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Chapter 1 
 

General introduction, objective and outline of this thesis 

 

The assembly of complex I (NADH:ubiquinone oxidoreductase, EC 1.6.5.3), the 

largest multi-protein complex of the oxidative phosphorylation (OXPHOS) system, 

is a formidable cellular achievement. The process encompasses the combination of 

38 nuclear DNA-encoded and seven mitochondrial DNA-encoded constituents, 

eight iron-sulfur clusters and a noncovalently bound flavine mononucleotide, 

resulting in one of the most complex structures in the mitochondrion. This chapter 

discusses the function, structure and assembly of complex I, in both health and 

disease.  
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Complex I: An introduction 
 

Mitochondria and oxidative phosphorylation 
 

Every heartbeat, breath, movement and thought requires energy to occur; energy 

that predominantly originates from a tiny organelle called the mitochondrion. Its 

central compartment harbours a broad spectrum of enzymes involved in different 

pathways and its own genome, the 16,569 base pair mitochondrial DNA (mtDNA). 

This so-called matrix compartment is enveloped by the mitochondrial inner and 

outer membranes, across which communication takes place with the rest of the 

cell. The inner membrane is in direct contact with the mitochondrial matrix, and it is 

here where important metabolic pathways, such as the Krebs cycle, beta-oxidation 

and the oxidative phosphorylation (OXPHOS) system, are connected to produce 

the energy carrier adenosine triphosphate (ATP).  

 

Mitochondria are highly energetic, as illustrated by the potential difference across 

the inner membrane: conversion of the 150 mV per 5 nm equals an astonishing 

300 kV per cm, the equivalent of the amount of electricity produced by a power 

plant! The membrane potential is generated through the action of the OXPHOS 

system: a set of five enzymatic complexes (termed complexes I, II, III, IV and V, 

abbreviated as CI-CV) which oxidize the substrates NADH and FADH2 produced 

during glycolysis, the Krebs cycle and beta-oxidation. Upon substrate oxidation, 

electrons are ultimately transferred via the electron transport chain to CIV, at which 

molecular oxygen is hydrolyzed to water (see figure 1). This process is 

accompanied by proton transport across the mitochondrial inner membrane by 

complexes I, III and IV. Thus, a charge difference is created between the matrix 

and inter membrane space compartments (the membrane potential) used by 

complex V, an ATP synthase, to drive ATP synthesis from ADP and inorganic 

phosphate (Nijtmans et al., 2004). Hence the name OXPHOS: substrates are 

oxidized and ADP is phosphorylated to form ATP. 
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Figure 1: A scheme of the five OXPHOS enzyme complexes: complexes I-V 

NADH (at CI) and succinate (at CII) are oxidized to obtain electrons, which are transferred through the 

system via electron carriers ubiquinone (Q) and cytochrome c (cyt c). The electrons lose energy during 

this transfer, which is used by complexes I, III and IV to translocate protons across the mitochondrial 

inner membrane. Ultimately, CIV uses the electrons to produce water from molecular oxygen and 

protons. In addition, CV, an ATP synthase, produces ATP driven by the proton gradient across the 

membrane. 

 

Complex I (NADH:ubiquinone oxidoreductase, EC 1.6.5.3) is the largest and most 

complex of the five OXPHOS enzymes (Brandt, 2006; Janssen et al., 2006). The 

main focus of this thesis is the study of its assembly process. In order to 

understand the complexity and relevance of this topic, this chapter provides an 

overview of what is known about CI function, structure, deficiency, and ultimately 

assembly. 

 

Complex I function and structure 
 

Complex I binds and oxidizes NADH to NAD
+
 to free electrons, which are 

transferred via a cascade of eight (or nine in bacterial CI) iron-sulfur (FeS) clusters 

to the electron acceptor ubiquinone (Q), which subsequently transfers electrons to 

CIII. The energy released during this electron transfer is used to translocate 

protons across the mitochondrial inner membrane, resulting in the following overall 

reaction (Galkin et al., 1999; Galkin et al., 2006): 
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NADH + H
+
 + Q + 4H

+
matrix -> NAD

+
 + QH2 + 4H

+
intermembrane space 

 

How electron transfer is coupled to proton translocation is subject to debate 

(Vinogradov, 2001; Brandt, 2006). It could be directly coupled via close proximity of 

the Q binding site to proton translocation, or indirectly via conformational changes 

of the enzyme complex. Recent data obtained for bacterial and Yarrowia lipolytica 

CI provide support for the latter option (Bottcher et al., 2002; Mamedova et al., 

2004; Brandt et al., 2005; Hinchliffe and Sazanov, 2005; Baranova et al., 2007). In 

addition, CI is observed to undergo slow active/de-active transitions in a range of 

eukaryotes depending on temperature, pH and the presence of bivalent cations 

(Maklashina et al., 1994; Vinogradov, 1998; Grivennikova et al., 2001; 

Grivennikova et al., 2003; Maklashina et al., 2003). 

 

Electron microscopy of CI reveals an L-shaped complex consisting of two 

perpendicular arms: a hydrophobic membrane arm residing in the mitochondrial 

inner membrane and a hydrophilic peripheral or matrix arm which protrudes into 

the mitochondrial matrix (Leonard et al., 1987; Hofhaus et al., 1991; Guenebaut et 

al., 1997) (see also figure 2). Three-dimensional electron microscopy of Yarrowia 

lipolytica CI recently demonstrated detailed contours and protrusions of the 

complex, underlining that CI is a complicated and possibly highly dynamic structure 

(Radermacher et al., 2006). At a higher resolution, the crystal structure of the 

peripiheral arm of Thermus thermophylus CI recently shed light onto the exact 

arrangement of the iron-sulfur clusters within the complex (Hinchliffe and Sazanov, 

2005; Sazanov and Hinchliffe, 2006; Sazanov, 2007). Hopefully, these studies will 

stimulate the elucidation of structural details of CI in higher eukaryotes. 

 

Bacterial CI consists of the 14 most conserved subunits and is considered to be the 

‘mimimal’ structure required for functionality of the enzyme. A typical example of 

bacterial CI is Escherichia coli NDH-1 (Leif et al., 1993; Friedrich et al., 1993). By 

analogy to its core structure, three functional modules can be distinguished for 

human CI. The first is the dehydrogenase module, which is responsible for the 

oxidation of NADH and consists of at least the NDUFV2, NDUFV1 and NDUFS1 

subunits (homologues of the nuoE, F and G subunits of bacterial NDH-1). The 

second is the hydrogenase module, which guides the released electrons to 

electron acceptor ubiquinone and consists of at least the NDUFS2, NDUFS3, 

NDUFS7 and NDUFS8 subunits (homologues of the nuoD, C, B and I subunits of 

NDH-1). Finally, the third is the proton translocation module, which consists of at 



Chapter 1 

 14

least the ND1, ND2, ND3, ND4, ND4L, ND5 and ND6 subunits (homologues of the 

nuoH, N, A, M, K, L and J subunits of NDH-1) (see table 1 for an overview). 

 

Table 1. CI subunit nomenclature 

This table lists the nomenclature, distribution after fractionation (bovine CI, see also figure 1), and 

allocation in the three functional modules of the 14 most conserved CI subunits from Escherichia coli, 

Homo sapiens and Bos taurus. 

 

 CI subunit  Fraction Module 

E. coli H. sapiens B. taurus   

NuoA ND3 ND3 Iγ Membrane 

NuoB NDUFS7 PSST Iλ Hydrogenase 

NuoC NDUFS3 30 kDa Iλ Hydrogenase 

NuoD NDUFS2 49 kDa Iλ Hydrogenase 

NuoE NDUFV2 24 kDa Iλ NADH dehydrogenase 

NuoF NDUFV1 51 kDa Iλ NADH dehydrogenase 

NuoG NDUFS1 75 kDa Iλ NADH dehydrogenase 

NuoH ND1 ND1 Iγ Membrane 

NuoI NDUFS8 TYKY Iλ Hydrogenase 

NuoJ ND6 ND6 Iα-λ Membrane 

NuoK ND4L ND4L Iγ Membrane 

NuoL ND5 ND5 Iβ Membrane 

NuoM ND4 ND4 Iβ Membrane 

NuoN ND2 ND2 Iγ Membrane 

 

Currently, 45 subunits have been described for human CI, an addition of 31 

supernumerary subunits to the functional “core” structure of 14 subunits. Their 

topology was inferred by fractionation of bovine CI using chaotropic salts and the 

detergent N,N-dimethyldodecylamine N-oxide (Galante and Hatefi, 1978; Sazanov 

et al., 2000) (figure 2). 
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Figure 2. CI subunit topology (adapted from (Janssen et al., 2006)) 

CI is an L-shaped enzyme complex that can be dissected into several fragments, Iα , Iβ, Iλ, and Iγ. The 

composition of these fragments allows a basic arrangement of the 45 subunits that comprise CI. 

 

The function of most of the supernumerary subunits is yet unclear. They are 

hypothesized to stabilize or to protect the complex from damage inflicted by 

reactive oxygen species (ROS). Furthermore, at least several of these subunits 

may have an additional function. 

 

One example of such a function is in apoptosis. For example, the NDUFA13 

(GRIM-19, or Gene associated with Retinoid-IFN induced Mortality in bovine CI) 

subunit is also a cell death regulatory protein induced by interferon-beta and 

retinoic acid and was demonstrated to be released from the mitochondrion upon 

apoptosis (Fearnley et al., 2001; Huang et al., 2004; Huang et al., 2007). Recently, 

GRIM-19 was shown to associate with the pro-apoptotic serine protease HtrA2 to 

promote cell death (Ma et al., 2007). An apoptotic function is also described for 

subunit NDUFS1, as caspase mediated cleavage of this subunit is a requirement 

for the mitochondrial changes associated with apoptosis (Ricci et al., 2004).  
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Another example is in fatty acid biosynthesis. The Neurospora crassa and bovine 

SDAP subunits (homologues of the human NDUFAB1 subunit) are closely related 

to the acyl-carrier proteins involved in bacterial fatty acid biosynthesis (Runswick et 

al., 1991; Sackmann et al., 1991; Zensen et al., 1992; Cronan et al., 2005). 

Interestingly, disruption of the gene in N. crassa resulted in a 4-fold increase in the 

amount of lysophospholipids in the mitochondrial membranes, suggestive of a 

function for this subunit in lysophospholipid recycling (Schneider et al., 1995; 

Schneider et al., 1997). Whether the N. crassa situation also applies to other 

organisms is subject to debate, as recent studies for bovine heart and Arabidopsis 

thalania mitochondria show that most of the of mitochondrial acyl-carrier protein is 

present in the mitochondrial matrix and not associated to CI (Cronan et al., 2005; 

Meyer et al., 2007). 

 

For several other subunits some features are known, but the exact additional 

function is yet unclear. The NDUFA9 subunit is known to harbour a NADH/NADPH 

binding site (Yamaguchi et al., 1998; Schulte et al., 1999; Schulte, 2001; 

Yamaguchi et al., 2000). The importance of this binding site for CI stability was 

recently demonstrated by mutagenesis of the Yarrowia lipolytica homologue, which 

resulted in CI destabilization, presumably by destabilization of the structural fold of 

the subunit (Abdrakhmanova et al., 2006). The NDUFS4 subunit was described to 

be phosphorylated by a cAMP-dependent protein kinase (PKA), possibly indicating 

a function in regulation of CI activity (Papa, 2002; Papa et al., 2002a; Papa et al., 

2002b). However, this later proved to be the ESSS subunit (NDUFB11 in 

humans)(Chen et al., 2004). Additional studies demonstrated phosphorylation of 

the bovine homologues of the NDUFC2, NDUFA1, NDUFA7, NDUFA10 and GRIM-

19 subunits (Raha et al., 2002; Chen et al., 2004; Schilling et al., 2005; Palmisano 

et al., 2007). Based on the phylogenetic distribution of different CI subunit 

orthologs, the NDUFA2 and NDUFA10 subunits were shown to belong to a family 

of proteins including the mitochondrial ribosomal proteins L43 and S25, 

respectively (Gabaldon et al., 2005). Finally, the NDUFA11 subunit was found to be 

paralogous to the TIM17/22 family of proteins (Carroll et al., 2002; Gabaldon et al., 

2005). 
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Complex I deficiency 
 

Mutation in one of the structural subunits of CI can result in a misassembled and 

hence dysfunctional enzyme complex. In turn, disturbances in CI activity, stability 

and assembly can result in severe energy deficiencies. These deficiencies are a 

major cause of mitochondrial disorders and are characterized by a great variety of 

clinical manifestations, in many cases resulting in early childhood death (Smeitink 

et al., 2001). To the most frequently affected organs belong brain, eyes, skeletal 

and heart muscle, liver and kidneys. These organs are hypothesized to be the first 

affected because their tissues are the most energy demanding and the critical 

amount of ATP required for their functioning may be higher than that of the other 

tissues. 

 

Complex I deficiency can be caused by mutations in either the mtDNA or the 

nuclear DNA. MtDNA mutations are normally inherited via the mother (maternally 

inherited) and are often characterized by heteroplasmy, which means that the 

percentage of mtDNA molecules harbouring the mutation varies per cell and 

sometimes per tissue, often resulting in tissue-specific defects. Although mtDNA 

mutations had already been associated with mitochondrial myopathy, they had not 

been linked to OXPHOS disorder and CI deficiency until 1988. In that year, one 

study related CI deficiency with multiple mtDNA deletions of up to 7 kb in size and 

another with a mutation in the ND4 gene, respectively (Holt et al., 1988; Wallace et 

al., 1988). Since then, mutations have been described for all mtDNA-encoded CI 

subunits (ND1-6 and ND4L. For an extensive review, see (Janssen et al., 2006)). 

The most often observed disorder caused by mtDNA mutations is MELAS 

(mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes; 

OMIM 540000). This syndrome is characterized by lactic acidosis, seizures and 

migraine, convulsions and psychomotor and mental retardation. Another frequently 

observed mitochondrial disorder is LHON (Leber hereditary optic neuropathy; 

OMIM 535000), which results in optic nerve damage and loss of central vision in 

late adolescence and young adults.  

 

Nuclear DNA mutations can be inherited via the father and/or the mother. The first 

report of a nuclear DNA mutation resulting in respiratory chain deficiency was 

described in 1995, for the gene encoding the CII Fp subunit (Bourgeron et al., 

1995). Only a few years later, Loeffen and colleagues described the first mutation 

in a nuclear CI gene (NDUFS8) (Loeffen et al., 1998). Since this discovery, 

mutations have been found in genes encoding subunits NDUFS1, NDUFS2, 
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NDUFS3, NDUFS4, NDUFS6, NDUFS7, NDUFV1, NDUFV2, NDUFA1 and 

NDUFA8 (for an extensive review, see (Janssen et al., 2006)). Nuclear DNA 

mutations in CI genes can result in a spectrum of disorders: fatal infantile lactic 

acidosis (FILA), Leigh syndrome, neonatal cardiomyopathy with lactic acidosis, 

leukodystrophy with macrocephaly and hepatopathy with renal tubulopathy 

(Pitkanen et al., 1996; Loeffen et al., 2000).  

 

The recent description of patients harbouring a mutation in assembly chaperones 

B17.2L (Ogilvie et al., 2005) and NDUFAF1 (Sugiana et al., 2006) underlines that 

affected proteins other than structural constituents of CI can be the cause of an 

isolated CI deficiency, which broadens the scope of proteins putatively involved in 

the disease process beyond CI subunits. 

 

Complex I assembly  
 

The frequency and heterogeneous nature of CI deficiency illustrates the 

importance of an active, stable and properly assembled CI. Understandably, 

investigation of the CI assembly mechanism is a prerequisite for the elucidation 

and diagnosis of CI deficiencies. Furthermore, it will result in a better 

understanding of how mitochondrial protein complexes are made by combining 

nuclear DNA and mtDNA encoded proteins. The assembly of 38 nuclear DNA-

encoded and seven mtDNA-encoded subunits into an approximately 1 MDa multi-

subunit structure is an intricate process, and has for long remained an enigma. 

Fortunately, the topic has gained much recent scientific attention, which not only 

allowed further insights into the assembly process itself but also revealed links 

between CI assembly and processes that affect the entire cell, such as apoptosis 

(programmed cell death) and even immunity. 

 

To put it simple, the assembly of a mitochondrial OXPHOS complex composed of 

both nuclear and mtDNA-encoded subunits requires delivery of nuclear DNA-

encoded proteins to the mitochondrial surface, inner membrane insertion of the 

mtDNA-encoded proteins and the subsequent combination of preformed assembly 

intermediates (see figure 3). 
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Figure 3. A schematic representation of OXPHOS assembly 

This figure depicts the three basic processes required for OXPHOS complex assembly; (1) import and 

targeting of nuclear-DNA encoded subunits, (2) targeting of mtDNA-encoded subunits and (3) the 

combination of assembly intermediates resulting in fully assembled, membrane bound enzymes. 

 

This paragraph will discuss each of the three processes in more detail. Most of the 

involved pathways were investigated in yeast mitochondria (Saccharomyces 

cerevisiae), which do not contain CI. However, processes such as import, targeting 

and quality control most likely are generic processes that also apply to CI 

assembly. The following section will first go into the general concept of import of 

nuclear DNA-encoded proteins into mitochondria and their targeting to 

submitochondrial compartments. Subsequently, the fate of mtDNA-encoded 

OXPHOS subunits will be discussed. Taken together, these sections will allow a 

better understanding of the context in which CI assembly takes place. The latter 

constitutes the third section and primary topic of this thesis: the combination of CI 

assembly intermediates and the involved assembly chaperones. 
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Nuclear DNA-encoded subunits 
 

CI consists predominantly of subunits encoded by the nuclear DNA. Each of these 

38 nuclear DNA-encoded CI subunits must be translated, transported to the 

mitochondrial outer surface, imported, processed and subsequently targeted to 

their final destination. 

 

Cytoplasmic chaperones 

 

Upon translation of nuclear mRNA, most precursors are chaperoned to the 

mitochondrial surface by cytoplasmic chaperones of the Hsp90 and Hsp70 classes, 

which maintain hydrophobic proteins in their unfolded conformation to prevent 

aggregation (Young et al., 2003). In addition, translation of nuclear DNA-encoded 

proteins has been described to occur in close proximity to the mitochondrial 

surface of yeast and mammalian mitochondria (Margeot et al., 2002; Mackenzie 

and Payne, 2004; Mukhopadhyay et al., 2004; Margeot et al., 2005). It is yet 

unknown whether translation in the vicinity of the mitochondrial outer membrane 

favours import and thus aids the assembly process of the OXPHOS complexes, 

although it has been argued that ‘site-specific’ translation of nuclear DNA-encoded 

proteins may coordinate the assembly of mitochondrial protein complexes in yeast 

(Garcia et al., 2007). 

 

Mitochondrial recognition of nuclear DNA-encoded precursor proteins 

 

Mitochondrial recognition of the cytosolic chaperone bound precursor takes place 

at the 450 kDa TOM complex (translocase of the outer mitochondrial membrane) 

(Rehling et al., 2004). This complex includes two receptor proteins, Tom20 and 70 

(Sollner et al., 1989; Sollner et al., 1990). Tom20 recognizes N-terminal 

mitochondrial target sequences, whereas Tom70 preferentially binds precursor 

proteins with internal target sequences (Brix et al., 1997; Brix et al., 1999; Brix et 

al., 2000; Young et al., 2003). Upon recognition by the TOM complex, Tom22 

directs precursor proteins towards a pore-forming core unit, the GIP (general-

import pore) (Dekker et al., 1998; Kunkele et al., 1998; Rehling et al., 2004), of 

which the actual protein-conducting pore is formed by Tom40 (Hill et al., 1998). 

From there, different pathways can be ensued, depending on whether the 

precursor is targeted to the outer mitochondrial membrane, the inter membrane 

space, the inner mitochondrial membrane or the mitochondrial matrix.  
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Import of outer membrane and inter membrane space proteins 

 

The assembly of several small inter membrane space proteins, such as Cox17, 

Cox19 and small Tim proteins, depends on a specific import machinery formed by 

Mia40 and Erv1 (Chacinska et al., 2004; Allen et al., 2005; Mesecke et al., 2005; 

Rissler et al., 2005). Outer membrane proteins, such as porin, are assembled by 

the SAM (sorting and assembly machinery) complex. These two pathways will not 

be discussed further here. Instead, the focus will be on the import of the inner 

membrane proteins and matrix proteins required for the assembly of OXPHOS 

complexes.  

 

Import of inner membrane and matrix proteins 

 

The import of inner membrane and matrix proteins is directed by the TIM 

(translocase of the inner mitochondrial membrane) complexes TIM22 and TIM23. 

Whether the TIM22 or TIM23 complex is used depends on whether the precursor 

protein has an internal or an N-terminal mitochondrial targeting sequence. In the 

case of internal targeting, after recognition of the internal targeting signal by 

Tom70, precursor proteins transverse the inter membrane space via the Tom40 

pore to be directed to the TIM22 complex. In addition to Tim22, this complex 

consists of Tim9 and 10, which aid the transfer of precursors to Tim22 (Koehler et 

al., 1998). In brief, the 300 kDa TIM22 complex, consisting of two pores (hence its 

other name the ‘twin-pore translocase’), inserts the inner membrane proteins aided 

by the small Tims that shuttle to and from the TOM complex to collect substrates 

(Rehling et al., 2003; Rehling et al., 2004). In the case of N-terminal targeting, 

presequence proteins are translocated across the outer membrane by electrostatic 

interactions between the positively charged presequence and acidic domains of 

Tom22 and Tom40 (Brix et al., 1999). From here, preproteins will be transferred to 

the TIM23 complex (also called the presequence translocase). This complex, 

consisting of Tim23, 17 and 50, accepts N-terminal targeted precursors for inner 

membrane or matrix and forms a pore across the membrane (Geissler et al., 2002; 

Yamamoto et al., 2002). Tim50 appears to interact with precursors destined for the 

mitochondrial matrix and transfers these proteins from TOM to TIM (Geissler et al., 

2002; Yamamoto et al., 2002). This process is facilitated by small Tims (Tim8, 

Tim13), which are chaperones that pass precursors to the TIM23 complex 

(Leuenberger et al., 1999). The TIM23 complex can either insert proteins directly 

into the mitochondrial inner membrane or pass these to the mitochondrial matrix. 

For matrix import, the complex requires both the membrane potential and the ATP 

driven power of the PAM (presequence translocase associated import motor) 
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complex (Rehling et al., 2004; Rassow et al., 1994; Schneider et al., 1994; van der 

Laan et al., 2006). It has recently been proposed that the switch between TOM 

tethering (inner membrane sorting) and TIM23 complex-PAM binding (motor 

recruitment; matrix translocation) takes place via a reaction cycle involving Tim21 

and Tim17 (Chacinska et al., 2005).  

 

Protease processing and chaperone action 

 

Upon arrival at the mitochondrial inner membrane, via different pathways, 

intermembrane space targeted and matrix translocated nuclear DNA-encoded 

precursor proteins are processed by proteases and chaperoned to their final 

destination. The events described below do not necessarily occur in a sequential 

order. Rather, assembly of the OXPHOS complexes is the result of their 

simultaneous, interdependent action. 

  

Protease processing 

 

For several intermembrane space targeted proteins, the sorting signal is cleaved at 

the inner membrane by the oligomeric IMP (inner membrane peptidase) complex, 

which consists of three subunits, Imp1, Imp2 and Som1 (Gakh et al., 2002). 

Examples of IMP complex substrates are Cytb2 and Cytc1 (Glick et al., 1992). As 

these are key components of the mitochondrial electron transport chain, neither 

∆imp1 mutants nor ∆imp2 yeast mutants can grow on nonfermentable carbon 

sources. The human IMP homologues have recently been identified and shown to 

complement an IMP yeast knockout for the processing of the precursor of apoptotic 

protein DIABLO/Smac, which possesses a stop-transfer presequence that 

resembles that of Cytb2 and Cytc1 (Burri et al., 2005). 

 

For matrix targeted proteins, the N-terminal targeting signal is cleaved off by MPP 

(mitochondrial processing peptidase) (Gakh et al., 2002). A single cleavage by 

MPP is usually sufficient for the maturation of most inner membrane and matrix 

precursors. However, some precursors (mostly those containing a specific N-

terminal octapeptide domain) require additional processing catalysed by a second 

metalloprotease, the MIP (mitochondrial intermediate peptidase) (Isaya et al., 

1992; Kalousek et al., 1992). The importance of MIPs for OXPHOS assembly was 

demonstrated by knockout of yeast MIP, which results in multiple electron transport 

chain enzyme deficits and loss of mtDNA (Isaya et al., 1994). 
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Matrix chaperones 

 

Upon arrival in the mitochondrial matrix the imported protein is chaperoned by 

mtHsp70. MtHsp70 activity is regulated by cochaperones Mge1 and Mdj1 by 

substantially increasing the low intrinsic ATPase activity of mtHsp70 (Voos and 

Rottgers, 2002). Mge1 catalyzes nucleotide exchange and defects in its function 

lead to an insufficient interaction of mtHsp70 with protein substrates (Westermann 

et al., 1995). Mdj1 assists in substrate binding, and null mutations lead to 

respiratory defects and misfolding and aggregation of newly imported proteins 

(Prip-Buus et al., 1996). Besides nuclear DNA-encoded proteins, mtHsp70 also 

aids protein folding of mtDNA-encoded proteins (e.g. ATP-ase 6 of ATP synthase 

(Herrmann et al., 1994)). Furthermore, chaperone action of both mtHsp70 and 

Mdj1 was shown to be required for the solubilization of misfolded proteins, a 

prerequisite for their cleavage by the PIM1 protease (Wagner et al., 1994).   

 

In addition to mtHsp70, a group of chaperonins termed ‘type 1 chaperonins’ 

consisting of the Hsp60 and Hsp10 proteins (homologues of the bacterial 

GroEL/GroES and cpn60/cpn10 systems) aids matrix protein folding and protection 

of stress-denatured proteins (Levy-Rimler et al., 2002). Hsp60 is one of the most 

important components of the protein folding system in the mitochondrial matrix 

(Martin, 1997). Exemplary for this, null mutants of Hsp60 in S. cerevisiae are not 

viable due to the severe defects in folding of mitochondrial proteins (Cheng et al., 

1989). Furthermore, mutation in human Hsp60 has been associated with hereditary 

spastic paraplegia SPG13 (an autosomal dominant form of the disease) (Hansen et 

al., 2002). Hsp60 forms homo-oligomers of 14 subunits with seven subunits 

arranged in a ring (double doughnut structure) (Sigler et al., 1998). Proteins that 

enter the cavity are protected from interactions with other components of the 

surrounding environment. Hsp10 can form a lid at the top of the double ring 

system, closing the opening of the cavity (Fenton et al., 1996). ATP binding and 

hydrolysis plays a key role in binding and release of both substrate and Hsp10 to 

Hsp60 (Levy-Rimler et al., 2002). It is thought that newly imported mitochondrial 

preproteins interact with Hsp60 shortly after reaching the matrix (Ostermann et al., 

1989; Heyrovska et al., 1998) and that Hsp70 and Hsp60 most likely cooperate in 

the folding reaction of imported proteins in a sequential order. Preproteins first 

encounter mtHsp70. Then, after being released from Hsp70, preproteins interact 

with the Hsp60 complex (Manning-Krieg et al., 1991). Cyclophilins assist protein 

folding by bringing prolyl bonds in a conformation suitable for further folding 

reactions. Cpr3 was shown to be important for efficient folding of newly imported 
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preproteins (Matouschek et al., 1995; Rassow et al., 1995). It acts in a cooperative 

manner with Hsp60 to obtain a high folding efficiency (von Ahsen et al., 1997). 

 

Other than Hsp60 and Hsp70, bacterial members of the Hsp100 family (ClpA and 

ClpB) mediate protective reactions, preventing cellular damage caused by the 

accumulation of aggregated proteins (Goloubinoff et al., 1999; Zolkiewski, 1999). 

Hsp100 also assists the degradation of irreversible damaged polypeptides by 

proteolytic machineries. Hsp78 is the yeast homolog of the bacterial ClpB, which 

resolubilizes aggregated polypeptides in conjunction with Hsp70 (Leidhold et al., 

2006). Interestingly, its presence is also required for activation of the mitochondrial 

protein synthesis machinery (Schmitt et al., 1996).  

 

FeS cluster (and heme) assembly 

 

Human CI houses eight iron-sulfur (FeS) clusters, required for electron transport 

from the NADH oxidation site to the electron acceptor ubiquinone (Q). These FeS 

clusters are assembled by the ISC (iron-sulfur cluster) assembly machinery, 

inherited from the bacterial ancestor of present day mitochondria. In yeast, the ISC 

assembly system comprises 14 known proteins of diverse functions (Lill et al., 

2006). In brief, free cysteine provides the sulfur, released by Nfs1, which is 

transferred to Isu scaffold proteins via Isd11. Iron is imported into mitochondria and 

delivered to Isu proteins by Yfh1, the yeast homologue of frataxin. Ferredoxin 

proteins (Yah1p and Arh1p) are also essential to FeS cluster biosynthesis, as their 

depletion results in strong defects in maturation of mitochondrial FeS proteins 

(Manzella et al., 1998; Lange et al., 2000). FeS cluster assembly and chaperone 

activity of the Hsp70 system are connected as Hsp70 chaperone Ssq1, co-

chaperone Jac1 and Mge1 are required for FeS cluster assembly (Voisine et al., 

2000; Lutz et al., 2001; Lill et al., 2006), possibly by facilitating FeS cluster transfer. 

Maturation of Yfh1 is defective in deletion strains for Ssc2p, homologue of 

mtHsp70, again linking mtHsp70 function to FeS cluster assembly (Knight et al., 

1998). A possible function for the Hsp70 cochaperones is the stabilization of the 

conformation of the scaffold proteins or to regenerate scaffold proteins in steps 

subsequent to the de novo synthesis of the Fe/S cluster on Isu1p (Muhlenhoff et 

al., 2003; Dutkiewicz et al., 2006). 

 

In addition to their function in FeS cluster biosynthesis, frataxin, Yah1p (ferredoxin) 

and Arh1p (ferredoxin reductase) are also involved in biosynthesis of heme, by the 

delivery of iron, required for the assembly and function of CIV (Barros et al., 2002; 
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Lesuisse et al., 2003). CIV assembly is an intricate process known to involve many 

regulatory proteins, for stability, assembly and formation of heme and copper sites 

(for detailed descriptions see: (Khalimonchuk and Rodel, 2005; Barrientos et al., 

2002)). Because the focus of this review is on CI assembly, this topic will not be 

discussed further here. 

 

As an overview, figure 4 briefly summarizes the topics discussed so far.  

 

 
 

Figure 4. Import and targeting of nuclear DNA-encoded OXPHOS subunits 

Upon translation, nuclear DNA-encoded OXPHOS proteins are targeted to the mitochondrial surface, at 

which they are imported by the TOM and TIM complexes and directed to either the mitochondrial matrix 

or the mitochondrial inner membrane. 

 

Mitochondrial DNA-encoded subunits 
 

Posttranslational membrane insertion of mtDNA-encoded precursors 

 

All seven CI subunits encoded by the mitochondrial genome (ND1-6 and ND4L) 

are highly hydrophobic membrane proteins. Upon their translation, these 

hydrophobic mitochondrial translation products must be shielded to prevent their 

aggregation in the mitochondrial matrix (Herrmann et al., 1994). Therefore, an 

intimate relation between the inner membrane and the ribosome is essential. 

