
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The version of the following full text has not yet been defined or was untraceable and may

differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/32462

 

 

 

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16120587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/32462


arX
iv:

con
d-m

at/0
508

333
v1 

[co
nd-

ma
t.st

at-
me

ch]
 1

4 A
ug 

200
5
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(Dated: February 2, 2008)
We consider electron self-trapping due to its interaction with order-param eter fluctuations at the 

second-order phase-transition or critical point (for example, at the Curie tem perature in magnetic 
or ferroelectric semiconductors). Using Feynman pa th  integral approach the autolocalization energy 
and the size of the self-trapped sta te  (fluctuon) are estim ated. It is shown th a t the fluctuon states 
are connected with the Lifshitz tail of the electron density-of-states, the param eters of this tail being 
determ ined by the critical exponents.
PACS num bers: 71.23.An, 64.60.Fr, 75.10.Lp, 75.40.Cx

T he in teraction  of the charge carrier in a sem iconduc­
to r w ith some order-param eter fluctuations can d ra sti­
cally change its s ta te  leading to  a self-trapping, or au­
tolocalization [1, 2, 3, 4 , 5, 6, 7]. This phenom enon is 
of crucial im portance, for exam ple, for so ho t sub ject as 
phase separation  in m agnetic sem iconductors and colos­
sal m agnetoresistance m aterials [5, 6, 7], where the m ag­
netization  plays the role of the order param eter. Since 
the band  m otion of the electron is easier (and, hence, the 
bandw id th  is larger) for ferrom agnetically ordered sta te  
the electron in antiferrom agnetic or m agnetically  disor­
dered surrounding creates a ferrom agnetic region (m ag­
netic polaron, “ferron” [6], or “fluctuon” [2]) and tu rn s 
our to  be self-trapped in th is region. Recently, the for­
m ation  of the m agnetic polaron in ferrom agnetic semi­
conductors E uB 6 and, possibly, EuO , has been observed 
(see Refs.8, 9 and references therein). The order param ­
eter can be also of different origin, e.g., electric polariza­
tion  in ferroelectric sem iconductors, or crystallographic 
order param eter in ordered alloys [2]. Phase transitions 
in helium  m onolayers [10] and ultraco ld  a tom  system s in 
optical lattices [11] m ight be novel in teresting  examples.

T he “driving force” of the self-trapping is always a 
band  narrow ing in disordered s ta te  in com parison w ith 
the com pletely ordered one. This in tu itive view [12] can 
be confirmed by a rigorous consideration for the classi­
cal s — d exchange ( “K ondo la ttice” ) m odel on the Bethe 
la ttice  [5]; however, for the  real lattices it is actually  not 
very accurate. It  was dem onstrated  already in a semi­
nal paper by B rinkm an and Rice [1] th a t  the  band  edges 
do no t depend on the degree of spin disorder and the 
band  narrow ing m eans ra th e r the decrease of the elec­
tro n  density-of-states (DOS) m om enta, the DOS near the 
edges being exponentially  small in the  disordered sta te  
(Lifshitz tails [13, 14]). The fluctuons (we will use th is 
te rm  to  em phasize th a t  the  m agnetic origin of the order 
p aram eter is actually  no t relevant for the problem  under 
consideration) are connected w ith  the Lifshitz tails.

T he autolocalization region becom es larger when the 
energy goes closer to  the  band  edge (and the edge it­
self corresponds to  the s ta te  w ith com plete ordering in

the whole crystal) [1]. T he consideration of the fluc- 
tuon  problem  is crucially dependent on the ra tio  of the 
autolocalization rad ius l to  ano ther scale of the system , 
namely, the  correlation length  £. In  particu lar, a s tan ­
d ard  phenom enological consideration [2] is inapplicable 
a t the  critical point (or the point of the second-order 
phase transition), where £ ^  ro. At the  same tim e, this 
case is especially in teresting  since the fluctuations near 
the  critical point are strongest and the self-trapping con­
ditions fulfill m uch easier in th is case. Here we present a 
theory  for the Lifshitz DOS tails and fluctuon sta te s a t 
the  critical point T  =  Tc.

Following Refs. 3, 4 we will use the p a th  integral varia­
tional approach developed by Feynm an for the problem  of 
polaron in ionic crysta l [15, 16]. For simplicity, we s ta r t  
w ith the case of a scalar o rder-param eter acting  only on 
the  o rb ita l m otion of the electron and no t on its spin (for 
exam ple it m ay be the critical point in ferroelectrics); 
some generalization will be considered further. Then, in 
continuum  approxim ation, the H am iltonian of the sys­
tem  consisting of the electron and  the order-param eter 
field can be w ritten  in a simple form

H  =  H f ( < p ) + H e (r,p),  U e ( v ^ )  =  - l- V l - g V [v) (1)
where we have chosen the un its h =  m  = 1, m  is the 
electron effective mass, r  is th e  electron coordinate, p  (r) 
is th e  order-param eter field w ith  its own H am iltonian 
H f  (p) and g is the  coupling constant; we will choose it in 
such a way th a t  p  varies between — 1 and 1. The partitio n  
function of the whole system  m ay be transform ed to

