn) =
0.

P ro o f: This follows directly from Equation (6). □

From Proposition 1 it follows th a t in a noisy threshold model with interac­
tion function Tk and n cause variables, ^ k=01 (n) of the probabilities P rTk (e | 
C1, . . . ,  Cn) are set to  0, while the other ^ n = k (n) conditional probabilities of 
the effect such th a t p(C1, . . . , C n) > k are computed from the corresponding 
Poisson binomial distributions.

In comparison, the noisy AND model has only one conditional probability 
of the effect th a t is computed, i.e. Pr(e | C1, . . . ,  Cn) with p(C1, . . . ,  Cn) =  n, 
while the other conditional probabilities are set 0. In the noisy OR model only 
the conditional probability Pr(e | C1, . . . ,  Cn) with p(C1, . . . ,  Cn) =  0 is set to
0 and the other conditional probabilities in the model are computed.

In the remainder of the paper, we review some probabilistic results for 
the Poisson binomial distribution. We also present examples illustrating the 
discussed properties. We use both n and p to  define the cardinality of the set p: 
n is used while discussing the properties of the Poisson binomial distribution 
and p is employed to  analyse these properties in the context of noisy threshold 
models.
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4.2 S ta tistica l characterisation
4-2.1 Mean and variance

The mean mp of the distribution B(i; p) is by definition equal to
n

Mp =  E i B (i; p ) ’
i=0

and the variance ap is equal to

n
a p =  E (i -  Mp)2B(i; p ) .

i=0

By means of some algebraic manipulation it can be shown th a t the mean mp 
and variance ap obey the following equations: mp =  nM and ap =  n^(1 — m) — 
n a 2 [5]. In words: the mean of the Poisson binomial distribution mp is equal to 
the sum of the probabilities p 1;. . .  ,pn . The variance ap increases as the set of 
probabilities (p1;. . .  ,pn) tends to  be more and more homogeneous and attains 
its maximum as they become identical. Therefore, in the noisy threshold models 
a larger difference between the conditional probabilities P r( ii | Ci) causes a 
smaller variability of the success probability B(l; p).

4-2.2 Mode

The mode m p of the Poisson binomial distribution B(l; p) is defined as a local 
maximum. Darroch has shown th a t [2]:

Í l if l < Mp < l +  i+p
l or l +  1 or both if l +  j+p < mp < l +  1 — n—1+1 (7)

l +  1 if l +  1 — n—1+1 < Mp < l +  1

where 0 < l < n. Thus, the most probable number of successes m p differs from 
the mean mp by less than  1.

4-2.3 Shape of the Poisson binomial distribution 

The Poisson binomial distribution is ‘bell-shaped’ [2]:

• the probabilities B (—1; p), B(0; p),B (1; p ) , . . . , B(n; p ) , B(n+1; p) strictly 
increase and then strictly decrease, except th a t there may be at most two 
equal maxima;

• the probabilities B (—2; p), B( —1; p), B(0; p ) , . . . , B(n; p ),B (n+ 1; p ) , B (n+  
2; p) first increase convexly and then concavely, and then decrease con­
cavely and then convexly.

The largest probabilities B(l; p) are concentrated around the mode m p of the 
Poisson binomial distribution and the probabilities B(l; p) decline in the right 
and left tails. From this property it follows th a t combined knowledge of the
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mode of the Poisson binomial distribution and the Boolean constants y0 , . . . ,  yp 
can give some insight into the conditional probabilities of the effect E  in the 
noisy threshold models.

5 A pproxim ations o f the Poisson Binom ial 
D istribution

Since the Poisson binomial distribution has a complicated structure it is often 
approximated by other distributions tha t have well-known properties.

5.1 P oisson  approxim ation

denote the Poisson distribution. The following bound on the total variation 
distance between the Poisson binomial distribution and the Poisson distribution 
was established in [10]:

Thus, the Poisson approximation will be accurate whenever the probabilities 
P1 , . . . ,  are small.

We used the Kullback-Leibler divergence [9],

to  measure the distance between the Poisson binomial distribution and the 
Poisson approximation. Figure 3 plots the Kullback-Leibler divergence between 
the Poisson binomial distribution with mean u p =  0.1, 0.2,0.3,0.4, 0.5 and the 
Poisson approximation. It is not surprising th a t the approximation becomes 
more accurate as the number of probabilities n increases, i.e., the value of 
u =  — decreases.' n

Figure 4 illustrates how accurate the Poisson approximation is for the Pois­
son binomial distribution B(1; p) when probabilities are small: 
p =  (0.01, 0.06, 0.09, 0.11, 0.14, 0.19).

5.2 N orm al approxim ation
Another approximation for the Poisson binomial distribution found in the prob­
abilistic literature is the approximation by the standard normal distribution 
[1, 13]. Let

Let

(8)

n
(9)

(10)

9



0.016

0.014
o
v  0.012

;§ 0.008

¿  0.006 o
J  0.00413

0.002

0
2 4 6 8 10 12

number of cause variables that are true

mean of the distribution = 0.1 — i— 
mean of the distribution = 0.2 —  x— 
mean of the distribution = 0.3
mean of the distribution = 0.4 ...
mean of the distribution = 0.5 —

\ j

\  \
\ \

- ■. . . . . . . . . .............