Evolution has come up with several solutions to this problem, mostly relying on 

tight coupling between ribosomal translation and membrane insertion via 

translocases. 
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For example, the bacterial TAT (twin arginine translocase) system translocates fully 

folded and often large proteins with the consensus sequence SRRxFLK (‘twin 

arginine’ motif) across the membrane (Palmer et al., 2005). The TAT system is 

thought to serve for membrane translocation of proteins that have incorporated a 

cofactor required for their activity already in the cytosol, and are hence no longer 

unfolded. Another pathway of membrane insertion is via the Sec (general 

secrection) complex, used in bacteria and the eukaryotic endoplasmic reticulum 

(de Keyzer et al., 2003). This complex receives unfolded hydrophobic membrane 

proteins either for membrane insertion or translocation, via the so-called ‘dual-

gating’ mechanism. Prior to membrane insertion, the SRP (signal recognition 

particle) targets N-terminal precursors upon their translation (Poritz et al., 1990; 

Koch et al., 1999). For insertion, ATPase SecA receives the precursor bound SRP 

and engages the Sec complex. In E. coli, the SecY, E, and G proteins associate to 

form a protein-conducting channel (de Keyzer et al., 2003). YidC was found 

localized in the vicinity of the SecYEG complex, and shown to interact with 

transmembrane segments of nascent inner membrane proteins (Houben et al., 

2000; Scotti et al., 2000). YidC acts as an insertase for several proteins in bacteria, 

and depletion of YidC results in strong defects in the assembly of CIV and CV (van 

der Laan et al., 2003). Recently, cooperation between YidC and the SecYEG 

complex was shown to be required for membrane insertion of the CyoA subunit of 

cytochrome bo3 oxidase (du Plessis et al., 2006), providing a possible novel 

insertion pathway. 

 

Since present day mitochondria are believed to have evolved from endosymbiontic 

bacteria, one would expect to find at least some conservation of these membrane 

insertion pathways in mitochondria. However, mitochondria do not seem to use 

signal recognition particles and at least in S. cerevisiae, mitochondria lack a Sec 

complex counterpart (Glick and Von, 1996). A link between bacterial membrane 

insertion pathways and mitochondria was provided with the discovery of the 

Oxa1/YidC/Alb3 group of proteins (Kuhn et al., 2003). Oxa1 and Alb3 are the 

mitochondrial and chloroplast homologues of the bacterial YidC protein. Oxa1 was 

found to be essential for CIV and CV assembly in S. cerevisiae (Bonnefoy et al., 

1994; Altamura et al., 1996; Kermorgant et al., 1997), and its reduction in N. crassa 

results in deficiency in CI and CIV (Nargang et al., 2002) (but somewhat 

surprisingly not in CIII (Altamura et al., 1996)). Analogous to YidC, Oxa1 mediates 

the insertion of membrane proteins (Hell et al., 2001) and ribosome binding to c-

terminus of Oxa1 is required for co-translational insertion of several mtDNA-
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encoded proteins (Jia et al., 2003; Szyrach et al., 2003). Recently, Mba1 was 

discovered to have a related role in ribosome tethering to the inner mitochondrial 

membrane (Preuss et al., 2001; Ott et al., 2006). Analogous to Oxa1, Mba1 is 

associated to the mitochondrial ribosome and its deletion leads to insertion defects 

(Jia et al., 2003; Szyrach et al., 2003; Rep and Grivell, 1996; Ott et al., 2006). 

Mba1 is suggested to serve as a membrane receptor for mitochondrial ribosomes 

that, in a concerted action with Oxa1, positions the ribosome to the protein 

insertion site at the inner membrane (Ott et al., 2006). Mba1 is most homologous to 

mitochondrial ribosome subunit Mrpl45 (Ott et al., 2006). This allows speculation 

about whether it is actually part of the ribosomal structure and could serve as some 

sort of signal recognition particle as described for bacteria. The most recent 

examples of the intimate relation between the ribosome and the inner membrane 

are Mdm38 and Ylh47, which also associate with ribosomes and aid the export of 

matrix proteins in the assembly of the respiratory chain complex (Frazier et al., 

2006). Another distant YidC homologue is Oxa2/Cox18 (Funes et al., 2004). This 

protein is described to be essential for CIV assembly but in yeast Oxa1 and 

Cox18/Oxa2 do not complement each other (Saracco and Fox, 2002; Funes et al., 

2004; Preuss et al., 2005). Finally, Cox11p, essential to Cu(B) site formation of 

CIV, was found associated to the ribosome (Khalimonchuk and Rodel, 2005). 

 
Quality control of inner membrane proteins 

 

Proteases are not only required for signal sequence cleavage, but also act as a 

quality control system for inner membrane proteins. AAA (triple A) proteases are 

main players of this system and have been demonstrated to degrade a large 

number of nonnative membrane proteins (Leonhard et al., 1996; Langer, 2000; 

Langer et al., 2001; Nolden et al., 2005). There are two types of AAA proteases: 

intermembrane space (i-AAA) and matrix (m-AAA) proteases. Yeast i-AAA 

protease, composed of Yme1, is active on the intermembrane side (Leonhard et 

al., 1996) and its deletion leads to respiratory deficiencies (Thorsness et al., 1993). 

The human m-AAA protease constitutes a hetero-oligomeric complex of Afg2l2 and 

paraplegin (Atorino et al., 2003). In the absence of m-AAA protease, yeast cells are 

respiratory deficient and lack assembled respiratory chain complexes (Arlt et al., 

1998). Recently, the m-AAA protease is proposed not only to ensure the quality 

control of inner membrane proteins but also exert a regulatory function during 

mitochondrial biogenesis (Nolden et al., 2005), as it processes MRPL32 and thus 

affects mitochondrial ribosome assembly. MRPL32 becomes tightly associated with 

the mitochondrial inner membrane upon processing by the m-AAA protease and is 

recruited to ribosomes only at a late stage of their assembly. This supports that 



Chapter 1 

 28

ribosome assembly is completed at the inner membrane and that only membrane 

bound ribosomes are translationally active. Interestingly, overexpression of Oxa1 

or Mba1 suppresses the defects of the yta10 and yta12 mutants (subunits of the 

yeast m-AAA protease), possibly because aberrant membrane tethering is 

compensated (Rep et al., 1996). 

 

Another component of the quality control system is the prohibitin complex. This 

complex is assembled from subunits Phb1 and Phb2 and exists as diverse inner 

membrane bound ring-shaped structures in yeast mitochondria (Tatsuta et al., 

2005). Prohibitins prevent misfolding of newly synthesized proteins, and as such 

serve as chaperones for respiratory chain complex processing (Nijtmans et al., 

2000). Destabilization of mitochondrial polypeptides is observed upon disruption of 

the prohibitin genes, and further research demonstrated that the prohibitin complex 

can modulate the activity of the m-AAA protease (Steglich et al., 1999). 

 

Figure 5 briefly summarizes the path of mtDNA-encoded subunits in OXPHOS 

complex assembly. 

 

 
Figure 5. Membrane insertion of mtDNA-encoded OXPHOS subunits 

Transcription and translation of mitochondrial gene products is coordinated by transcription factors and 

translational activators and depends on proper ribosome assembly. Upon translation, proteins targeted 

to the inner membrane are chaperoned and processed prior to combination with other membrane 

proteins. 
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Combination of assembly intermediates and chaperone 

action 
 

The previous paragraphs have shown the many ways in which submitochondrial 

processes such as import, targeting and quality control are “indirectly” important for 

the assembly of the OXPHOS complexes. An obvious question is what happens 

next, when all the constituents that ultimately assemble into CI are present inside 

the mitochondrion?  

 

This paragraph briefly discusses what is known about the combination of building 

blocks during CI assembly and which chaperones are required for the process 

(figure 6). It will cover the “state of the art” prior to the beginning of the research 

described in this thesis (in the year 2002), together with the relevant open 

questions at that time.  

 

Complex I assembly occurs via intermediate complexes 

 

Although about two decades ago CI structure and mechanism of function were still 

largely unknown, several ideas existed about the way in which human CI could be 

assembled, mainly based on studies performed in other organisms. It seemed 

conceivable that assembly takes place via substructures, termed assembly 

intermediates. These intermediates are combinations of subunits that are 

combined to form even larger structures, ultimately resulting in fully assembled CI. 

The first lines of evidence for this appeared in 1990, when Hall and Hare 

demonstrated that in rat hepatoma cells, nuclear DNA-encoded CI subunits are 

required to allow incorporation of mtDNA-encoded subunits into a presumably 

preformed scaffold (Hall and Hare, 1990). In the years to come, most if not all 

assembly studies in other organisms confirmed that a scaffold of nuclear DNA-

encoded CI subunits can be formed in the absence of mtDNA-encoded subunits 

(Tuschen et al., 1990; Hall and Hare, 1990; Hofhaus and Attardi, 1993; Bai and 

Attardi, 1998; Bourges et al., 2004; Kirby et al., 2004; Potluri et al., 2004).  
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Figure 6. Combination of OXPHOS assembly intermediates 

This figure shows the combination of chaperoned matrix proteins and the incorporation of prosthetic 

groups, formation of membrane complexes and the integration of both subassembled products into the 

final OXPHOS enzyme. An integral part of this process is FeS cluster assembly, which has been 

considered in the previous paragraph. 

 

In the fungus Neurospora crassa, inhibition of either mitochondrial or nuclear 

translation demonstrated that the perhipheral arm of CI, consisting of nuclear DNA-

encoded subunits, could be assembled independently from the membrane arm, 

consisting mainly of mtDNA-encoded subunits (Tuschen et al., 1990). In the 

following years, systematic mutation of N. crassa CI subunits delivered valuable 

information about which CI subunit is required for the assembly of each arm and it 

appeared that the membrane arm of N. crassa CI is assembled from a large and 

small intermediate (Weidner et al., 1992; Schulte et al., 1994; Videira, 1998; 

Videira  and Duarte, 2001; Schulte, 2001; Videira and Duarte, 2002).  

 

Until 2002, CI assembly was also studied in other organisms (Braun et al., 1998; 

Cardol et al., 2002; Yadava et al., 2002), but studies for the human CI assembly 

mechanism were still scarce. Most information about human CI assembly was to 

come from SDS-PAGE and blue-native PAGE studies for patients in which one of 

the subunits is altered or absent due to mutation (Van Coster et al., 2001; Triepels 

et al., 2001). In 2003, using two-dimensional blue-native PAGE, specific high-

molecular weight CI intermediates were observed in a cohort of CI deficient 

patients which could represent intermediates of the assembly process (Antonicka 

et al., 2003). However, structurally altered CI subunits could disturb assembly or 

destabilize the holo-complex, therewith resulting in intermediates that do not 

primarily originate from the assembly process. In order to discriminate which 
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intermediates are assembly intermediates, detailed investigations in model 

systems of human CI assembly were required. These studies should then reveal 

whether specific assembly intermediates also exist for human CI, in which order 

they are combined, whether the assembly process reflects the structural build-up of 

the complex, and which steps in the assembly process are of crucial importance. 

 

Complex I assembly chaperones 
 

Analogous to CII-CV, the assembly process of CI requires the aid of assembly 

chaperones. These are proteins that aid the assembly process, e.g. via 

stabilization of assembly intermediates. Until 2002, only two putative CI 

chaperones were described, both in N. crassa: the complex I intermediate 

associated proteins CIA30 and CIA84. CIA30 and CIA84 were found associated 

with a large membrane arm CI intermediate in a nuo21.3 mutant, and binding 

kinetics strongly suggested a chaperone function in CI assembly (Kuffner et al., 

1998). In 2002, Janssen and colleagues identified the human homologue of this 

protein: NDUFAF1 (Janssen et al., 2002). Sequence analysis in 13 patients with an 

isolated CI deficiency did not deliver any mutation and although homologous, it 

was still uncertain whether NDUFAF1 was also orthologous to CIA30. Therefore, 

studies were required to demonstrate the requirement of NDUFAF1 in human CI 

assembly. Furthermore, its association with high-molecular weight protein 

complexes in healthy and CI deficient patient cell lines may deliver valuable 

information about its revelance for CI assembly. Finally, as many chaperones have 

been decribed to function in the assembly of the other OXPHOS complexes, one 

would expect more to exist than just NDUFAF1 for human CI assembly. A 

continuous search for new assembly chaperones will remain an essential aspect of 

CI assembly studies that aids the understanding of the process.  

 

As a concluding overview of the processes required to assemble an OXPHOS 

complex, figure 7 provides a more detailed representation of figure 3 by combining 

figures 4, 5 and 6. 
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Figure 7. An overview of the different processes involved in the assembly of the OXPHOS complexes 

OXPHOS complex assembly links import of nuclear DNA-encoded proteins to translation and membrane insertion of mtDNA-encoded 

proteins, to the processing, activation and combination of subcomplexes. After either post-translational or co-translational import, nuclear 

DNA-encoded precursors are targeted to the destined mitochondrial subcompartment. During and after transfer, the precursors are processed 

by proteases and chaperoned by chaperones such as heat shock proteins to be united with a putative binding partner. Mitochondrial subunits 

are membrane inserted, aided by quality control and chaperone mechanisms to ensure proper insertion without aggregation of the 

hydrophobic proteins. Ultimately, both  nuclear DNA- and mtDNA-encoded subunits are assembled to form a membrane bound protein 

complex, which in  the case of CI encompasses 45 subunits. 
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Closing remarks, aim, objectives and outline of this thesis 
 

This chapter has illustrated the complicated and multi-faceted nature of the CI 

assembly process and serves as the context in which the content of this thesis 

should be read. Based on the future directions of research discussed in the 

previous paragraph, this final paragraph will present the aim, objectives and outline 

of this thesis. 

 

Aim 

 

� The primary aim is to elucidate the assembly process of human 

mitochondrial complex I. 

 

Objectives 

 

� Investigation of which subassemblies are formed and in which order these 

are combined to form fully assembled CI. 

� Investigation of the requirement of assembly chaperones for CI assembly. 

 

Outline 

 

Part I describes three studies investigating which subassemblies occur during the 

course of CI assembly and in which order these are combined: chapter 2 describes 

a model for CI assembly based on the co-evolution of CI subunits and the structure 

of the complex, chapter 3 describes the development of our first model of CI 

assembly by using a conditional assembly system, and chapter 4 describes finding 

of the entry-point of mtDNA-encoded subunits in the assembly process and 

improvements to our first model. 

 

Part II of this thesis describes three studies for the existence and function of CI 

specific assembly chaperones, which are hypothesized to play a vital role in CI 

assembly: chapter 5 demonstrates the importance of chaperone NDUFAF1 for CI 

assembly, chapter 6 describes the occurrence of chaperones NDUFAF1 and 

B17.2L in a cohort of CI deficient patients, and chapter 7 describes the 

mitochondrial function of the Ecsit protein, a signaling protein in the immune 

response and binding partner of NDUFAF1. 

 

Chapter 8, the general discussion, will reflect on both parts of this thesis. 
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Abstract 
 

Disturbances in the mitochondrial oxidative phosphorylation pathway most often 

lead to devastating disorders with a fatal outcome. Of these, complex I deficiency is 

the most frequently encountered. Recent characterization of the mitochondrial and 

nuclear DNA encoded complex I subunits has allowed mutational analysis and 

reliable prenatal diagnosis. Nevertheless we are still confronted with complex I 

deficient patients without a mutation in any of the known subunits. It is assumed 

that these patients harbour defects in proteins involved in the assembly of this 

largest member of the oxidative phosphorylation complexes. This review describes 

our current understanding of complex I assembly, new developments and future 

perspectives. The first model of human complex I assembly has recently been 

proposed. There are new insights into supercomplex assembly and stability which 

may aid in explaining combined deficiencies. Recent functional characterisation of 

some of the 32 accessory subunits of the complex may link these subunits to 

complex I biogenesis and activity regulation. Research on complex I assembly is 

increasing rapidly. However, comparison between theoretical and experimental 

models of complex I assembly is still problematic. The growing understanding of 

complex I assembly at the subunit and supercomplex level will clarify the picture in 

the future. The elucidation of complex I assembly by combining patient data with 

new experimental methods will aid diagnosis and possibly therapy of many of the 

yet uncharacterised mitochondrial disorders. 
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Introduction 
 

A person´s needs are hardly ever satisfied, but whatever the need one surely 

requires ATP. This energy carrier is mainly generated in mitochondria by the 

oxidative phosphorylation (OXPHOS) system via the concerted action of five 

protein complexes (I, II, III, IV and V) and two mobile electron carriers (cytochrome 

c and ubiquinone). The first four complexes transport electrons from NADH and 

FADH2 to its final acceptor molecular oxygen. This is accompanied by proton 

transport across the inner mitochondrial membrane. The thus generated proton 

gradient is finally utilised by the fifth complex in the chain, ATP synthase, to 

generate ATP.  

 

OXPHOS-system dysfunction is the cause of serious disorders mostly affecting 

tissues with a high-energy demand like brain, heart and skeletal muscle. They are 

observed approximately once every 10.000 births resulting in numerous multi-

systemic disorders, often resulting in early childhood death (Smeitink et al., 2001). 

 

The most frequent occurring enzymatic deficiencies are found in the first complex 

of the chain: complex I (NADH:ubiquinone oxidoreductase; OMIM 252010) 

(Triepels et al., 2001). Complex I is the largest of the five OXPHOS complexes and 

is the entry point for electrons donated from NADH. After sequencing the genes 

encoding its 45 subunits (identified in H. sapiens) in a group of 20 complex I 

deficient patients, about 40% of the deficiencies could be traced back to mutations 

in the structural building blocks (Triepels et al., 2000). It has been hypothesized 

that in the genetically unsolved cases the defect is in one of the intricate steps of 

complex I assembly of which, in contrast to e.g. complex III (Visapaa et al., 2002) 

and IV (Barrientos et al., 2002) of the OXPHOS-system, only scarce knowledge is 

available.  

 

This review will focus on the development of the human complex I assembly model 

and combines current views on assembly from different perspectives.  
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Complex I: functional and structural aspects 
 

In complex I, electrons provided by NADH are funnelled from the cofactor FMN via 

eight redox groups, the iron-sulfur (FeS) clusters, to the electron acceptor 

ubiquinone. Ubiquinone, in turn, transfers the electrons to the next complex in the 

chain (complex III). This electron transfer is coupled to proton translocation across 

the mitochondrial inner membrane. In summary, complex I pumps protons and 

transfers electrons in a stoichiometry of 4H
+
/2e

-
. 

 

Complex I is the least known enzyme-complex of the OXPHOS-system. 

Developments in proteomics have allowed the identification of several additional 

subunits bringing the total number of bovine structural proteins at 46 (Carroll et al., 

2003; Hirst et al., 2003). These subunits are either encoded by the mitochondrial (7 

subunits) or the nuclear genome (39 subunits). Single particle electron microscopy 

data depict the complex as an L-shaped ´boot´ (Hofhaus et al., 1991; Guenebaut et 

al., 1997; Guenebaut et al., 1998; Grigorieff, 1999; Djafarzadeh et al., 2000) with a 

hydrophobic membrane arm and a hydrophilic protruding arm. Electron 

micrographs in Escherichia coli show an additional “horse-shoe” conformation, 

which may reflect the active form of the complex (Bottcher et al., 2002).  

 

In contrast to complex I in mammals, plants and fungi, certain bacteria harbour a 

much smaller proton-translocating NADH:ubiquinone oxidoreductase (called NDH-

1) (Friedrich et al., 1995). This bacterial complex I is composed of only 14 subunits 

and can carry out the same functions as mitochondrial complex I. Due to its 

simplicity and functionality, the bacterial system is a good model system to study 

complex I function. When discussing the minimal complex I structure we will from 

now on refer to the 14 subunits in bacterial NDH-1. 

 

In E. coli, the 13 complex I genes (two genes, nuoC and D, are fused), are 

organised in the so-called nuo-operon (NADH:ubiquinone oxidoreductase) 

(Friedrich et al., 1995). Six genes encode for peripheral hydrophilic proteins, 

including all proteins with binding motifs for NADH, FMN and all FeS clusters. The 

seven other genes encode hydrophobic membrane proteins. Several 

nomenclatures exist for the different subunits varying per organism of which the 

bovine nomenclature is most frequently used (Hirst et al., 2003). In this system, the 

peripheral subunits are named the 75, 51, 49 and 30 (fused), 24 kDa, PSST and 
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TYKY subunits. The membrane subunits are named ND1, ND2, ND3, ND4, ND4L, 

ND5 and ND6 (Figure 1). 

 

 
 

Figure 1: A schematic depiction of the subunit arrangement in bacterial complex I (NDH-1) 

Numbers indicate the sizes of the individual subunits in kDa (bovine nomenclature). 

 

Modular evolution of complex I  
 

Bacterial complex I consists of three distinct functional modules. The first is the 

hydrophilic peripheral module containing the NADH dehydrogenase fragment, 

composed of the 24, 51 and 75 kDa subunits. The second module connects the 

peripheral and the membrane module and is called the connecting fragment. This 

fragment shows no reactivity towards NADH or quinones. It is composed of the 

TYKY, PSST and 30 and 49 kDa subunits. The third module is the membrane 

fragment. It consists of the seven hydrophobic ND subunits, of which several are 

related to K
+
 or Na

+
-H

+
 antiporters. Therefore, it has been proposed that this 

fragment is involved in proton pumping (Friedrich, 1998).  
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Homology searches have revealed a great deal of conservation of certain modules 

of the complex between various organisms. Archaeal, cyanobacterial, bacterial and 

mammalian complex I share great resemblance in their complex I structure, 

although the electron input device (NADH dehydrogenase in mammalian complex 

I) varies. Based on sequence homology between functional modules of complex I 

in the various organisms, Friedrich and Weiss (1997) have proposed the so-called 

modular evolution scheme for complex I. The idea is that complex I most probably 

originated by fusion of pre-existing protein assemblies constituting modules for 

electron transfer and proton transport (Friedrich and Weiss, 1997). Starting point 

for the model is the ´minimal´ functional system of complex I observed in bacteria.  

 

The proposed evolutionary modules described in the theory are a ferrodoxin 

(TYKY), a hydrogenase (PSST and 49 kDa), a transport protein (ND5), a protein 

with a quinone reduction site (ND1), a protein of unknown function (30 kDa) and a 

NADH dehydrogenase module (75, 51 and 24 kDa). 

 

The hydrogenase module (also present in nowadays soluble [NiFe] hydrogenases) 

can be traced back to the oldest ancestor (Friedrich, 2001). This progenitor has lost 

its [NiFe] active site and its ability to react with molecular hydrogen. It has most 

probably gained a quinone-binding site (Friedrich and Scheide, 2000). Combining 

the soluble [NiFe] hydrogenase module with the ferrodoxin-type subunit TYKY, the 

ion-translocating ND5 and the quinone-binding ND1 resulted in the common 

ancestor of a family of membrane-bound multisubunit hydrogenases, including the 

hydrogenase 3 and 4 of the formate hydrogenlyase system of E. coli, the CO-

induced hydrogenase of Rhodospirillum rubrum and the Ech hydrogenase of 

Methanosarcina barkeri. These hydrogenases seem to participate in the same 

reactions, namely oxidation of an electron donor and subsequent transfer of a 

positive charge. The combined subunits can be recognised in today’s complex I as 

the hydrogenase module (Friedrich, 2001). 

 

The membrane part of complex I is thought to have originated from triplication of 

the transporter subunit ND5 into ND2 and ND4 and acquisition of ND3, ND6 and 

ND4L. The membrane subunits ND4 and ND5 have shown to be related to a class 

of Na
+
/H

+
 antiporters in Bacillus subtilis. These antiporters come in two classes: 

MrpA and MrpD. It seems from recent work that ND5 is more like MrpA, and ND2 

and ND4 are more like MrpD (Mathiesen and Hagerhall, 2003), arguing against the 

idea of triplication of the antiporter module. Acquisition of the NADH 
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dehydrogenase module resulted in today’s mitochondrial complex I. Homologous to 

Ralstonia eutropha, the electron input domain of mammalian complex I is made up 

of the 24, the 51 kDa and the N-terminal segment of the 75 kDa subunit (Finel, 

1998) (Figure 2). 

 

The great number of gene fusions, the interspecies sequence homology of 

functional modules and the corresponding gene arrangements strongly support the 

idea of modular evolution. Furthermore, one could imagine that complex I 

assembly occurs in modules as well.  
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Figure 2: Modular evolution of complex I (adapted from (M athiesen and Hagerhall, 2003)) 

The proposed modular evolution is depicted in figures A-D. Please mind that this does not necessarily 

represent the order of assembly. According to the theory, a soluble [NiFe] hydrogenase (A) combined 

with a ferrodoxin and a transport module to form the progenitor of membrane-bound hydrogenases (B). 

Expansion of the transport module resulted in the common ancestor of complex I. Addition of the NADH 

dehydrogenase module resulted into present-day bacterial complex I (D). 
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Complex I assembly in Neurospora crassa 
 

The first organism in which the biogenesis of complex I has been studied in detail 

is the fungus Neurospora crassa (Schulte, 2001). Assembly intermediates were 

observed after inhibition of mitochondrially encoded subunits by chloramphenicol 

(the peripheral arm accumulates) (Friedrich et al., 1989) and under manganese 

limitation (the membrane arm accumulates) (Schmidt et al., 1992). By inducing 

mutations in, and deletion of, many genes encoding complex I subunits, assembly 

was blocked and more assembly intermediates were observed. Analysis and pulse-

chase labelling of these assembly intermediates (Videira, 1998; Tuschen et al., 

1990) resulted in the first assembly pathway for complex I. By knocking out the 

TYKY homologue in the fungus, two proteins were found to be associated with a 

large membrane arm assembly intermediate: CIA (Complex I Intermediate 

Associated) proteins CIA30 and CIA84. These proteins are not part of the final 

structure of complex I and have been shown to cycle between the bound and 

unbound state (Kuffner et al., 1998). These two proteins are the first examples of 

putative assembly factors of complex I. The human homologue for CIA30 was 

found (Janssen et al., 2002) but has to date not been shown to be associated with 

disease. 

 

In total, four assembly intermediates were observed by combined investigations: a 

small and a large membrane arm intermediate, the complete membrane arm and a 

peripheral segment. Assembly is proposed to occur via several steps. The first step 

is the combining of the small and large membrane arm intermediates (possibly via 

the interaction with the chaperones CIA30 and CIA84) to a membrane arm 

intermediate. This is combined in the second step with the assembled peripheral 

arm to result in holo-complex I (Schulte, 2001). 

 

Complex I assembly in Homo sapiens 
 

The group of Attardi was among the first to investigate complex I assembly in 

humans (Chomyn, 2001). By the analyses of mitochondrial DNA mutations 

affecting subunits of complex I it was shown that ND4 and ND6 are essential for 

the assembly of the enzyme complex. Since then, the occurrence of assembly 

intermediates in patients with a mitochondrial disorder has resulted in several 

studies for the assembly of complex I. 
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Assembly profiles of human complex I were researched by Triepels and colleagues 

(Triepels et al., 2001). In this study a set of monoclonal antibodies was tested on 

western blots of complex I deficient patients. By comparing the intensities of 

different antibodies in different patients, patient samples were classified by their 

assembly profiles. Subunits appeared to behave as three classes. The levels of 39 

and 30 kDa subunits varied in the same manner as did the 20 and 18 kDa as did 

the levels of the 15 and 18 kDa subunits.   

 

Recently, two dimensional blue native electrophoresis (2D-BN/SDS-PAGE) was 

used to detect partially assembled complex I subcomplexes in a cohort of four 

complex I deficient patients (Antonicka et al., 2003). Analysis of the observed 

subcomplexes led to the first description of the assembly pathway for complex I in 

humans. By using a set of 11 antibodies against nuclear and mitochondrial 

encoded subunits, a set of five subcomplexes was identified. Observed groupings 

of subunits were the 49, 39 and 30 kDa subunits, the 24, 20 and 18 kDa subunits, 

the ND1 and 8 kDa subunits, the 15 and 14 kDa subunits and a large subcomplex 

containing ND1, the 49, 39, 30, 20, 18, 15 and 14 kDa subunits. The 17 kDa 

subunit could not be assigned to any of the groups.  

 

These findings led to the proposal of the following assembly pathway. The first step 

is the partial assembly of the peripheral arm by combining two intermediates 

(including the 49, 39 and 30 kDa subunits). This complex is then coupled to several 

subunits of the membrane arm (including ND1) resulting in a membrane bound 

protein. Subsequently, the last part of the peripheral arm is added (including the 

20, 24 and 18 kDa subunits) and the membrane arm is completed. 

 

The finding of the 39 and 30 kDa subunits together as well as the 20 and 18 kDa 

subunits can be correlated to the findings of Triepels and colleagues (Triepels et 

al., 2001), described earlier. However, the assembly pathway differs significantly 

from the pathway in N. crassa as many more intermediates are observed in 

humans than in the fungus.  
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Do experimental models of assembly fit with the modular 

evolution theory? 
 

The N. crassa model of assembly correlates only crudely with the modular 

evolution scheme. After comparison with modular evolution, one could envisage 

the four subcomplexes in N. crassa as follows. The peripheral arm should include 

the NADH dehydrogenase module. The small membrane arm intermediate 

includes the hydrogenase and/or transporter module. The large membrane arm 

intermediate includes the transporter module. By analogy, in N. crassa, the 

transporter and hydrogenase modules are coupled prior to attachment of the 

NADH dehydrogenase fragment. This order of assembly is consistent with the 

modular evolution model. Nevertheless, this is still speculative and the N. crassa 

model is yet too unrefined to speculate about a more detailed comparison. 

 

The model of human complex I assembly is hard to reconcile with the modular 

evolution theory. There is an important conflict between the two models. The 

separate assembly of the 49 kDa and the PSST subunits is inconsistent with the 

conserved collocation of these two subunits in the nowadays soluble [NiFe] 

hydrogenases (Friedrich, 2001). In the light of modular evolution, one would not 

expect these two subunits to be present in different assembly intermediates. The 

appearance of the 39 kDa subunit together with the 30 kDa subunit in one 

subcomplex is inconsistent with recent findings in our laboratory (unpublished 

results). A possible explanation for this discrepancy is the presence of different 

subcomplexes of a similar size. Finally, the presence of degradation products 

which can exist simultaneously with assembly intermediates, can lead to ambiguity 

in the interpretation. The fact that relative amounts of subunits in subcomplexes 

found by Antonicka and colleagues differ between patients might be an indication 

for the occurrence of degradation products. 

 

Using a greater variety of antibodies may (especially of the 51 and 75 kDa 

subunits) ease the comparison between ‘theory’ and ‘practice’. More patient 

studies will continue to contribute to the elucidation the complex I assembly 

pathway. We recently performed an assembly study (Ugalde et al., 2003) in which 

we found a novel mutation in the ND6 gene in a patient with Leigh syndrome which 

seems to have a profound effect on complex I assembly and/or stability. More 

studies along these lines will help to elucidate a general assembly pattern in 

humans. 
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Combined deficiencies: possible link to supercomplex 

stability 
 

As discussed, complex I assembly should be regarded in combination with its 

stability. An interesting link between combined OXPHOS deficiencies and 

supercomplexes has recently intensified the research on this area. 

 

It has been known for some years that (some of) the protein complexes forming the 

respiratory chain are associated in higher order assemblies called 

‘supercomplexes’ or ‘respirasomes’ (Schagger, 2002). Supercomplexes are 

thought to ease diffusion and reaction chemistry, also called ‘substrate channelling’ 

and may increase individual complex stability. After their discovery in yeast, 

supercomplexes were shown in mammalian mitochondria as well (Schagger and 

Pfeiffer, 2000). Supercomplexes composed of I1III2IV4 and III2IV4 were identified as 

the two major fragments of the respirasome in healthy mitochondria.  

 

Recently, a complete respirasome was isolated in Parococcus denitrificans 

containing complex I, III and IV in a 1:4:4 stoichiometry (Stroh et al., 2004). 

Complex I activity was found in membranes of mutants lacking complexes III or IV. 

Interestingly however, no assembled complex I (only dissociated subunits) was 

found after electrophoretic separation or chromatographic isolation of the 

supercomplex in the wild-type strain. This has the important implication that 

complex I is stabilized by assembly into the supercomplex. 

 

These findings fit with observations of combined deficiencies. In two patients with 

different cytochrome b mutations, complex III was shown to be decreased in 

combination with a decrease in complex I activity and stability (Schagger, 2002). It 

seems that lack of assembled complex III causes a specific lack of assembled 

complex I. Interestingly, complex III deficiency is observed often in combination 

with deficiencies of other complexes. Vice versa, (Ugalde et al., unpublished data) 

find that mutations in complex I genes can also affect the stability of other 

mitochondrial complexes, with a specific decrease in the levels of fully-assembled 

complex III in patients with mutations in the 49 and 18 kDa subunits. These 

findings indicate that combined deficiencies may be related to a decrease in 

supercomplex stability and that functional analysis of isolated complexes I and III 

should be regarded with caution. 
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Recently, supercomplexes of complex III and IV in yeast have shown to be 

stabilised by cardiolipin, an anionic phospholipid (Pfeiffer et al., 2003). Likewise, 

cardiolipin may be involved in the stabilisation of supercomplexes in humans. 

