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Abstract
LISA (Laser Interferometer Space Antenna) is a proposed space mission, which will use coherent 

laser beams exchanged between three remote spacecraft to detect and study low-frequency cosmic 

gravitational radiation. In the low-part of its frequency band, the LISA strain sensitivity will be 

dominated by the incoherent superposition of hundreds of millions of gravitational wave signals 

radiated by inspiraling white-dwarf binaries present in our own galaxy. In order to estimate the 

magnitude of the LISA response to this background, we have simulated a synthesized population 

that recently appeared in the literature. Our approach relies on entirely analytic expressions of the 

LISA Time-Delay Interferometric responses to the gravitational radiation emitted by such systems, 

which allows us to implement a computationally efficient and accurate simulation of the background 

in the LISA data. We find the amplitude of the galactic white-dwarf binary background in the 

LISA data to be modulated in time, reaching a minimum equal to about twice that of the LISA 

noise for a period of about two months around the time when the Sun-LISA direction is roughly 

oriented towards the Autumn equinox. This suggests that, during this time period, LISA could 

search for other gravitational wave signals incoming from directions that are away from the galactic 

plane. Since the galactic white-dwarfs background will be observed by LISA not as a stationary but 

rather as a cyclostationary random process with a period of one year, we summarize the theory of 

cyclostationary random processes, present the corresponding generalized spectral method needed to 

characterize such process, and make a comparison between our analytic results and those obtained 

by applying our method to the simulated data. We find that, by measuring the generalized spectral 

components of the white-dwarf background, LISA will be able to infer properties of the distribution 

of the white-dwarfs binary systems present in our Galaxy.
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I. INTRO DUCTIO N

The Laser Interferometric Space Antenna (LISA) is a space mission jointly proposed to the 

National Aeronautics and Space Administration (NASA) and the European Space Agency 

(ESA). Its aim is to detect and study gravitational waves (GW) in the millihertz frequency 

band. It will use coherent laser beams exchanged between three identical spacecraft forming 

a giant (almost) equilateral triangle of side 5 x 106 kilometers. By monitoring the relative 

phase changes of the light beams exchanged between the spacecraft, it will extract the 

information about the gravitational waves it will observe at unprecedented sensitivities [1 ].

The astrophysical sources th a t LISA is expected to observe within its operational fre­

quency band (10-4  — 1 Hz) include extra-galactic super-massive black-hole coalescing bi­

naries, stochastic gravitational wave background from the early universe, and galactic and 

extra-galactic coalescing binary systems containing white dwarfs and neutron stars.

Recent surveys have uniquely identified twenty binary systems em itting gravitational 

radiation within the LISA band, while population studies have concluded th a t the large 

number of binaries present in our own galaxy should produce a stochastic background tha t 

will lie significantly above the LISA instrum ental noise in the low-part of its frequency 

band. It has been shown in the literature (see [2] for a recent study and [3, 4] for earlier 

investigations) th a t these sources will be dominated by detached white-dwarf — white-dwarf 

(WD-WD) binaries, with 1.1 x 108 of such systems in our Galaxy. The detached WD-WD 

binaries evolve by gravitational-radiation reaction and the number of such sources rapidly 

decreases with increasing orbital frequency. Although it is expected tha t, above a certain 

frequency cut-off (1 — 2 mHz), we will be able to resolve individual signals and remove 

them  from the LISA data, it is still not clear how to further improve the LISA sensitivity 

to other gravitational wave signals in the region of the frequency band below the WD-WD 

background frequency cut-off. Although two promising data analysis procedures have been 

proposed [5, 6] for attem pting to subtract the galactic background, considerable work still 

needs to be done to verify their effectiveness. In this context, simulating the LISA response 

to the WD-WD background will be particularly useful for verifying present and future data 

analysis “cleaning” algorithms. A realistic simulation will also quantify the effects of the 

LISA motion around the Sun on the overall amplitude and phase of the GW signal generated 

by the background in the LISA data. The directional properties of the LISA response and
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its time dependence introduced by the motion of LISA around the Sun, together with the 

non-isotropic and non-homogeneous distribution of the WD-WD binary systems within the 

galactic disk as seen by LISA, imply th a t the magnitude of the background observed by 

LISA will not be a stationary random process. As a consequence of the one-year periodicity 

of the LISA motion around the Sun, there exist relatively long («  2 months) stretches of 

data  during which the magnitude of the LISA response to the background will reach an 

absolute minimum [7]. Our simulation shows this minimum to be less than  a factor of two 

larger than  the level identified by the LISA secondary noises, suggesting the possibility of 

performing searches for gravitational radiation from other sources located in regions of the 

sky th a t are away from the galactic plane. The LISA sensitivity to such signal in fact will 

be less limited by the WD-WD background during these periods of observation.

This paper is organized as follows. In Section II we provide the analytic expression of one 

of the LISA Time-Delay Interferometric (TDI) responses to a signal radiated by a binary 

system. Although all the TDI responses to binary signals were first given in their closed 

analytic form in [8], in what follows we will focus our attention only on the unequal-arm 

Michelson combination, X . In Section III we give a summary of how the WD-WD binary 

population was obtained, and a description of our numerical simulation of the X  response 

to it. In Section IV we describe the numerical implementation of our simulation of the 

LISA X  response to  the WD-WD background, and summarize our results. In particular, 

in agreement with the results by Seto [7], we find the amplitude of the galactic WD-WD 

background in the LISA X-combination to be modulated in time, reaching a minimum when 

the Sun-LISA direction is roughly oriented towards the Autumn equinox. Furthermore, we 

show the amplitude of the background at its minimum to be a factor less than  two larger than  

the level identified by the LISA noise for a time period of about two months, suggesting tha t 

LISA could search (during this time period) for other gravitational wave signals incoming 

from regions of the sky th a t are away from the galactic plane.

The time-dependence and periodicity of the magnitude of the WD-WD galactic back­

ground in the LISA data  implies th a t it is not a stationary but rather a cyclostationary 

random process of period one year. After providing a brief summary of the theory of cy- 

clostationary random processes relevant to the LISA detection of the WD-WD galactic 

background, we apply it to three years worth of simulated LISA X  data. We find that, 

by measuring the generalized spectral components of such cyclostationary random process,
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FIG. 1: Schematic LISA configuration. Each spacecraft is equidistant from point o, with unit 

vectors f>i indicating directions to the three spacecraft. Unit vectors h  point between spacecraft 

pairs with the indicated orientation.

LISA will be able to infer key-properties of the distribution of the WD-WD binary systems 

present in our own Galaxy.

II. THE LISA RESPONSE TO SIGNALS FROM BINARY SYSTEMS

The overall LISA geometry is shown in Figure (1). There are six beams exchanged be­

tween the LISA spacecraft, with the six Doppler measurements yij (i, j  =  1, 2, 3) recorded 

when each received beam is mixed with the laser light of the receiving optical bench. The 

frequency fluctuations from the six lasers, which enter in each of the six Doppler measure­

ments, need to be suppressed to a level smaller than  th a t identified by the secondary (proof 

mass and optical path) noises [9] in order to detect and study gravitational radiation at the 

predicted amplitudes.

Since the LISA triangular array has systematic motions, the two one-way light times 

between any spacecraft pair are not the same [10]. Delay times for light travel between the 

spacecraft must be accounted for depending on the sense of light propagation along each 

link when combining these data as a consequence of the rotation of the array. Following [11], 

the arms are labeled with single numbers given by the opposite spacecraft; e.g., arm  2 (or 

2 ') is opposite spacecraft 2 , where primed delays are used to distinguish light-times taken 

in the counter-clockwise sense and unprimed delays for the clockwise light times (see Figure
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FIG. 2: Schematic diagram of LISA configurations involving six laser beams. Optical path delays 

taken in the counter-clockwise sense are denoted with a prime, while unprimed delays are in the 

clockwise sense.