Z  = T r e- ^H /(v )-^ He(r,v)

=ZW Trr TT exp r p/ He ( r ,p  (r,T )) d r
J 0

(2)

where 3  =  T -1  is the  inverse tem pera tu re , Z f  =  
T rv (v) is the p a rtitio n  function of the field, 
p  (r,T ) =  eTHf (v)p  (r) e-TH f (v) and

( M v ) ) f  =  ^ T V - ^ U ( p )  (3)f Z f

f
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is the  average over the  field states. Here we will consider 
only classical case where T-dependence of the field can be 
neglected. Using Feynm an path-in teg ral approach [16, 
17, 18] and tak ing  average over p  yields for the electron- 
only free energy

T =  - ^ ( I n Z - l n Z f )  =  - ^ l n  ƒ  e~s V  [r ( r ) ] ,
r(0)=r(P)

where S 0 +  S int is the effective action,
<-PS o —

2 dr
m  rP r P

r  ( r )

Si,
gm rp rp
m - Jo Jo

and K m ( r 1; ...; r m) are the  m -th  cum ulant correlators, 
defined recursively by

K 1 ( r i ) =  (p  ( r i )) f  ,
K  ( r 1; r 2) =  (p  ( r 1) p  ( r 2) ) f — K 1 ( r 1) K 1 ( r 2) , . . .  (6)

etc. F u rther we consider only the case of K 1 = 0 .
To estim ate F  we use the sam e tria l action as in Refs.3,

4 , S t =  So +  S Pot where

th a t  for the G aussian tria l action S t one has
m —1

exp { K j [r (tj ) —r  (Tm )]
j =1
1 — 1

exp
j,k=i

(4)

(5)

(11)
where D  is th e  space dim ensionality, K j are the  wave- 
vectors.

For the  sta tes in the  ta il the  variational param eter w 
satisfies the inequalities (3lv 1 and uj << W  =  
where K max is the  Debye wave vector and W  is of order 
of the  electron bandw id th  (the last inequality  ju s t m eans 
th a t  the fluctuon size I = \ j \ f2 io  is m uch larger th an  
in teratom ic distance). Thus we have [3, 4]

T  ^  -  £  ^7 ^  •••> x

exp
3=1 <3 = 1

m^ 1 n D dD K 311 ( ^ D  3=1 (2n)
(12)

<J2 i'P r p
Spot =  4^  Jo  Jo  ^  ^  ~~ r  ^  dTda’ ^

the  oscillator frequency w being tria l p aram eter (in con­
tra s t  w ith R ef.15 we do not in troduce any re ta rd a tio n  in 
the tria l action since our field is supposed to  be sta tic). 
T hen the Peierls-Feynm an-Bogoliubov inequality  applied 
to  Eq. (4) reads

(8)

where

i  e S tD  [r ( t )],r(0)=r(P)
{A )t — i  A [r (t)] ePFt StD  [r (t)]r(0)=r(P)) t r(0)=r(P)

which is equivalent to
2 r P r P

(9)

K >0 Jo
gm fP r P

m=2
m ) t 3

3=1
(10)

To proceed, we will pass to  the Fourier transform s of 
the  cum ulants K m ( K i , K m _ 1) and take into account

where i l D is th e  un it la ttice  volume. If one can ne­
glect th e  K -dependence of the cum ulants th is sum  can 
be transform ed [3, 4] to  the phenom enological expression 
[2] in term s of the fluctuation  free energy in homogeneous 
field created  by the electron. This assum ption works not 
too  close to  the  critical point where l ^  £. At the c rit­
ical point th is assum ption can be never used. Instead, 
the  scaling properties hold [19]

Km  (K 1, ..., Km — 1) =  a (2—n)(m — 1)Km (a K 1, ..., «Km  — 1)
(13)

where n is th e  anom alous dim ensionality critical expo­
nent. M aking replacem ent of variables by K j  = ^ /q x j,  
where q =  w /W , and further re tu rn ing  to  the real space 
coordinates conjugate to  K j, we get

D W (Pqd/2) '

/ P m
••• ƒ K m ( r 1 •¡•••, r m) n u d  (rj )dD Tj 

3=1
D W q -  q d/2f  \qd/2UD (r) (14)

where d =  D  — 2 +  n is the anom alous space dim ension­
ality,

, K ma^ D/2 ^ n ( r ) = g [  — exp ( ~ ^ K l axr 2 (15)

1
2

2
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is the po ten tia l localized w ithin Debye sphere around 
r  =  0 ; f  [U(r)] is the change of the free energy of the 
fluctuations b a th  upon sw itching an external po ten tia l 
U (r) on.