Defects in cardiolipin remodelling have been described and result in the rare 

disorder X-linked cardioskeletal myopathy and neutropenia (Barth syndrome) 

(Vreken et al., 2000). 

 

Accessory subunits involved in complex I biogenesis or 

activity regulation 
 

During the last two decades, a great variety of pathogenic mitochondrial and 

nuclear mutations has been described in literature (Smeitink et al., 2001; DiMauro 

and Schon, 2003; Zeviani and Carelli, 2003). Mutations are found in seven nuclear 

encoded subunits of complex I (the 75, 51, 49, 24, 18 kDa, PSST and TYKY 

subunits) and in all the ND subunits in the mitochondrial genome. Remarkably, all 

of these subunits (except for the 18 kDa subunit) are part of the minimal 14 

subunits constituting bacterial NDH-1. The affected ‘minimal’ nuclear encoded 

subunits all contain FeS clusters (responsible for electron channelling in the protein 

complex). It seems that mutations in the ‘framework’ formed by the modules in the 

modular evolution scheme have a dramatic effect on complex I function.  

 

A lack of mutational data for 32 subunits that are not part of the minimal bacterial 

version of complex I have kept the function of most of these ´accessory´ subunits 

unclear. It has been proposed that these subunits function as a protective scaffold 

to escaping electrons hence preventing damage by radicals. However, there is 

increasing experimental evidence indicating that at least some of the accessory 

subunits may have another enzymatic function, e.g. in biosynthesis or activity 

regulation. These findings may link accessory subunits to complex I dysfunction. 

 

An accessory subunit that may be linked to assembly is the SDAP subunit, the 

homologue of the Acyl Carrier Protein (ACP) described in N. crassa. This subunit is 

closely related to ACPs involved in fatty acid synthesis (Zhang et al., 2003) and 

has been proposed to play a role in lipoic acid biosynthesis (Brody et al., 1997; 

Jordan and Cronan, Jr., 1997; Wada et al., 1997). Interestingly, an ACP mutant of 

N. crassa cannot assemble complex I membrane arm. Fatty acid synthesis 

however is not influenced (Schulte, 2001). Mutants disrupted in the peripheral arm 

do form ACP, suggesting an independent function. Cardiolipin synthesis requires 
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phospholipids and fatty acids and may hypothetically link this subunit, to 

(super)complex stability. 

 

Another example is the MWFE subunit, which is required for stable assembly of 

complex I. It is thought to be involved in species-specific compatibility of complex I 

assembly and is related to Na
+
 transporters in N. crassa (Yadava et al., 2002).  

 

Alternatively, there is recent data suggesting a role in activity regulation for some 

accessory subunits. The 18 kDa subunit of complex I (AQDQ in man) is the target 

of a mitochondrial cAMP dependent protein kinase. An increase of complex I 

activity was observed upon phosphorylation of this subunit (Papa et al., 1996). A 

recent description of a patient with a deletion in the phosphorylation site has linked 

the dysfunction of the phosphorylation process with impaired complex I assembly 

and a fatal neurological syndrome (Scacco et al., 2003). Both findings suggest a 

role of the subunit in activity regulation of complex I (Papa, 2002). Schulenberg 

and collegues also observed phosphorylation of the 42 kDa subunit (Schulenberg 

et al., 2003). 

 

Additional support for the idea that accessory subunits can regulate complex I 

activity comes from studies on the kinetics of activation and de-activation of 

complex I. Complex I exists in an active and a de-active form, in which the active 

form can perform the NADH:quinone-reductase function and the de-active form 

cannot (Kotlyar and Vinogradov, 1990; Vinogradov, 1998). De-activation occurs 

under substrate limiting conditions whereas activation occurs by reduction of NADH 

and a slow reoxidation by quinone (Maklashina et al., 2003).  

 

Although bacterial and mitochondrial complex I differ in the number of accessory 

subunits, the only functional difference is in their ability to undergo active/de-active 

transition (Kotlyar et al., 1998). Only complex I from vertebrate animals and fungi 

demonstrate the active/de-active transition. On the basis of kinetic experiments it 

was shown that activation energy required for activation differs not only between 

eukaryotes and prokaryotes but also between warm- and cold-blooded animals. 

Maklashina and colleagues suggest that regulation of complex I activity via 

active/de-active transition has been achieved in evolution by introducing additional 

protein subunits (Maklashina et al., 2003). 

 

Other previously described accessory subunits with ‘extra’ functions are the 39 kDa 

and the bovine B16.6 and B14.7 subunits. The 39 kDa subunit is proposed to bind 
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NADPH (Schulte et al., 1999). Although the bound NADPH is not involved in 

electron transfer, lack of the 39 kDa subunit leads to inactivation of complex I. It is 

therefore thought that the subunit stabilizes a yet unknown redox factor involved in 

electron transfer in complex I (Schulte, 2001). Other data suggest that the 39 kDa 

subunit interacts with ACPs as a biosynthetic module (Friedrich et al., 2000). The 

bovine B16.6 subunit is highly (83%) homologous to the human GRIM19 protein, 

which is a product of a cell death regulatory gene induced by interferon-β and 

retinoic acid (Fearnley et al., 2001). This could provide a link between this subunit 

and apoptosis. The B14.7 subunit is homologous to Tim17, 22 and 23, proteins 

part of the import machinery of proteins into mitochondria (Carroll et al., 2003) but 

are further uncharacterised. 
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Conclusion 
 

The increasing amount of data linking disturbances in complex I assembly to a 

broad spectrum of clinical phenotypes has resulted in a rapid increase of research 

in the field. The many aspects of biogenesis, the association of supercomplex 

stability with mitochondrial disorders and the increasing insight into the function of 

the accessory subunits contribute to the current momentum. 

 

Interesting future perspectives for research on complex I assembly and stability are 

provided by recent technical advances. Creating knockouts of genes encoding 

complex I subunits is difficult in mammalian cells, either due to technical difficulties 

or due to lethality of the knockouts. However, with the development of the RNA 

interference technique, creating partial knockouts in mammalian cells is now 

possible. In combination with the rapidly progressing field of proteomics, 

intermediates can be rapidly identified and functional properties of unknown 

intermediates and accessory subunits can be ascertained.  

 

The use of model systems and patient data is a continuing requirement and will 

contribute to the increasing insight into the possible mechanism underlying many of 

the yet uncharacterised mitochondrial complex I disorders. Insight into the 

assembly pathway may provide pre-natal diagnoses and insight into disease 

progression. Hopefully, it will also contribute to the development of possible 

therapies for patients suffering from mitochondrial disorders. 
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Abstract 
 

With 46 subunits, human mitochondrial complex I is the largest enzyme of the 

oxidative phosphorylation (OXPHOS) system. We have studied the assembly of 

complex I in cultured human cells. This will provide essential information about the 

nature of complex I deficiencies and will enhance our understanding of 

mitochondrial disease mechanisms. We have found that 143B206 rho zero
 
cells, 

not containing mitochondrial DNA, are still able to form complex I subcomplexes. 

To further address the nature of these subcomplexes, we depleted 143B 

osteosarcoma cells of complex I by inhibiting mitochondrial protein translation with 

doxycycline. After removing this drug, complex I formation resumes and assembly 

intermediates were observed by two-dimensional blue native electrophoresis. 

Analysis of the observed subcomplexes indicates that assembly of human complex 

I is a semi-sequential process in which different pre-assembled subcomplexes are 

joined to form a fully assembled complex. The membrane part of the complex is 

formed in distinct steps. The B17 subunit is part of a subcomplex to which ND1, 

ND6 and PSST are subsequently added. This is bound to a hydrophilic 

subcomplex containing the 30 and 49 kDa subunits, to which a subcomplex 

including the 39 kDa subunit is incorporated, and later on the 18 kDa and 24 kDa 

subunits. At a later stage more subunits, including the 15 kDa, are added and holo-

complex I is formed. Our results suggest that human complex I assembly 

resembles that of Neurospora crassa, in which a membrane arm is formed and 

assembled to a preformed peripheral arm, and support ideas about modular 

evolution. 
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Introduction 
 

Complex I (NADH-ubiquinone oxidoreductase, EC 1.6.5.3) is the most frequently 

affected complex of the oxidative phosphorylation (OXPHOS) system leading to 

mitochondrial disease (Smeitink et al., 2001; Nijtmans et al., 2004). The enzyme 

couples the transfer of two electrons from NADH to ubiquinone to the translocation 

of four protons across the mitochondrial inner membrane. The thus generated 

proton gradient is used by complex V to produce ATP. Mammalian complex I 

consists of 46 polypeptide subunits, seven encoded by the mitochondrial DNA and 

the remainder by the nuclear genome, a non-covalently bound 

flavomononucleotide (FMN) group and eight iron sulfur clusters (Hirst et al., 2003). 

Although several mutations have been found in both nuclear and mitochondrial 

subunits (Nijtmans et al., 2004; Triepels et al., 2001; DiMauro and Schon, 2003; 

Benit et al., 2004; Ugalde et al., 2003) (see Fig. 1), many complex I deficiencies 

remain to be explained (Smeitink et al., 2001). In striking contrast to complex IV, 

where the majority of deficiencies can be explained by mutations in genes 

encoding for specific assembly proteins, so far this has not been described for 

complex I. This discrepancy is probably caused by the absence of complex I in the 

yeast Saccharomyces cerevisiae, a model organism which enabled the 

identification of a dozen of complex IV assembly genes (Barrientos et al., 2002). 

Given the intricacy of complex I, it is very well possible that defective assembly 

proteins account for a number of complex I enzyme deficiencies. In a previous 

study, we have shown a decrease in the levels of intact complex I in six patients 

harboring mutations in nuclear-encoded complex I subunits, indicating that 

complex I assembly and/or stability is compromised (Ugalde et al., 2004a). 

Different patterns of low molecular weight subcomplexes are present in these 

patients; a finding that has also been demonstrated in other patient studies (Ugalde 

et al., 2003; Antonicka et al., 2003; Scacco et al., 2003). Insight in complex I 

assembly in human cells will aid interpretation of these patient data and lead to a 

better understanding of the molecular mechanisms underlying these disorders.  
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Figure 1: Schematic representation of human complex I subunits and their putative topology 

within the complex 

Adapted from (Carroll et al., 2002). Bovine homologues are written in gray and human subunits in which 

mutations are found are marked with *. The unknown (10.6 kDa) subunit has been identified in bovine, 

but its sequence has not been elucidated yet (from (Nijtmans et al., 2004) © Springer, reprinted with 

permission of the publisher). 

 

Complex I, which awaits a crystal structure, is an L-shaped molecule with one arm 

embedded in the mitochondrial inner membrane and one arm protruding into the 

matrix, the peripheral arm (Grigorieff, 1999). Although our knowledge of the 

biosynthesis of complex I is still limited, much information about the subunit 

topology has been obtained. Hatefi and coworkers were able to fractionate the 

bovine enzyme into three functional parts: the FMN containing part, the iron-sulfur 

cluster containing part and a membrane part (Galante and Hatefi, 1978). Over the 

years the group of Walker refined this fractionation into α, β, γ and λ parts 

(Sazanov et al., 2000; Carroll et al., 2002) and more importantly, they were able to 

identify all subunit components of these fractions by mass-spectrometry (Fig.1) 

(Carroll et al., 2003). By using an immunocapture method in combination with mass 

spectrometry, Murray and colleagues were able to identify the human homologues 
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of 42 polypeptides of the 46 beef heart complex I subunits, suggesting an identical 

composition of the human and bovine complex I (Murray et al., 2003). To avoid 

confusion we use the bovine subunit-nomenclature in this paper. The conversion to 

the human nomenclature is given in Fig. 1. Although the location of subunits within 

the complex only reveals physical associations of subunits, which does not 

necessarily reflect the physiological assembly, it provides vital information to 

construct an assembly pathway. Another aspect which can be taken into account 

when studying the assembly of complex I is the theory that the basic bacterial form 

of complex I has evolved from several functional modules: an NADH-

dehydrogenase, a hydrogenase and a transporter module (Friedrich and Weiss, 

1997). It is temping to assume that at least part of the evolutionary origin of 

complex I is conserved in the mammalian assembly pathway (Vogel et al., 2004).  

 

Most of what is known about the assembly of complex I comes from studies carried 

out in the fungus Neurospora crassa, which contains 35 subunits (Videira  and 

Duarte, 2001). It has been shown that the peripheral arm can still be formed in the 

absence of mitochondrially encoded subunits (Tuschen et al., 1990). This 

independent formation of the membrane and protruding arm of the complex was 

also demonstrated in disruption mutants of this organism (Duarte et al., 1995). In 

addition, the membrane arm appeared to be formed out of two subcomplexes, 

designated as the small and large intermediates (Schulte et al., 1994). 

Interestingly, two non-subunit proteins, named CIA30 and CIA84, were bound to 

the large membrane arm assembly intermediate. Disruption of either of the proteins 

led to a specific block of complex I assembly and CIA30 and CIA84 are therefore 

regarded as complex I assembly proteins (Kuffner et al., 1998). A human 

homologue has only been found for CIA30 and despite sequence analysis of this 

gene in complex I-deficient patients, no pathogenic mutations have been described 

so far (Janssen et al., 2002). To date, it is unclear whether complex I assembly in 

mammalian cells is comparable to the N. crassa model. Consistent with this model 

is the finding that in metabolic labelling studies in combination with 

immunoprecipitations, some nuclear encoded subunits can preassemble before 

mitochondrially encoded subunits are added to the complex (Hall and Hare, 1990). 

Nevertheless, in this study it is not clear which nuclear subunits form this scaffold 

for the mitochondrially encoded subunits. Immunopreciptations using a 49 kDa 

antibody demonstrated that no other mitochondrial encoded subunits were co-

precipitated in human 143B and mouse A9 cybrid cells containing mutations in the 

ND4 and ND6 subunits (Hofhaus and Attardi, 1993; Bai and Attardi, 1998). 

However, in cybrids which had mutations in ND5 all mitochondrial encoded 
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subunits were co-precipitated, except ND5 (Hofhaus and Attardi, 1995). This 

suggests that ND4 and ND6 are essential for assembly whereas ND5 is not. 

Compatible with these findings are observations in mutants of the green alga 

Chlamydomonas reinhardtii, lack of ND1 and ND6 led to the absence of fully 

assembled complex I, but still a 160-210 kDa subcomplex could be formed, which 

contained homologues of the 49 kDa and 75 kDa subunits and showed NADH-

dehydrogenase activity. Besides the formation of this 160 kDa-210 kDa 

subcomplex, deletion of the ND4 and ND4/ND5 subunits also resulted in the 

formation of a 650 kDa subcomplex with NADH dehydrogenase activity (Cardol et 

al., 2002). An assembly pathway for human complex I has been recently described 

by performing two-dimensional blue native/sodium dodecyl sulphate gel 

electrophoresis (2D BN/SDS PAGE) of mitochondria from muscle biopsies of 

complex I-deficient patients. Several complex I subcomplexes were found 

depending on the antibodies used. Moreover, similar patterns of subcomplexes 

were found in different patients (Antonicka et al., 2003). This led to the suggestion 

that these subcomplexes are intermediates of assembly. By combining the patterns 

of the panel of antibodies an assembly pathway was deduced. In this model, 

subcomplexes of the peripheral arm and subcomplexes containing parts of both 

arms are found, suggesting that the peripheral and membrane arms are not 

assembled in separate ways. This is in sharp contrast to the N. crassa model, in 

which the peripheral arm is formed independently from the membrane arm.  

 

In our study we have investigated whether partially assembled complex I 

subcomplexes could be formed in cells lacking mitochondrial DNA (143B206 rho 

zero cells), as is the case in N. crassa. By using 2D BN/SDS PAGE in combination 

with immunodetection several partially assembled subcomplexes were detected, 

illustrating that parts of the complex that do not contain any of the mitochondrially 

encoded complex I subunits can be formed. To address the dynamics of assembly, 

we created a conditional complex I assembly system by partially depleting 143B 

osteosarcoma cells of complex I and other OXPHOS complexes by treating them 

with doxycycline, an inhibitor of mitochondrial translation. After removal of this drug 

complex I assembly resumed and the appearance of assembly intermediates was 

investigated. This approach has been successfully used to study the assembly of 

complex V and IV (Nijtmans et al., 1995; Nijtmans et al., 1998). Besides the 

reappearing of complex I, we observed the appearance of partially assembled 

complex I intermediates, indicating that these subcomplexes were newly formed. 

Based on the alignment and analysis of these subcomplexes we propose a 

modular complex I assembly model, which largely resembles the assembly as 
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described for N. crassa, in which the membrane and peripheral parts can be pre-

assembled independently.  

 

Materials and  methods 
 

Cell Cultures 

 

143B206 rho zero (ρ
0
) cells were cultured in DMEM (Life Technologies) 

supplemented with 5% fetal calf serum (FCS), antibiotics, 1mM uridine and 100 

g/ml bromodeoxyuridine. HEK 293 human embryonic kidney cells and 143B 

osteosarcoma cells were cultured in DMEM supplemented with 10% FCS, 

antibiotics and 1mM Uridine (King and Attardi, 1989). 143B control cybrids (Ugalde 

et al., 2003) were cultured in DMEM (Life Technologies) supplemented with 10% 

fetal calf serum (FCS), antibiotics, glutamine and 1mM sodium pyruvate. To block 

mitochondrial translation doxycycline was added at a concentration of 15 µg per ml 

(Nijtmans et al., 2002). The cells were growth in exponential conditions and 

harvested at the indicated time points. 

 

Blue Native electrophoresis and in-gel activity assays  

 

Blue Native 5-15% or 5-13% gradient gels were loaded with 20-40 g of digitonin-

isolated mitochondria as described before (Nijtmans et al., 2002). After 

electrophoresis, the gels were further processed for in-gel activity assays, western 

blotting or second dimension 10% SDS PAGE as described before (Nijtmans et al., 

2002). Proteins were transferred to a PROTAN
®
 nitrocellulose membrane 

(Schleicher & Schuell).  

 

SDS-PAGE analysis 

 

Whole cell homogenates were prepared by resuspending 5 x 10
6
 cells in 125 µl 

PBS containing 2% (w/v) n-dodecyl ß-D-maltoside. Following a 15 min incubation 

on ice, homogenates were centrifuged (30 min, 12000 g, 4°C). Next, the 

supernatant was mixed with an equal volume of Tricine sample buffer (Biorad 

laboratories, Hercules, USA) containing 2% (v/v) 2-mercaptoethanol. The mixture 

was kept at room temperature for 60 min. Protein (40 µg protein/lane) was 

separated on 10 % polyacrylamide gel. Gels were blotted to PROTAN
®
 

nitrocellulose membrane (Schleicher & Schuell). 
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Antibodies 

 

Western blotting was performed using primary antibodies raised against the 

following subunits of the human mitochondrial OXPHOS complexes: NDUFS7 

(PSST), NDUFA3 (30 kDa), NDUFA9 (39 kDa), NDUFB6 (B17), NDUFS5 (15 kDa), 

UQCRC1, MTCO2, SDHA, (Molecular Probes), ND1 (a gift from Dr. A. Lombes, 

France), ND6 and NDUFS4 (18 kDa) (a gift from Prof. R. Capaldi, USA), NDUFV2 

(24 kDa) (donated by Prof. J. Walker, United Kingdom), NDUFS2 (49 kDa) 

(provided by Prof. B. Robinson, Canada) and Hsp70 antibody (Affinity Bioreagents, 

Golden, USA). Peroxidase-conjugated anti-mouse IgGs or Peroxidase conjugated 

anti-rabit IgGs were used as secondary antibody (Molecular Probes). The signal 

was detected with ECL
®
 plus (Amersham Biosciences) and the quantification of the 

blots was performed using ImagePro-Plus 4.1 image analysis software (Media 

Cybernetics, Silver Spring, MD, USA). 

 

Protein assay  

 

The protein concentration for BN PAGE and SDS PAGE was determined in the n-

dodecyl ß-D-maltoside solubilised supernatants before adding Coomassie Blue 

containing sample buffer, using a MicroBCA protein assay kit (Pierce). 

 

Results 
 

Cells without mitochondrial DNA form partially assembled subcomplexes 

 

To investigate whether subcomplexes of complex I can be formed in cells that do 

not express mitochondrial subunits, we analyzed 143B206 rho zero (ρ
0
) cells by 2D 

BN/SDS PAGE electrophoresis in combination with western blotting (Fig. 2). 

Signals were obtained with antibodies against the 30 kDa, 39 kDa, 24 kDa and B17 

subunits, but not with antibodies against the 15 kDa, 18 kDa and PSST subunits 

(results not shown), suggesting that the incorporation of these three proteins into 

the complex requires the presence of mitochondrially encoded subunits. Antibodies 

against the mitochondrially encoded ND1 and ND6 subunits were tested as 

negative controls with which no signals were obtained (data not shown). In control 

cells most of the signal appeared at the place where complex I runs on the first 

dimension (indicated in Fig. 2 as CI). As expected no fully assembled complex I 

could be detected in the ρ
0
 cells. However, in ρ

0
 cells the 30 kDa, 39 kDa, 24 kDa 

and the B17 subunits are present at higher molecular weight spots than the 
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expected molecular weight of the monomeric subunit. This result shows that 

partially assembled subcomplexes can be formed in the absence of the 

mitochondrial complex I subunits. The 30 kDa subunit is part of at least five distinct 

subcomplexes. The first runs at the front and is probably the monomeric subunit. 

Next there are two subcomplexes at a molecular weight of approximately 80 and 

150 kDa and two subcomplexes at a molecular weight of approximately 250 kDa 

and 600 kDa. All these subcomplexes are also visible in the control cells. The 39 

kDa subunit is detected as a long smear, which might reflect the hydrophobic 

nature of this subunit. A high molecular weight subcomplex can be distinguished 

also at 600 kDa. A subcomplex of a similar size is found in the control cells. The 

hydrophobic B17 subunit results in a smeary pattern as well; nevertheless six 

different subcomplexes can be distinguished. The first intense spot is likely to 

represent the unassembled subunit. The next subcomplexes run at 50 kDa, 200 

kDa, 400 kDa, 650 kDa and 800 kDa respectively. These B17-containing 

subcomplexes observed in ρ
0
cells are unexpected and there are several reasons 

to think that they are not assembly intermediates. Firstly, the B17 subcomplexes in 

the ρ
0
cells are not observed in other cell systems we tested (see further sections). 

Secondly, a subcomplex of a molecular weight of 800 kDa (largest B17 spot) is 

difficult to explain given the fact that many subunits are lacking. For some reason 

the B17 subunit seems less prone to degradation than other subunits. It is 

therefore possible that these subcomplexes in ρ
0
cells reflect aggregates of this 

hydrophobic subunit or aggregates of subcomplexes that contain this subunit. The 

24 kDa subunit appears in two spots, the first one is connected by an arch to the 

second spot. These spots probably represent the monomeric molecule and the 

excess of blue dye, which runs at the front, causes the peculiar shape. An 

additional spot containing the 24 kDa subunit just before the front is also detected.  
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Figure 2: Complex I subcomplexes in ρ
0
 cells 

Crude mitochondrial fractions of control 143B osteosarcoma cells (con) and 143B206 ρ 0 cells (ρ 0 ) were 

separated by two dimensional Blue Native/ SDS electrophoresis (top-right arrows indicate the first and 

second dimension). The gels were blotted onto nitrocellulose and analysed with antibodies against the 

complex I subunits 30 kDa, 39 kDa, B17 and 24 kDa. Subcomplexes are indicated with arrows. Fully 

assembled complex I is indicated as CI. In the panel for the 30 kDa subunit, a residual band of a 

previous antibody incubation of ND1 is still visible just below the 30 kDa spots. One should therefore 

focus on the top band (indicated in the figure).  

 

Reversibly blocking complex I assembly 

 

Detection of assembly intermediates is difficult because these are transient 

products, which are likely to have short half-lives. Moreover, breakdown can occur 

simultaneously, complicating the identification of true assembly intermediates. To 
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circumvent these problems we decided to deplete 143B osteosarcoma cells of 

complex I and other OXPHOS complexes containing mitochondrially encoded 

subunits, by reversibly blocking mitochondrial protein translation with the drug 

doxycycline. After 6 days of doxycycline treatment, we observed an approximate 

80% reduction of fully assembled complex I compared with untreated cells (Fig. 3A, 

0 hours lane). In agreement with previous reports (Yadava et al., 2004), this 

indicates that the half-life of complex I is relatively long, especially taking into 

account that because of cell division the complex I pool is diluted. However, it 

needs to be mentioned that after two to three days of doxycycline treatment the 

growth of the cells slows down significantly and changes on metabolism likely 

influence the stability of complex I.  Because further treatment with doxycycline 

affected cell viability in our culture conditions, we decided to treat the cells for 6 

days. After the doxycycline treatment, the cells were washed, incubated with fresh 

medium and collected 3, 6, 12, 24, 48 and 125 hours after for BN PAGE analysis 

(Fig. 3A). In-gel complex I activity and western blotting using an antibody against 

the 39 kDa subunit, demonstrate the restoration of fully assembled complex I after 

48-125 hours (Fig. 3A, 3B). This rate of complex I restoration does not necessarily 

reflect the time required for the biosynthesis of complex I, since the assembly can 

make use of pools of subunits and partially assembled subcomplexes. The 

observed time-course for complex I assembly is comparable with the findings of 

Yadava and colleagues in their conditional complex I assembly system in Chinese 

hamster fibroblasts (Yadava et al., 2004). The fact that no complex I could be 

detected by the in-gel activity assay after 3 and 6 hours can be explained by the 

lower sensitivity of this assay compared with immuno-detection. 

 

At 125 hours after doxycycline removal, there is more fully assembled complex I 

compared to the control cells. Apparently, there is a compensatory mechanism in 

the cells as a response to the inhibition of mitochondrial protein synthesis. This 

might involve a general increase of mitochondrial mass because complex II (Fig. 

3A), which only contains nuclear encoded subunits, also shows such an increase 

at 125 hours compared to the control cells. In this experiment we also tested 

complex III, since it has been recently demonstrated that complex I stability is 

severely hampered when there is no fully assembled complex III present (Acin-

Perez et al., 2004). As shown in Fig. 3A and 3B, complex III is restored in a similar 

time course as complex I. It is therefore unlikely that in our system the absence of 

complex III negatively affects complex I stability.  
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Figure 3: Appearance of complex I in 143B cells after doxycycline treatment 

A. Osteosarcoma143B cells were treated for 6 days with doxycycline (an inhibitor of mitochondrial 

translation), the medium was replaced by doxycycline-free medium and cells were grown for the 

indicated time (in hours). 40 µg of crude mitochondrial pellets were analyzed by blue native 

electrophoresis in combination with complex I in-gel activity (IGA-CI, top panel). Duplicate gels were 

blotted and incubated with antibodies against the complex I subunit 39 kDa  (39 kDa-CI, second panel), 

against complex III core1 protein (Core1-CIII, third panel) and against the complex II 70 kDa subunit (70 

kDa-CII, bottom panel). Control untreated 143B cells are indicated as con. B. The signals for the in-gel 

activity assay and western blots were expressed as percentage of the untreated cells, normalized with 

the complex II-70 kDa subunit and plotted. 
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Reappearing of subunits 
 

To follow the reappearance of subunits after the reversible block of assembly, 

samples taken at different time points after removal of doxycycline were run on a 

SDS-PAGE, blotted on nitrocellulose and incubated with a panel of nine complex I 

antibodies (Fig. 4).  Cells deprived of mtDNA (ρ0 
cells) were run as a negative 

control and untreated cells were included in the panel as a positive control. We 

observe remarkable differences in the steady-state levels of the different subunits. 

As expected, ρ
0
 cells lack the mitochondrially encoded ND6 and ND1 subunits.  

Consistent with previous findings, also the 18 kDa, 15 kDa and PSST subunits 

were not detectable in ρ
0
 cells and after 6 days of doxycycline treatment (lane 0) 

their abundance was very low (18 kDa subunit) or not detectable (15 kDa and 

PSST). These subunits start to reappear at 12 to 24 hours and increase gradually 

to control levels at 125 hours after release of inhibition. This result indicates that 

these subunits might not be stabilized in a pre-assembled subcomplex and they 

would enter the assembly process relatively late. In contrast, the 39 kDa, 30 kDa, 

24 kDa and B17 subunits were still visible in ρ 0
 cells and after 6 days of 

doxycycline treatment, suggesting that these subunits are more stable possibly 

because of the formation of subcomplexes. The steady-state levels of these 

subunits are comparable to the control levels at 6 to 12 hours after removal of the 

doxycyline, which suggests that these subunits enter the complex I assembly 

pathway at a relatively early stage. 

 

The mitochondrially encoded subunits ND1 and ND6 were still present at 

detectable levels after 6 days of doxycycline treatment, which is consistent with the 

small amounts (~20%) of assembled complex I observed  (Fig. 3A, 0 hours lane).  

Results show that these subunits gradually increase from 6-12 hours until they 

reach the maximum at 125 hours after doxycycline treatment. Since these subunits 

were directly targeted by the drug, which inhibits mitochondrial translation, no pools 

of pre-assembled subcomplexes could have been formed after the 6 days of 

doxycycline treatment. All subunits are more abundant after 125 hours compared 

to the untreated cells, probably as a compensatory mechanism as discussed in the 

previous section. 

 

Dynamics of complex I subcomplexes 
 

Immediately after removing the drug doxycycline, the synthesis of mitochondrially 

encoded subunits resumes and the assembly of complex I can start again. In this 
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way complex I assembly is synchronized and intermediates are more likely to be 

detectable. To find out when subcomplexes start to appear and whether there is a 

change in the pattern during the assembly process, we monitored the 

subcomplexes by 2D BN/SDS PAGE at all time points.  To allow a good overview 

about what is happening in time we grouped the subunits per time point (Fig. 5).  

The molecular weights of the subcomplexes and possible co-localization of 

subunits within the same subcomplex will be discussed in more detail in the next 

section.   

 

For all subunits investigated we observe residual holo-complex I (indicated with 

arrows) after six days of doxycyline treatment (time 0 hours), which increases in 

amount in time. In addition we observe subcomplexes for all investigated subunits. 

These subcomplexes  increase in amount in time and subsequently the lower 

molecular weight subcomplexes decrease again, suggesting that these 

subcomplexes are true assembly intermediates and not breakdown products. 

Consistent with the results from the ρ
0
 cells (Fig. 2) and the SDS gel (Fig. 4) we do 

not find subcomplexes smaller than 600 kDa for the 15 kDa and 18 kDa subunits. 

This result suggests that these subunits enter the assembly pathway relatively late, 

possibly as monomeric subunit and not in a pre-assembled form. The subunits B17 

and 30 kDa are present in low molecular weight subcomplexes, suggesting that 

these subunits enter the assembly route at an earlier stage. The B17 subunit is 

also detected as a smear with distinct thickenings suggesting subcomplexes. It is 

remarkable that shortly after the release of doxycycline there is much free 

unassembled subunit present at the front (right side) of the gel, suggesting that 

there is a pool waiting for partners to participate in the assembly process. This is 

nicely illustrated by the fact that by increasing time larger subcomplexes appear 

and smaller subcomplexes disappear, indicating that higher molecular weight 

subcomplexes are formed. The 30 kDa subunit is detected in three characteristic 

low molecular weight subcomplexes comparable with the ρ
0
 cells. The 39 kDa 

subunit is detected as a similar smear at the low molecular weight range, as seen 

in the ρ
0
 cells. Although the 24 kDa subunit is visible after 6 days of doxycycline 

treatment in the SDS blot (Fig. 4), in the 2D BN/SDS blots no low molecular weight 

subcomplexes can be observed besides the small amounts of the monomeric 

subunit. 