(2)). Also the following labeling convention of the Doppler data will be used. Explicitly: 

y23 is the one-way Doppler shift measured at spacecraft 3, coming from spacecraft 2, along 

arm  1. Similarly, y32 is the Doppler shift measured on arrival at spacecraft 2 along arm  1' 

of a signal transm itted from spacecraft 3. Due to the relative motion between spacecraft, 

L 1 =  L '1 in general. As in [9, 12], we denote six further da ta  streams, Z j ( i , j  =  1, 2, 3), as 

the intra-spacecraft metrology data used to monitor the motion of the two optical benches 

and the relative phase fluctuations of the two lasers on each of the three spacecraft. The 

frequency fluctuations introduced by the lasers, by the optical benches, by the proof masses, 

by the fiber optics, and by the measurements themselves at the photo-detectors (i.e. the 

shot-noise fluctuations) enter the Doppler observables yij , Z j with specific time signatures; 

see Refs. [9, 12] for a detailed discussion. The contribution y GjW due to GW signals was 

derived in Ref. [13] in the case of a stationary array, and further extended to the realistic 

configuration [8] of the LISA array orbiting around the Sun.

Let us consider for instance the “second generation” unequal-arm Michelson TDI observ­

ables, (X i,X 2 ,X 3). Their expressions, in terms of the Doppler measurements yij , zij , are as
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follows [15]

X 1 =  [(y31 +  y13;2) +  (y21 +  y12;3' );2/2 +  (y21 +  y12;3' );33'2'2 +  (y31 +  y13;2);33/33/22]

[(y21 +  y12;3') +  (y31 +  y13;2);33/ +  (y31 +  y13;2 /̂ 233' +  (y21 +  y12;3' );2'22' 233']

+  2 [(¿21 -  ¿31) -  (¿21 -  ¿ 3 l ) ;33/ -  (¿21 -  ¿ 3 l ) ;2'2 +  (Z21 ~  ¿3 1 );33/33/2'2

+  ( z 21 -  z31);2'22'233/ -  (z21 -  z31);223333/2/2] , (1)

with X 2, X 3 following from Eq. (1) by perm utations of the spacecraft indices. The semicolon 

notation shown in equation (1 ) emphasizes th a t the operation of sequentially applying two 

or more delays to a given measurement is non-commutative as consequence of the time 

dependence of the light-times Li and Li (i =  1, 2, 3), and a specific order has to be adopted 

to adequately suppress the laser noises [11, 14, 15]. Specifically: yij;kl =  yij( t — L i(t) — L k(t — 

Li)) =  yij ;ik (units in which the speed of light c = 1 ).

The expressions of the gravitational wave signal and the secondary noise sources entering 

into X 1 will in general be different from those entering into X , the corresponding “first 

generation” unequal-arm Michelson observable derived under the assumption of a stationary 

LISA array [12, 13]. However, the magnitude of the corrections introduced by the motion of 

the array are proportional to the product between the time derivative of the GW amplitude 

and the difference between the actual light travel times and those valid for a stationary array. 

At 1 Hz, for instance, the larger correction to the signal (due to  the difference between the co- 

rotating and counter-rotating light travel times) is two orders of magnitude smaller than  the 

main signal. Since the amplitude of this correction scales linearly with the Fourier frequency, 

we can completely disregard this effect (and the weaker effect due to  the time dependence 

of the light travel times) over the entire LISA band [11]. Furthermore, since along the LISA 

orbit the three armlengths will differ at most by ~  1 % -2 %, the degradation in signal-to-noise 

ratio introduced by adopting signal tem plates th a t neglect the inequality of the armlengths 

will be of only a few percent. For these reasons, in what follows we will focus on the 

expressions of the GW responses of various second-generation Time-Delay Interferometry 

(TDI) observables by disregarding the differences in the delay times experienced by light 

propagating clockwise and counterclockwise, and by assuming the three LISA armlengths to 

be constant and equal to L =  5 x 106 km ~  16.67 s [1]. These approximations, together with 

the treatm ent of the moving-LISA GW response discussed in [8] are essentially equivalent 

to the rigid adiabatic approximation of Ref. [16], and to the formalism of Ref. [7].
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These considerations imply th a t the second generation TDI expressions for the gravita­

tional wave signal and the secondary noises can be expressed in terms of the corresponding 

first generation TDIs. For instance, the gravitational wave signal entering into the sec­

ond generation unequal-arm Michelson combination, X GW, can be w ritten in terms of the 

gravitational wave response of the corresponding first generation unequal-arm Michelson 

combination, X GW(t), in the following manner [17]

X 1GW(t) =  X  GW(t) — X GW (t — 4L) (2)

Equation (2) implies th a t any data  analysis procedure and algorithm th a t will be imple­

mented for the second generation TDI combinations can actually be derived by considering 

the corresponding first generation TDI expressions. For this reason, from now on we will 

focus our attention on the gravitational wave responses of the first generation combinations.

The gravitational wave response X GW (t) of the unequal-arm Michelson TDI combination 

to a signal from a binary system has been derived in [8], and it can be w ritten in the following 

form

X GW(t) =  ^  [A (x,t) e- i^(i)] , (3)

where x =  u sL (ws being the angular frequency of the GW signal in the source reference 

frame), and the expressions for the complex amplitude A (x ,t) and the real phase 0 (t) are

A {x ,t)  = 2 x  sin(x) { [smc[{l +  c2( i ) ) |]  e“ (i +ii2(i)) +  smc[{ 1 -  c2(t)) | ]  e“ (§+(i2(i))] B2{t)

-  smc[( 1 -  c3( i ) ) |]  e“ (i +ii3(i)) +  smc[( 1 +  c3( i ) ) |]  e“ (l +ii3(i))] # 3(i)}  , (4)

0(t) =  wst +  u s R  cos ft cos(wst +  no — A) . (5)

In equation (5) R  is the distance of the guiding center of the LISA array, o, from the Solar 

System Barycenter, (ft, A) are the ecliptic latitude and longitude respectively of the source 

location in the sky, Q =  2n/year, and n0 defines the position of the LISA guiding center in 

the ecliptic plane at time t =  0. Note th a t the functions ck(t), dk(t), and Bk(t) (k =  2, 3) do 

not depend on x. The analytic expressions for ck (t), and dk(t) are the same as those given 

in equations (46,47) of reference [8], while the functions Bk (t) (k =  2, 3) are equal to

Bk (t) =  (a( 1 +  i a (3)) u k(t) +  (a(2) +  i a (4)) (t) . (6 )

8



The coefficients (a(1), a (2),a (3), a (4)) depend only on the two independent amplitudes of the 

gravitational wave signal, (h+, h x), the polarization angle, ^ , and an arbitrary phase, 0 o, 

th a t the signal has at time t =  0. Their analytic expressions are given in equations (41-44) 

of reference [8], while the functions u k(t), and vk (t) (k =  2, 3) are given in equations (27,28) 

in the same reference.

Since most of the gravitational wave energy radiated by the galactic WD-WD binaries will 

be present in the lower part of the LISA sensitivity frequency band, say between 10-4  — 10-3  

Hz, it is useful to provide an expression for the Taylor expansion of the X  response in the 

long-wavelength limit (LWL), i.e. when the wavelength of the gravitational wave signal 

is much larger than  the LISA armlength (x < <  1). As it will be shown in the following 

sections, the LWL expression will allow us to analytically describe the general features of 

the white dwarfs background in the X-combination, and derive computationally efficient 

algorithms for numerically simulating the WD-WD background in the LISA data.