E arlier [3] we considered the G aussian approxim ation 
(only the te rm  w ith m  =  2 in E q .(14)) which is applicable 
for no t too  large coupling constants. To consider the 
s ta te s near the band  edge E  =  —g we have to  sum  up the 
series (14). To th is end, we em ploy the fact th a t  u D (r) is 
v irtually  D -dim ensional delta  function for typical r  >  l. 
Further, to  avoid ultravio let divergencies, we re tu rn  to  
the  d iscrete-lattice Ising model, where p r  =  ± 1 . In  th is 
fram ework we adop t th a t  the above po ten tia l acts only 
a t site r* =  0, viz. u D (r*) =  gSr i ,0 . This assum ption 
can only affect some num erical coefficients of order of 
un ity  in the following estim ations. T hen in the lim it of 
gqd/2 ^  1 corresponding to  the sta te s near the band  edge 
one obtains

ƒ qdl ‘1u D ( r ) - - « ^ / 2  +  I l n G c3 (16)

where G D =  (Sv(0) . This is ju s t a num ber larger 
th an  1 which can be calculated if all necessary correlation 
functions are known. For the Ising m odel w ith nearest- 
neighbor in teraction  J , one can easily derive

G ^ 1 =  exp (3 c F f) n (cosh 3 c J  +  p ri sinh 3 c J ) \
W  / f

(17)
where z is the  nearest-neighbor num ber and F f  is the 
Ising model free energy per site a t T  =  Tc =  3 —1.

S ubstitu ting  E q .(16) in to  E q .(14) and m inim izing w ith 
respect to  q one finds for the optim al fluctuon size

lo = 1 1 f W  D
^m axi/?0  ^ ”max \ ^ c  2dAllG jj

and for the  fluctuon energy

l
d +  2

dd + 2

(18)

(19)

The fluctuon forms only a t F 0 <  0. This requirem ent 
yields necessary condition for the self-trapping, which 
reads

T  —  <  W
D 2 2d g 

2 d \n G D \D ~ + V ~ D W
-P + r? 

2
(20)

where the band  is assum ed wide in the sense th a t  W  ^  g. 
In the case opposite to  one given by E q .(20) the G aussian 
approxim ation works [3].

The estim ation (16) does no t work for the system s w ith 
continuous broken sym m etry  such as X Y  or Heisenberg 
model; in th a t  case some logarithm ic corrections arise. 
To be specific, let us consider th e  case of the X Y  model

where p  =  cos 6 w ith  the  angle 6 d istribu ted  on the in­
terval [0, 2n). Then, instead  of E q .(15), the following 
asym ptotic takes place

f[q d/2u D (r)] ~  - g q d/2 + j  In 9<1 ƒ  ° D3 2 (21)

w ith  a constan t G D given by G ^ 1 =  (S (60) ) f , where 
the  average is w ith  X Y  m odel on discrete lattice. After 
m inim ization one has, instead  of E q .(19)

Fo = -g-\— ^-j-DWqo,
2 f  r_  ( 2 d T \ — * \  G d g 

q° \ D W J  | 11 2e T
2d T  
~ D W

d  d  +  2
2

d + 2

(22)

This expression can be applied, for exam ple, for the 
case of two-dim ensional X Y  model up  to  the K osterlitz- 
Thouless tran sitio n  [19, 20] where the correlation func­
tions decay by power-low w ith  the distance and d =  n 
grows linearly  w ith the  tem peratu re .

Using the results obtained  for the fluctuon energy 
one can restore the asym ptotic of DOS N  (E ) near the 
band  edge E  =  —g. To th is end we use the  Laplace 
transfo rm ation  connecting the p a rtitio n  function Z  (3) =  
exp [—3 F  (3)] and the DOS

Z  (3) =  N  (E ) e—'3EdE , (23)

inverse transform ation , and the saddle point m ethod; the 
corresponding asym ptotics are connected by the so called 
T auberian  theorem s; th is approach was used by Fried­
berg and L u ttinger [21] to  ob ta in  the  Lifshitz ta il for 
disordered system s. To em ploy th is in our trea tm en t, we 
consider the inverse tem pera tu re  3  in Eqs. (19), (22) 
as a param eter, except the constan t G D and, possibly, 
critical exponents. Acting sim ilarly to  the derivation of 
Eq.(2.19) of R ef.[21] one can find the Lifshitz ta il in the 
critical point for the discrete order param eter

- f D W  \ d/2
V 4e J ln G D (24)

and for the  X Y  model

ln N  (E ) <x —
m

d/2
ln

1
d +  1

where in bo th  cases e =  E  +  g.
O ur final results m ean th a t  for the case of discrete 

order param eter such as in the  Ising m odel the m ain dif­
ference between the Lifshitz ta ils a t the  critical point and 
above the critical region is ju s t a replacem ent of the space 
dim ensionality D  by the anom alous space dim ensionality

OO
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d =  D  — 2 +  n. For the case of continuous order param e­
te r additional logarithm ic stre tch ing  of Lifshitz exponent 
emerge.
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