Chapter 3 

 88

 

 
 

Figure 4: Kinetics of reappearance of complex I subunits 

Forty µg of total cell lysate were loaded on a 10% SDS polyacrylamide gel, blotted on nitrocellulose filter 

and incubated with a panel of complex I antibodies (indicated on the right). An antibody against the 

complex II 70 kDa subunit was included as a loading control. The time (in hours) after removing the 

doxycyline is indicated on the top. Cells without mitochondrial DNA (ρ
0
 ) and control cells (con) were 

included as negative and positive controls, respectively. 
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Figure 5: Dynamics of complex I subcomplexes 

Cells were pretreated for 6 days with doxycycline and grown in the absence of the drug for the indicated times (specified on the right). 

40 µg of crude mitochondrial pellets were analyzed by 2D BN/SDS PAGE (arrows indicate the first and second dimension).  Relevant 

parts of the blots were grouped per subunit (indicated on the bottom). The mobility of complex I in the first dimension is indicated with 

arrows (top). Complex I is indicated as CI. In the 30 kDa subunit panel an additional ND1 band is seen (see also legends Fig. 2). 
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Composition of subcomplexes 
 

In order to determine which subunits comigrate, we aligned the blots of several 

independent experiments and named A-G subcomplexes in which we observe 

more that one subunit (Fig. 6). The co-localization of subunits in a certain 

subcomplex is crucial for the interpretation of a possible assembly pathway (see 

discussion). For this reason we also show other representative examples of a 

similar analysis in a 2D BN/SDS blot of a crude mitochondrial preparation of human 

embryonic kidney cells, HEK 293 (Fig. 6B) and control 143B cybrid cells (Fig. 6D). 

We observe the subcomplexes A-G with the same subunit composition in the 

different cell lines, however the relative distribution of these subcomplexes differs, 

depending on the cell line and growth condition. 

 

The 30 kDa subunit is part of three small subcomplexes, one running at the front, 

one running at approximately 80 kDa (subcomplex H) and one at approximately 

150 kDa (subcomplex G) (Fig. 6A, B, D), as seen also in the ρ
0
 cells (Fig. 2). The 

next co-localization is observed with subcomplexes F, D, B and fully assembled 

complex I (A). For the 49 kDa subunit we observe an identical pattern (Fig. 6D). As 

already discussed the 39 kDa subunit appears as a smear, possibly reflecting the 

hydrophobic nature of this subunit.  The first distinguishable subcomplex appears 

at 250 kDa (Fig. 6B, subcomplex F). The next 39 kDa containing-subcomplex is 

subcomplex D, which has a molecular weigh of 600 kDa (Figs. 6A, 6B and 6C). 

Another broad  spot  spans mobility from 950 to 1000 kDa (subcomplexes A and 

B).  Although it seems to be one spot, we believe it  actually consists of two spots 

that run closely together, which can be seen for some subunits shortly after 

removing doxycycline (Fig. 5, see ND6 and 15 kDa subunit panels, 6 hours time-

point). By adapting the gradient of the first dimension BN PAGE from 5-15% to 5-

13%, a better separation of (sub)complexes A and B was obtained (Fig. 6C). 

Complex A represents fully assembled complex I. The 18 kDa and 24 kDa subunits 

seem to comigrate with subcomplexes D, B and A. (Fig. 6A, C). The 15 kDa 

subunit is only present in subcomplexes A and B (Fig. 6A). Besides a spot at the 

front of the gel, which likely represents the monomeric subunit, subunit B17 shows 

a spot at approximately 400 kDa (Fig. 6A, 6B, subcomplex E). Other subcomplexes 

in which this subunit is present are found at estimated molecular weights of 700 

kDa (subcomplex C), 950 kDa (subcomplex B) and at 1000 kDa (holo-complex I, 

A). ND1 comigrates with subcomplexes C, B and A, the same as ND6 and the 
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PSST subunit (Fig. 6D). The subcomplexes and their subunit compositions are 

summarized in table 1.   

 

Table 1: The presence of complex I subunits per observed subcomplex  

       

Subunit Subcomplex (Estimated Molecular Mass) 

 

 

H 

(80 

kDa) 

G 

(150 

kDa) 

F 

(250 

kDa) 

E 

(400 

kDa) 

D 

 (600 

kDa) 

C 

 (700 

kDa) 

B 

 (950 

kDa) 

A 

(1 MDa) 

15 kDa       x x 

18 kDa     x  x x 

24 kDa     x  x x 

30 kDa x x x  x  x x 

49 kDa x x x  x  x x 

39 kDa   x  x  x x 

B17    x  x x x 

ND1    x  x x x 

ND6    x  x x x 

PSST    x  x x x 
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Figure 6: Co-localization of subunits in subcomplexes 

A. Crude mitochondrial fractions of 143B cells were analyzed by 2D BN PAGE at 24 or 48 hours 

(indicated) after doxycycline removal. B. The same procedure was followed with untreated HEK 293 

cells. C. Untreated 143B cells analysed on 2D BN/SDS PAGE. A 5-13% acrylamide gradient was used 

in the first dimension in order to separate the higher molecular weight (sub)complexes A to D. D. 

Control cybrids analyzed as described in A and B. Arrows indicate the first and second dimension. The 

antibodies used are indicated on the right. Complex I (A) and subcomplexes B-H are indicated. Bottom 

arrows in Fig. 6A indicate the molecular weights of selected markers (complex I, 1000 kDa, complex III 

dimer + complex IV= 800 kDa, complex III= 600 kDa, F1-ATPase= 390 kDa, complex IV = 230 kDa and 

HSP70 = 70 kDa). 
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Discussion 
 

To better understand complex I-assembly defects as seen in patients with a 

complex I deficiency (Ugalde et al., 2004a; Antonicka et al., 2003), we aimed to 

identify important steps in the assembly pathway of human mitochondrial complex 

I.  We have used 2D BN/SDS PAGE to investigate the appearance of complex I 

subcomplexes in cells devoid of mitochondrial DNA and in cells depleted of 

complex I and other OXPHOS complexes by the treatment of doxycycline, an 

inhibitor of mitochondrial translation. This approach has been successful in the 

identification of the assembly pathway of other respiratory chain complexes 

(Nijtmans et al., 1995; Nijtmans et al., 1998). These findings helped the 

interpretation of assembly intermediates in patient cells with defects in OXPHOS 

complexes, such as SURF1, ATP6, COX10, SCO1 and tRNA
leu

 mutations 

(Nijtmans et al., 2001; El et al., 1998; Tiranti et al., 1999; Williams et al., 2004).  

 

Subcomplexes containing at least the 30 kDa subunit are observed in ρ
0
 cells, 

suggesting that the peripheral arm can partially be formed in the absence of a 

membrane arm. The subcomplexes observed in ρ
0
 cells (Fig. 2) and doxycycline 

treated cells (Fig. 6) are not necessarily the same because ρ
0
 cells are different 

from the doxycycline treated cells.  The ρ
0
 cells are adapted to the fact that they do 

not contain mitochondrial DNA and cannot assemble any mitochondrial gene 

product containing complex, whereas the doxycycline treated cells are only 

transiently partially depleted from mitochondrially encoded gene products. Also ρ
0 

cells cannot make mitochondrial mRNA anymore whereas doxycyline treated cells 

can. For this reason we base our model solely on the experiments with doxycycline 

treated cells. 

 

We have observed that the assembly of complex I starts with different low 

molecular weight subcomplexes that differ in their subunit composition. This 

confirms that complex I assembly is a semi-sequential process in which subunits 

preassemble in different subcomplexes that are joined later in the assembly 

pathway. We can distinguish at least two distinct parts of complex I which are pre-

assembled independently (see table 1). The first one contains the peripheral arm 

30 kDa subunit, which immediately associates with the 49 kDa subunit. Next the 39 

kDa, and later 18 kDa and 24 kDa subunits, are assembled. The second one 

contains the membrane arm subunit B17, to which subsequently ND1, ND6 and the 

PSST subunits associate. This peripheral and membrane parts are joined and 
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additional subunits are inserted, including the 15 kDa subunit, to form a  950 kDa 

subcomplex which migrates closely to complex I. This 950 kDa subcomplex is 

completed to fully assembled complex I, possibly by the addition of subunits or 

conformational changes. In a recent paper Acín-Pérez and colleagues (Acin-Perez 

et al., 2004) observed also two closely migrating complex I bands on a BN-PAGE 

after pulse-labeling mitochondrial translation products, which resemble 

(sub)complexes A and B. After longer chase times the upper complex I band  

increases in intensity compared to the lower complex I band, suggesting that the 

lower complex I band is converted into the higher complex I band.  

 

Our findings are consistent with the N. crassa model (Tuschen et al., 1990), for 

which it was proposed that complex I is assembled by combining different 

evolutionary modules (Videira, 1998). Based on our experiments and other cross-

linking (Yamaguchi and Hatefi, 1993), fractionation (Carroll et al., 2002), 2D 

BN/SDS (Ugalde et al., 2004b; Antonicka et al., 2003) and evolutionary data 

(Friedrich and Weiss, 1997), we propose an assembly pathway of complex I in 

human cells which is consistent with a modular assembly (Fig. 7). This model 

entails the formation of a NADH-dehydrogenase module, a hydrogenase module 

and a transporter module.   
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Fig. 7. Proposed modular model of human complex I assembly 

Subunits investigated in our study are boxed with a thick line. Subunits proposed on the basis of literature data (see discussion) are 

boxed with a thin line. “S.” and “Subunits” indicate unidentified subunits. Observed complex I (A) and subcomplexes B-H are specified. 

Their molecular mass based on their electrophoretic mobility on a BN PAGE is indicated between brackets (for more details see 

discussion). 
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Assembly of the evolutionary conserved hydrogenase module of complex I starts 

with the 30 and 49 kDa subunits, which are located in the peripheral arm of 

complex I, and are two of the 14 mammalian core subunit homologues present in 

the basic complex from Escherichia coli (Yagi et al., 1998). Three distinct low 

molecular weight subcomplexes were observed. Because the 30 kDa subunit has 

been shown to form a fusion protein with the 49 kDa subunit in E. coli (Finel, 1998) 

it is expected that these subunits are bound  to each other early in assembly.  The 

first two 30 kDa and 49 kDa spots might therefore represent the monomeric  

subunit and the subsequent association with each other to form subcomplex H. 

This is supported by the direct interaction of the 30 kDa and 49 kDa subunit in 

chemical cross-link studies in bovine (Yamaguchi and Hatefi, 1993). Consistent 

with this idea is the finding that in a complex I-deficient patient with a mutation in 

the 49 kDa subunit, the first 30 kDa spot accumulates, which suggests that the 

formation of the second spot is blocked (Ugalde et al., 2004a). The third 30 kDa-49 

kDa spot (subcomplex G) represents the subsequent association of another 

subunit to this 30-49 kDa subcomplex. Next, we observe association of the 39 kDa 

subunit and likely other subunits to this 30-49 containing subcomplex to form 

subcomplex F (Fig. 6, 7). The 39 kDa subunit fractionates with the membrane γ-

part of complex I (Fig. 1 and (Sazanov et al., 2000)) and might therefore serve as a 

membrane anchor for the connection of the peripheral arm with the membrane 

arm.  

 

Other subunits, including the 24 kDa, are bound to subcomplex F to form 

subcomplex D. Because the 24 kDa subunit constitutes the NADH dehydrogenase 

module together with the 51 kDa subunit and the N-terminal segment of the 75 kDa 

subunit (Pilkington et al., 1991), it would be conceivable that these subunits 

preassemble in another intermediate complex. Although we do not observe a 24 

kDa containing NADH-dehydrogenase subcomplex in our 2D-BN/SDS PAGE (Fig. 

6), a 24 kDa-containing low molecular weight product occurs in the ρ
0
 cells (Fig. 2). 

This could imply that such a subcomplex exists, but it is rapidly assembled into 

subcomplex D. The 75 kDa subunit is likely to play a crucial role in connecting the 

NADH-dehydrogenase module to the hydrogenase module, since cross-linking 

studies show association with the 30 kDa subunit of the hydrogenase module, and 

with the 51 kDa subunit of the NADH-dehydrogenase module (Yamaguchi and 

Hatefi, 1993). The finding of a 160-210 kDa subcomplex in complex I-deficient 

mutants of Chlamidomonas reinhardtii, which contains the homologues of 75 kDa 

and 49 kDa subunits and displays NADH-dehydrogenase activity, again supports a 
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previous assembly of the NADH-dehydrogenase/hydrogenase module (Cardol et 

al., 2002). 

 

To this NADH-dehydrogenase/hydrogenase-containing peripheral arm 

(subcomplex D) other subunits associate, including the 18 kDa subunit. This is in 

accordance with the observed cross-links between the 18 kDa and 49 kDa 

subunits, and between the 18 kDa and 30 kDa subunits (Yamaguchi and Hatefi, 

1993). Patient cells lacking subunit 18 kDa are still able to assemble an 800 kDa 

complex (Ugalde et al., 2004a; Scacco et al., 2003). This indicates that the 18 kDa 

subunit is acquired relatively late in the assembly, and that assembly can proceed 

without the 18 kDa subunit until an 800 kDa subcomplex is formed.   

 

The membrane arm transporter module includes the B17 subunit, which is present 

in the β-part of the hydrophobic membrane arm (Fig. 1). B17 is accumulated as a 

monomeric subunit and in some possible low molecular weight subcomplexes. This 

subunit becomes part of the 400 kDa subcomplex E, to which other membrane arm 

subunits including ND1 and ND6 bind. Consistent with this finding is that there is a 

remarkable shift of B17 subcomplexes upon release of the mitochondrial 

translation block, indicating that mitochondrially encoded subunits are essential for 

this subunit to progress in the assembly. To subcomplex E, also the N2 iron-sulfur 

cluster containing PSST subunit associates. There are several reports which are 

compatible with this membrane arm association of the PSST subunit. Firstly  in 

mouse cells which lack ND6, the PSST subunit is absent (Yadava et al., 2004). 

Secondly, chloramphenicol treated N. crassa cells (Tuschen et al., 1990) and 

disruption mutants (Nehls et al., 1992), in which only the peripheral arm was 

formed, also lack the N2 iron-sulfur cluster and thus the PSST subunit. Thirdly, a 

functional coupling of PSST with ND1 also suggests a close association of these 

subunits (Schuler and Casida, 2001). However, a PSST disruption mutant in N. 

crassa proved to be unable to assemble the peripheral arm (Duarte et al., 2002). 

This suggests that the PSST, which is located in the boundary between the 

peripheral and membrane arms, assembles to the membrane arm but is required 

for the stabilization of the peripheral arm. Interestingly, in methanogenic bacterium 

Methanosarcina barkeri (Kunkel et al., 1998) and photosynthetic bacterium 

Rhodospirillum rubrum (Fox et al., 1996), hydrogenases are organized in operons 

in which the gene for the PSST homologue is located next to the gene for the ND1 

homologue, again illustrating a structural evolutionary conservation. Other genes of 

these operons are the homologues of ND5, TYKY, the 49 kDa and the 30 kDa 

subunits (only in R. rubrum). Subsequently, other subunits associate to the 
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membrane arm intermediate E form subcomplex C (Fig. 6, 7). The peripheral arm 

(subcomplex D) and the membrane arm (subcomplex C) come together and form 

subcomplex B at a molecular weight of around 950 kDa. Paradoxically, two 

subcomplexes of 600 kDa and 700 kDa add up to form a 950 kDa subcomplex, 

however there are plausible explanations for this. Firstly, the electrophoretic 

mobility of a protein or protein complex in a PAGE gel depends on charge and 

globular size of the molecule. When two protein complexes assemble into one 

complex, the resulting charge and globular size does not necessarily result in an 

electrophoretic mobility that corresponds to the sum of the two complexes. 

Secondly, it is described in N. crassa that complex I assembly proteins transiently 

associate with assembly intermediates (Kuffner et al., 1998), thereby contributing 

to the molecular weight of intermediate complexes but not to other subcomplexes 

which occur later in assembly. We also find in human cells co-localization of an 

assembly protein with intermediate subcomplexes but not with holo-complex I 

(unpublished results). In a last step additional subunits, including the 15 kDa, are 

assembled to subcomplex B and finally, fully assembled complex I is formed (A). 

 

Recently, it has been demonstrated that the cyanobacteria Synechocystis sp. PCC 

6803 contains a NDH-1 complex which resembles mitochondrial complex I 

(Prommeenate et al., 2004). Although the electron import module or NADH-

dehydrogenase part is not acquired in this enzyme, it contains a hydrogenase part 

and a transporter part. The assembly of the cyanobacterial NDH-1 was studied 

using 2D BN/SDS PAGE.  A hydrophilic subcomplex was observed containing the 

cyanobacterial homologues of the 30 kDa, 49 kDa, B13 and PSST subunits. A 

hydrophobic subcomplex was found which contains the homologues of ND1, ND2 

and ND6. The finding of the PSST subunit in the hydrophilic part contradicts our 

findings, however, this can be explained by the chemical fractionation used. The 

authors propose that the separate modules are assembled independently. Our 

data support this conclusion and suggests that the modular assembly of complex I 

is preserved throughout evolution.  

 

Recently, Antonicka and colleagues proposed a model for complex I assembly 

based on subcomplexes observed by 2D-BN/SDS PAGE in muscle samples of 

complex I-deficient patients (Antonicka et al., 2003). This model is in conflict with 

our proposed model at several points. Firstly, the Antonicka model describes a 24 

kDa containing subcomplex, which also contains the 18 kDa and 20 kDa (PSST) 

subunits. The 20 kDa (PSST) subunit together with the 30 kDa, 49 kDa and ND1 

subunit constitute the core of the hydrogenase module. It is therefore very unlikely 



Complex I assembles via evolutionary conserved modules 

 99 

that the 20 kDa subunit is assembled in a  subcomplex which does not contain any 

of these subunits and which is topologically located in another part of the complex 

(as discussed above). The 18 kDa subunit cross-links with the 49 kDa and 30 kDa 

subunits (Yamaguchi and Hatefi, 1993). For this reason, it is more likely that these 

three subunits assemble together to form a subcomplex. Secondly, they propose 

the occurrence of a 310 kDa subcomplex containing the membrane arm subunit 

ND1 and the peripheral arm subunits 30 kDa-39kDa-49 kDa, suggesting no 

separate formation of the peripheral and membrane arms.  In contrast, we 

observed a co-localization of the 30 kDa and 39 kDa subunits with the ND1 subunit 

only late in the assembly, in the 950 kDa subcomplex B, which is compatible with 

the well-described N. crassa model. A possible explanation for these differences is 

that in the patient muscle samples investigated in the previous work, some of the 

proposed assembly intermediates are breakdown products resulting from an 

instable complex I. Increased instability of assembled complex I is known to occur 

for instance in cybrid cells containing an ND5 mutation (Hofhaus and Attardi, 

1995). 

 

In this study we present an alternative model for the assembly of complex I in 

cultured human cells. The use of doxycycline-treated cultured cells allows following 

the dynamics of the assembly process, therefore avoiding the interference of 

breakdown products. This might give a more representative picture of the 

physiological assembly pathway of complex I.  We confirm that complex I assembly 

is a semi-sequential process in which pre-assembled subcomplexes are joined to 

form holo-complex I. A pre-assembled peripheral arm is formed, which associates 

with a pre-assembled membrane arm to form an intermediate complex, to which 

other subunits are attached to form holo-complex I. Still much work needs to be 

done to elucidate more details of the assembly of all of the 46 subunits into 

complex I. New approaches such as the construction of a viable complex I deletion 

strain of the complex I-containing yeast Yarrowia lipolytica (Kerscher et al., 2001), 

the generation of a mammalian conditional assembly system (Yadava et al., 2004), 

the application of protein mass spectrometry and analysis of newly identified CI-

deficient patients, will aid this difficult task. Nevertheless, our proposed model for 

complex I assembly presents a starting point to further elucidate this intricate 

process and provides a framework to understand assembly defects in patients with 

a complex I deficiency.  Moreover, information of the assembly status of complex I 

could provide a good pre-screening method in diagnostics.  

 



Chapter 3 

 100

Acknowledgements 
 

We thank Dr. A. Lombes (Iserm, Paris, France), Prof. J. Walker (MRC, Cambridge, 

United Kingdom) and Prof. B. Robinson (Montreal, Canada) for kindly providing 

respectively the ND1,the 24 kDa  and the 49 kDa subunit antibodies and Prof. R. 

Capaldi (University of Oregon, Eugene, USA) for giving the 18 kDa and ND6 

subunit antibodies. This work was supported by “Het Prinses Beatrix Fonds” to J.S. 

and L.vdH. (grant number 02-0104). The Netherlands Organisation for Scientific 

Research supported L.N. with a “Vernieuwingsimpuls” grant.  

 



Complex I assembles via evolutionary conserved modules 

 101 

References 
 

Acin-Perez,R., Bayona-Bafaluy,M.P., Fernandez-Silva,P., Moreno-Loshuertos,R., Perez-Martos,A., 

Bruno,C., Moraes,C.T., and Enriquez,J.A. (2004). Respiratory complex III is required to maintain 

complex I in mammalian mitochondria. Mol. Cell. 13, 805-815. 

Antonicka,H., Ogilvie,I., Taivassalo,T., Anitori,R.P., Haller,R.G., Vissing,J., Kennaway,N.G., and 

Shoubridge,E.A. (2003). Identification and characterization of a common set of complex I assembly 

intermediates in mitochondria from patients with complex I deficiency. J. Biol. Chem. 278, 43081-43088. 

Bai,Y. and Attardi,G. (1998). The mtDNA-encoded ND6 subunit of mitochondrial NADH 

dehydrogenase is essential for the assembly of the membrane arm and the respiratory function of the 

enzyme. EMBO J. 17, 4848-4858. 

Barrientos,A., Barros,M.H., Valnot,I., Rotig,A., Rustin,P., and Tzagoloff,A. (2002). Cytochrome 

oxidase in health and disease. Gene. 286, 53-63. 

Benit,P., Slama,A., Cartault,F., Giurgea,I., Chretien,D., Lebon,S., Marsac,C., Munnich,A., Rotig,A., 

and Rustin,P. (2004). Mutant NDUFS3 subunit of mitochondrial complex I causes Leigh syndrome. J. 

Med. Genet. 41, 14-17. 

Cardol,P., Matagne,R.F., and Remacle,C. (2002). Impact of mutations affecting ND mitochondria-

encoded subunits on the activity and assembly of complex I in Chlamydomonas. Implication for the 

structural organization of the enzyme. J. Mol. Biol. 319, 1211-1221. 

Carroll,J., Fearnley,I.M., Shannon,R.J., Hirst,J., and Walker,J.E. (2003). Analysis of the subunit 

composition of complex I from bovine heart mitochondria. Mol. Cell Proteomics. 2, 117-126. 

Carroll,J., Shannon,R.J., Fearnley,I.M., Walker,J.E., and Hirst,J. (2002). Definition of the nuclear 

encoded protein composition of bovine heart mitochondrial complex I. Identification of two new subunits. 

J. Biol. Chem. 277, 50311-50317. 

DiMauro,S. and Schon,E.A. (2003). Mitochondrial respiratory-chain d iseases. N. Engl. J. Med. 348, 

2656-2668. 

Duarte,M., Populo,H., Videira,A., Friedrich,T., and Schulte,U. (2002). Disruption of iron-sulfur cluster 

N2 from NADH: ubiquinone oxidoreductase by site-directed mutagenesis. Biochem. J. 364, 833-839. 

Duarte,M., Sousa,R., and Videira,A. (1995). Inactivation of genes encoding subunits of the peripheral 

and membrane arms of neurospora mitochondrial complex I and effects on enzyme assembly. 

Genetics. 139, 1211-1221. 

El Meziane,A., Lehtinen,S.K., Hance,N., Nijtmans,L.G., Dunbar,D., Holt,I.J., and Jacobs,H.T. 

(1998). A tRNA suppressor mutation in human mitochondria. Nat. Genet. 18, 350-353. 



Chapter 3 

 102

Finel,M. (1998). Organization and evolution of structural elements within complex I. Biochim. Biophys. 

Acta. 1364, 112-121. 

Fox,J.D., He,Y., Shelver,D., Roberts,G.P., and Ludden,P.W. (1996). Characterization of the region 

encoding the CO-induced hydrogenase of Rhodospirillum rubrum. J. Bacteriol. 178, 6200-6208. 

Friedrich,T. and Weiss,H. (1997). Modular evolution of the respiratory NADH:ubiquinone 

oxidoreductase and the origin of its modules. J. Theor. Biol. 187, 529-540. 

Galante,Y.M. and Hatefi,Y. (1978). Resolution of complex I and isolation of NADH dehydrogenase and 

an iron--sulfur protein. Methods Enzymol. 53, 15-21. 

Grigorieff,N. (1999). Structure of the respiratory NADH:ubiquinone oxidoreductase (complex I). Curr. 

Opin. Struct. Biol. 9, 476-483. 

Hall,R.E. and Hare,J.F. (1990). Respiratory chain-linked NADH dehydrogenase. Mechanisms of 

assembly. J. Biol. Chem. 265, 16484-16490. 

Hirst,J., Carroll,J., Fearnley,I.M., Shannon,R.J., and Walker,J.E. (2003). The nuclear encoded 

subunits of complex I from bovine heart mitochondria. Biochim. Biophys. Acta. 1604, 135-150. 

Hofhaus,G. and Attardi,G. (1993). Lack of assembly of mitochondrial DNA-encoded subunits of 

respiratory NADH dehydrogenase and loss of enzyme activity in a human cell mutant lacking the 

mitochondrial ND4 gene product. EMBO J. 12, 3043-3048. 

Hofhaus,G. and Attardi,G. (1995). Efficient selection and characterization of mutants of a human cell 

line which are defective in mitochondrial DNA-encoded subunits of respiratory NADH dehydrogenase. 

Mol. Cell Biol. 15, 964-974. 

Janssen,R., Smeitink,J., Smeets,R., and van den Heuvel,L. (2002). CIA30 complex I assembly 

factor: a candidate for human complex I deficiency? Hum. Genet. 110, 264-270. 

Kerscher,S.J., Eschemann,A., Okun,P.M., and Brandt,U. (2001). External alternative 

NADH:ubiquinone oxidoreductase red irected to the internal face of the mitochondrial inner membrane 

rescues complex I deficiency in Yarrowia lipolytica. J. Cell Sci. 114, 3915-3921. 

King,M.P. and Attardi,G. (1989). Human cells lacking mtDNA: repopulation with exogenous 

mitochondria by complementation. Science. 246, 500-503. 

Kuffner,R., Rohr,A., Schmiede,A., Krull,C., and Schulte,U. (1998). Involvement of two novel 

chaperones in the assembly of mitochondrial NADH:Ubiquinone oxidoreductase (complex I). J. Mol. 

Biol. 283, 409-417. 

Kunkel,A., Vorholt,J.A., Thauer,R.K., and Hedderich,R. (1998). An Escherichia coli hydrogenase-3-

type hydrogenase in methanogenic archaea. Eur. J. Biochem. 252, 467-476. 



Complex I assembles via evolutionary conserved modules 

 103 

Murray,J., Zhang,B., Taylor,S.W., Oglesbee,D., Fahy,E., Marusich,M.F., Ghosh,S.S., and 

Capaldi,R.A. (2003). The subunit composition of the human NADH dehydrogenase obtained by rapid 

one-step immunopurif ication. J. Biol. Chem. 278, 13619-13622. 

Nehls,U., Friedrich,T., Schmiede,A., Ohnishi,T., and Weiss,H. (1992). Characterization of assembly 

intermediates of NADH:ubiquinone oxidoreductase (complex I) accumulated in Neurospora 

mitochondria by gene disruption. J. Mol. Biol. 227, 1032-1042. 

Nijtmans,L., Ugalde,C., van den Heuvel,L.P., and Smeitink,J. (2004). Function and dysfunction of 

the oxidative phosphorylation system. I n Topics in Current Genetics. Mitochondrial function and 

Biogenesis, M.F.Bauer and C.Koehler, eds. (Heidelberg: Springer), pp. 149-176. 

Nijtmans,L.G., Henderson,N.S., Attardi,G., and Holt,I.J. (2001). Impaired ATP synthase assembly 

associated with a mutation in the human ATP synthase subunit 6 gene. J. Biol. Chem. 276, 6755-6762. 

Nijtmans,L.G., Henderson,N.S., and Holt,I.J. (2002). Blue Native electrophoresis to study 

mitochondrial and other protein complexes. Methods. 26, 327-334. 

Nijtmans,L.G., Klement,P., Houstek,J., and van den Bogert,C. (1995). Assembly of mitochondrial 

ATP synthase in cultured human cells: implications for mitochondrial diseases. Biochim. Biophys. Acta. 

1272, 190-198. 

Nijtmans,L.G., Taanman,J.W., Muijsers,A.O., Speijer,D., and van den Bogert,C. (1998). Assembly 

of cytochrome-c oxidase in cultured human ce lls. Eur. J. Biochem. 254, 389-394. 

Pilkington,S.J., Skehel,J.M., Gennis,R.B., and Walker,J.E. (1991). Relationship between 

mitochondrial NADH-ubiquinone reductase and a bacterial NAD-reducing hydrogenase. Biochemistry. 

30, 2166-2175. 

Prommeenate,P., Lennon,A.M., Markert,C., Hippler,M., and Nixon,P.J. (2004). Subunit composition 

of NDH-1 complexes of Synechocystis sp. PCC 6803: identification of two new ndh gene products with 

nuclear-encoded homologues in the chloroplast Ndh complex. J. Biol. Chem. 279, 28165-28173. 

Sazanov,L.A., Peak-Chew,S.Y., Fearnley,I.M., and Walker,J.E. (2000). Resolution of the membrane 

domain of bovine complex I into subcomplexes: implications for the structural organization of the 

enzyme. Biochemistry. 39, 7229-7235. 

Scacco,S., Petruzzella,V., Budde,S., Vergari,R., Tamborra,R., Panelli,D., van den Heuvel,L.P., 

Smeitink,J.A., and Papa,S. (2003). Pathological mutations of the human NDUFS4 gene of the 18-kDa 

(AQDQ) subunit of complex I affect the expression of the protein and the assembly and function of the 

complex. J. Biol. Chem. 278, 44161-44167. 

Schuler,F. and Casida,J.E. (2001). Functional coupling of PSST and ND1 subunits in 

NADH:ubiquinone oxidoreductase established by photoaffinity labeling. Biochim. Biophys. Acta. 1506, 

79-87. 



Chapter 3 

 104

Schulte,U., Fecke,W., Krull,C., Nehls,U., Schmiede,A., Schneider,R., Ohnishi,T., and Weiss,H. 

(1994). In vivo dissection of the mitochondrial respiratory NADH: ubiquinone oxidoreductase (complex 

I). Biochim. Biophys. Acta. 1187, 121-124. 

Smeitink,J., van den Heuvel,L., and DiMauro,S. (2001). The genetics and pathology of oxidative 

phosphorylation. Nat. Rev. Genet. 2 , 342-352. 

Tiranti,V., Galimberti,C., Nijtmans,L., Bovolenta,S., Perini,M.P., and Zeviani,M. (1999). 

Characterization of SURF-1 expression and Surf-1p function in normal and disease conditions. Hum. 

Mol. Genet. 8, 2533-2540. 

Triepels,R.H., van den Heuvel,L.P., Trijbels,J.M., and Smeitink,J.A. (2001). Respiratory chain 

complex I deficiency. Am. J. Med. Genet. 106, 37-45. 

Tuschen,G., Sackmann,U., Nehls,U., Haiker,H., Buse,G., and Weiss,H. (1990). Assembly of NADH: 

ubiquinone reductase (complex I) in Neurospora mitochondria. I ndependent pathways of nuclear-

encoded and mitochondrially encoded subunits. J. Mol. Biol. 213, 845-857. 

Ugalde,C., Janssen,R.J., van den Heuvel,L.P., Smeitink,J.A., and Nijtmans,L.G. (2004a). 

Differences in assembly or stability of complex I and other mitochondrial OXPHOS complexes in 

inherited complex I deficiency. Hum. Mol. Genet. 13, 659-667. 