The nth-order truncation, X(nW(t), of the Taylor expansion of X GW(t) in power series of 

x can be w ritten in the following form

n
X (GW(t) =  Re A(k) (t) x k+ 2 e- i^(i) , (7)

k=0

where the first three functions of time A(k) ( t) , k <  2 are equal to

A(0) =  4 [B  — B 3] ,

A(1) =  4i [(d2 +  2) B2 — (d3 +  2 )$3] ,

A™ =  [2d,2 +  8d3 + ^  + - U 2] B3 -  [2d22 +  8d2 + ^  + U 2] B2 . (8)
3 6 3 6

Note th a t the form we adopted for X GW(t) (equation 3) makes the derivation of the functions 

A(k)(t) particularly easy since the dependence on x in A (x ,t) is now limited only to the 

coefficients in front of the two functions $ 2(t) and $ 3(t) (see equation (4)).

Although it is generally believed th a t the lowest order long-wavelength expansion of the X  

combination, X ^W , is sufficiently accurate in representing a gravitational wave signal in the 

low-part of the LISA frequency band, there has not been in the literature any quantitative 

analysis of the error introduced by relying on such a zero-order approximation. Since any 

TDI combination will contain a linear superposition of tens of millions of signals, it is crucial 

to estimate such an error as a function of the order of the approximation, n. In order to
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FIG. 3: Plots of the percentage root-mean-squared errors, M (X GW, X(GW), associated with the 

long-wavelength expansion index n, as functions of the gravitational wave frequency, f s. The source 

location has been assumed to be in the center of our galaxy.

determine how many terms we need to use for a given signal angular frequency, ws, we will 

rely on the following “ matching function”

M  (X GW X GW(n) ) =
\

JoT [XGW (t) — x (GW (t)]2dt

LT [A'GW( t ) fd t
(9)

Equation (9) estimates the percent root-mean-squared error implied by using the nth order 

LWL approximation. In Figure (3) we plot M  as a function of the signal frequency, f s 

(=  u s/2n ), for n =  0,1, 2. At 5 x 10-4  Hz, for instance, the zero-order LWL approximation 

(n =  0) of the X  combination shows an r.m.s. deviation from the exact response equal to 

about 10  percent. As expected, this inaccuracy increases for signals of higher frequencies, 

becoming equal to 40 percent at 2 x 10-3  Hz. W ith n = 1  the accuracy improves showing 

th a t the X (W  response deviates from the exact one with an r.m.s. error smaller than  10 

percent in the frequency band (10-4  — 2 x 10-3 ) Hz. In our simulation we have actually 

implemented the n =  2 LWL expansion because it was possible and easy to do.
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III. W HITE DW ARF BINARY POPULATION DISTRIBUTIO N

The gravitational wave signal radiated by a WD-WD binary system depends on eight 

parameters, (0o, i, ^ , D, ft, A, M c,^ s), which are the constant phase of the signal (0o) at 

the starting time of the observation, the inclination angle (i) of the angular momentum 

of the binary system relative to the line of sight, the polarization angle (^) describing the 

orientation of the wave polarization axes, the distance (D) to the binary, the angles (A, ft) 

describing the location of the source in the sky relative to the ecliptic plane, the chirp mass 

(M c), and the angular frequency (ws) in the source reference frame respectively. Since it can 

safely be assumed th a t the chirp mass M c and the angular frequency ws are independent of 

the source location [2] and of the remaining angular parameters 0 o, i ,^ ,  and because there 

are no physical arguments for preferred values of the constant phase 0 o and the orientation 

of the binary given by the angles i and ^ , it follows th a t the joint probability distribution, 

P (0 o, i, ^ , D, ft, A, M c, ws) , can be rewritten in the following form

P (0 o, i ,^ ,D , f t ,A ,M c,Ws) =  P1(0o)P2(i)P3(^)P4(D ,ft,A )P5(M c,^s) . (10)

In the implementation of our simulation we have assumed the angles 0o and ^  to be uniformly 

distributed in the interval [0, 2n), and cos i uniformly distributed in the interval [—1,1]. We 

further assumed the binary systems to be randomly distributed in the Galactic disc according 

to the following axially symmetric distribution P 4 (R, z) (see [2] Eq. (5))

e-R/H sech2(z /z  )
v , ( R , z ) = e- — ¿ ZoHr o ) , ( i i )

where (R, z) are cylindrical coordinates with origin at the galactic center, H  =  2.5 kpc, and 

zo =  200 pc, and it is proportional to P4(D ,A ,ft) through the Jacobian of the coordinate 

transformation. Note th a t the position of the Sun in this coordinate system is given by 

R© =  8.5 kpc and z© =  —30 pc. We then generate the positions of the sources from the 

distribution given by Eq. (11) and map them  to their corresponding ecliptic coordinates 

(D, ft, A).

The physical properties of the WD-WD population (M c =  (m 1m 2)3/ 5/ (m 1 +  m 2)1/5, with 

m 1, m 2 being the masses of the two stars, and ws =  2n fs =  4n/orbitalperiod) are taken from 

the binary population synthesis simulation discussed in [18]. For details on this simulation 

we refer the reader to [18], and for earlier work to [2, 3, 4, 19, 20, 21]. The basic ingredient for
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these simulations is an approximate binary evolution code. A representation of the complete 

Galactic population of binaries is produced by evolving a large (typically 106) number of 

binaries from their formation to the current time, where the distributions of the masses 

and separations of the initial binaries are estim ated from the observed properties of local 

binaries. This initial-to-final param eter mapping is then convolved with an estimate of the 

binary formation rate in the history of the Galaxy to obtain the to tal Galactic population 

of binaries at the present time. From these the binaries of interest can then be selected. In 

principle this technique is very powerful, although the results can be limited by the limited 

knowledge we have on many aspects of binary evolution. For WD-WD binaries, the situation 

is better than  for many other populations, since the observed population of WD-WD binaries 

allows us to gauge the models (e.g. [2]).

We also include the population of semi-detached WD-WD binaries (usually referred to 

as AM CVn systems) th a t are discussed in detail in [18]. In these binaries one white dwarf 

transfers its outer layers onto a companion white dwarf. Due to the redistribution of mass 

in the system, the orbital period of these binaries increases in time, even though the angular 

momentum of the binary orbit still decreases due to gravitational wave losses. The formation 

of these systems is very uncertain, mainly due to questions concerning the stability of the 

mass transfer (e.g. [22])

From the models of the Galactic population of the detached WD-WD binaries and AM 

CVn systems two dimensional histograms were created, giving the expected number of both 

WD-WD binaries and AM CVn systems currently present in the Galaxy as function of the 

log of the GW radiation frequency, f s(=  ws/2n) and chirp mass, M c. In the case of the 

detached WD-WD binaries, the (log fs,M c)) space was defined over the set M c £ (0,1.5], 

log f s £ [—6 , — 1], and contained 30 x 50 grid points, while in the case of the AM CVn 

systems the region is intrinsically smaller, M c £ (0,1.2], lo g fs £ [—4, —1.5], containing only 

24 x 25 grid points.

Figure (4) shows the distribution of the number of detached WD-WD binaries as a func­

tion of the chirp mass and signal frequency in the form of a contour plot. This distribution 

reaches its maximum within the LISA frequency band when the chirp mass is equal to 

~  0.25 M©, and it monotonically decreases as a function of the signal frequency. The dis­

tribution of the number of AM CVn systems has instead a rather different shape, as shown 

by the contour plot given in Figure (5). The region of the (M c, log f s) space over which the

12



FIG. 4: The distribution of detached white-dwarf — white-dwarf binaries in our galaxy as a 

function of the gravitational wave frequency, f s, and chirp mass, M c.

distribution is non-zero is equal to (0, 0.07) x (-3 .4 , -2 .2 ) , and it reaches its maximum at 

the point (0.03, -3 .35).