Figure 3: Kullback-Leibler divergence between the Poisson binomial distribu­
tion and the Poisson approximation.

number of intermediate variables that are true

Figure 4: Poisson binomial distribution approximated by the Poisson distribu­
tion.

denote the normal density function, and let 

$ (z) =  / ^(x)dx. (11)

Then for every Poisson binomial distribution B  with mean mp , variance ap

max
0 <l<n i=0

l - Mp <
0.7975

(12)

Thus, we see th a t the normal approximation is accurate when the standard 
deviation of the Poisson binomial distribution

ap =  \Jn  (m(1 -  m) -  a 2)

is large, i.e., when n ^  <x.

ap p
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number of cause variables that are true

Figure 5: Kullback-Leibler divergence between the Poisson binomial distribu­
tion and the normal approximation.

number of intermediate variables that are true

Figure 6: Poisson binomial distribution approximated by the normal distribu­
tion.

Let

be an approximation of B(i; p). We use the Kullback-Leibler divergence K(B, N) 
to  measure the distance between the Poisson binomial distribution and the nor­
mal approximation.

Figure 5 shows a plot of the Kullback-Leibler divergence between the Pois­
son binomial distribution and the normal approximation for the probabilities 
(p i , . . .  ,pn) tha t have the same mean m =  0-6 but differ in variance a 2 and 
number of probabilities n. We can see th a t the accuracy of the approximation 
improves when either the variance a 2 or the number of probabilities n increases.

Figure 6 shows the accuracy of the normal approximation for the Poisson 
binomial distribution by an example: p =  (0.2, 0.4, 0.6, 0.8, 0.8, 0.99), i.e.
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the standard deviation of the distribution is high ap =  0.985.
The Poisson binomial distribution can also be approximated by the bino­

mial distribution [14]. The binomial approximation is accurate whenever the 
variance a 2 is small.

6 E xperim ental R esults
In Section 2, we have described a Bayesian network, shown in Figure 1, tha t 
is aimed at assisting clinicians in the diagnosis and treatm ent of patient with 
VAP in the critical-care unit. It was noted tha t a limitation of the present 
Bayesian network model is th a t it attem pts to  cover every possible bacterium 
by which the patient is being colonised, even if it is normally unlikely tha t 
VAP is caused by every possible bacterium included in the model at the same 
time. Such behaviour was accomplished by defining the interaction between the 
individual coverage vertices, each of them  with an incoming arc from a coloni­
sation vertex and the antibiotic vertex, by means of a logical AND. This results 
in the prescription of antibiotic treatm ent with a spectrum th a t is very often 
too broad. The hypothesis we investigated was, therefore, whether any noisy 
threshold model with function Tk, where 1 < k < 7, would yield a performance 
superior to  th a t of the noisy AND model.

Initial experimentation with various Bayesian networks obtained by replac­
ing the noisy AND by a noisy threshold model showed th a t for k =  1 ,2 , . . . ,  7 
the noisy threshold model yielded posterior probability distributions where for 
k =  1, 2 the antibiotics prescribed were always very narrow, even when the 
patient was assumed to  have an infection caused by 5 different bacteria. For 
k =  5, 6 the antibiotics prescribed were always broad-spectrum antibiotics.

Further experimental results were obtained by applying Bayesian networks 
with the noisy AND and noisy threshold model for k =  3 and k =  4 to  the 
time-series data of 6 different patients. At each time point, each of the these 
Bayesian networks was used to  compute the spectrum of the antibiotics consid­
ered optimal. The results are summarised in Table 1. On average, the results 
obtained by the noisy threshold model with k =  4 are best, as it never pre­
scribed broad-spectrum antibiotics; in addition, it did not prescribe antibiotics 
with very narrow spectrum if the infection was caused by 2 or 3 bacteria. In 
conclusion, replacing the noisy AND model by a noisy threshold model did give 
rise to  performance improvement of the Bayesian network.

7 D iscussion
In this paper, we expanded the space of possible causal independence models 
by introducing new models based on the Boolean threshold function, which 
we have called noisy threshold models. It was shown th a t there is a close 
connection between the probability distribution of noisy threshold models and 
the Poisson binomial distribution from statistics. We have investigated what 
the well-studied properties of the Poisson binomial distribution mean in the
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Table 1: Results of the prescription of antibiotics to  6 patients with VAP caused 
by 1, 2 or 3 bacteria using various causal independence models, in comparison to 
the clinician. Abbreviations of antibiotic spectrum: v: very narrow; n: narrow; 
i: intermediate; b: broad. As some of the patients were colonised by different 
bacteria at different days, there are 10 cases of the prescription of antibiotics.

# B a c te r ia
M o d el 1 2 3

C lin ic ian 3n2i 1i3n 1i
N oisy  th re sh o ld  (k =  3) 5v 4v 1v
N oisy  th re sh o ld  (k =  4) 3v2n 4n 1n
N oisy  A N D 1i4b 1b3i 1i

context of these newly introduced models. The noisy threshold models can be 
looked upon as spanning a spectrum of causal independence models with the 
noisy OR and noisy AND as extremes.

Even though this paper has focused on the conditional probability distribu­
tions of noisy threshold models, most of the presented theory can be exploited 
as a basis for the assessment of probability distributions of causal independence 
model where the interaction function is defined in terms of symmetric Boolean 
functions. This is a consequence of the fact th a t any symmetric Boolean func­
tion can be decomposed into a disjunction of Boolean exact functions in con­
junction with Boolean constants. This basic property indicates th a t the theory 
developed in this paper has an even wider application, which, however, still 
needs to  be explored.

Finally, it was shown th a t the noisy threshold model is also useful from a 
practical point of view by using it as a basis for the refinement of an existing 
real-world Bayesian network.
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