Ugalde,C., Triepels,R.H., Coenen,M.J., van den Heuvel,L.P., Smeets,R., Uusimaa,J., Briones,P., 

Campistol,J., Majamaa,K., Smeitink,J.A., and Nijtmans,L.G. (2003). Impaired complex I assembly in 

a Le igh syndrome patient with a novel missense mutation in the ND6 gene. Ann. Neuro l. 54, 665-669. 

Ugalde,C., Vogel,R., Huijbens,R., van den Heuvel,L.P., Smeitink,J., and Nijtmans,L. (2004b). 

Human mitochondrial complex I assembles through the combination of evolutionary conserved 

modules: a framework to  interpret complex I deficiencies. Hum. Mol. Genet. 13, 2461-2472. 

Videira ,A. and Duarte,M. (2001). On complex I and other NADH:ubiquinone reductases of Neurospora 

crassa mitochondria. J. Bioenerg. Biomembr. 33, 197-203. 

Videira,A. (1998). Complex I from the fungus Neurospora crassa. Biochim. Biophys. Acta. 1364, 89-

100. 

Vogel,R., Nijtmans,L., Ugalde,C., van den Heuvel,L.P., and Smeitink,J. (2004). Complex I assembly: 

a puzzling problem. Curr. Opin. Neurol. 17, 179-186. 

Williams,S.L., Valnot,I., Rustin,P., and Taanman,J.W. (2004). Cytochrome c oxidase subassemblies 

in fibroblast cultures from patients carrying mutations in COX10, SCO1, or SURF1. J. Biol. Chem. 279, 

7462-7469. 

Yadava,N., Houchens,T., Potluri,P., and Scheffler,I.E. (2004). Development and characterization of a 

conditional mitochondrial complex I assembly system. J. Biol. Chem. 279, 12406-12413. 



Complex I assembles via evolutionary conserved modules 

 105 

Yagi,T., Yano,T., Di,B.S., and Matsuno-Yagi,A. (1998). Procaryotic complex I (NDH-1), an overview. 

Biochim. Biophys. Acta. 1364, 125-133. 

Yamaguchi,M. and Hatefi,Y. (1993). Mitochondrial NADH:ubiquinone oxidoreductase (complex I): 

proximity of the subunits of the flavoprotein and the iron-sulf ur protein subcomplexes. Biochemistry. 32, 

1935-1939. 

 



 

 106



Complex I assembles via evolutionary conserved modules 

 107 

Chapter 4 
 

Identification of mitochondrial complex I assembly 

intermediates by tracing tagged NDUFS3 demonstrates the 

entry point of mitochondrial subunits 
 

Rutger O. Vogel
1*

, Cindy E.J. Dieteren
1,2*

, Lambert P.W.J. van den Heuvel
1
, Peter 

H.G.M.Willems
2,3

, Jan A.M. Smeitink
1
, Werner J.H. Koopman

2,3
 and Leo G.J. 

Nijtmans
1
 

 

* Joint first authorship 

 

Nijmegen Centre for Mitochondrial Disorders, Department of Paediatrics
1
, 

Department of Membrane Biochemistry
2
 and the Microscopical Imaging Centre

3
 of 

the Nijmegen Centre for Molecular Life Sciences
2, 3

, Radboud University Nijmegen 

Medical Centre, The Netherlands. 

 

Journal of Biological Chemistry 2007; 282(10):7582-90 



 

 108

 



Identification of assembly intermediates by tracing tagged NDUFS3 

 109 

Abstract 
 

Biogenesis of human mitochondrial complex I (CI) requires the coordinated 

assembly of 45 subunits derived from both the mitochondrial and nuclear genome. 

The presence of CI subcomplexes in CI deficient cells suggests that assembly 

occurs in distinct steps. However, discriminating between products of assembly or 

instability is problematic. Using an inducible NDUFS3-GFP expression system in 

HEK293 cells, we here provide direct evidence for the stepwise assembly of CI. 

Upon induction, six distinct NDUFS3-GFP-containing subcomplexes gradually 

appeared on a blue-native Western blot, also observed in wild-type HEK293 

mitochondria. Their stability was demonstrated by differential solubilization and 

heat incubation, which additionally allowed their distinction from specific products 

of CI instability and breakdown. Inhibition of mitochondrial translation under 

conditions of steady state labeling resulted in accumulation of two of the NDUFS3-

GFP-containing subcomplexes (100 and 150 kDa) and concomitant disappearance 

of the fully assembled complex. Lifting inhibition reversed this effect, demonstrating 

that these two subcomplexes are true assembly intermediates. Composition 

analysis showed that this event was accompanied by the incorporation of at least 

one mitochondrial DNA-encoded subunit, thereby revealing the first entry-point of 

these subunits.  



Chapter 4 

 110

 

Introduction 
 

Mitochondrial ATP is produced by the oxidative phosphorylation (OXPHOS) 

system. This system consists of five complexes, composed of at least 75 nuclear 

DNA-encoded and 13 mitochondrial DNA (mtDNA)-encoded proteins, and is a 

prominent example of coordinated assembly. The first four OXPHOS complexes 

(CI-CIV) constitute the respiratory chain, which transfers electrons from substrates 

NADH (at CI) and FADH2 (at CII) to the final electron acceptor molecular oxygen 

(CIV). Energy released by this electron transport is used to drive proton 

translocation across the mitochondrial inner membrane at CI, CIII and CIV. The 

resulting proton gradient is used to drive the conversion of ADP and inorganic 

phosphate into ATP by complex V (Smeitink et al., 2001).  

 

CI (NADH:ubiquinone oxidoreductase; E.C.1.6.5.3) constitutes the largest and 

least understood of the OXPHOS complexes (Brandt, 2006; Janssen et al., 2006). 

Electron microscopy revealed that CI has an L-shaped structure that consists of a 

hydrophobic arm embedded in the lipid bilayer of the mitochondrial inner 

membrane and a hydrophylic peripheral arm exposed to the mitochondrial matrix 

(Grigorieff, 1999). Using chaotropic salts and the detergent N,N-

dimethyldodecylamine N-oxide (LDAO), CI can be fractionated into several 

fragments (Galante and Hatefi, 1978; Sazanov et al., 2000), which together 

encompass 45 distinct subunits in bovine CI (Carroll et al., 2003; Carroll et al., 

2006). The recent appearance of the first crystal structure of the hydrophilic domain 

of CI in Thermus thermophilus is an example of the increasing insight that is gained 

in this area of research (Sazanov and Hinchliffe, 2006).  

 

In contrast, the many steps involved in the assembly of these 45 subunits still 

remain puzzling. Studies in the fungus Neurospora crassa demonstrated that the 

membrane and peripheral arms of CI are assembled independently and that the 

membrane arm, in its turn, is the product of the combination of a small and large 

assembly intermediate (Schulte et al., 1994; Tuschen et al., 1990; Videira  and 

Duarte, 2001). Two models are described for the CI assembly pathway in human 

mitochondria: one is based on the subcomplex distribution in CI deficient patient 

cells, the other on the appearance of subcomplexes in a conditional CI assembly 

system (Antonicka et al., 2003; Ugalde et al., 2004). Although both models differ at 

several points, they agree in that assembly occurs rather via the combination of 

large pre-assembled fragments than via sequential addition of individual subunits. 
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Structural and phylogenetic data strongly suggest that certain CI subunits have co-

evolved and are arranged in distinct structures, termed modules (Finel, 1998; 

Friedrich and Scheide, 2000; Friedrich and Weiss, 1997; Hedderich, 2004). 

Combination of these modules resulted in the ‘minimal’ CI structure consisting of 

the 14 most conserved subunits, of which a typical example is Escherichia coli CI: 

NDH-1. The proposed modules are the dehydrogenase module, consisting of the 

NDUFV2, NDUFV1 and NDUFS1 subunits (homologues of the nuoE, F and G 

subunits of bacterial NDH-1), the hydrogenase module, consisting of the NDUFS2, 

NDUFS3, NDUFS7, NDUFS8, ND1 and ND5 subunits (homologues of the nuoD, 

C, B, I, H and L subunits of NDH-1) and the proton translocation module, consisting 

of the ND2, ND3, ND4, ND4L and ND6 subunits (homologues of the nuoN, A, M, K 

and J subunits of NDH-1) (for further details concerning this subject, see (Friedrich 

and Weiss, 1997)). Our assembly model proposes that assembly in part reflects 

this evolutionary conservation of CI subunits (Ugalde et al., 2004). Assembly 

intermediates were identified by their appearance after the release of doxycycline 

inhibition of mitochondrial translation (allowing synthesis of the mtDNA-encoded 

ND subunits to resume). Membrane arm subunits seemed to be assembled in a 

different intermediate than peripheral arm subunits, and the presence of distinct 

early subassemblies suggested a link between the assembly process and co-

evolution of different CI subunits (Ugalde et al., 2004).  

 

Both assembly studies for human CI have used disturbed assembly systems, such 

as patient cell lines or cells treated with inhibtors of mitochondrial translation 

(Antonicka et al., 2003; Ugalde et al., 2004). Thus far, however, no subcomplexes 

have been identified in undisturbed systems. A useful strategy to trace assembly 

without disturbing its dynamics is by tagging a CI subunit, provided that the tag 

does not interfere with its biological function. This was previously done by Scheffler 

and colleagues, who used inducible tagged versions of the human homologues of 

the MWFE and ESSS subunits of CI to study their incorporation and function in 

assembly by complementation of CI deficient Chinese Hamster cell lines (Potluri et 

al., 2004; Yadava et al., 2004). However, assembly intermediates were not studied. 

 

In this study, we have used leakage expression of an inducible HEK293 cell line 

expressing monomeric Green Fluorescent Protein (AcGFP1)-tagged NDUFS3 

subunit. This strategy allowed detection of the NDUFS3 containing subcomplexes 

under steady-state labeling conditions and at relatively low expression levels on 

native one-dimensional gels. Moreover, it allowed the analysis of accumulation or 
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disappearance of individual subcomplexes upon interference with the assembly 

process. The NDUFS3 subunit was selected for labeling given the apparent ease 

with which its eYFP-HIS-tagged Yarrowia homologue can be used to isolate CI, 

demonstrating that the C-terminal tag does not disturb assembly (Kashani-Poor et 

al., 2001). Additionally, it has been argued that this core subunit is incorporated in 

an early stage of assembly (Antonicka et al., 2003; Ugalde et al., 2004), so that 

tagging will provide more insight into onset- and subsequent CI assembly steps. 

We demonstrate the existence of at least six distinct NDUFS3-containing 

intermediates, and distinguish these stable intermediates from products of CI 

instability and breakdown by differential solubilization and heat-incubation. 

Furthermore, inhibition of mitochondrial translation reveals an essential step, in 

which two NDUFS3-containing subcomplexes of 100 and 150 kDa require mtDNA-

encoded proteins for progression in assembly. Determination of the constitution of 

all subcomplexes by two-dimensional (2D-SDS) immunodetection demonstrates 

that mtDNA-encoded subunit ND1 makes its first appearance in this key step, 

indicating that this is the first step in the assembly process that requires the 

availability of mtDNA-encoded proteins.  

 

Materials and methods 
 

Generation of an inducible NDUFS3—AcGFP1 stable cell line 
 

 The NDUFS3 open reading frame sequence (NM_004551; without stopcodon) 

flanked by Gateway AttB sites (Invitrogen) was created by PCR following 

manufacturer instruction and cloned into pDONR201 by using Gateway BP 

Clonase II Enzyme Mix (Invitrogen). A Gateway Destination vector was produced 

by subcloning the BamHI/NotI restriction fragment of pAcGFP1-N1 (Clontech) in 

frame behind Gateway Reading Frame Cassette B (Invitrogen) in 

pcDNA5/FRT/TO (Invitrogen). To obtain an inducible vector containing c-terminally 

GFP-tagged NDUFS3 (NDUFS3-GFP), the pDONR201-NDUFS3 vector was 

recombined with the AcGFP1-Destination vector using the Gateway LR Clonase 

II Enzyme Mix (Invitrogen). Flp-In T-Rex293 cells (Invitrogen) were stably 

transfected using Superfect Transfection Reagent (QIAGEN) following 

manufacturer protocols. Clones with low leakage levels (noninduced expression of 

the transgene) were selected to obtain steady state NDUFS3-GFP labeling. To 

induce NDUFS3—AcGFP1 overexpression in these cell lines, doxycycline (Sigma) 

was added to the medium at a final concentration of 0.1 µg/ml. To reversibly block 

mitochondrial translation chloramphenicol (Sigma) was used at a final 
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concentration of 40 µg/ml. For blue-native analysis, cells were harvested at the 

indicated time points. 

 

Cell culture and mitochondria preparation 
 

Human embryonic kidney 293 (HEK293) cells were cultured in Dulbecco's Modified 

Eagle’s Medium (DMEM; Biowhitaker) supplemented with 10% fetal calf serum 

(v/v) and 1% penicillin/streptomycin (v/v) (Gibco). HEK293 cells were harvested 

and washed twice in cold PBS (Gibco) prior to resuspension in 2% digitonin (w/v) 

(Calbiochem)/PBS and incubation for 10 minutes on ice. For the amount of cells 

used (5 x 10
6
), this amount is comparable to 1 g of digitonin per g protein and 

results in disruption of the plasma membrane without disruption of mitochondrial 

inner membranes (Klement et al., 1995). After centrifugation (10 min, 10,000 g, 

4°C), the mitochondria enriched pellet was washed twice in PBS and the protein 

concentration was determined using the MicroBCA protein assay kit (Pierce). 

 

Sample preparation - DDM solubilizations  – Mitochondrial protein was mildly 

solubilized (common solubilisations are performed using 1.6 g/g DDM) by 10 min 

incubation on ice using 0.3, 0.6 and 1 g of n-Dodecyl β-D-maltoside (DDM) (Sigma-

Aldrich) per g of protein in solubilization buffer (1.75 M 6-aminocaproic acid; Fluka), 

75 mM bis-tris HCl (pH 7.0; Fluka). After centrifugation (30 min, 10,000 g, 4°C) the 

supernatant containing solubilized mitochondrial proteins was used for blue-native 

analysis. Digitonin solubilizations  – Mitochondrial protein was solubilized by 30 min 

incubation on ice with 4, 8 and 16 g of digitonin per gram of protein in solubilization 

buffer (30 mM HEPES pH 7.4, 150 mM potassium acetate (Merck), 10% (w/v) 

glycerol (Sigma-Aldrich) and 1 mM phenylmethylsulphonylfluoride (Sigma-Aldrich)). 

After gentle centrifugation (2 min, 600 g, 4°C) the supernatant containing 

solubilized mitochondrial proteins was used for blue-native analysis. 37 °C 

incubations – For temperature incubation experiments, mitochondrial protein was 

mildly solubilized using 1 g of n-Dodecyl β-D-maltoside (DDM) (Sigma-Aldrich) per 

g of protein in solubilization buffer (1.75 M 6-aminocaproic acid; Fluka), 75 mM bis-

tris HCl (pH 7.0; Fluka). After centrifugation (30 min, 10,000 g, 4°C) the 

supernatant containing solubilized mitochondrial proteins was divided into three 

samples. One sample was kept on ice for 60 min, one was kept at 37 °C for 10 min 

and on ice for 50 min and another was kept at 37 °C for 60 min. After this period, 

mitochondrial lysates were used for blue-native analysis. 
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Blue-native electrophoresis and in-gel activity assays 
 

Blue-native gradient gels (5-15%) were cast as described previously (Nijtmans et 

al., 2002) and run with 40 or 80 µg of solubilized mitochondrial protein. After 

electrophoresis, gels were further processed for in-gel activity assays, Western 

blotting or second dimension 10% SDS-PAGE as described in (Nijtmans et al., 

2002). In addition to CI, in-gel activity assay typically resulted in a previously 

described smaller band at the bottom half of the gel, which was not shown (Potluri 

et al., 2004). Proteins were transferred to a PROTAN® nitrocellulose membrane 

(Schleicher & Schuell). 

 

SDS-PAGE analysis 
 

Mitochondrial lysates were prepared as described under “Cell culture and 

mitochondria preparation” and “DDM solubilizations”. Subsequently the 

supernatant was mixed with an equal volume of Tricine sample buffer (Biorad) 

containing 2% (v/v) 2-mercaptoethanol. The mixture was incubated at room 

temperature for 60 min. Protein (20 µg/lane) was separated on 10% 

polyacrylamide gel. Proteins were blotted to PROTAN® nitrocellulose membrane 

(Schleicher & Schuell). 

 

Antibodies and ECL detection 
 

Protein immunodetection was performed using the following primary antibodies 

directed against EGFP (a gift from Dr. Frank van Kuppeveld, Nijmegen), NDUFS2 

(a gift from Professor Brian Robinson, Toronto), NDUFA9 (Invitrogen), NDUFS3 

(Invitrogen), ND1 (a gift from Dr. Anne Lombes, Paris), NDUFB6 (Mitosciences), 

NDUFA13 (Mitosciences), NDUFA6 (Mitosciences), NDUFA1 (a gift from Professor 

Immo Scheffler, San Diego), the CII 70 kDa subunit (SDHA; Invitrogen), the CIII 

Core2 subunit (UQCRC2; Invitrogen), CIV coxII subunit  (COXII; Invitrogen) and 

CV ATPase α (ATPA1; Invitrogen). For generation of the NDUFA2-specific 

antibody, rabbits were immunized with peptide CDQVTRALENVLSGKA that was 

KLH-coupled using the Imject® Maleimide Activated mcKLH Kit (Pierce). The 

obtained antiserum was found suitable for specific NDUFA2 detection on Western 

blots (data not shown). Secondary antibodies used peroxidase-conjugated anti-

mouse or anti-rabbit IgGs (Invitrogen). The signal was generated using ECL® plus 

(Amersham Biosciences). Sizes of the observed subcomplexes were determined 

by their relative migration compared to the OXPHOS complexes (CII: 150 kDa; CIII: 
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600 kDa (dimer); CIV: 260 kDa; CV: 800 kDa (dimer)), previously described CI 

subcomplexes (Ugalde et al., 2004) and to each other on the same two-

dimensional blot. 

 

Quantitative data analysis 
 

After Western blotting, luminescent signals were quantified using Image Pro Plus 

5.1 (Media Cybernetics, San Diego, CA, USA). The integrated optical density 

(I.O.D.) of each band was determined and corrected for background. The resulting 

numerical values were expressed relative to the CII-SDHA signal to correct for 

loading differences 

 

Results 
 

Induction of NDUFS3—GFP expression results in GFP labeling of CI and six 
distinct subcomplexes 
 

To trace the appearance of CI subcomplexes we have made stable HEK293 clones 

containing a tetracycline inducible vector for the NDUFS3 subunit with C-terminal 

monomeric GFP (AcGFP1). To exclude that the GFP-tag disturbs CI assembly, we 

first investigated the effects of induction on CI assembly and activity (figure 1). 

After 4 h of induction, the NDUFS3-GFP protein was clearly immunodetectable on 

an SDS Western blot of mitochondrial lysates stained with a anti-NDUFS3 antibody 

and increased thereafter (figure 1A, top panel). Coinciding with the increase of 

induced protein, endogenous NDUFS3 decreased in time, possibly due to 

competition, often observed for inducible expression systems (Vogel et al., 2005; 

Yadava et al., 2004). Blue-native gel electrophoresis (BN-PAGE) followed by 

Western blot analysis with anti-NDUFA9 antibody and measurement of in-gel 

NADH-NBT oxidoreductase activity, revealed that expression of NDUFS3-GFP did 

not alter the amount of fully assembled CI nor its in-gel activity (figure 1A, panels 

CI-NDUFA9 and CI-IGA).  

 

Figure 1B, depicting a BN-PAGE Western blot of mitochondrial lysates at various 

times after induction probed with anti-EGFP antibody, revealed the appearance of 

monomeric induced NDUFS3-GFP (m), six distinct GFP-labeled subcomplexes 

(indicated with 1-6) and GFP-labeled fully assembled CI (indicated with 7, figure 

1B). In combination with the finding that neither the amount nor the activity of CI is 

altered this indicates that the labeled subunit is gradually incorporated in the 6 
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subcomplexes and the fully assembled complex without disturbing this process or 

the activity of the holocomplex. 

 

 
 

Figure 1: Induction of NDUFS3-GFP expression does not disturb CI assembly and results in the 

appearance of GFP-tagged  subcomplexes 

Mitochondrial lysates of inducible NDUFS3-GFP cells were isolated for SDS- and blue-native gel 

electrophoresis after continuous induction with 0.1 µg/ml doxycycline for several durations up to 24 h. 

The time points of harvesting the cells (in h) after starting induction are indicated at the top of each lane. 

(A) Shown are immunodetections of NDUFS3-GFP and endogenous NDUFS3 expression on 1D-SDS 

Western blot, CI in-gel activity (CI-IGA), CI immunodetection on 1D-BN Western blot (CI-NDUFA9) and 

CII immunodetection on 1D-BN Western blot (CII-SDHA). (B) GFP-tagged subcomplexes are made 

visible by immunodetection using a GFP antibody on 1D-BN Western blot. Monomeric NDUFS3-GFP is 

indicated with “m”, (sub)complexes are numbered 1-7. 
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MtDNA-encoded proteins are required for the formation of subcomplexes larger 
than subcomplex 3 
 

To highlight the role of mtDNA-encoded CI subunits (ND subunits) in the 

appearance of the subcomplexes production of these subunits was blocked by 

specifically inhibiting mitochondrial translation with chloramphenicol. Using 

translation inhibitors such as chloramphenicol or doxycycline has previously shown 

to result in strong reduction of mitochondrial translation and thus ND subunit 

synthesis (Ugalde et al., 2004). In the absence of ND subunits, CI assembly will 

seize at the point at which incorporation of these subunits is essential for formation 

of the next assembly intermediate. To obtain steady state labeling of NDUFS3-GFP 

we specifically selected a clone with low leakage level (non-induced expression) 

resulting in steady state labeling. Cell lines were incubated with chloramphenicol 

during 24, 36 or 60 h (figure 2A). Prolonged chloramphenicol incubations induced 

the specific accumulation of NDUFS3-GFP-labeled subcomplexes 2 and 3 and the 

disappearance of subcomplex 6 and the holocomplex. This accumulation was 

paralleled by a decrease in the total amount of CI (as revealed using the CI-

NDUFA9 antibody) and a reduced in-gel NADH-NBT oxidoreductase activity (CI-

IGA) on a 1D-BN PAGE gel. Expression of the nuclear DNA-encoded SDHA 

subunit of CII was not affected by chloramphenicol treatment (CII-SDHA). These 

results support the conclusion that CI assembly cannot proceed beyond the 

formation of subcomplexes 2 and 3 in the absence of ND subunits. Subsequent 

quantification of the ECL signals of figure 2A in figure 2C demonstrates that 

whereas subcomplexes 2 and 3 accumulate 10- to 20-fold, fully assembled CI 

decreases only 5-fold. This strongly suggests that subcomplexes 2 and 3 

predominantly accumulate due to new synthesis. However, we cannot exclude that 

subcomplexes 2 and 3 to some extent also originate from partial CI breakdown or 

recycling of its constituents.  

 

Next, we analyzed the effects of releasing chloramphenicol inhibition on the 

distribution of NDUFS3-GFP-containing subcomplexes. Contrary to the induction 

pattern shown in figure 1, these conditions do not disturb endogenous NDUFS3 

expression (figure 2B, bottom panel) and prevent possible saturation of the 

assembly process as no monomeric NDUFS3-GFP accumulates (figure 2B, BN-

PAGE NDUFS3-GFP signal). Following 60 h of chloramphenicol treatment, cells 

were washed and chased for 0, 4, 8 and 18 h (figure 2B, time points 0, 4, 8, 18 h). 

Re-initiation of mitochondrial translation resulted in a gradual return of CI amount 

and activity (figure 2B, panel CI-NDUFA9 and CI-IGA). Remarkably, subcomplex 1 
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appeared 4 h after chloramphenicol removal, whereas it was absent from figure 2A. 

In addition, a shift in the NDUFS3—GFP signal occurred from subcomplexes 2 and 

3 towards subcomplexes 4-6 and CI. As subcomplexes 2 and 3 decrease while 

larger intermediates appear, subcomplexes 2 and 3 must represent products of 

assembly and not instability. Furthermore, these findings imply that ND subunits 

are required for the formation of subcomplexes 4-6 and fully assembled CI. 

Quantification of the ECL signals of figure 2B in figure 2D demonstrates that, 

directly after translation progresses, the levels of subcomplexes 2 and 3 rapidly 

decrease and then reach a rather constant level. This suggests that the 

accumulated subcomplexes 2 and 3 are rapidly incorporated into higher molecular 

weight complexes upon active translation of mitochondrial DNA-encoded subunits. 

The comparable kinetics and amounts of the two subcomplexes in figures 2C and 

2D suggest that subcomplex 2 reaches a rapid equilibrium with subcomplex 3, 

which underlines the dynamic nature of the assembly process and allows the 

possibility that subcomplex 2 originates from subcomplex 3 and vice versa. 
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Figure 2: Subcomplexes 2 and 3 accumulate upon inhibition of mitochondrial translation and 

require mtDNA-encoded subunits for progression in assembly 

(A) Inhibition of mitochondrial translation results in the accumulation of subcomplex 2 and 3. 

Mitochondrial lysates of inducible NDUFS3-GFP cells were analyzed by blue-native gel electrophoresis 

after inhibition of mitochondrial translation using 40 µg/ml chloramphenicol for time periods of 0, 24, 36 

and 60 h under leakage expression of NDUFS3-GFP. After Western blotting, immunodetection was 

performed for CII (CII-SDHA), CI (CI-NDUFA9) and GFP. Furthermore, CI in-gel activity was assayed 

(CI-IGA). Complexes 2,3 and 7 are indicated on the right. (B) Redistribution of subcomplexes after the 

release of inhibition of mitochondrial translation. Mitochondrial lysates of inducible cells were analyzed 

by blue-native gel electrophoresis. Cells were treated with 40 µg/ml chloramphenicol for 60 h (0 h time 

point), followed by washing and growth without chloramphenicol for 4, 8 and 18.  
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(Legend to figure 2, continued) 

Shown from top to bottom are GFP-labeled complexes on 1D-BN Western blot (incubated anti-GFP), CI 

in-gel activity (CI-IGA), CI on 1D-BN Western blot (incubated anti-NDUFA9), CII on 1D-BN Western blot 

(incubated anti-CII-SDHA). GFP-tagged complexes (1-7) and the position of monomeric NDUFS3-GFP 

(“m”) are indicated on the right. Furthermore, the bottom two panels show minute NDUFS3-GFP 

expression on SDS Western blot (anti-GFP) and endogenous NDUFS3 expression on SDS Western 

blot (anti-NDUFS3). Minute NDUFS3-GFP expression is also detected using the NDUFS3 antibody and 

is indicated with an asterisk. (C-D) Quantitative analysis of the GFP-tagged subcomplexes in (A) and 

(B) respectively. The integrated optical density (I.O.D.) of the anti-EGFP signals was corrected for 

background and normalized to the I.O.D. of the CII-SDHA signal. For presentation purposes, the 

obtained I.O.D. values were divided by a factor of 1000. 

 

Composition of CI subcomplexes 
 

To confirm that the subcomplexes identified using NDUFS3-GFP are also present 

in wild type HEK293 cells and to determine the composition of these subcomplexes 

we used two-dimensional blue-native SDS PAGE (2D-SDS PAGE) followed by 

Western blotting and specific immunodetection of CI subunits. Use of 2D-SDS 

PAGE was essential since this method, in contrast to 1D-BN PAGE, allowed 

detection of wild type NDUFS3 protein using a commercially available antibody, 

likely because the NDUFS3 antibody binds more efficiently to the unfolded protein. 

Figure 3A shows that the subcomplexes identified by GFP tagging of the NDUFS3 

subunit (figure 2B) are also present in two independent isolations of wild type 

HEK293 mitochondria. To analyze the composition of these complexes, we 

performed immunodetection of nine CI subunits (figure 3B). Subcomplex 1 is poorly 

visible, but subcomplexes 2-6 and CI (indicated with 7) can be clearly 

discriminated. Alignment between the different subunits shows that subcomplexes 

2-6 and CI contain the NDUFS2 and NDUFS3 subunits with the addition of ND1 in 

subcomplexes 4-7 and the addition of NDUFA13 in subcomplex 5-7. Close 

inspection furthermore reveals the “appearance” of an additional subcomplex 

termed ‘a1’ (“appearing subcomplex 1”) that only contains membrane subunits 

ND1, NDUFB6, NDUFA13, NDUFA6 and NDUFA1. Composition analysis of 

subcomplex 6 is difficult due to the close vicinity of CI and a1. OXPHOS complexes 

II (~150 kDa), III (600 kDa in dimeric form), IV (~240 kDa) and V (~750 kDa) are 

shown to allow estimation of the sizes of the CI subcomplexes. 
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Table 1: Immunodetected proteins in this study 

This table lists the proteins investigated by immunodetection for each OXPHOS complex. For the CI 

subunits, bovine homologue names are indicated as well as their distribution after fractionation as 

described in (Hirst et al., 2003). 

 

OXPHOS Complex Subunit (human) Subunit (bovine) CI fraction (bovine) 

CI NDUFS2 49 kDa Iα (Iλ) 

CI NDUFA9 39 kDa Iα 

CI NDUFS3 30 kDa Iα (λ) 

CI ND1 ND1 Iγ 

CI NDUFB6 B17 Iβ 

CI NDUFA13/GRIM19 B16.6 Iα (Iλ) 

CI NDUFA6 B14 Iα 

CI NDUFA2 B8 Iα (Iλ) 

CI NDUFA1 MWFE Iα 

CII SDHA   

CIII UQCRC2   

CIV COXII   

CV ATPA1   
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Figure 3: Investigation of the occurrence and composition of the NDUFS3 subcomplexes in wild 

type HEK293 cells 

(A) Alignment between immunodetections of NDUFS3-GFP on a 1D-BN Western blot lane with 

NDUFS3 on two independent 2D-SDS Western blots of wild type HEK293 mitochondrial lysates. 

Monomeric NDUFS3, NDUFS3-GFP, subcomplexes 1-6 and CI (7) are indicated at the top of the 1D-

BN lane and bottom of the 2D-SDS panels. (B) Analysis of the composition of the NDUFS3 

subcomplexes by Western blot immunodetection after 2D-SDS PAGE analysis of wild type HEK293 

mitochondrial lysates. Individual immunodetections are shown for the OXPHOS proteins indicated at the 

left of the figure (see also table 1). Complexes range from “1” (low molecular weight) to “7” (high 

molecular weight) and are indicated at the top of the panels. CI is indicated with the thick arrow (also 

with “7”), an additionally appearing subcomplex is indicated with “a1”. 
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Stability of CI subcomplexes  
 

In principle, BN analysis reveals native CI subcomplexes after detergent-mediated 

isolation. In order to determine whether the observed subcomplexes originate from 

partial CI solubilization, we investigated their presence in wild type HEK293 

mitochondria under different, increasingly stringent, concentrations of n-Dodecyl β-

D-maltoside (DDM) and digitonin, which are frequently used detergents in the 

isolation of membrane protein complexes. We performed immunodetection with the 

same antibodies as depicted in figure 3B. For simplicity, figure 4A only shows the 

NDUFS3 and ND1 subunits. The results obtained for the full set of antibodies are 

shown in supplemental figures 1 and 2 and are summarized in table 2. Core2 was 

used as a positive control for the effect of solubilization, as it allows investigation of 

the presence of complex III in various supercomplexes (described in (Schagger 

and Pfeiffer, 2000) and marked by S1 and S2). In these experiments the yield of 

subcomplexes 1-6 did not alter, whereas, in contrast, CI was increasingly 

solubilized from supercomplexes with ever more stringent conditions. Therefore, it 

is highly unlikely that the subcomplexes in our NDUFS3-GFP-expressing and wild 

type HEK 293 cells are artifacts of solubilization. On the contrary, subcomplex a1 

became more predominant under more stringent solubilization conditions (figure 

4A, ND1 signal), strongly suggesting that this subcomplex originates from the 

holocomplex due to solubilization.  