IV. SIMULATION OF THE BACK GROUND SIGNAL IN THE LISA DATA

In order to simulate the LISA X  response to the population of WD-WD binaries derived 

in Section III one needs to coherently add the LISA response to each individual signal. 

Although this could naturally be done in the time domain, the actual CPU time required 

to successfully perform such a simulation would be unacceptably long. The generation in 

the time domain of one year of X GW (t) response to a single signal sampled at a rate of 16 

seconds would require about 1 second with an optimized C + +  code running on a Pentium 

IV 3.2 GHz processor. Since the number of signals from the background is of the order 108, 

it is clear th a t a different algorithm is needed for simulating the background in the LISA 

data  within a reasonable amount of time. We were able to derive and implement numerically 

an analytic formula of the Fourier transform  of each binary signal, which has allowed us to 

reduce the computational time by almost a factor 100. Furthermore, we have run our code 

on the Jet Propulsion Laboratory (JPL) supercomputer system, which includes 64 Intel
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FIG. 5: The distribution of AM CVn binary systems in our galaxy as a function of the gravitational 

wave frequency, f s, and chirp mass, M c.

Itanium2 processors each with a clock speed of 900 MHz.

A. The Fourier transform of a binary signal

The expression of the Fourier transform  of the TDI response X GW to a single binary signal 

(Eqs. (3, 4, 5), cannot be w ritten (to our knowledge) in closed analytic form. However, 

by using the LWL expansion of the X GW-response, it is possible to obtain a closed-form 

expression of its Fourier transform. Since the WD-WD binary background has a natural 

frequency cut-off tha t is between 1 and 2 millihertz, the LWL expansion of the X GW response 

(Eq 7), truncated at n =  2, can be used for accurately representing the gravitational wave 

response of each binary signal, as discussed in Section II .

In order to derive the Fourier transform  of X(GW (t) , we use the following expansion of 

the function e- i^(i) in terms of the Bessel functions of the first kind, J q, [23]

e- i  4>{t) = Jq(usR  cos ¡3) e~i[uJat + q {nt + 110 ~ x + ^ )] . (1 2 )
q=-^

Since the Bessel functions |J q(wsR cosft)| are much smaller than  unity when |q| > >  

|wsR  cos ft|, the expansion given by equation (1 2 ) can be truncated at a finite index Q,
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providing an accurate numerical estimation of the function e * ^(i). These considerations 

allow us to write the following expression of the Fourier transform  of X(nW(t)

/  n Q
^ ( n f M  =  F  ^ 5 ]  A(k)(*) xk+2 M ^ s R c o s /3 )  e ~ l [ u J s t  + 9 (Qi + 770 -  A + ^ )]

\  fc=0 q=-Q 
Q n

=  n Jq(wsR cos ft) x k+ 2 {F  (K[A(fc)(t)]) * [¿(w +  Ws +  qQ)eiq(-n0+A-n/2)
q=-Q k=0

+  ¿ ( - w +  Ws +  qQ)eiq(n0-A+n/2)] +  i F  (S[A(fc)(t)]) * |5(w +  Ws +  qQ)eiq(-n0+A-n/2)

-  ¿ ( - w +  Ws +  qQ)eiq(n0-A+n/2)]} , (13)

where F  is the Fourier transform  operator, the symbol * between two expressions means 

their convolution, w is the Fourier angular frequency, and A(k)(t) are defined in Eq. (7) and 

given in Eq. (8) with k =  0,1, 2.

As an example application of this general formula for the Fourier transform  of the X (GnW) (t) 

response, let us apply it to the lowest order LWL expansion (n =  0)
Q

X(0W(w) =  4n ^ 2  Jq(WsRcosft)x2 { [a (u 2(w) -  U3(w)) +  a2(v2(w) -  V3(w))] 
q=-Q

* [¿(w +  Ws +  qQ)eiq(-n0+A-n/2) +  ¿ ( - w +  Ws +  qQ)eiq(n0-A+n/2)]

+ i [a3(it2(w) -  U3(w)) +  a4(62(w) -  V3(w))]

* [¿(w +  Ws +  qQ)eiq(-n0+A-n/2) -  ¿ ( - w +  Ws +  qQ)eiq(n0-A+n/2)] } . (14)

Since the Fourier transforms of u and v are both linear combinations of nine Dirac delta 

functions centered on the frequencies ±1 Q , 1 =  0,1, 2, 3, 4 (see equations (27-30) in reference 

[8] for the expressions of u and v ), it follows th a t X(GW (w) is also a linear combination of Dirac 

delta functions. In particular, in the limit of negligible Doppler modulation, the resulting 

expression (14) reduces as expected to th a t of a purely amplitude modulated sinusoidal 

signal with central frequency equal to ws and upper and lower band-limits given by ws +  4Q 

and ws — 4Q respectively [24].

The actual expression of the Fourier transform  we implemented in our simulation of the 

WD-WD background used Eq. (13) with n =  2, and maximum value of the index of the 

Bessel expansion, Q, equal to |wsR  cos ft| +  20 in order to make negligible the error associated 

with the truncation of the expansion itself.

One extra m athem atical detail th a t we need to include is th a t the Fourier transform 

of X(nW(t) is performed over a finite integration time, T , while the expression in Eq. (13)
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corresponds to an infinite-time Fourier transform. In order to  account for this discrepancy we 

convolved the analytic Fourier transform  of the signal given in equation (13) with the Fourier 

transform  of a window function with an integration time T. To avoid leakage introduced by 

using a simple rectangular window, we have used instead the N utta ll’s modified Blackman- 

Harris window [25]. Although this window is characterized by having the main lobe of its 

Fourier transform  slightly wider than  th a t of the rectangular window, the maximum of its 

side-lobes are about four orders of magnitude lower than  those of the rectangular window, 

reducing leakage significantly. The expression of its Fourier transform, W (w) , is equal to

W (w ) =  n 0 [Sinc(wT) +  iCosc(wT)] (15)

— n  [Sinc(wT +  2n) +  Sinc(wT — 2n) +  i (Cosc(wT +  2n) +  Cosc(wT — 2n))]

— n 2 [Sinc(wT +  4n) +  Sinc(wT — 4n) +  i (Cosc(wT +  4n) +  Cosc(wT — 4n))]

— n 3 [Sinc(wT +  6n) +  Sinc(wT — 6n) +  i (Cosc(wT +  6n) +  Cosc(wT — 6n))] ,

where the functions Sinc(.) and Cosc(.) are defined as follows

S M .) ^  ^  . C o«(.) ^  C0S°  ~  1 . (16)

and the coefficients nr , r  =  0,1, 2, 3 have the following numerical values

n 0 =  0.3635819 , m  =  0.24458875 , n 2 =  0.06829975 , n 3 =  0.00532055 . (17)

B. Generation of the signal parameters

We used the distributions given in Section III to randomly generate the parameters 0o, ¿, 

^ , D, ft, A, while the values of the chirp mass, M c, and the logarithm of the frequency of the 

signal, log(fs), were obtained by further processing the numeric distribution function (given 

in Section III) of the number of sources. To derive the distribution function for the variables 

(M c, log(fs)) within each grid-rectangle of our numerical distribution we proceeded in the 

following way [26]. Let us consider the number of sources N (x i ,x 2) as a function of two 

coordinates (x1 ,x 2) of a point in the (M c, log(fs)) plane within a specified grid-rectangle 

of the numerical distribution. This function can be approximated there by the following 

quadratic polynomial

N (x i ,x 2) =  n 00(1 — x i ) ( 1  — X2) +  n n x ix 2 +  n 0i (1  — x i)x 2 +  n W£ i (1 — X2) , (18)
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where noo, n n , n o1, n 1o are equal to the number of signals at the “corners” of the considered 

grid-rectangle and are obtained by interpolation; (x1 ,x 2) are therefore two real numbers 

defined in the range [0 , 1 ].