 

Finally, we investigated the presence of these subcomplexes in conditions 

promoting CI breakdown (incubation at 37° C). This resulted, as shown in figure 

4B, in the appearance of subcomplex “a2” (“appearing subcomplex 2”), seen with 

anti-NDUFS2, anti-NDUFA9, anti-NDUFS3 and anti-NDUFA2, and an increase in 

subcomplex “a1”, seen with anti-ND1, anti-NDUFB6, anti-NDUFA13 anti-NDUFA6 

and anti-NDUFA1, and subcomplex 1, all suggestive of breakdown products (figure 

4C). The occurrence and composition of subcomplexes in each of the three 

conditions (4A and B) is summarized in table 2. 
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Figure 4: Subcomplex distribution after solubilization with increasing concentrations of DDM, 

digitonin and at different 37 °C incubations 

(A) Analysis of the two-dimensional distribution of NDUFS3, ND1 and Core2 for DDM solubilizations of 

HEK293 mitochondria using 0.3, 0.6 and 1 g DDM/g protein and for digitonin solubilizations using 4, 8 

and 16 g digitonin/g protein (indicated at the left of the lanes). More subunits were tested but their 

distribution or abundance remained unaltered throughout all of the solubilizations, summarized in table 

2 (see also supplementary figures 1 and 2). Complexes range from “1” (low molecular weight) to “7” 

(high molecular weight). CI is indicated with the thick arrow (also with “7”). Supercomplexes are 

indicated with S1 (CI/CIII2/CIV) and S2 (CI/CIII2/CIVx) (Schagger and Pfeiffer, 2000). An appearing 

subcomplex is indicated with “a1”. (B) Analysis of the two-dimensional distribution of the NDUFS3 

subcomplexes after different incubations at 37 °C. DDM solubilized mitochondrial lysates were treated 

as follows: 60 min on ice (indicated “0 min 37 °C”); 10 min at 37 °C followed by 50 min on ice  (indicated 

“10 min 37 °C”); or 60 min at 37 °C (indicated “60 min 37 °C”). For each incubation period (indicated at 

the top of the 2D panels), individual immunodetections are shown for the OXPHOS proteins indicated at 

the left of the figure (see also table 1). Complexes range from “1” (low molecular weight) to “7” (high 

molecular weight) and are indicated at the top of the panels. CI is indicated with the thick arrow (also 

with “7”), additionally appearing subcomplexes are indicated with “a1” and “a2”. 
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Table 2: Overview of the distribution of the NDUFS3 subcomplexes per solubilization condition 

S1/S2: supercomplex variants. a1 and a2: appearing  subcomplex numbers 1 and 2, respectively. A: 

appearing subcomplex. D: disappearing subcomplex. X: unchanged subcomplex. 

 

DDM solubilization  

                       

  Subunit  1 2 3 4 5 a2 a1 6 7 (CI) S1/S2 

  NDUFS2 A/D X X X X     X X D 

  NDUFA9                 X D 

  NDUFS3 A/D X X X X     X X D 

  ND1       X X   A   X D 

  NDUFB6              A   X D 

  NDUFA13         X   A   X D 

  NDUFA6             A   X D 

  NDUFA2                  X D 

  NDUFA1              A   X D 

Digitonin solubilization 

                       

  Subunit 1 2 3 4 5 a2 a1 6 7 (CI) S1/S2 

  NDUFS2 A/D X X X X     X X X 

  NDUFA9                 X X 

  NDUFS3 A/D X X X X     X X X 

  ND1       X X   A   X X 

  NDUFB6              A   X X 

  NDUFA13         X   A   X X 

  NDUFA6             A   X X 

  NDUFA2                  X X 

  NDUFA1              A   X X 

37 ˚C solubilization  

 

                      

  Subunit  1 2 3 4 5 a2 a1 6 7 (CI) S1/S2 

  NDUFS2 A X X D D A/D   D D D 

  NDUFA9           A/D     D D 

  NDUFS3 A X X D D A/D   D D D 

  ND1       D D   A   D D 

  NDUFB6              A   D D 

  NDUFA13         D   A   D D 

  NDUFA6             A   D D 

  NDUFA2            A/D     D D 

  NDUFA1             A   D D 
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Discussion 
 

A better understanding of how nuclear- and mtDNA-encoded subunits of human 

mitochondrial CI are combined not only aids elucidation of how macromolecular 

assemblies are formed in the mitochondrial inner membrane, but also helps to 

clarify the molecular background of many unexplained CI deficiencies. Although the 

finding of subassemblies in CI deficient patients hints towards the existence of 

distinct steps in the assembly pathway, proper interpretation of such data requires 

detailed insight into assembly under normal conditions. Especially the dynamics, 

rate-limiting steps and specific assembly proteins involved in this process might 

deliver important clues. 

 

In this study, we have used an inducible NDUFS3-GFP HEK293 cell line to 

investigate the CI assembly process. We show that upon induction six GFP-labeled 

subcomplexes appear in addition to GFP-labeled CI itself. Importantly, this labeling 

procedure did not alter expression and/or activity of the fully assembled complex. 

The same subcomplexes were detected in mitochondria of wild type HEK293 cells, 

excluding that they were labeling artifacts. We furthermore show that inhibition of 

mitochondrial translation under conditions of steady-state “leakage” labeling 

resulted in accumulation of the smaller subcomplexes 2 and 3, but not 1, and the 

disappearance of subcomplex 6 and CI. This finding unambiguously demonstrates 

the requirement of mitochondrial translation products for the assembly process to 

proceed beyond subcomplexes 2 and 3. Because rigorous testing demonstrated 

that it is highly unlikely that subcomplexes 2 and 3 are isolation artifacts, their 

accumulation during inhibition of mitochondrial translation shows that these two 

subcomplexes are true assembly intermediates. 

 

The existence of CI subassemblies in the absence of mtDNA-encoded CI subunits 

has been described previously (Hall and Hare, 1990; Hofhaus and Attardi, 1993; 

Hofhaus and Attardi, 1995; Bai and Attardi, 1998; Potluri et al., 2004). In our 

previous assembly study, we analyzed 143B cells that were depleted of 

mitochondria DNA (rho-0 cells) and found that NDUFS3 was present in three 

subcomplexes very similar to subcomplexes 1, 2 and 3 described in the present 

study (Ugalde et al., 2004). We termed these subcomplexes H, G and F. We now 

learn that subcomplex H is not monomeric NDUFS3 but already includes the 

NDUFS2 subunit. Intriguingly, this subcomplex appears not only during induction 

(figure 1B), but also after degradation (figure 4B) of CI, which makes it difficult to 
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determine its exact origin. As it does not accumulate after chloramphenicol 

inhibition (figure 2A), it most likely does not originate directly from subcomplexes 2 

and 3. It may originate from larger assemblies, but as yet its exact origin remains 

enigmatic. 

 

Based on their composition and size and their accumulation in the absence of 

mitochondrial translation, we propose that subcomplexes 2 and 3 represent early 

stages in the assembly process. It is conceivable that assembly reflects the 

conserved evolutionary structural relationship of CI subunits via the formation of 

distinct modules (Ugalde et al., 2004; Vogel et al., 2004). The evolutionary 

conserved relation between the NDUFS2 and NDUFS3 as fused proteins in several 

bacterial species and as part of the hydrogenase module of CI (Braun et al., 1998; 

Clark et al., 1998) corresponds well with their early association during the 

assembly process. The hydrogenase module is important early in assembly, as 

illustrated by the finding that the overexpressed dehydrogenase module of 

Escherichia coli NDH-1 is only incorporated when the homologues of the NDUFS3, 

NDUFS2 and NDUFS7 subunits are also overexpressed (Braun et al., 1998). 

Based on their size of about 100-150 kDa, subcomplexes 2 and 3 likely include 

additional subunits, such as NDUFS7 and NDUFS8. Prommeenate and colleagues 

describe the existence of distinct subcomplexes containing the homologues of 

NDUFS2, NDUFS3 and NDUFS7 subunits in cyanobacteria (Prommeenate et al., 

2004). In addition, Bourges and colleagues have co-immunoprecipitated 

subcomplexes containing IP-fraction subunits NDUFS2, NDUFS3 and NDUFS7 

using anti-NDUFS3 antibody in wild-type and rho-0 143B osteosarcoma cells and 

in cell lines devoid of ND4 and ND5 (Bourges et al., 2004). 

 

The accumulation of subcomplexes 2 and 3 after inhibition of mitochondrial 

translation, and the specific appearance of larger subcomplexes after releasing this 

inhibition, suggest that mtDNA-encoded subunits are incorporated after 

subcomplex 3 is formed. The additional presence of an ND subunit in 

subcomplexes 4 and 5 (figure 3B), which reappear after assembly has resumed 

(figure 2B), may represent expansion of the hydrogenase module and anchoring to 

the mitochondrial inner membrane. Unfortunately, due to the lack of proper 

antibodies, we were not able to investigate the presence of other ND subunits in 

subcomplexes 4 and 5 except ND1. Membrane subunit ND1 is one of the first 

subunits clearly expressed after release of inhibition of mitochondrial translation in 

143B osteosarcoma cells (Ugalde et al., 2004) and absence of ND1 and ND6 

results in severe assembly disturbances (Bai and Attardi, 1998; Chomyn, 2001; 
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Cardol et al., 2002). In contrast, lack of ND4 or ND5 does not have such a ‘null’ 

effect on assembly. For example, in Chlamydomonas CI,  loss of ND4 or ND4/ND5 

still allows formation of substantial portion of CI (Cardol et al., 2002). Also in 

humans, absence of ND4 or ND5 still allows formation of nuclear DNA-encoded 

subcomplexes (Bourges et al., 2004), possibly even displaying activity (Hofhaus 

and Attardi, 1993; Hofhaus and Attardi, 1995; Bai and Attardi, 1998). ND3 mutation 

and absence of ND5 seem to have an effect on activity rather than assembly 

(Hofhaus and Attardi, 1995; McFarland et al., 2004). Therefore, as opposed to 

ND3, ND4 and ND5, it appears that ND1 and ND6 are incorporated early in 

assembly and that the appearance of ND1 in subcomplex 4 may represent the first 

incorporation of mtDNA-encoded CI subunits, in line with what is observed after the 

chloramphenicol inhibition experiments (figures 2A and B). 

 

As opposed to the detergent-stable intermediates 1-6, differential detergent 

solubilization results in subcomplex a1 as a product of CI instability (figure 3A). 

That this intermediate most likely does not represent an assembly intermediate is 

supported by its composition in relation to subcomplexes 4 and 5. Subcomplexes 4 

and 5 contain at least the NDUFS2, NDUFS3 and ND1 subunits (table 2). 

Subcomplex a1, which migrates at a higher molecular weight, consists primarily of 

membrane arm CI subunits, including ND1 but not NDUFS2 and NDUFS3 (table 

2). This means that subcomplex a1 has either specifically ‘lost’ two of its subunits 

or is of different origin altogether. This discrepancy illustrates that subcomplex a1 is 

not simply a successive intermediate of CI assembly and that different 

subcomplexes seem to have different origins, possibly in assembly but possibly 

also in instability and breakdown, as also demonstrated for cyanobacterial CI 

(Prommeenate et al., 2004). 

 

Additional heat-incubation at 37 °C shows that membrane arm subcomplex a1 also 

results from breakdown and is stable, possibly protected from proteases due to its 

lipid environment. It appears in conjunction with subcomplex a2, which consists of 

peripheral arm subunits and is rapidly broken down in time. Judging from their size 

and composition, observation of subcomplexes a1 and a2 points towards 

fractionation of CI into its membrane and peripheral arms. The disappearance of 

subcomplexes 4 and 5 and intensification of subcomplexes 1-3 after incubation at 

37° C remains puzzling (figure 4C). This finding suggests that subcomplexes 1-3, 

under certain conditions, can originate from subcomplexes 4 and 5 or a2.   
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Somewhat to our surprise, the NDUFA9 subunit is not detected in any of the 

observed subcomplexes 1-6, which may illustrate its late assembly into CI. This is 

supported by the absence of this subunit in accumulated intermediates of nearly 

the size of CI in NDUFS6 and B17.2L patients (Kirby et al., 2004; Ogilvie et al., 

2005). The presence of the NDUFA1 subunit (homologue of the bovine MWFE 

subunit) in CI subcomplexes was not investigated previously. In Chinese hamster 

cells, this subunit is speculated to serve as a membrane anchor to which 

membrane arm subunits attach during CI assembly (Yadava et al., 2004). Although 

NDUFA1 is detected in a membrane arm fraction of CI (subcomplex a1), it is 

consistently not detected in subcomplexes 4 and 5. It therefore seems that the 

hydrogenase core subomplex has already acquired at least one membrane arm 

subunit (ND1) prior to the addition of NDUFA1. Two other previously unstudied 

subunits in relation to their presence in subassemblies are NDUFA2 and 

NDUFA13. The co-migration of the NDUFA2 subunit with peripheral arm subunits 

NDUFS2, NDUFS3 and NDUFA9 in subcomplex a2 (that appears during 

breakdown) is in line with its fractionation with the Iλ fragment (Hirst et al., 2003). 

The NDUFA13, or GRIM19, subunit of CI comigrates with membrane arm subunits 

and, in addition to its presence in subcomplex a1, shows a particular presence in 

subcomplex 5 (consisting of the NDUFS2/NDUFS3/ND1/NDUFA13 subunits). It 

seems that a subunit that is considered ‘accessory’ and involved in regulation of 

cell death, is already present in a smaller structure containing the conserved ‘basic’ 

core subunits of CI (Huang et al., 2004). 
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Figure 5: An updated model for human mitochondrial CI assembly 

CI assembly initiates with the formation of the hydrogenase core module, which is, in several steps, 

anchored to the mitochondrial inner membrane and expanded with the NADH dehydrogenase module 

and the further addition of membrane fragments. Comparison with our previous assembly model 

(Ugalde et al., 2004) leads to the following ‘translation’: subcomplexes 1, 2, 3 represent subcomplexes 

H, G, F; subcomplexes 4, 5 represent subcomplex E; subcomplexes 6, 7 represent subcomplex A 

(possibly also B). 
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In conclusion, subcomplexes 1-6 represent equilibriums in the assembly pathway 

of CI and highlight important steps in the process. It is likely that more assembly 

intermediates exist but were not detected using our set of antibodies or have 

escaped detection because incorporation during assembly occurs too rapidly. The 

existence of these particular intermediates could be demonstrated in CI deficient 

patient cell lines, when assembly disturbance leads to accumulation of an 

assembly step. We have updated our previous assembly model to incorporate our 

current findings, which supports modular CI assembly on the basis of evolutionary 

conservation (figure 5). Future analysis of the exact composition of each 

subcomplex will allow further verification and refinement of existing CI assembly 

models which, in turn, will aid the understanding of many yet unexplained CI 

assembly disturbances. 
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Supplemental data 
 

 
 

Supplemental figure 1: Analysis of the two-dimensional distribution of OXPHOS proteins for 

DDM solubilizations of HEK293 mitochondria using 0.3, 0.6 and 1 g DDM/g protein (indicated at 

the top of the 2D panels) 

Per solubilization condition, individual immunodetections are shown for the OXPHOS proteins indicated 

at the left of the figure (see also table 1). Complexes range from “1” (low molecular weight) to “7” (high 

molecular weight). CI is indicated with the thick arrow (also with “7”). Supercomplexes are indicated with 

S1 (CI/CIII2/CIV) and S2 (CI/CIII2/CIVx) (Schagger and Pfeiffer, 2000), and a possible aggregate (also 

containing CII) is indicated with an asterisk. An additionally appearing subcomplex is indicated with “a1”. 
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Supplemental figure 2: Analysis of the two-dimensional distribution of OXPHOS proteins for 

digitonin solubilizations of HEK293 mitochondria using 4, 8 and 16 g digitonin/g protein 

(indicated at the top of the 2D panels) 

Per solubilization condition, individual immunodetections are shown for the OXPHOS proteins indicated 

at the left of the figure (see also table 1). Complexes range from “1” (low molecular weight) to “7” (high 

molecular weight). CI is indicated with the thick arrow (also with “7”). Supercomplexes are indicated with 

S1 (CI/CIII2/CIV) and S2 (CI/CIII2/CIVx) (Schagger and Pfeiffer, 2000). An additionally appearing 

subcomplex is indicated with “a1”. 
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Abstract 
 

Complex I (NADH:ubiquinone oxidoreductase) is the largest multi-protein enzyme 

of the oxidative phosphorylation system. Its assembly in human cells is poorly 

understood and no proteins assisting this process have yet been described. A 

good candidate is NDUFAF1, the human homologue of Neurospora crassa 

complex I chaperone CIA30. Here, we demonstrate that NDUFAF1 is a 

mitochondrial protein that is involved in the complex I assembly process. 

Modulating the intra-mitochondrial amount of NDUFAF1 by knocking down its 

expression using RNA interference leads to a reduced amount and activity of 

complex I. NDUFAF1 is associated to two complexes of 600 and 700 kDa in size of 

which the relative distribution is altered in two complex I deficient patients. Analysis 

of NDUFAF1 expression in a conditional complex I assembly system shows that 

the 700 kDa complex may represent a key step in the complex I assembly process. 

Based on these data, we propose that NDUFAF1 is an important protein for the 

assembly/stability of complex I. 
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Introduction 
 

The failure to assemble a properly functioning complex I (NADH:ubiquinone 

oxidoreductase, EC 1.6.5.3) results in complex I deficiency. This is a major 

contributor to mitochondrial disease and frequently results in early childhood death 

(Smeitink et al., 2001). Since complex IV (cytochrome c oxidase) deficiency is 

frequently caused by mutations in an assembly factor (Barrientos et al., 2002), it is 

likely that a similar situation holds for complex I. However, in contrast to the 15 

assembly chaperones already found for complex IV, so far no assembly proteins 

have been described for mammalian complex I. Given the complexity of the 

enzyme, many assembly factors are likely to be needed and still await detection. 

We have described a candidate gene, NDUFAF1, which has 28% homology with 

Neurospora crassa complex I assembly chaperone CIA30 (Janssen et al., 2002). 

The present study is the first to investigate the possible role of NDUFAF1 in the 

assembly of complex I in human cells. 

 

Complex I is the first of five multi-protein complexes which together constitute the 

oxidative phosphorylation system. In this system NADH is oxidised by complex I, 

after which electrons are transferred via electron carriers (ubiquinone and 

cytochrome c) and via complexes III and IV to the final electron acceptor molecular 

oxygen. The energy of this transfer is used to translocate protons across the 

mitochondrial inner membrane. The thus generated proton gradient is used by 

complex V (ATP synthase) to generate ATP. 

 

Mammalian complex I is an L-shaped structure consisting of at least 45 subunits 

(Grigorieff, 1999; Carroll et al., 2003; Hirst et al., 2003) of which seven are encoded 

by the mitochondrial genome. The complex can be subdivided into three 

functionally distinct fragments. The NADH dehydrogenase segment includes the 

redox cofactor flavomononucleotide, which is involved in the oxidation of the NADH 

substrate. The hydrogenase part contains several iron sulfur clusters which are 

involved in electron transfer to the electron transporter ubiquinone. The membrane 

bound transporter part of complex I is involved in proton translocation. Whether 

and how electron transport and proton translocation are coupled is yet uncertain 

(Vinogradov, 2001). 
 

Assembly of complex I is an intricate process which has been studied in several 

organisms (Cardol et al., 2002; Stroh et al., 2004; Yadava et al., 2004). The most 
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extended investigation of complex I assembly was performed for the fungus 

Neurospora crassa (Videira, 1998; Schulte, 2001). In the proposed model, the 

hydrophilic peripheral arm and the hydrophobic membrane arm of complex I are 

assembled independently before being joined together. The search for a more 

detailed description of the assembly pathway has recently resulted in the 

publication of the first models for human complex I assembly (Antonicka et al., 

2003; Ugalde et al., 2004). Both models differ considerably, illustrating the fact that 

the complex I assembly pathway is far from solved. The model we describe shows 

considerable homology to N. crassa complex I assembly. We propose that, 

analogous to the situation in N. crassa, complex I is assembled semi-sequentially: 

discrete functional modules are assembled independently and are joined in several 

steps to form a peripheral arm and a membrane arm assembly intermediate. In 

more detail, this entails the formation of perhipheral arm assembly intermediate D 

(600 kDa) from intermediates H (80 kDa), G (150 kDa) and F (250 kDa) and the 

formation of membrane arm assembly intermediate C (700 kDa) from the 

combination of membrane proteins with intermediate E (400 kDa). Peripheral arm 

intermediate D consists of a core or highly conserved hydrophilic subunits (such as 

the 49 kDa, 39 kDa and 30 kDa subunits), while membrane arm intermediate C 

consists of highly conserved hydrophobic subunits (such as ND1 and ND6). These 

two key intermediates are combined to form assembly intermediate B (950 kDa) 

and finally holo-complex I (A, 1 MDa) (Ugalde et al., 2004). 
 

Two candidate assembly proteins for complex I were found in N. crassa: Complex I 

Intermediate Associated proteins CIA30 and CIA84 (Kuffner et al., 1998). 

Knockouts of the cia genes in N. crassa resulted in membrane arm subunit 

knockout phenotypes. The CIA proteins are thought to chaperone the combination 

of the small and large membrane arm intermediates of complex I via binding to the 

large membrane arm intermediate. The binding of CIA84 is transient as the protein 

cycles between a bound and unbound state. Immunoprecipitations using a CIA84 

antibody have resulted in the identification of associated subunits in the membrane 

arm (Kuffner et al., 1998). 
 

So far nothing is known about the possible involvement of CIA30 homologue 

NDUFAF1 in human complex I assembly. In this paper, we demonstrate that 

NDUFAF1 acts as an assembly protein for complex I in human cells, in line with the 

proposed function of its homologue CIA30 in the fungus N. crassa. 
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Materials and methods 
 

Generating NDUFAF1 antibody 
 

To produce antibodies against NDUFAF1, two oligopeptides were selected. The 

first peptide corresponds to the mid-portion of the NDUFAF1 sequence, amino 

acids 43V-57G; the second peptide corresponds to the C-terminus of the protein, 

amino acids 314F-327K. A mixture of both peptides was coupled to keyhole limpet 

hemocyanin, serving as an immunogenic carrier. Rabbits were immunised with an 

injection of the antigen-carrier conjugate, followed by three subsequent boosters, 

one every three weeks. The two antisera were collected from a final bleeding and 

tested for specific detection of the NDUFAF1 protein by Western blotting. Both 

antisera displayed comparable specificity. 

 

Cell cultures 
 

JM109 E.coli cells (Promega) were cultured in Luria Burtani (LB) medium and the 

appropriate antibiotic was added to the medium. 143B206 ρ
0 

cells were cultured in 

Dulbecco’s Modified Eagle Medium (DMEM) (Bio Whitaker) supplemented with 5% 

fetal calf serum (FCS), antibiotics, 1 mM uridine and 100 µg/ml bromodeoxyuridine. 

HeLa cells and 143B osteosarcoma cells were cultured in DMEM supplemented 

with 10% FCS and antibiotics. HEK293 T-REx
tm

 cells without the TO/NDUFAF1 

construct were cultured in the same medium to which 5 µg/ml blasticidin 

(Invitrogen) was added to maintain the repressor construct. To HEK293 T-REx
tm

 

cells containing the TO/NDUFAF1 construct additionally 300 µg/ml Zeocin
tm

 

(Invitrogen) was added to maintain the inducible construct. 

 

siRNA transfection 
 

For transfection, HeLa cells were plated in DMEM supplemented with 10% FCS 

(without antibiotics) in 24-well plates with a cell density of 1.5 x 10
4
 cells per well. 

The next day, cells were transfected with siRNA duplex (control: Cyclophilin B 

(Dharmacon), NDUFAF1: #1 antisense strand: 5’- ACUAACAUCAGGCUUCUCC 

dTdT -3’, #2 antisense strand: 5’- UAACUAUACAUCUGAUUCG dTdT -3’) in 3 µl 

oligofectamine (Invitrogen) to achieve a final concentration of 10 nM siRNA per 

well. Cells were incubated at 37°C in a CO2 incubator for 48-72 hours until they 

were ready to assay for gene knockdown or to perform a second transfection. 
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Cellular fractionation 
 

Approximately 5 x 10
6
 HEK293 cells were harvested, washed in PBS, resuspended 

in an appropriate isotonic buffer (0.25 M sucrose, 5 mM Tris-HCl, pH 7.5, and 0.1 

mM PMSF) and homogenised using a glass teflon homogeniser. Unbroken cells 

and nuclei were pelleted by centrifugation at 600 g for 15 minutes. Supernatants 

were centrifuged at 10,000 g for 25 minutes. The resulting supernatant was 

isolated as the cytoplasmic fraction and the mitochondrial pellet was washed once 

with the isotonic buffer containing 1 mM EDTA, pH 8.  

 

Creating the inducible NDUFAF1 construct and transfection into HEK293 T-REx
tm

 
cells 
 

A PCR of total cell cDNA was performed to specifically amplify NDUFAF1 cDNA 

using Native Pfu DNA polymerase (Stratagene). Primer sequences are (5’ – 3’): 

NDUFAF1forward: CGCGGAATTCATGGCTTTGGTTCACAAATTGC 

NDUFAF1reverse: CGCGTCTAGATTTAAAAAGCCTTGGGTTAAGCTC 

 The amplified fragment and pcDNA4/TO/myc-His A (Invitrogen) (TO) were 

digested with EcoRI and XbaI restriction enzymes (Gibco) and subsequently 

ligated using T4 DNA Ligase (Invitrogen) and transformed into JM109 competent 

E. coli cells (Promega). Clones containing the plasmid were obtained by kanamycin 

(Sigma Aldrich) selection and were cultured to obtain sufficient construct for 

transfection. After sequence verification, transfection of the construct was 

performed on HEK293 T-REx
tm

 cells (Invitrogen), which stably repress the 

tetracycline repressor operon, using the Superfect® Transfection Reagent 

(Qiagen). Cells were grown to a confluency of 60-70% in a 6-well plate and cells in 

each well were transfected by adding 2 µg of the construct according to the 

protocols described in the Superfect Transfection Reagent Handbook (Qiagen). 

Stable clones were obtained by culturing under selective pressure of 300 µg/ml 

Zeocin
tm

 (Invitrogen). HEK293 T-REx
tm

 clones containing the TO/NDUFAF1 

construct were induced for expression of the transgene by adding 0,1-1 µg/ml 

doxycycline to the growth medium for the times indicated in the results section. 

 

Immunofluorescence assay 
 

A culture of a TO/NDUFAF1 containing HEK293 T-REx
tm

 clone was seeded onto a 

coverslip in a 24-wells plate and grown overnight to achieve a confluency of 50% 

on the day of the assay. Cells were prestained with Mitotracker Red (Molecular 

Probes) prior to paraformaldehyde fixation. For fluorescence imaging, cell 
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preparates were attached to the stage of an inverted microscope (Axiovert 200 M, 

Carl Zeiss, Jena, Germany) equipped with a x63 Plan NeoFluar (NA 1.25) objective 

(Carl Zeiss). Alexa Fluor® 488 and Mitotracker Red were excited at 488 nm and 

570 nm respectively, using a monochromator (Polychrome IV, TILL Photonics, 

Gräfelfing, Germany). Fluorescence emission light was either directed by a 

505DRLPXR dichroic mirror (Omega Optical Inc., Brattleboro, USA) through a 

535AF26 emission filter (Alexa Fluor® 488) or by a 595DRLP dichroic mirror 

through a 645AF75 emission filter (Mitotracker Red) onto a CoolSNAP HQ 

monochrome CCD-camera (Roper Scientific, Vianen, The Netherlands). All 

hardware was controlled with Metafluor 6.0 software (Universal Imaging 

Corporation, Downingtown, USA) running on a PC equipped with 1 Gb RAM 

running Windows XP Professional. 

 

Digitonin isolation and solubilisation of mitochondria 
 

Approximately 1 x 10
6
 trypsin-harvested cells were pelleted and resuspended in 

100 µl of cold PBS to which 100 µl of 4% digitonin (w/v) was added to achieve a 

final concentration of 2% digitonin. This sample was shortly vortexed and incubated 

on ice for 10 minutes to solubilize cell membranes. After this, 1 ml of cold PBS was 

added and the sample was centrifuged at 10000 g for 10 minutes at 4°C to obtain a 

mitochondria-enriched organelle pellet. To remove traces of digitonin, this pellet 

was washed twice with 1 ml of cold PBS. Mitochondrial proteins were solubilised by 

the addition of 100 µl of AC/BT (1.5 M aminocaproic acid, 75 mM Bis-Tris pH 7.0) 

and 20 µl of 10% n-dodecyl β-D-maltoside (w/v) and incubation on ice for 10 

minutes. The solubilised proteins are retained in the supernatant after 

centrifugation at 10000 g for 25 minutes at 4°C, which was used for further 

analysis. 

 

Gel electrophoresis and in-gel activity assays 
 

The protein concentration for BN-PAGE and SDS-PAGE was determined in the n-

dodecyl β-D-maltoside solubilised supernatants before adding coomassie blue 

containing sample buffer, using a MicroBCA protein assay kit (Pierce). Blue-native 

5-15% gradient gels were loaded with 40 µg of digitonin-isolated mitochondria and, 

after electrophoresis, were further processed for Western blotting, second 

dimension 10% SDS-PAGE or in-gel activity assays as described earlier (Nijtmans 

et al., 2002). SDS-PAGE analysis was performed by loading 40 µg of protein/lane 

on 10% SDS-PAGE gels as described before (Ugalde et al., 2004). 
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Blotting, detection  
 

Blue-native and SDS gels were blotted onto PROTRAN Nitrocellulose Transfer 

Membrane (Schleicher and Schuell BioScience) according to standard procedures. 

Primary antibodies used are against the following complex I subunits: NDUFA3 (30 

kDa), NDUFA9 (39 kDa), NDUFB6 (B17) (Molecular Probes), ND1 (a gift from Dr. 

A. Lombes, France), ND6 (a gift from Professor R. Capaldi, USA), Complex II 70 

kDa subunit (Molecular Probes), CoreII (Molecular Probes), NDUFS5 (15 kDa) 

(Molecular Probes), HSP70 (Abcam), c-myc (Invitrogen) and NDUFAF1. 

Secondary antibodies used are Swine Anti-Rabbit PerOxidase (SWARPO), Goat 

Anti-Rabbit PerOxidase (GARPO) and Goat Anti-Mouse PerOxidase (GAMPO) 

(Molecular Probes). Signal detection was performed using the ECL® plus Western 

Blotting Detection System (Amersham Biosciences). After ECL, the blots were 

exposed to X-OMAT UV film (KODAK). ECL signals were quantified using the 

ImagePro-Plus 4.1 image analysis software (Media Cybernetics, Silver Spring, MD, 

USA). 

 

Results 
 

NDUFAF1 localizes in the mitochondrion 
 

To analyse the subcellular localization of NDUFAF1 we harvested HEK293 cells at 

90% confluency and prepared protein samples of total cell lysate, isolated 

mitochondria and the cytoplasmic fraction. A Western blot of this gel was incubated 

with antibodies against NDUFAF1, a cytoplasmic marker (GAPDH), a marker for 

the mitochondrial inner membrane (COXII), a marker for the mitochondrial outer 

membrane (porin) and a marker for both cytoplasm and the mitochondrial matrix 

(HSP70) (Fig. 1). NDUFAF1 is clearly more abundant in isolated mitochondria than 

in the total cell protein extract and is absent in the cytoplasmic protein extract. 

These data show a specific localization of NDUFAF1 in the mitochondrion.  
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Figure 1: Western blot analysis of cellular fractionation of HEK293 cells 

A 10% SDS-PAGE gel was loaded with 40 µg protein/lane as follows. Lane 1, total cell protein extract. 

Lane 2, cytoplasmic protein extract. Lane 3, mitochondrial protein extract. The Western blot of this gel 

was treated with antibodies against NDUFAF1, GAPDH (cytoplasmic marker), COXII and porin 

(mitochondrial markers) and HSP70 (loading control). 

 

To confirm this result and to use another antibody for localization studies, we 

decided to create a construct in which the NDUFAF1 gene was tagged with an 

immunogenic epitope. We cloned NDUFAF1 into an inducible vector in-frame with 

a c-myc and 6xHis tag and transfected this construct into a human embryonic 

kidney cell line (HEK293), which stably expresses the tetracycline repressor gene. 

Stable clones were selected and induction of protein expression was tested using 

Western blot analysis. Digitonin-isolated mitochondria were obtained from cultures 

of an inducible clone after 0, 1, 2, 4, 24, 48 and 72 hours of induction with 0.1 

µg/ml of doxycycline and analysed by Western blotting (Fig. 2). This concentration 

of doxycyline does not interfere with mitochondrial protein translation (Ugalde et al., 

2004). Using both the NDUFAF1 and the c-myc antibodies both the endogenous 

and the induced (slightly larger than the endogenous protein due to the C-terminal 

tags) NDUFAF1 could be observed after induction.  
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Figure 2: Western blot analysis of induction of NDUFAF1 in HEK293 cells 

A 10% SDS-PAGE gel was loaded with 40 µg protein/lane of a mitochondrial protein extract of an 

inducible HEK293 clone and blotted. Cells were induced with 0.1 µg/ml of doxycycline for 0 (control), 1, 

2, 4, 24, 48 and 72 hours. Antibodies used are against NDUFAF1 and complex I membrane arm subunit 

ND1. Induced and endogenous NDUFAF1 and ND1 signals are indicated on the right. Quantification of 

the ECL signals is shown in the histogram below, each bar corresponding to the lane above. The signal 

is expressed as percentage of the 0 hour time point signal for both endogenous NDUFAF1 (white bars) 

and induced NDUFAF1 (black bars). 

 

To investigate the cellular localization of the NDUFAF1-c-myc fusion protein we 

used a monoclonal c-myc antibody in a immunohistochemical experiment, further 

incubated with a secondary antibody to which a fluorescent Alexa probe was 

coupled. The overlay of the Alexa dye staining with mitochondrial control 

Mitotracker Red shows that induced NDUFAF1 indeed migrates to the 

mitochondrion (Fig. 3). Biochemical fractionation of the NDUFAF1-c-myc 

expressing cells indicates that this fusion protein also exclusively localizes in 

mitochondria (results not shown). 
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Figure 3: Immunofluorescence mitochondrial localization of induced NDUFAF1 

Cells that are induced for NDUFAF1 expression by 1 µg/ml of doxycycline for 24 hours were treated with 

either anti-myc antibody coupled to Alexa Fluor 488 to verify presence of induced NDUFAF1 (top panel) 

or mitochondrial control Mitotracker Red (middle panel). The bottom panel shows an overlay of the two 

signals. 
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NDUFAF1 knock down reduces the complex I level and activity 
 

Based on its homology with alleged complex I chaperone CIA30 in N. crassa, 

NDUFAF1 is an interesting candidate assembly protein for human complex I. The 

possible involvement of NDUFAF1 in complex I assembly/stability was investigated 

by performing RNA interference experiments. To knock down NDUFAF1 protein 

expression, two different small interfering RNA (siRNA) oligonucleotides were 

designed for targeting NDUFAF1 mRNA. Both siRNA’s displayed similar knock 

down effects. Fig. 4 shows a transfection of 48 hours, followed by consecutive 

transfections of 48, 72 or 96 hours with 10 nM of siRNA #2 (data for siRNA #1 not 

shown). RNA interference effects are analysed for NDUFAF1 protein (Fig. 4A), fully 

assembled complex I (Fig. 4B) and complex I in-gel activity (Fig. 4C). NDUFAF1 

expression can be knocked down to less than 30% of the control signal  (Fig. 4A, 

lanes 4 and 5). This leads to a 40% decrease of fully assembled complex I (Fig. 

4B, lane 5). Complex I activity is compromised as well, as can be seen by the 50% 

decrease of signal in Fig. 4C (lane 5). Interestingly, longer second incubations with 

siRNA lead to a greater inhibitory effect. Control transfections with a siRNA 

targeting cyclophilin B performed under the same circumstances did not lead to a 

reduction of the NDUFAF1 signal, nor to a reduction in the amount of fully 

assembled complex I (data not shown). This analysis shows that knockdown of 

NDUFAF1 protein leads to a decrease in the amount and activity of fully assembled 

complex I. Conversely, preliminary evidence suggests that overexpression of 

NDUFAF1 leads to an increase in the expression of complex I (data not shown). 
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Figure 4: RNA interference of NDUFAF1 in HeLa cells 

A, B and E, HeLa cells were transiently transfected twice for 48 and 48 hours, 48 and 72 hours, and 48 

and 96 hours, respectively. Quantification of the signals is represented in the histograms below each 

panel. Each bar corresponds to the lane above it, representing the percentage of signal compared to 

the “untreated” signal, corrected for the loading control signal (CoII). A, Western blot of SDS-PAGE gel. 

B, Western blot o f blue-native gel. C, In-gel activity assay. For these panels: Lane 1, untreated cells. 

Lane 2, mock transfection (no siRNA). Lane 3, transfection with NDUFAF1 siRNA #2 for 48 and 48 

hours, consecutively. Lane 4, transfection with NDUFAF1 siRNA #2 for 48 and 72 hours, consecutively. 

Lane 5, transfection with NDUFAF1 siRNA #2 for 48 and 96 hours, consecutively. Antibodies used are 

against NDUFAF1, NDUFA9 (complex I) and CoII-70 kDa (complex II, loading control). In-gel activity 

results are indicated with IGA, Western blot results are indicated with WB. 

 

NDUFAF1 is present in two high molecular weight protein complexes 
 

To investigate whether NDUFAF1 is present in high molecular weight protein 

complexes, its expression pattern was analysed on Western blots of two-

dimensional blue-native/SDS gels (2D BN/SDS-PAGE). Control HEK293 cells were 

harvested at 90% confluency and lysates of digitonin-isolated mitochondria were 

run on 2D BN/SDS-PAGE gels before blotting and antibody detection (Fig. 5). Two 

NDUFAF1-containing high molecular weight complexes of about 600 and 700 kDa 

can be observed (Fig. 5, complexes 2 and 1, respectively). As a size reference, 

complex I (1 MDa) is shown by using an antibody against the NDUFA9 (39 kDa) 

subunit of complex I. The expression pattern of NDUFAF1 when it is 

overexpressed was analyzed by using the doxycycline inducible expression system 

in combination with 2D BN/SDS-PAGE gels. After 4 hours of induction (Fig. 6), 

induced NDUFAF1 can be seen to migrate from its monomeric form towards the 

complexes of 600 and 700 kDa, confirming the data observed for endogenous 

NDUFAF1 in the control situation. 
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Figure 5: 2D BN/SDS-PAGE expression analysis of a mitochondrial protein extract from HEK293 

cells 

Forty µg protein per lane was loaded on a 5-15% blue-native gel (1
st
 dimension) followed by 2

nd
 

dimension separation using 10% SDS-PAGE gels and Western blotting. Antibodies used are against 

NDUFAF1 and NDUFA9 (39 kDa), indicated at the left of each panel. CI refers to fully assembled 

complex I (complex A in (Ugalde et al., 2004)). Numbers 1 and 2 refer to NDUFAF1 complexes of 700 

and 600 kDa, respectively. 

 

 
 
Figure 6: 2D BN/SDS-PAGE expression analysis of mitochondrial protein extracts from HEK293 

control cells and a NDUFAF1 inducible HEK293 clone 

The inducible clone was induced for NDUFAF1 expression for 1, 2 and 4 hours with 1 µg /ml of 

doxycycline. 40 µg protein per lane was loaded on a 5-15% blue-native gel (1
s t
 dimension) followed by 

2nd dimension separation using 10% SDS-PAGE gels and Western blotting.  Anti NDUFAF1 antibody 

was used for immunoblot detection. NDUFAF1 containing intermediates are indicated with 1 (700 kDa) 

and 2 (600 kDa). Induced and endogenously expressed NDUFAF1 are indicated on the right with 

“induced” and “endogenous”, respectively to differentiate between the endogenous protein and the 

slightly larger tagged induced protein. 
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NDUFAF1 expression pattern changes in patients with mutations leading to 
complex I assembly defects  
 

Our complex I assembly model (Ugalde et al., 2004) confirms the separate 

assembly of membrane and peripheral arms described in previous assembly 

models in N. crassa. A clue about the stage at which NDUFAF1 may operate in this 

human model can be obtained by screening for the NDUFAF1 expression pattern 

in complex I deficient patients. For this study, we have used fibroblasts from a 

NDUFS8 (TYKY) patient (manuscript in preparation) and a ND5 patient cybrid cell 

line with 90% of heteroplasmy (D393G, see (Corona et al., 2001)) as 

representatives of both a peripheral arm and a membrane arm subunit mutation. 

Cells were harvested to obtain mitochondrial lysates which were run on 2D 

BN/SDS-PAGE gels for Western blotting and antibody incubation (Fig. 7). The 

NDUFS8 (TYKY) patient cell line is represented in Fig. 7A and the ND5 cybrid cell 

line is represented in Fig. 7B. 

 

 For both patients, complex I expression analysis using NDUFA9 (39 kDa) antibody 

reveals a decrease in the amount of holo-complex I (represented by A, see 

reference 14 for detailed description of the composition of complex I assembly 

intermediates). Less NDUFAF1 is observed in the control fibroblast cell line used 

for the NDUFS8 (TYKY) patient compared to the cybrid control cell line, and the 

700 kDa complex seems absent (Fig. 7A, NDUFAF1 panels). This difference in 

expression intensity is observed more often and appears to be cell type dependent 

(Ugalde et al., 2004). Irrespective of this, what can clearly be seen is the strong 

increase of NDUFAF1 in the 600 kDa complex in the patient compared to the 

control. So, interestingly, complex I and its assembly intermediates are less 

abundant whereas more NDUFAF1 is present in the 600 kDa complex.  

 

Additionally, the ND5 patient displays a different relative distribution of NDUFAF1 

between the 600 and 700 kDa complexes compared to the control (Fig. 7A, 

complexes 2 and 1). NDUFAF1 is more prominently present at 700 kDa in the 90% 

cybrid compared to the control. Since the observed effects are the consequence of 

complex I membrane arm subunit mutation, this allows the possibility that 

NDUFAF1 is involved in membrane arm assembly. 
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Figure 7: NDUFAF1 expression in two complex I deficient patients (panels A and B) and in a 

conditional complex I assembly system (panel C) 

Mitochondrial pellets were solubilised and 40 µg of protein was loaded onto a 5-15% BN gel. Expression 

profiles were analysed by 2D BN/SDS-PAGE, Western blotting and antibody incubation. Antibodies 

used are against NDUFAF1 and NDUFA9 (39 kDa). Assembly stages described in ref. 14 are indicated 

at the top by A, B and D. NDUFAF1 containing complexes are indicated by 1 (700 kDa) and 2 (600 

kDa). Panel A: expression analysis of control 143B osteosarcoma cells and a complex I peripheral arm 

subunit patient cell line (NDUFS8 mutation, manuscript in preparation)).  Panel B: expression analysis 

of control cybrids (cybrid control) and a complex I membrane arm subunit patient cell line (ND5 mutation 

D393G (see (Corona et al., 2001)) with heteroplasmy level of 90%. Panel C: expression analysis of 

mitochondrial protein extracts from 143B osteosarcoma cells inhibited for mitochondrial protein 

synthesis by treatment with 15 µg/ml of doxycycline for 5 days. Samples were taken at 0, 3, 6, 12, 24, 

48 hours and 5 days after release of doxycycline inhibition. Control (143B osteosarcoma cells) panel is 

at the top. 
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NDUFAF1 expression pattern changes in a conditional complex I assembly system 
 

To further investigate this, we used a conditional complex I assembly system. A 

high concentration (10 µg/ml or more) of doxycycline results in the inhibition of 

mitochondrial protein synthesis. Releasing this inhibition allows investigation of the 

complex I assembly process and has recently been used in our group to establish 

a human complex I assembly model (Ugalde et al., 2004). Using this system in 

combination with 2D BN/SDS-PAGE analysis of NDUFAF1 expression allows 

investigation of the possible involvement of NDUFAF1 with complex I membrane 

arm assembly intermediates (Fig. 7C). The ratio of the 600 and 700 kDa 

complexes (Fig. 7C, complexes 2 and 1 respectively), shows a remarkable change 

after the resumption of mitochondrial protein synthesis. In control 143B 

osteosarcoma cells, NDUFAF1 is predominantly present in the 600 kDa complex 

(Fig. 7C, complex 2). After five days of inhibition of mitochondrial protein synthesis 

(Fig. 7C, t = 0 hours), a minor amount of NDUFAF1 is still present in this complex. 

At 12 hours after release of inhibition, NDUFAF1 becomes more predominant in 

the 700 kDa complex (Fig. 7C, complex 1) up to 48 hours after release of inhibition. 

After this time, the amount of NDUFAF1 in the 700 kDa complex decreases and 

finally returns to the wild-type state in the 600 kDa complex after five days. It 

seems that NDUFAF1 appears in the 700 kDa complex while complex I assembly 

proceeds and releases when the control complex I amount is assembled (Fig. 7C, 

complex A). These kinetics are not displayed for the 600 kDa NDUFAF1 complex, 

which is still present after 5 days of doxycycline inhibition and increases gradually 

while complex I assembly proceeds (Fig. 7C, complex 2). The expression kinetics 

described above support the notion that when complex I membrane arm assembly 

is either disturbed or induced, NDUFAF1 becomes more abundant in the 700 kDa 

complex.  



Human mitochondrial complex I assembly is mediated by NDUFAF1 

 159 

Discussion 
 

Studying complex I assembly factors will not only aid the development of an 

accurate assembly pathway but will also contribute to the elucidation of the 

molecular mechanism responsible for many of the genetically unexplained complex 

I deficiencies. Analogous to the numerous complex III and IV assembly proteins 

which are not part of the structural framework of these complexes, it is to be 

expected that such proteins also exist for complex I. However, so far only two 

candidate complex I assembly factors were found in the fungus Neurospora 

crassa: CIA30 and CIA84 (Kuffner et al., 1998). The human homologue of CIA30, 

named NDUFAF1, could be identified (Janssen et al., 2002), but has remained 

unstudied since its discovery. 

 

The mitochondrial localization of NDUFAF1 shown by cellular fractionation (Fig. 1) 

and immunofluorescence microscopy (Fig. 3) is consistent with the in silico 

prediction of an N-terminal mitochondrial targeting sequence and the distribution 

pattern of expression in different tissues (Janssen et al., 2002). 

 

Our findings support the role of NDUFAF1 in the regulation of assembly/stability of 

human complex I. Firstly, the knockdown of NDUFAF1 expression by RNA 

interference shows that the protein is required for correct complex I 

assembly/stabilisation (Fig. 4). After knockdown of NDUFAF1, the amount of fully 

assembled complex I is reduced and enzymatic activity is impaired. Surprisingly, 

no accumulation of assembly intermediates is observed in the NDUFAF1 RNAi 

experiments on 2D BN/SDS-PAGE gels, suggesting that NDUFAF1 may be 

involved in the stabilisation of these intermediates rather than in active combination 

of assembly intermediates (unpublished results). Secondly, prolonged 

overexpression of NDUFAF1 in HEK293 cells leads to an increased amount of fully 

assembled complex I. 

 

NDUFAF1 occurs in two high molecular weight protein complexes of 600 and 700 

kDa. Its expression in two complex I deficient patient cell lines differs greatly when 

either membrane arm or peripheral arm assembly is compromised by mutation 

(Fig. 7A and B). Mutation in membrane subunit ND5 results in a relative increase of 

the 700 kDa NDUFAF1 complex very similar to the shift in the conditional assembly 

system. Peripheral arm subunit NDUFS8 mutation results in a completely different 

expression profile. While in this patient complex I and its assembly intermediates 

are diminished, more NDUFAF1 is present at 600 kDa. This indicates that despite 
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the co-migration of this complex with peripheral arm assembly intermediate D (see 

(Ugalde et al., 2004)) they are different complexes. 

 

Additional support for the involvement of NDUFAF1 in complex I assembly/stability 

comes from analysis of its 2D BN/SDS assembly profiles in a conditional complex I 

assembly system (Fig. 7C). Absence of NDUFAF1 from the 700 kDa complex after 

inhibition of assembly shows that association of NDUFAF1 to the complex is 

hampered. Since after doxycycline inhibition of mitochondrial protein synthesis no 

mitochondrial protein can be produced, this suggests that NDUFAF1 is bound to a 

mitochondrially encoded protein. The transient shift of NDUFAF1 to the 700 kDa 

complex after assembly resumes, suggests that NDUFAF1 is required in this 

complex while assembly proceeds. This is supported by the fact that when after 

five days the complex I amount is restored, the amount of associated NDUFAF1 in 

this complex is also reduced to control levels. The 700 kDa NDUFAF1 complex 

may therefore represent an important step in the process of complex I assembly. 

 

The model for complex I assembly in humans proposed by our group supports the 

idea that complex I assembly occurs in a modular fashion, and is largely 

compatible with the N. crassa model for complex I assembly (Ugalde et al., 2004). 

In this system, complex I is assembled via the combination of pre-assembled 

evolutionary conserved modules like the bricks of a lego system. In more detail, 

this entails that the membrane arm appears to be assembled in several steps by 

combining a small and large intermediate. The peripheral arm is assembled 

independently and is joined to the complete membrane arm in a later stage. Based 

on the results presented in this paper, we propose that NDUFAF1 modulates this 

process. An active role in assembly may serve to ease the combination of 

assembly intermediates while, alternatively, a stabilising/scaffolding role may serve 

to prevent misfolding or degradation of assembly intermediates.  

 

This function for NDUFAF1 is in line with the proposed mechanism described for 

the N. crassa homologue CIA30 (Kuffner et al., 1998). In this study CIA30 was 

suggested to aid the combination of the small and large membrane arm 

intermediates in complex I assembly by exclusive binding to the large membrane 

arm intermediate (Schulte, 2001; Duarte and Videira, 2000). Knockout of the cia 

genes in N. crassa resulted in a block in complex I assembly, characterised by the 

absence of the large membrane arm intermediate and the accumulation of the 

small membrane arm intermediate and the peripheral arm (Kuffner et al., 1998). 

The acquired data do not conflict with this idea. Both disturbance of membrane arm 
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assembly (ND5 cybrid) and pressurising the assembly system by releasing 

doxycycline inhibition of mitochondrial translation result in accumulation of the 700 

kDa NDUFAF1 complex.  However, to ascertain direct involvement in complex I 

membrane arm assembly, the exact composition of the NDUFAF1 intermediates is 

a prerequisite. In addition, the observed changes in NDUFAF1 assembly status in 

complex I deficient patients can be indicative for the possible gene defect and we 

are currently investigating more patients to test this. 

 

It is quite conceivable that, analogous to NDUFAF1, many more proteins are 

involved in the stabilization of complex I assembly intermediates. A recent example 

is the possible function of apoptosis-inducing factor (AIF) in intra-mitochondrial 

assembly/maintenance of respiratory chain complexes in a mouse model system 

(Vahsen et al., 2004). Future investigation of the exact composition of complex I 

assembly intermediates will be a great step forward in studying the function of 

NDUFAF1 and finding new complex I assembly chaperones. 
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Abstract 
 

Dysfunction of complex I (NADH:ubiquinone oxidoreductase; CI), the largest 

enzyme of the oxidative phosphorylation (OXPHOS) system, often results in severe 

neuromuscular disorders and early childhood death. Mutations in its 7 

mitochondrial and 38 nuclear DNA-encoded structural components can only partly 

explain these deficiencies. Recently, CI assembly chaperones NDUFAF1 and 

B17.2L were linked to CI deficiency, but it is still unclear by which mechanism. To 

better understand their requirement during assembly we have studied their 

presence in CI subcomplexes in a cohort of CI deficient patients using one- and 

two-dimensional blue-native PAGE. This analysis revealed distinct differences 

between their associations to subcomplexes in different patients. B17.2L occurred 

in a 830 kDa subcomplex specifically in patients with mutations in subunits 

NDUFV1 and NDUFS4. Contrasting with this seemingly specific requirement, the 

previously described NDUFAF1 association to 500-850 kDa intermediates did not 

appear to be related to the nature and severity of the CI assembly defect. 

Surprisingly, even in the absence of assembly intermediates in a patient harboring 

a mutation in translation elongation factor G1 (EFG1), NDUFAF1 remained 

associated to the 500-850 kDa subcomplexes. These findings illustrate the 

difference in mechanism between B17.2L and NDUFAF1 and suggest that the 

involvement of NDUFAF1 in the assembly process could be indirect rather than 

direct via the binding to assembly intermediates. 
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Introduction 
 

The importance of energy carrier ATP in each of our cells is inversely 

demonstrated in cases of mitochondrial disorders, which occur with an incidence of 

1:5.000 newborns and display a broad clinical variety including Leigh syndrome, 

cardiomyopathy and encephalomyopathy (Smeitink et al., 2006). The most 

frequent cause of such disorders is deficiency of complex I (CI, NADH:ubiquinone 

oxidoreductase, E.C.1.6.5.3) (Janssen et al., 2006). This complex is the first of five 

complexes (CI-CV) that constitute the oxidative phosphorylation (OXPHOS) 

system, responsible for the generation of mitochondrial ATP. 

 

In all cases studied thus far, deficient CI activity was associated with a decrease in 

the amount of intact CI signifying that assembly or stability of this enzyme was 

affected. CI assembly is an intricate process, which involves 45 subunit proteins, 

one FMN and eight iron-sulfur clusters (Carroll et al., 2003; Carroll et al., 2006). To 

date, two models have been published, both established on the basis of blue-

native analyses (Antonicka et al., 2003; Coenen et al., 2004). The starting point in 

human CI assembly seems to be a core of highly conserved subunits that is 

anchored to the mitochondrial inner membrane and expanded with additional 

subunits (Vogel et al., 2007). This assembly mechanism at some points reflects the 

theoretical proposals that state that certain groups of subunits have co-evolved as 

distinct substructures (Friedrich and Weiss, 1997; Finel, 1998; Friedrich and 

Scheide, 2000; Mathiesen and Hagerhall, 2003). The proposed modules are a 

dehydrogenase module, which oxidizes NADH, a hydrogenase module, which 

transports electrons to the proton translocation module, which transports protons 

across the mitochondrial inner membrane. Combination of (parts of) these 

substructures is proposed to result in the assembly of holo-CI (Ugalde et al., 

2004b; Vogel et al., 2004). 

 

By analogy to the other OXPHOS complexes, CI assembly must involve the action 

of assembly chaperones. The recent addition of B17.2L (previously termed mimitin 

(Tsuneoka et al., 2005)), a paralogue of a CI subunit which is not incorporated into 

CI but is vital for its assembly, to the previously described assembly factor 

NDUFAF1 brings the number of CI specific assembly factors to two (Janssen et al., 

2002; Vogel et al., 2005; Ogilvie et al., 2005). Recently, both chaperones have 

been linked to CI deficiency. A B17.2L gene null mutation resulted in less than 20% 

CI activity and concomitant early-onset progressing encephalopathy with vanishing 
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white matter (Ogilvie et al., 2005). Two novel heterozygous mutations in the 

NDUFAF1 gene were described by Sugiana and colleagues, which resulted in a 

marked reduction in NDUFAF1 protein level in fibroblasts and EBV-lymphoblasts 

and clinically in cardiomyopathy, developmental delay and lactic acidosis (Sugiana 

et al., 2006). 

 

In contrast to the assembly chaperones described for CIV, which play a role in the 

incorporation of prosthetic groups (e.g. COX10, COX11, Sco1, Sco2) or the 

maturation and membrane insertion of subunits encoded by mitochondrial DNA 

(e.g. Surf1 and Oxa1), the molecular role of the CI chaperones is still not clear (Yi 

and Dalbey, 2005; Herrmann and Funes, 2005; Pecina et al., 2004). Better 

understanding of the specific involvement of B17.2L and NDUFAF1 in the 

assembly process aids the identification of important stages in the assembly 

process and adds to the insight into their mechanism of action. For these purposes, 

we have investigated the presence of these chaperones in specific subcomplexes 

for a cohort of patients displaying various CI assembly disturbances.  

 

Materials and methods 
 

Patients and mutations 
 

Table 1 lists the patient and cybrid cell lines investigated in this study (next page). 
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Table 1: Patients and mutations 

Listed are the investigated control, cybrid and patient cell lines used in this study. Indicated are which gene harbors which mutation, the 

amount of heteroplasmy in the case of mtDNA mutation, CI activity relative to either CIV (COX) or citrate synthase, the activities of the other  

OXPHOS complexes and the references in which the mutations were previously described. 

Cell line Assembly group Affected gene Mutation Heteropl. (%) CI activity (%) Other activities (%) Previously described in 

Control (C) - - - - - - - 

Patient 1 Early matrix NDUFS2 R228Q - 39a All normal (Loeffen et al., 2001) 

Patient 2 Early matrix NDUFS7 V122M - 68a All normal (Triepels et al., 1999) 

Patient 3 Early matrix NDUFS8 R94C - 18a CIII 88a, CIV 229b (Visch et al., 2006) 

Patient 4 Late matrix NDUFV1 R29X, T423M - 64a All normal (Schuelke et al., 1999; Visch et al., 2006) 

Patient 5 Late matrix NDUFS4 K158fs (5-bp duplication)  - 75a CIII 98a 

Patient 6 Late matrix NDUFS4 R106X - 36a/30b CIII 100a/88b (Budde et al., 2003) 

Patient 7 Late matrix NDUFS4 VPEEHI67/VEKSIstop - 53a All normal 

Patient 8 Membrane ND3 S43P 75% 54a All normal Manuscript in preparation 

Cybrid control (CC) - - - - - All normal This publication 

ND1 cybrid (9) Membrane ND1 A52T 100% 9b All normal This publication 

 

A COX normalization B Citrate synthase normalization       
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Cell culture 
 

Fibroblast cells were cultured in M199 medium (Life Technologies) supplemented 

with 10% fetal calf serum (v/v) and penicillin/streptomycin. Cells were harvested by 

trypsinisation, resuspended in PBS (Gibco) and solubilised using a final 

concentration of 2% digitonin (Calbiochem) for 10 minutes on ice. After 

centrifugation  (10 minutes, 10 000 g, 4°C), the mitochondria enriched pellet was 

washed twice in PBS prior to its solubilisation by 10 minutes of incubation on ice 

using 2 % of n-Dodecyl β-D-maltoside (DDM) (Sigma-Aldrich) in solubilisation 

buffer (1.75 M 6-aminocaproic acid (Fluka), 75 mM bis-tris HCl (Fluka), pH 7.0). 

The protein concentration was determined using the MicroBCA protein assay kit 

(Pierce) and samples were processed for blue-native gel electrophoresis. 

 

SDS-PAGE and BN-PAGE protein analysis and immunodetection 
 

SDS-PAGE analysis was performed as described in (Ugalde et al., 2004b), using 

10% SDS and loading 40 µg of mitochondrial protein per lane. One- and two-

dimensional BN-PAGE was performed as described in (Klement et al., 1995; 

Nijtmans et al., 2002), using 5-15% gels and loading 80 µg of mitochondrial protein 

per lane. After Western blotting, proteins were detected using antibodies raised 

against NDUFAF1 (Vogel et al., 2005), the NDUFS3 (Invitrogen), NDUFA6 

(Invitrogen), NDUFA9 (Invitrogen) and ND1 (Dr. A. Lombes (Inserm, Paris, 

France)) subunits of CI and B17.2L (kindly provided by Professor M. Tsuneoka 

(Kurume University School of Medicine, Japan)). Secondary antibodies used 

peroxidase-conjugated anti-mouse or anti-rabbit IgGs (Invitrogen). The signal was 

obtained using ECL® plus (Amersham Biosciences). 

 

Results 
 

CI activity and assembly 
 

All studied patient cell lines exhibit a specifically impaired CI activity. Based on the 

structural relationship of the affected subunits during assembly, we have 

categorized the investigated cell lines into three “assembly groups”. Cell lines 1-3 

(harboring mutations in NDUFS2, NDUFS7 and NDUFS8) form the “early matrix” 

group, as these affected subunits are proposed to be part of an early matrix arm 

assembly module (Ugalde et al., 2004b). Cell lines 4-7 (harboring mutations in 

NDUFV1 and NDUFS4) form the “late matrix” group, as these affected subunits are 
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proposed to be incorporated after a nuclear preassembly has been formed (Ugalde 

et al., 2004b). Finally, cell lines 8 and 9 (harboring mutations in ND3 and ND1) 

form the “membrane” group, as these affected subunits are part of the CI 

membrane arm. 

 

In order to verify CI activity and subsequently investigate assembly, mitochondrial 

lysates were analyzed on blue-native gels for CI in-gel activity (IGA) assay and 

Western blotting (WB) followed by CI immunodetection of CI (figure 1A, IGA and 

WB). In general, the decrease in CI activity (figure 1A, IGA) matched the decrease 

in amount (figure 1A, WB). As judged from the CII signal, less protein was loaded 

in lanes 1 and 4, resulting in a slight underestimation of the amount of CI (figure 

1A, lanes 1 and 4). For the “late matrix”” patients, the IGA does not correspond to 

the enzymatic measurements (materials and methods section). As IGA 

measurement assays the functionality of the dehydrogenase module of CI, it is very 

well possible that this “late assembly” module is unstable upon solubilisation for BN 

and subsequent IGA analysis but not during the enzymatic measurement. 
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Figure 1: One-dimensional blue-native analysis of CI activity and assembly 

(A) Analyzed for a cohort of CI deficient patients are CI activity via in-gel activity assay on blue-native 

gel (top panel) and CI assembly via immunodetection using an ND1 antibody on Western blot of a 

duplicate gel (bottom panel). “C”: fibroblast control. “CC”: cybrid control. “CI”: complex I. An additional 

in-gel active low molecular weight band is indicated with an asterisk. On Western blot, the 830 kDa 

subcomplex often observed for NDUFS4 and NDUFV1 patients is indicated with “830” and a 

subcomplex present for most of the lanes is indicated at 700 kDa with “700”. The CII signal was used as 

a loading control and is indicated with “CII”. Samples C and 1-8 were run on one gel, CC and 9 on 

another. (B) Mitochondrial expression levels of assembly chaperones B17.2L and NDUFAF1 and of 

loading control CII were determined by SDS-PAGE followed by Western immunodetection using ECL 

and exposure to film. “C”: fibroblast control. “CC”: cybrid control. Again, samples C and 1-8 were run on 

one gel, CC and 9 on another. 
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The “early matrix” (lanes 1-3) and “membrane” (lanes 8, 9) patients displayed a 

variable CI amount and activity but no clear subcomplexes, except for a signal of 

about 700 kDa (figure 1A, ‘700’) that appeared in all lanes. In contrast, the “late 

matrix” group (NDUFV1 and NDUFS4, lanes 4-7) displayed a large subcomplex of 

about 850 kDa. Because this subcomplex almost certainly represents the 830 kDa 

assembly intermediate frequently observed for NDUFS4 and NDUFV1 patients 

(Ugalde et al., 2004a; Scacco et al., 2003; Ogilvie et al., 2005), it is indicated “830”.  

 

Amounts of chaperones B17.2L and NDUFAF1 
 

The amounts of the chaperones B17.2L and NDUFAF1 were assayed by Western 

detection after SDS-PAGE in figure 1B.  

 

B17.2L - As can be seen in figure 1B, in the “late matrix” group, levels of B17.2L 

may be slightly elevated (cell lines 5, 6 and 7). No changes are observed for the 

other cell lines.  

 

NDUFAF1 - NDUFAF1 levels are increased in cell lines 2, 6 and 8, and possibly 

slightly decreased in cell line 7 (figure 1B). In the other cell lines, NDUFAF1 levels 

are relatively comparable to the control level.  