If we integrate out the x2-dependence in N (x 1 ,x 2) we obtain

A W *.)  =  [ '  N ( x u .v 2) d x 2 =  (~ n°° + ~ " M + nio)Xl + n m  + '" , l , (19)
Jo 2

which defines the to tal number of sources within th a t grid-rectangle having chirp mass equal 

to x 1. In order to derive the probability distribution function of x 1 within th a t grid-rectangle 

we can define the following mapping between a uniformly distributed random variable, say 

z1, and the random variable x 1

_  J0X1 Nx2( x 1 ) d x 1 _  (-noo +  n n  -  no1 +  n ^ X  +  2 (noo +  n o ^ x  
—  i  —  . ( )

Jo Nx2 (x1 )dx1 noo +  n 11 +  no1 +  n 1o

By solving the above non-linear equation for every uniformly sampled z1 we obtain

noo +  n01 -  Jn,Q0 +  2n0on0i +  n h  +  (~n lQ -  2n0on0i +  n2u  +  2nn nw -  n h  +  n2w)zi
X \  =  ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  ,

noo — n 11 +  no1 — n 1o oo 11 o1 1o (21) 

where the branch “-” has been chosen such th a t x 1 remains in the range [0,1]. If noo — n 11 +  

n o1 — n 1o =  0 then equation (2 1 ) is no longer valid, and we have instead x 1 =  z1.

A similar procedure can be implemented for calculating x 2. By integrating N (x 1 ,X2) 

with respect to  X2 over the range (0 , x 2), we can establish the following relationship between 

another uniformly distributed random variable, say z2, and x 2

_  Jo N ( x i , x 2)dx2 _  [ ( n - o o  +  n n  ~  noi — nio)xi — noo +  noi\x\  +  2 [(—noo +  ^ 10)^1 +  ^ o o ] ^  

2 N (xi,x '2)dx'2 (~noo + n n  -  n01 + n w)xi  +  n00 + n01

(2 2 )

After some simple algebra we can finally solve for x 2 in terms of x 1 (itself a function of the 

uniformly distributed random variable z1) and z2

_  n o o ( x i  — 1 )  — n w x i  +  \ J F ( x i ) z 2 +  ( n ^  — 2 n o o n i o  +  +  2 ( — ^ q 0 +  n o o n , i o ) x i  +  n ^

( n n  -  Tj'Oi -  JJ.10 +  JJ.oo);ri -  Ti-oo +  Ti-oiii 0i i0 00 i 00 0i (23) 

where now we have chosen the “+ ” branch so x 2 G [0,1] range, and the function F (x i ) is 

equal to

F  (xi ) =  (n i i+ n 0i — n 00 — 2n 0i n ii +  2n00n i0 —n i0 )x i +  2( —n00n i0 + n 00 —n 0i + n 0in i i )x i —n 00+ n 0i

(24)
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Note th a t the equation for x 2 above is no longer valid when (n ii — n0i — n i0 +  n00)x i — n 00 +  

n0i =  0, in which case x 2 =  z2. Once x i and x 2 are calculated, they can be converted into 

the physical param eters M c and ws according to the following relationships

M c =  M c00 +  x i (25)

ws =  2n 10 log(fs00)+X2 A!og(/s) (2 6 )

where (M c00, log(fs00)) are the coordinates of the “lower-left-hand-corner” of the considered 

grid-rectangle, and A ^ c, A log(fs) are the lengths of the sides of the grid-rectangle.

C. R esults of the Numerical Simulation

The expression for the finite-time Fourier transform  of each WD-WD signal in the X GW 

response given in Section IV A allows us to coherently add in the Fourier domain all the 

signals radiated by the WD-WD galactic binary population described in Section III. After 

inverse Fourier transforming the synthesized response and removing the window from it, we 

finally obtain the time-domain representation of the background as it will be seen in the 

LISA TDI combination X . This is shown in Figure (7), where we plot three years worth 

of simulated X GW (t), and include the LISA noise [1]. The one-year periodicity induced 

by the motion of LISA around the Sun is clearly noticeable. One other interesting feature 

shown by Figure (7) is tha t the amplitude response reaches absolute minima when the Sun- 

LISA direction is roughly oriented towards the Autum n equinox, while the absolute maxima 

take place when the Sun-LISA direction is oriented roughly towards the Galactic center [7]. 

This fact can easily be understood by looking at Figure (6 ) . Since the ecliptic plane is not 

parallel to the galactic plane, and because our own solar system is about 8.5 kpc away from 

the galactic center (where most of the of WD-WD binaries are concentrated ) it follows tha t 

the LISA X GW response does not have a six-months periodicity.

Note also tha t, for a time period of about 2 months, the absolute minima reached by 

the amplitude of the LISA response to the WD-WD background is only a factor less than  2 

larger than  the level of the instrum ental noise. This implies th a t during these observation 

times LISA should be able to search for other sources of gravitational radiation th a t are 

not located in the galactic plane. This might tu rn  out to be the easiest way to mitigate 

the detrimental effects of the WD-WD background when searching for other sources of
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FIG. 6 : Two snapshots of LISA along its trajectory as recorded six months apart by an observer 

in the ecliptic plane. They correspond to the times when the LISA response to the background 

achieves a local maximum. The magnitudes of these maxima are not equal due to the relative

months later, when the LISA response is also at a maximum, the angle 0\ is equal to 35.53° which 

results in a smaller maximum.

sources th a t are off the galactic plane.

In Figure (8) we plot, as functions of the Fourier frequency, f , the windowed Fourier 

powers of both the signal and the noise entering into the TDI X  combination. Note th a t in 

the region of the LISA band below 0.2 millihertz the power of the WD-WD background is 

smaller than  th a t of the instrum ental noise.

background can be regarded, in a statistical sense, as a periodic function of time. This is 

consequence of the deterministic (and periodic) motion of the LISA array around the Sun. 

Since its autocorrelation function will also be a periodic function of period one year, it fol­

lows th a t any LISA response to the WD-WD background should no longer be treated  as a 

stationary random process but rather as a periodically correlated random process. These 

kind of processes have been studied for many years, and are usually referred to as cyclo- 

stationary random processes (see [27] for a comprehensive overview of the subject and for 

more references). In what follows we will briefly summarize the properties of cyclostationary

disposition of the ecliptic plane with respect to the galactic plane. At time t0 the angle 90 between 

the normal to the plane of LISA and a vector pointing to the galactic center is equal to 24.47°. Six

gravitational radiation. We will quantitatively analyze in a follow up work how to take 

advantage of this observation in order to optimally search, during these time periods, for

V. CYCLOSTATIONARY PROCESSES

The results of our simulation (Figure (7)) indicate th a t the LISA X GW response to the
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FIG. 7: Three years of simulated TDI X  response to the WD-WD Galactic background signal. 

The time series of the LISA instrumental noise is displayed for comparison.

processes th a t are relevant to our problem.

A continuous stochastic process X (t) having finite second order moments is said to be 

cyclostationary with period T  if the following expectation values

E  [X (t)] =  m (t) =  m (t  +  T  ),

E  [X ( t)X  (t)] =  C  ( t , t )  =  C  ( t  +  T ,t  +  T  )

(27)

(28)

are periodic functions of period T , for every ( t , t) G R  x R . For simplicity from now on we 

will assume m(t)  =  0 .

If X (t) is cyclostationary, then the function B ( t , r ) =  C (t  +  t , t) for a given t  G R  is 

periodic with period T , and it can be represented by the following Fourier series

B ( t , r ) =  B r(t )e%ei27rf (29)
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FIG. 8: The amplitude of the Fourier transform of the WD-WD Galactic background gravitational 

wave signal and of the LISA instrumental noise entering into the TDI combination X .

where the functions B r (t ) are given by

r-T
(30)

The Fourier transforms gr ( f ) of B r (t ) are the so called “cyclic spectra” of the cyclostationary 

process X (t) [27]

9r ( f ) B r ( t )e—i2nfT dT (31)

If a cyclostationary process is real, the following relationships between the cyclic spectra 

hold

B —r ( t ) =  B*r (t ) 

g—r ( - f  ) =  g 'U  )

(32)

(33)

where the symbol * means complex conjugation. This implies tha t, for a real cyclostationary

21



process, the cyclic spectra with r >  0 contain all the information needed to characterize the 

process itself.

The function a 2(r ) =  B ( 0 , t ) is the variance of the cyclostationary process X (t), and it 

can be w ritten as a Fourier decomposition as a consequence of Eq. (30)

a 2(r) = Y ,  Hret2̂ ,  (34)

where H r = B r (0) are harmonics of the variance a 2. From Eq. (32) it follows th a t H -r  =  H *.

For a discrete, finite, real time series Xt , t = 1 , . . . , N  we can estimate the cyclic spectra 

by generalizing standard methods of spectrum  estimation used with stationary processes. 

Assuming again the mean value of the time series X t to be zero, the cyclic autocorrelation 

sequences are defined as
N-|i|

X  ^ ^  ¿ 2 7 r r ( £  — 1 ) ̂ X—̂ i2nr(t-1)
si =  — X ]  X ,X ,+vie----- 7—  . (35)

N  t=i
It has been shown [27] th a t the cyclic autocorrelations are asymptotically (i.e. for N  ^  to) 

unbiased estimators of the functions B r (t ). The Fourier transforms of the cyclic auto­

correlation sequences sr are estimators of the cyclic spectra gr ( f  ). These estimators are 

asymptotically unbiased, and are called “inconsistent estim ators” of the cyclic spectra, i.e. 

their variances do not tend to zero asymptotically. In the case of Gaussian processes [27] 

consistent estimators can be obtained by first applying a lag window to the cyclic autocor­

relation and then perform a Fourier transform. This procedure represents a generalization 

of the well-known technique for estimating the spectra of stationary random processes [28].

An alternative procedure for identifying consistent estimators of the cyclic spectra is to 

first take the Fourier transform, Xf(f ), of the time series X (t)

N
* ( f  ) =  ^  Xte-2 n f  (t-1) (36)

t=i

and then estimate the cyclic periodograms gr ( f  )

^  * ( ƒ ) * * ( ƒ - f O  
9r(f) = ---------- -------------  • (37)

By finally smoothing the cyclic periodograms, consistent estimators of the spectra gr( f  ) are 

then obtained. The estimators of the harmonics Hr of the variance a 2 of a cyclostationary 

random process can be obtained by first forming a sample variance of the time series Xt .

r=-(x>
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The sample variance is obtained by dividing the time series Xt into contiguous segments of 

length to such th a t t 0  is much smaller than  the period T  of the cyclostationary process, and 

by calculating the variance a 2 over each segment. Estim ators of the harmonics are obtained 

either by Fourier analyzing the series a2 or by making a least square fit to a2 with the 

appropriate number of harmonics. Note tha t the definitions of (i) zero order (r =  0) cyclic 

autocorrelation, (ii) periodogram, and (iii) zero order harmonic of the variance, coincide with 

those usually adopted for stationary random processes. Thus, even though a cyclostationary 

time series is not stationary, the ordinary spectral analysis can be used for obtaining the zero 

order spectra. Note, however, th a t cyclostationary random processes provide more spectral 

information about the time series they are associated with due to  the existence of cyclic 

spectra with r > 0 .

As an im portant and practical application, let us consider a time series yt consisting of 

the sum of a stationary random process, nt , and a cyclostationary one X t (i.e. yt =  nt +  Xt). 

Let the variance of the stationary time series n t be v 2 and its spectral density be E ( f ). It 

is easy to see th a t the resulting process is also cyclostationary. If the two processes are 

uncorrelated, then the zero order harmonic S 2 of the variance of the combined processes is 

equal to

SO =  v2 +  a0 , (38)

and the zero order spectrum, G0( f ), of yt is

G o (f) =  E ( f ) +  go(f) . (39)

The harmonics of the variance as well as the cyclic spectra of yt with r > 0 coincide instead 

with those of Xt . In other words, the harmonics of the variance and the cyclic spectra of the 

process yt w ith r > 0 contain information only about the cyclostationary process Xt , and 

are not “contam inated” by the stationary process nt .

VI. ANALYTIC STUDY OF THE BACKGROUND SIGNAL

In the case of the ensemble of N  WD-WD binaries, the to tal signal s(t) is given by the 

following sum
N

s(t) =  £  X GW(t; A.) , (40)
i=1
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where A represents the set (^o, i , ^ , D , f t , \ ,  M c, u s) of 8 param eters characterizing a GW 

signal. Since N  is large, we can expect the param eters of the signals to be randomly 

distributed and regard the signal s(t) itself as a random process. Its mean, m (t),  and 

its autocorrelation function, C ( t ',t)  can then be calculated by assuming the probability 

distribution of the vector A, P (A), to be the product of the five probability distributions, 

P1(^o), P2(i), P 3C0 ), P4 ( D , f l , \ ) ,  and P5 ( M c, u s) (as we did in our numerical simulation of 

the WD-WD background in Section III). By assuming the angles $o and ^  to be uniformly 

distributed in the interval [0, 2n), and cos 1 to be uniformly distributed in the interval [-1 ,1], 

we can then perform the integrals over the angles 0o, >̂, and 1 analytically and obtain the 

following expressions

m (t) =  N  [  X GW(t)P(A )dA  
J v

=  ——■ [  d(f)Q [  drip f dcost [  [  X GW(t)P4 P5dV4dV5 =  0 , (41) 
8n Jo Jo J - i  Jv^JV5

C (t ', t)  =  N  f  X GW(t')X GW(t)P(A )dA  
J v

= 7̂ -7 f # 0  ƒ dip [ dcost [ [ ^ [ A (x , t ,)A*(x ,t)e i m - (t>{t')]]P4P5dV4dS^)  
16n Jo Jo J - 1 Jv4 JV5

Note th a t the mean value m (t ) is equal to 0 as a consequence of averaging the antenna 

response over the polarization angle >̂.

In order to gain an analytic insight about the statistical properties of the autocorrelation 

function C ( t , t), in what follows we will adopt the zero-order long-wavelength approximation 

of the LISA response X GW(t) obtained by fixing n  =  0 in (7) and using the expression for the 

complex amplitude A(o) given in equation (8). After some long but straightforward algebra, 

the autocorrelation function, C ( t ',t) , can be w ritten in the following form

C (t’,t)  =  ^ N  f  f  x Ah20[u2(t')u2(t) +  v2(t’)v2(t) +  u 3 (t’)u3 (t) +  Vsit^Vsit)
5 J v±J V5

-  n 2 (t’)u3 (t) -  v2 (t’) V3(t) -  U3 (t')u2 (t) -  V3 (t')v2 (t)] cos[0(t') -  ^(t)]P4 P5 dV4 d(i43)

where x  = tosL, and h0 = iM^ /3 [^y]2̂ 3 (units in which the gravitational constant, G, 

and the speed of light, c, are equal to 1). For frequencies less than  1 mHz the Doppler 

modulation in the phase 0(t) can be neglected making 0(t) ~  u s t. If we now introduce a 

new time variable t  =  t' -  t and define B(t, t ) =  C(t  +  t , t), we have
/ ■ ^  8 

B ( t ,T ) = P ( u s) cos(usT) d u ^ Y j  B r ( t ) eirQt , (44)
o -r=-8
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where

V( u8) =  ^  (usL)4u)4J 3 [  (y/2M c)10/3P5( M c, ojs) d M c , (45)
5 JMc

and

B r(r) = j v  br (Q r)P/l{DD ^ X) dV4 . (46)

The functions br entering into equation (46) are equal to

bo =  V02 +  U02 +  (V2 +  U2) cos(Qr) +  U22 cos(2Qr) +  (V32 +  U32) cos(3Qr)

+  (V42 +  U2) cos(4Qr) +  (V02 — Uq) cos(4yo) , 

bi =  ei(Qr/2-5o)[(UoUi +  VoVi)cos(Qr/2) +  U1U2 cos(3Qr/2) +

U2U3 cos(5Qr/2) +  (U3U4 +  V3V4) cos(7Qr/2) +  (—U0U1 +  V0V1) cos(Q r/2 )ei470] , 

b2 =  ei(Qr-2io)[U0U2 c o s (^ r) +  U2U4 co s(3 ^ r) +  (V1V3 +  U1U3)cos(2Q r) +

(—U2 /2  +  V2/2  — U0U2 cos(Qr))ej4Y0] , 

b3 =  gi3(nr/2—¿o) [(U0U3 +  V0V3) cos(3^r/2 ) +  (U1U4 +  V1V4) cos(5Qr/2) +

((—U0U3 +  V0V3) cos(3Qr/2) — U1U2 cos(Q r/2))ei470] , 

b4 =  ei2(Qr-25o)[(UoU4 +  V0V4) cos(2Q r) +  ((V1V3 — U1U3) cos(Qr) +

(V0V4 — U0U4) cos(2Qr) — U22/2 )e j4Y0] , 

b5 =  ei5(Qr/2-i0)+i4Y0 [(V1V4 — U1U4) cos(3^r/2 ) — U2U3 co s(Q r/2 )] , 

be =  ei(3Qr- 6Î0+470) [—U2U4 cos(Q r) — U32/2  +  V32/2] , 

b7 =  ei7(nT/2-â0)+i4Y0 cos(Q r/2)[—U3U4 +  V3V4] ,

b8 =  ei4(°T-2i0+Y0) [—U42/2  +  V42/2] , (47)

where ô0 =  A — n0, Y0 =  A — n0 — £0, and the functions Uj, V are give in equations (31-39) of

[8]. It is easy to see th a t the autocorrelation B (t,  t ) is periodic in t with period one year for 

a fixed t , making it a cyclostationary random process. Note tha t, if the ecliptic longitude 

A is uniformly distributed, all the coefficients br given in Eq. (47) vanish for r  >  0, and the 

random process s(t) becomes stationary as the autocorrelation C ( t , t )  now depends on the 

time difference t  — t.

The non-stationarity of the WD-WD background was first pointed out by Giampieri and 

Polnarev [24] under the assumption of sources distributed anisotropically, and they also 

obtained the Fourier expansion of the sample variance and calculated the Fourier coefficient
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for simplified WD-WD binary distributions in the Galactic disc. W hat was however not 

realized in their work is th a t this non-stationary random process is actually cyclostationary, 

i.e. there exists cyclic spectra th a t can in principle allow us to infer more information about 

the WD-WD background than  one could obtain by just estimating the zero-order spectrum.

If we now set t  =  0 in Eq. 46 we obtain the Fourier expansion of the variance a 2(t) of 

the cyclostationary process

8

a 2(t) =  B (t, 0 ) =  ^  B koejkm , (48)

where

k= - 8

B k0 Vo
>Vb

P,(D,/3, A) 
k0------ ] j 2------  4 ’

with V o =  y: / 0°° V ( u s) dus, and

boo — Uq +  U12 +  U22 +  U32 +  U2 +  VQ2 +  V12 +  V32 +  V42 +

(V02 — U2 )cos(47 o),

e-jë0 (U0U1 +  U1U2 +  U2U3 +  U3 U4 +  V0V1 +  V3V4 +  

(—U0U1 +  VoV1)ej4Y0) , 

e-i2&0 (U0U2 +  U1U3 +  U2 U4 +  V1V3 +

b10

b20

b30

b40

b50

b60

b70

b80

(—U2 /2  +  V2 /2  — Uo U2 )ei4Y0 )

e-i3d0 (U0U3 +  U1U4 +  V0V3 +  V1V4 +

(—U0U3 — U1U2 +  VoV3)ei4Y0 ) 

e i4^°(U0U4 +  V0V4 +

( —U0U4 — U1U3 +  +  V1V3 — U2/2)ei4Y0 )

ei(4Y0- 550)(—U1U4 — U2U3 +  V1V4) , 

ei(4Y0- 650)(—U2U4 — U32/2  +  V32/2) , 

ei(4Y0- 750)(—U3U4 +  V3V4) , 

ei(4Y0- 850)(—U42/2  +  V42/2) .

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

If we assume the function P ( u s) to change very little over a frequency bin, or equivalently 

choose t  to be such th a t Q t ^  1 , we can then approximate the functions br w ith the functions 

bro. Under this approximation the cyclic spectra of the process s(t) can be shown to reduce
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to the following expression

g r ( u s) =  ^ P ( u s )B or  . (59)

Thus under the above approximations the cyclic spectra are determined by one function 

of the Fourier frequency, and by the coefficients of the Fourier decomposition of the cyclic 

variance. Note tha t this simplified representation of the cyclic spectra will not be valid 

if there are additional correlations between the parameters of the binary population. For 

example, if the chirp masses or the frequencies of the radiation em itted by the binaries are 

correlated with the positions of the binaries themselves in the Galactic disc, then the cyclic 

spectra will display a different frequency dependence from th a t implied by equation (59). In 

general we can expect the direct measurements of the cyclic spectra from the LISA data to 

allow us to infer properties of the distribution of the param eters characterizing the WD-WD 

population. In other words, by analyzing the 17 real and independent cyclic spectra we 

should be able to derive more information about the WD-WD binary population than  we 

would have by simply looking at the ordinary spectrum.

VII. DATA ANALYSIS OF THE BACK GROUND SIGNAL

We have numerically implemented the methods outlined in Section V and applied them 

to our simulated WD-WD background signal. A comparison of the results of our simulation 

of the detached WD-WD background with the calculation of the background by Hils and 

Bender [19, 29] is shown in Figure (9). We find th a t the amplitude of the background from 

our simulation is a factor of more than  2 smaller than  th a t of Hils and Bender. The level of 

the WD-WD background is determined by the number of such systems in the Galaxy. We 

estimate th a t our number WD-WD binaries should be correct within a factor 5 and thus the 

amplitude of the background should be right within a factor of \/5. In Figure (9) we have 

plotted the two backgrounds against the LISA spectral density and we have also included the 

LISA sensitivity curve. The la tter is obtained by dividing the instrum ental noise spectral 

density by the detector GW transfer function averaged over isotropically distributed and 

randomly polarized signals. In the zero-order long wavelength approximation this averaged 

transfer function is equal to a/3/20.

Our analysis was applied to 3 years of LISA X  data consisting of a coherent superposition 

of signals em itted by detached WD-WD binaries, by semi-detached binaries (AM CVn sys-
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Spectrum of the LISA noise vs. WDWD background noise

Frequency [Hz]

FIG. 9: Comparison of detached WD-WD background obtained from binary population synthesis 

simulation ( [2, 18]) with the WD-WD background calculated by Hils and Bender [19]. The 

amplitude spectral density of the LISA instrumental noise and the LISA sensitivity curve are 

drawn for comparison. All spectral densities are one-sided.

tems), and of simulated instrum ental noise. The noise was numerically generated by using 

the spectral density of the TDI X  observable given in [12]. In addition a 1 mHz low-pass 

filter was applied to our da ta  set in order to focus our analyses to the frequency region in 

which the WD-WD stochastic background is expected to be dominant.

The results of the Fourier analysis of the sample variance of the background signal are 

shown in Figures (10) and (11). The top panel of Figure (10) shows the sample variance of the 

simulated data for which the variances were estim ated over a period of 1 week; periodicity is 

clearly visible. The bottom  panel instead shows the Fourier analysis of the sample variance 

for which we have removed the mean from the sample variance time series. The vertical 

lines correspond to multiples of 1 year; two harmonics can clearly be distinguished from 

noise. The other peaks of the spectrum th a t fall roughly half way between the multiples 

of 1/year frequency, are from the rectangular window inherent to the finite time series. In 

Figure (11) we present the least square fit of 8 harmonics to our 3 years of simulated X  

data. The number 8 comes from our theoretical predictions of the number of harmonics 

obtained in Section VI (see Eq. (44)). We have calculated the magnitude of the harmonics
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W D -W D  background -  3 years o f data

Time [s]

Fourier analysis of the variance

Frequency [Hz]

FIG. 10: Top panel: The sample variance of the simulated WD-WD background observed by LISA. 

The data includes two populations of WD-WD binaries, detached and semi-detached, which are 

added to the LISA instrumental noise. The data is passed through a low-pass filter with a cut-off 

frequency of 1 mHz. Bottom panel: Fourier analysis of the sample variance. Two harmonics are 

clearly resolved.

and obtained the residuals. The results from the least square fit agree very well with those 

obtained via Fourier analysis (see also Figure (12)). The magnitudes of the first and second 

harmonics resolved by Fourier analysis, for instance, agree with the corresponding least 

square fit estimates within a few hundredth of a percent.

It is useful to compare the results of our numerical analysis against the analytic calcu­

lations of Giampieri and Polnarev [24]. Their analytic expressions for the harmonics of the 

variance of a background due to binary systems distributed in the galactic disc are given in 

Eq. (42) and shown in Figure (4) of [24]. Our estimation roughly matches theirs in tha t

x 10

x 10

x 10
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Variance and its least square fit

j ?  2 

1 

0

Time [s]

Harmonics from  the least square fit

Frequency [Hz]

Residual Case Order Plot

Case Number

FIG. 11: Top panel: The sample variance of the WD-WD background data and the least square fit 

to it using 8 harmonics (small circles). Middle panel: magnitude of the harmonics obtained from 

the least square fit. Bottom panel: residual error between the fit and the data.

the 0th  order harmonics is dominant and the first two harmonics have more power than  the 

remaining ones. Our estimate of the power in the second harmonic, however, is larger than  

th a t in the first one, whereas they find the opposite. We attribu te  this difference to their 

use of a Gaussian distribution of sources in the Galactic disc rather than  the exponential 

th a t we adopted from [2]. Comparison between these two results suggests th a t it should be 

possible to  infer the distribution of WD-WD binaries in our Galaxy by properly analyzing 

the harmonics of the variance of the galactic background measured by LISA. How this can 

be done will be the subject of a future work.

x 10

x 10

c  3 
<  3

0

x 10

x 10
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FIG. 12: Comparison between the estimated power in the harmonics obtained via (i) Fourier 

analysis, (ii) least square fit, and (iii) numerical calculation based on Eq. 49. The blue line is the 

power spectrum of the variance of the data, red vertical lines are obtained from least square fit 

and the black vertical lines are from the numerical calculation.

In order to validate our simulation and data analysis m ethod we have compared the 

results of our estimation of the power in the harmonics of the variance against the explicit 

analytic calculation. To estimate the powers we have used Eq. (49) and we have evaluated 

the integrals by numerical and Monte Carlo methods. In the numerical calculation of the 

harmonics we have limited our analysis to the population of detached WD-WD binaries. 

Thus in order to make the comparison meaningful we have performed Fourier analysis and 

least square fit of the time series consisting only of simulated detached WD-WD binaries 

(without semi-detached ones and LISA instrum ental noise). The results of the comparison 

are given in Figure (12). We see th a t for the 0th order harmonic and the first two harmonics 

the agreement is very good. For higher order harmonics there are large discrepancies between 

the numerical calculation and estimation by the least square fit, while by using the Fourier 

transform  method, we cannot even resolve higher harmonics in our 3-year data  set. We 

conclude tha t only the two first harmonics can be extracted reliably from the data. We 

also observe a very good agreement between the Fourier and the least square method. As 

a next step in our analysis, we have estim ated the cyclic spectra of the simulated WD-WD
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Cyclic spectra of W D -W D background

FIG. 13: The main (k =  0) spectrum of the simulated WD-WD background signal (red), and the 

8 cyclic spectra (magenta) estimated from the simulated data are shown. The spectral density of 

the LISA instrumental noise (black) is shown for reference.

background signal. In Figure (13) we have shown the cyclic spectra estim ated from the 

data. We have also plotted the spectrum  of the LISA instrum ental noise and the main 

spectrum (k =  0) estim ated from the simulation. We find th a t the main spectrum and two 

cyclic spectra for k = 1  and k =  2 have the largest magnitude and, over some frequency 

range, they lie above the LISA instrum ental noise. The remaining spectra are an order of 

magnitude smaller and are very noisy. We also see th a t all the cyclic spectra have roughly 

the same slope. This is predicted by our analytic calculations in Section VI and it follows 

from the assumed independence between the location of the binaries in the Galaxy (D, A, ft) 

and their frequencies and chirp masses (us, M c). We also find the magnitude of the 2nd 

cyclic spectrum to be higher than  the first, similarly to what we had for the harmonics of 

the variance. Note th a t we estim ated the spectra from the time series consisting of the 

WD-WD background added to the LISA instrum ental noise. Like the analysis we did for 

the variance, we have also compared the estimates of the cyclic spectra from our simulation 

against those obtained via numerical calculation of the equations derived in Section V I. The 

corresponding results are presented in Figures (14) and (15), where it is shown th a t the 

agreement between the two is quite good.
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FIG. 14: Estimated main (k =  0) spectrum of the WD-WD background (red) against the calculated 

spectrum (black). The LISA spectral density curve (blue) is shown for comparison. The 0th order 

spectrum contains the LISA instrumental and hence it differs from the spectrum given in Figure 

(9).

Our analysis has shown th a t the LISA data will allow us to compute 17 independent 

cyclic spectra (the 8 complex cyclic spectra gr (ƒ), r  =  1 , 2 , ...8  and the real spectrum  g0( f  )) 

of the WD-WD galactic background, 5 of which can be expected to be measured reliably. 

We have also shown th a t by performing generalized spectral analysis of the LISA data we 

will be able to derive more information about the WD-WD binary population (properties 

of the distribution of its parameters) than  we would have by only looking at the ordinary 

g0( f  ) spectrum.
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FIG. 15: Estimated cyclic spectra (black) against the calculated spectra (red). The LISA spectral 

density curve (blue) is shown for comparison.
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