 

Two-dimensional BN SDS-PAGE analysis of CI assembly 
 

SDS analysis of chaperone amounts only gives a partial impression of the effects 

of the different CI mutations on the involvement of the chaperones. Another aspect 

is the association of B17.2L and NDUFAF1 to subcomplexes, which was assayed 

by one-dimensional blue-native PAGE (as done for figure 1A) followed by two-

dimensional SDS-PAGE, Western blotting and immunodetection. The presence of 

CI subcomplexes was assayed in figure 2A by immunodetections of CI peripheral 

arm subunit NDUFS3 and membrane arm subunit ND1. In all cell lines, three 

smaller previously described NDUFS3 subcomplexes (indicated with F, G and H) 

and the 700 kDa ND1 subcomplex (indicated with C) were observed with variable 

intensity (a previous description of these intermediates is given in (Ugalde et al., 

2004b)). As expected, the ND1 signal was very low for the ND1 cybrid cell line 

(figure 2A, cell line 9), but the presence of NDUFS3 in fully assembled CI (figure 

2A, cell line 9, “A”) illustrated that this minor amount is sufficient to allow CI 

assembly. In general, no patient specific accumulation of CI subcomplexes was 

observed except for the clear presence of the 830 kDa subcomplex in the “late 

matrix” group. 
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Figure 2: Two-dimensional SDS-PAGE analysis of CI assembly 

Two-dimensional immunodetection of CI subunits NDUFS3 and ND1 (A) and assembly chaperones 

B17.2L and NDUFAF1 (B) is shown for each of the lanes from figure 1. For each panel, large protein 

complexes are to the left and smaller protein complexes to the right. Observed subcomplexes are 

indicated with arrows (indicated as in (Ugalde et al., 2004b)), CI is indicated with “A”. The CI signal 

observed after B17.2L antibody incubation in the cybrid control cell line (panel CC) originates from a 

previous NDUFS3 antibody incubation. 

 

High-molecular weight associations of chaperones B17.2L and NDUFAF1 
 

Subsequently, high-molecular weight associations of NDUFAF1 and B17.2L were 

investigated by immunodetection shown in figure 2B.  

 

B17.2L - Most apparent was the specific detection of B17.2L in the 830 kDa 

complex in the “late matrix” group (figure 2B, B17.2L, cell lines 4-7, indicated with 

‘830’), whereas this complex was undetectable for the control and other patient cell 

lines. In those cases, the B17.2L protein migrated only at the front of the 

separating gradient, probably as a monomer (figure 2B, indicated with ‘m’). In the 

“membrane” group, B17.2L was detected as a smear. These data show that 
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B17.2L is specifically associated to a high-molecular weight complex of 830 kDa in 

the NDUFV1 and three NDUFS4 patient cell lines. 

 

NDUFAF1 - NDUFAF1 did not show dramatic differences in its association to the 

500-850 kDa subcomplexes in the “early matrix” group (cell lines 1-3), whereas it 

did show association with previously observed smaller molecular weight complexes 

for one NDUFS4 patient and the NDUFS7 and NDUFS8 patients (panels 

NDUFAF1 for cell lines 2, 3 and 5) in the range of 100-150 kDa. The distribution of 

these three spots was similar for these three patients, suggesting that they are 

similar subcomplexes. Their origin remains enigmatic but they may represent early 

NDUFAF1 associations, a topic that requires further investigation. The “late matrix” 

group (cell lines 4-7) displayed variable NDUFAF1 abundance and distribution, and 

the “membrane” group (cell lines 8, 9) showed no great changes in NDUFAF1 

association to the 500-850 kDa subcomplexes.  

 

For the ND3 patient and both cybrid cell lines (control and ND1), a spot appeared 

in a complex slightly smaller than the NDUFAF1 subcomplexes (panels NDUFAF1 

for cell lines 8, CC and 9, indicated with a question mark), which is possibly a non-

specific signal or an aggregate that contains the NDUFAF1-epitope. In summary, 

changes in NDUFAF1 association were observed for patient 4 (NDUFV1), which 

showed a relative increase in intensity of the largest (~850 kDa) NDUFAF1 

subcomplex, and for patient 5 (NDUFS4), which showed a decrease in NDUFAF1 

signal and additional NDUFAF1 signal at 100-150 kDa. It thus seems that the 

observed increase in the amount of NDUFAF1 in cell lines 2, 6 and 8 (figure 1B) 

does not correlate with gross changes in the association of NDUFAF1 to 

subcomplexes. 

 

High molecular weight association of NDUFAF1 in a patient deficient in 
mitochondrial translation 
 

The relative independent abundance of NDUFAF1 from the CI assembly status is 

difficult to reconcile with its specific requirement in assembly (Vogel et al., 2005). 

To investigate this further, we analyzed a severely CI deficient patient cell line 

harboring a mutation in translation elongation factor G1 (EFG1) (Coenen et al., 

2004). We confirmed the (near) absence of CI by blue-native Western 

immunodetection (figure 3A, CI signal) and investigated whether CI subcomplexes 

still occur by using a panel of CI subunit antibodies (figure 3B, NDUFS3, NDUFA9 

and NDUFA6). In accordance with figure 3A, CI was virtually absent and only very 

long exposure times allowed visualization of a minor amount of NDUFA9 at the 
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migrating height of CI (panel “long exposure”). Confirmative of the disturbed 

mitochondrial translation was the absence of CIV signal (COXII subunit) and the 

strong decrease in CIII (when equal exposure times are used, core2 subunit). The 

effect of the absence of CI assembly intermediates on the associations of B17.2L 

and NDUFAF1 was investigated by immunodetection of B17.2L and NDUFAF1, 

this time with equal film exposure times to allow direct comparison (figure 3B, 

B17.2L and NDUFAF1 panels). B17.2L was equally absent on control and patient 

Western blots. On control fibroblast Western blots, NDUFAF1 displayed wild type 

association to complexes in the range of 500-850 kDa. To our surprise, although 

the signal was less intense, NDUFAF1 immunodetection on the EFG1 patient 

Western blot revealed NDUFAF1 association to the same high-molecular weight 

complexes as observed in the control, in spite of the absence of detected assembly 

intermediates. This indicates the NDUFAF1 subcomplexes of 500-850 kDa may not 

represent binding to assembly intermediates, but to (an)other protein complex(es). 

 

 
 

Figure 3: Blue-native analysis of CI assembly in EFG1-patient mitochondria 

(A) One-dimensional blue-native Western blot analysis of CI amount using an anti-NDUFA9 antibody 

shown for control fibroblast mitochondria and EFG1-patient mitochondria. CII signal is shown as a 

loading control. (B) Two-dimensional immunodetection using a cocktail of antibodies against three CI 

subunits (NDUFS3, NDUFA9 and NDUFA6), CIV (COXII) and CIII (core2), and with B17.2L and 

NDUFAF1 antiserum, for control fibroblast mitochondria and EFG1-patient mitochondria. OXPHOS 

complexes I, III and IV are indicated where visible, as are the 500-850 kDa NDUFAF1 complexes. The 

cocktail incubation ECL signal (top panel) is exposed to film longer for the patient than for the control to 

demonstrate the minute presence of CI (NDUFA9 signal). This results a core2 signal much stronger 

than it would be for equal exposure time compared to the control. In this case, the core2 signal is 

severely reduced for the patient (data not shown). An asterisk indicates residual CI signal from a 

previous anti-NDUFA9 incubation. 
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Discussion 
 

The assembly mechanism for human mitochondrial CI is far from understood. 

Analogous to the assembly of the other OXPHOS complexes, it is hypothesized to 

involve many assembly chaperones. So far, two human CI assembly factors have 

been identified, B17.2L (Ogilvie et al., 2005) and NDUFAF1 (Janssen et al., 2002; 

Vogel et al., 2005), of which mutations were only recently associated with CI 

deficiency (Ogilvie et al., 2005; Sugiana et al., 2006). To obtain insight under which 

conditions and in which assembly stages these chaperones are important, we have 

analyzed their high-molecular weight associations in a cohort of CI deficient 

patients displaying assembly disturbances of varying nature. To obtain the 

broadest possible overview of the involvement of the investigated chaperones in 

the assembly process we have chosen to include patient and cybrid cell lines with 

mutations in subunits present in membrane (ND1 and ND3) and in matrix arm 

subunits (NDUFV1, NDUFS2, NDUFS4, NDUFS7 and NDUFS8). In addition, an 

EFG1 patient was examined which does not display any assembly intermediates 

(Coenen et al., 2004). 

 

Most apparent is the accumulation of an intermediate of about 830 kDa for the 

NDUFS4 patient cell lines and, to a lesser extent, for the NDUFV1 patient cell line. 

Finding of this large CI substructure in the three NDUFS4 and the NDUFV1 patient 

cell lines and the specific association of assembly chaperone B17.2L to this 

subcomplex, are in line with previously described data (Ogilvie et al., 2005; Ugalde 

et al., 2004a; Scacco et al., 2003). NDUFV1 and NDUFS4 are proposed to be 

incorporated late in assembly (Ugalde et al., 2004b; Antonicka et al., 2003). That 

different mutations in these two subunits result in the same assembly defect 

suggests participation of both subunits in a similar stage of the assembly process. 

The lack of in-gel activity of the 830 kDa complex shows that the dehydrogenase 

module, or at least an essential part of its functional structure, is missing in this 

subcomplex. It is yet unclear whether, in the absence of NDUFV1 and/or NDUFS4, 

B17.2L is specifically recruited to this intermediate for e.g. stabilization purposes or 

whether it accumulates because assembly is stalled and it does not dissociate from 

the intermediate. 

 

Previously unobserved NDUFAF1 comigration with three smaller subcomplexes of 

100-150 kDa is demonstrated for one of the NDUFS4 patients and especially for 

the NDUFS7 and NDUFS8 patients, of which the exact nature requires further 

investigation. In addition, the amount of the 500-850 kDa wild-type NDUFAF1 
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complexes does not differ strongly between different patients and the control. In 

two of the three NDUFS4 patients, NDUFAF1 presence in its protein complexes 

seems reduced, and the NDUFV1 patient shows a relative increase in intensity of 

the largest (~850 kDa) complex, but for the other patients no significant changes 

are observed. It is yet unclear why not all NDUFS4 patients show a similar 

decrease in NDUFAF1. Possibly, the nature of the mutation determines NDUFAF1 

association to the 500-850 kDa subcomplexes, but this is yet speculative. 

 

NDUFAF1 and B17.2L seem to play different roles in the CI assembly process. In 

summary, while B17.2L only seems to be recruited in specific assembly 

disturbances, NDUFAF1 generally appears unchanged in its association to the 

500-850 kDa subcomplexes. Herewith, it seems that the presence of B17.2L in an 

830 kDa subcomplex is a consistent marker for NDUFV1 and NDUFS4 mutations. 

On the contrary, NDUFAF1 may not be the most consistent biochemical marker for 

CI assembly disturbances. Even though CI and its assembly intermediates are 

almost completely absent, NDUFAF1 remains associated to the 500-850 kDa 

subcomplexes in the mitochondrial translation impaired EFG1 patient cell line 

(figure 3B). Also in the ND1 cybrid cell line, which hardly shows CI or its 

subcomplexes, NDUFAF1 remains associated to these high-molecular weight 

subcomplexes (figure 2B). A simple schematic of the observed difference in 

involvement between the two chaperones is shown in figure 4. 

 

 
Figure 4: Different involvement of B17.2L and NDUFAF1 in assembly 

This model shows the proposed difference in the involvement of B17.2L and NDUFAF1 in the assembly 

process of CI. B17.2L is specifically present in an 830 kDa intermediate, which originates either from 

assembly or CI instability (bidirectional arrow). NDUFAF1 generally shows only mild differences upon 

different mutations in different CI subunits, and hence may have a more general role in the assembly 

process. 
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How can the moderate change in NDUFAF1 abundance and association in the 

various assembly disturbances be reconciled with its absolute requirement for CI 

assembly (Vogel et al., 2005)? Possibly, NDUFAF1 exerts its function in CI 

assembly not via direct binding to assembly intermediates, but via an indirect route. 

Examples of such routes could be generic mitochondrial processes such as import, 

processing and translation, which indirectly have a great impact on OXPHOS 

complex assembly. Along these lines, previous investigations showed a shift in 

NDUFAF1 abundance in the 500-850 kDa complexes after releasing inhibition of 

translation, which hinted towards a role in mitochondrial translation (Vogel et al., 

2005). However, evidence for this role is still circumstantial. Further research 

concerning the exact composition of the 500-850 kDa intermediates is required to 

help explain from which process they, and thus NDUFAF1, originate.  
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Abstract 
 

Ecsit is a cytosolic adaptor protein essential for inflammatory response and 

embryonic development via the Toll-like and BMP signal transduction pathways, 

respectively. Here, we demonstrate a mitochondrial function for Ecsit in the 

assembly of mitochondrial complex I (NADH:ubiquinone oxidoreductase). An N-

terminal targeting signal directs Ecsit to mitochondria, where it interacts with 

assembly chaperone NDUFAF1 in 500-850 kDa complexes as demonstrated by 

affinity purification and vice versa RNAi knockdowns. In addition, Ecsit knockdown 

results in severely impaired complex I assembly and disturbed mitochondrial 

function. These findings support a function for Ecsit in the assembly or stability of 

mitochondrial complex I, possibly linking assembly of oxidative phosphorylation 

complexes to inflammatory response and embryonic development. 
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Introduction 
 

Regulation of gene expression is one of the cornerstones of biological versatility. It 

is achieved by feedback mechanisms between different subcellular pathways, often 

mediated by regulatory adaptor proteins. In 1999, Kopp and colleagues described 

a prominent example of such a protein, termed Ecsit (an evolutionary conserved 

signaling intermediate in Toll pathways (Kopp et al., 1999)). Ecsit is a cytoplasmic 

signaling protein that constitutes a molecular link between two pathways: the Toll 

signaling pathway and the BMP pathway.  

 

The family of Toll-like receptors (TLRs) likely consists of 10-15 members in most 

mammalian species, sharing a conserved Toll/IL-1 receptor (TIR) domain (Sims et 

al., 1988; Greenfeder et al., 1995; Medzhitov et al., 1997; Torigoe et al., 1997; 

Chaudhary et al., 1998; Rock et al., 1998; Iwasaki and Medzhitov, 2004). Toll-like 

receptors bind extracellular ligands (e.g. Gram-negative bacterial 

lipopolysaccharides) to activate expression of NF-κB and AP-1 transcription 

factors, which in turn activate expression of genes involved in the immune 

response (Medzhitov et al., 1997). Signal transduction can occur in two ways, 

either via TAK1 and regulators TAB1 and TAB2, or via MEKK1 and subsequent 

MKK activation (Moustakas and Heldin, 2003). Communication between the two 

cascades is possible as TAK1 can activate MKKs and their downstream effectors 

and MEKK1 can activate the TAK1 activated IKK complex. TRAF6 is an early 

component of both cascades and yeast two hybrid and immunoprecipitation studies 

have shown the association of Ecsit with TRAF6 (tumor necrosis factor [TNF] 

receptor-associated factor 6), thereby directly linking the protein to the Toll pathway 

(Kopp et al., 1999). In addition, Ecsit interacts with and may facilitate processing of 

MEKK-1, findings which have placed Ecsit in an immunological context.  

 

In 2003, Xiao and colleagues found an additional role for this protein in the BMP 

pathway in mouse embryogenesis (Xiao et al., 2003). Null mutation of the Ecsit 

gene in mice resulted in embryonic lethality with phenotypes that mimic those of a 

BMP receptor gene (Bmpr1a) null mutant (reduced epiblast cell proliferation, block 

of mesoderm formation, and embryonic lethality at the beginning of gastrulation). 

Bmp4 is known to play an essential role in the gastrulation of the mouse embryo 

and signals through Bmpr1a, a type I Bmp receptor to induce upregulation of target 

genes including Tlx2, a homeobox gene (Tang et al., 1998). Ecsit2 associates 

constitutively with Smad4 and associates with Smad1 in a Bmp-inducible manner. 
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Furthermore, together with Smad1 and Smad4, it binds to the promoter of specific 

Bmp target genes (Xiao et al., 2003). Confirmative of its role in the Toll signaling 

pathway, shRNA inhibition of Ecsit in a macrophage cell line resulted in drastic 

inhibition of LPS-induced NF-κB activity (Xiao et al., 2003). This demonstrated that 

both the BMP and Toll signaling pathways require Ecsit, which therewith 

represents a link between immunity and embryonic development.  

 

In this study, we show an unexpected additional function for Ecsit in mitochondria, 

to which it is targeted by an N-terminal targeting sequence and where it interacts 

with NDUFAF1, a chaperone involved in assembly of mitochondrial complex I 

(NADH:ubiquinone oxidoreductase) (Janssen et al., 2002; Vogel et al., 2005). 

Complex I is one of the five enzymatic complexes that comprise the oxidative 

phosphorylation (OXPHOS) system in the mitochondrial inner membrane, 

responsible for the generation of ATP from NADH and FADH2 (Brandt, 2006; 

Janssen et al., 2006). Ecsit knockdown using RNA interference results in 

decreased NDUFAF1 and complex I protein levels, accumulation of complex I 

subcomplexes and disturbed mitochondrial function. Herewith, in addition to its 

cytoplasmic and nuclear functions, these findings point towards a mitochondrial 

function for Ecsit and could provide a link between mitochondrial OXPHOS system 

biogenesis and function, immune response, and mesoderm formation during 

embryogenesis.  
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Materials and methods 
 

Generation of inducible cell lines and cell culture 
 

NDUFAF1-TAP construct - NDUFAF1 was subcloned from the pcDNA4/TO/myc-

His A construct (Invitrogen) (Vogel et al., 2005) into pDONR201 (Invitrogen). A 

Gateway TAP Destination vector was produced by subcloning the TAP-tag of 

pCTAP-A (Stratagene) in frame behind Gateway Reading Frame Cassette B 

(Invitrogen) in pcDNA5/FRT/TO (Invitrogen). To obtain an inducible NDUFAF1-TAP 

vector, the pDONR201-NDUFAF1 vector was recombined with the TAP-

Destination vector using the Gateway LR Clonase II Enzyme Mix (Invitrogen). 

Ecsit-GFP construct - The Ecsit open reading frame sequence (BC000193; without 

stopcodon) flanked by Gateway AttB sites (Invitrogen) was created by PCR 

following manufacturer instruction and cloned into pDONR201 by using Gateway 

BP Clonase II Enzyme Mix (Invitrogen). A Gateway Destination vector was 

produced by subcloning the BamHI/NotI restriction fragment of pAcGFP1-N1 

(Clontech) in frame behind Gateway Reading Frame Cassette B (Invitrogen) in 

pcDNA5/FRT/TO (Invitrogen). To obtain an inducible Ecsit-GFP vector, the 

pDONR201-Ecsit vector was recombined with the AcGFP1-Destination vector 

using the Gateway LR Clonase II Enzyme Mix (Invitrogen). Ecsit-GFP –N 

terminus construct – The Ecsit open reading frame was cloned as for the Ecsit-

GFP construct, with the following modification. Ecsit was cloned with ATG start 

codon but without the following 141 base pairs, encoding 47 amino acids. Based 

on the open reading frame sequence BC000193, the 5’ end of the sequence thus 

became 5’ ATGAGCTCTGAA… 3’. All constructs were transfected into Flp-In T-

REx293 cells (Invitrogen) using Superfect Transfection Reagent (QIAGEN) 

following manufacturer protocols. The NDUFAF1-mycHIS inducible HEK293 T-

REx
tm

 cell line is previously described in (Vogel et al., 2005). All inducible cell lines, 

HeLa and Human Embryonic Kidney (HEK) 293 cells were cultured in DMEM 

(Biowhitaker) supplemented with 10% fetal calf serum (v/v) and 1% 

penicillin/streptomycin (v/v) (Gibco). The inducible cell lines were treated with 1 

µg/ml doxycycline (Sigma Aldrich) for expression of the transgene. 

 

Preparation of mitochondria, cell fractionation and trypsin treatment of mitochondria 
 

For blue-native and SDS-PAGE analysis, HEK293 and HeLa mitochondria were 

purified with the use of digitonin as previously described in (Ugalde et al., 2004). 
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Fractionation of HEK293 cells was performed by pottering as described in (Vogel et 

al., 2005). Trypsin treatment of mitochondria was performed by adding 30 U trypsin 

(Promega), 100 U trypsin, or 30 U trypsin plus 1% v/v triton X100 (Roche) to 50 µl 

mitochondrial lysate followed by incubation for 15 minutes at 37 ºC. 

 

Blue-native and SDS PAGE analysis and CI in-gel activity assay 
 

Blue-native gradient gels (5-15%) were cast as earlier described (Nijtmans et al., 

2002) and run with 40 or 80 µg of solubilised mitochondrial protein. After 

electrophoresis, gels were further processed for in-gel activity assays, Western 

blotting or second dimension 10% SDS-PAGE as described in (Nijtmans et al., 

2002). Proteins were transferred to a PROTAN® nitrocellulose membrane 

(Schleicher & Schuell). 1D 10% SDS-PAGE analysis was performed as described 

previously (Ugalde et al., 2004). 

 

siRNA transfection 
 

For transfection, HeLa cells were plated in 1,5 mL of DMEM supplemented with 

10% FCS (without antibiotics) in 6-wells plates with a cell density of 2.0 x 10
5
 cells 

per well. The next day, cells were transfected with siRNA duplex (control: 

Cyclophilin B (Dharmacon), Ecsit #1 antisense strand: 5’- 

UUGACGUUCAUGAAUCGAG dGdT -3’, #2 antisense strand: 5’- 

AUUGAUGUCAAACUCGUAG dTdT  -3’) in the presence of oligofectamine (7,5 µl) 

(Invitrogen) and opti-MEM (Invitrogen) to achieve a final concentration of 100 nM 

siRNA in a total volume of 1,8 mL per well. Cells were incubated at 37°C in a CO2 

incubator for 72 hours prior to a second, identical, round of transfection for 72 

hours. 

  

Antibodies and ECL detection 
 

Immunodetection was performed using the following primary antibodies. Complex I: 

NDUFS3 (Invitrogen), ND1 (a gift from Dr. Anne Lombes, Paris), NDUFA1 (a gift 

from Professor Immo Scheffler, San Diego).  NDUFAF1 affinity purified serum is 

available from our laboratory (Vogel et al., 2005). Other antibodies used were 

raised against Ecsit (Abcam), TRAF6 (Abcam), GAPDH (Abcam), COXII 

(Invitrogen), Core2 (Invitrogen), ATPase α (Invitrogen), SDHA (Invitrogen), Tom20 

(BD Biosciences) and GFP (a gift from Dr. Frank van Kuppeveld). Secondary 

antibodies that were used are peroxidase-conjugated anti-mouse or anti-rabbit 

IgGs (Invitrogen). For the detection of immunoprecipitated proteins, ReliaBLOT™ 
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HRP Conjugate was used (Bethyl Laboratories). The signal was generated using 

ECL® plus (Amersham Biosciences). 

 

Confocal imaging 
 

HEK293 cells expressing inducible Ecsit-GFP (with and without N-terminus) were 

cultured on glass slides were washed with PBS and incubated with 1µM 

Mitotracker Red (Invitrogen) for 15 minutes and with 10 µM Hoechst 3342 

(Invitrogen) for 30 minutes, both at 37 °C. After incubation, cells were washed with 

PBS and glass slides were mounted in an incubation chamber placed on the stage 

of an inverted microscope (Nikon Diaphot), attached to an Oz confocal microscope 

(Noran Instruments). Measurements were performed at 20
o
 C in the dark. The light 

from an argon ion laser (488 nm; Omnichrome) was delivered to the cells via a x40 

water immersion fluor objective (NA 1.2; Nikon). GFP and mitotracker fluorescence 

light was separated by a 565DRLPXR dichroic mirror, directed through 510AF23 

and 630DF30 emission filters (all from Omega Optical Inc.) and quantified using 

separate photomultiplier tubes (PMTs) at 8-bit resolution (Hamamatsu Photonics). 

Hoechst 3342 was excited using 364 nm light generated by a high-power argon-ion 

laser (Coherent Enterprise) and its fluorescence emission was detected using a 

400 nM long pass filter and PMT. Hardware and image acquisition were controlled 

by Intervision software (Version 1.5, Noran Instruments) running under IRIX 6.2 on 

an Indy workstation (Silicon Graphics Inc.). Images (512x480 pixels) were collected 

at 30 Hz with a pixel dwell time of 100 ns and averaged in real-time to optimize 

signal-to-noise ratio (Koopman et al., 2006b). Image processing and analysis was 

performed using Image Pro Plus 5.1 (Media Cybernetics). 

 

Quantification of NAD(P)H, superoxide, oxidant levels and mitochondrial 
morphology 
 

Mitochondrial NADH levels – NAD(P)H fluorescence intensity was measured using 

a CoolSNAP HQ CCD-camera (Roper Scientific) attached to an inverted 

microscope (Axiovert 200 M, Carl Zeiss). Prior to recordings, coverslips were 

washed with PBS, and placed into an incubation chamber containing HEPES-Tris 

medium (132 mM NaCl, 4.2 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 5.5 mM D-glucose 

and 10 mM HEPES, pH 7.4). NAD(P)H was excited at 360 nm using a 

monochromator (Polychrome IV, TILL Photonics) and fluorescence emission was 

directed to the CCD-camera using a 415DCLP dichroic mirror and a 510WB40 

emission filter (Omega Optical Inc.). Fields of view were recorded using an image 

capturing time of 1 s. Mean fluorescence intensity was determined in a region of 
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interest (ROI) containing a high density of mitochondrial structures, which was 

background corrected using an extracellular ROI of identical size. The imaging 

setup was controlled using Metafluor 6.0 software (Universal Imaging Corporation). 

Quantitative image analysis was performed using Metamorph 6.0 (Universal 

Imaging Corporation). Cellular superoxide and oxidant levels – Cellular superoxide 

and oxidant levels were quantified using hydroethidine (HEt) and 5-(and-6)-

chloromethyl-2',7'- dichlorodihydrofluorescein diacetate (CM-H2DCFDA) as 

described previously (Koopman et al., 2005a; Koopman et al., 2006a). 

Mitochondrial morphology – Quantitative analysis of mitochondrial morphology in 

living cells was performed as described previously (Koopman et al., 2005b; 

Koopman et al., 2006b). Statistics – Numerical results were visualized with Origin 

Pro 7.5 software (OriginLab) and are presented as means ±SEM (standard error of 

the mean). Statistical differences were determined with an independent two-sample 

Student’s t-test (Bonferroni corrected). P-values < 0.05 (*) were considered 

significant. 

 

FT-MS analysis 
 

The proteins were in-gel reduced with 10 mM dithiotreitol and alkylated with 50 mM 

iodoactamide before in-gel digestion with trypsin. Peptides were extracted from the 

gel and purified and desalted using Stage tips (Rappsilber et al., 2003). Peptide 

identification experiments were performed using a nano-HPLC Agilent 1100 

nanoflow system connected online to a linear quadrupole ion trap-Fourier transform 

mass spectrometer (LTQ-FT, Thermo Electron). LC and MS settings are further 

explained in supplemental table 3. Peptides and proteins were identified using the 

Mascot (Matrix Science) algorithm to search a local version of the NCBInr 

database (http://www.ncbi.nlm.nih.gov). First ranked peptides were parsed from 

Mascot database search html files with MSQuant (www.msquant.sourceforge.net) 

to generate unique first ranked peptide lists. Protein identifications were evaluated 

against criteria described in supplemental table 3. 
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Results 
 

Ecsit co-purifies with OXPHOS assembly chaperone NDUFAF1 
 

Mitochondrial ATP production occurs via the oxidative phosphorylation (OXPHOS) 

system, which consists of five membrane embedded protein complexes (Janssen 

et al., 2006). The assembly process of the largest of these, complex I, is a 

challenging problem (Vogel et al., 2004). It is known to involve assembly 

chaperone NDUFAF1, but the mechanism of its action remains unclear (Janssen et 

al., 2002; Vogel et al., 2005). In order to find mitochondrial binding partners for 

NDUFAF1 we have performed Tandem Affinity Purification (TAP) of mitochondrial 

lysates of inducible HEK293 T-REx™ cells that express TAP-tagged NDUFAF1 

protein. FT-MS analysis of the eluate revealed several proteins, which are listed in 

supplemental table 1. Amongst the peptides found, the analysis specifically 

identified several peptides corresponding to the Ecsit protein, a previously 

described cytoplasmic protein involved in immunity and embryonic development 

(Kopp et al., 1999; Xiao et al., 2003) (supplemental table 1). Ten Ecsit splice 

isoforms are predicted, of which only isoforms 1 and 2 have been annotated and 

encode proteins with predicted molecular masses of 50 and 33 kDa, respectively 

(figure 1A). Analysis of the TAP purified peptides reveals the presence of the 

peptide DSTGAADPPQPHIVGIQSPDQQAALAR, which crosses the boundary 

between exons 5 and 6 and thereby identifies the largest, 50 kDa Ecsit isoform 1 

(figure 1B, supplemental table 2). 
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Figure 1: Ecsit isoform 1 co-purifies with tandem affinity purified NDUFAF1 

(A) Ten Ecsit splice isoforms are predicted by the EBI alternative splicing database, of which two are 

identified in experimental studies (isoforms 1 and 2). Shown are the exons (vertical bars) and introns 

(horizontal lines) that comprise the complete transcript. The Swissprot annotation and predicted 

molecular mass are indicated when available. (B) FT-MS sequence coverage of Ecsit in eluates of 

tandem affinity purified NDUFAF1 in HEK293 mitochondria demonstrates the presence of Ecsit isoform 

1. Identified peptides are indicated bold and in boxes, whereas exon 6, unique for Ecsit isoform 1, is 

indicated in grey. 

 

Ecsit localizes to mitochondria 
 

The interaction between NDUFAF1 and Ecsit is unexpected, since NDUFAF1 is 

described to be mitochondrial, whereas Ecsit is described as a cytoplasmic protein. 

However, although a mitochondrial function for Ecsit has not yet been described in 

literature, all tested mitochondrial targeting sequence prediction programs 

(MitoPROT2, TargetP, Predotar, SignalP) clearly indicate a mitochondrial targeting 

sequence with high probability. MitoPROT2 predicts a 99.3 % chance of a 

cleavable N-terminal target sequence of 49 amino acids, corresponding to 

approximately 5 kDa.  

 

To verify these predictions, we have performed fractionations of HEK293 cells to 

separate mitochondria from other cellular compartments. Figure 2A shows 

predominant immunodetection of 50 kDa Ecsit isoform 1 in the cytoplasm/nucleus, 

in line with its previously described cytoplasmic function (Kopp et al., 1999; Xiao et 

al., 2003). In contrast to the cytoplasmic fraction, an approximately 45 kDa Ecsit 

signal is specifically observed in mitochondria (figure 2A). As controls, Ecsit binding 

partner TRAF6 and GAPDH do not show presence in mitochondria and are clearly 

cytoplasmic, and mitochondrial complex IV subunit COXII localizes in mitochondria.  
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To confirm the mitochondrial localization of the 45 kDa Ecsit, we have performed 

trypsin digestion of mitochondrial outer membrane proteins (figure 2B). After cell 

fractionation, performed as for figure 2A, mitochondria were treated for 15 minutes 

at 37 ºC with either 30 U of trypsin, 100 U of trypsin or 30 U of trypsin in the 

presence of 1% triton, which lyses the mitochondria and should thus result in 

complete degradation of all mitochondrial proteins. Increasingly stringent trypsin 

treatment led to the degradation of the 50 kDa Ecsit, whereas the 45 kDa Ecsit was 

only degraded upon mitochondrial lysis. This suggests that the 45 kDa Ecsit is 

shielded by the mitochondrial outer and inner membranes and most likely is 

imported into mitochondria. As controls, outer membrane protein Tom20 is rapidly 

degraded upon trypsin treatment and matrix protein NDUFS3 is only degraded 

upon mitochondrial lysis. After digestion using 100 U of trypsin, in addition to the 45 

kDa band, smaller bands were detected with the Ecsit antibody. Due to their size, it 

is unlikely that these bands represent partial tryptic digestion products. However, at 

this stage, we cannot exclude processing by another (mitochondrial) protease. 

Both fractionations (figures 2A and 2B) demonstrated that a small fraction of the 50 

kDa cytoplasmic Ecsit localizes to mitochondria. This signal may either represent 

minute cytoplasmic background after pottering or an intermediate in the import 

process. 
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Figure 2: Ecsit localizes to mitochondria and interacts with NDUFAF1 in three high molecular 

weight complexes 

(A) HEK293 cells were fractionated by pottering and lysates from total cell, mitochondria and cytoplasm 

were subsequently analysed by SDS-PAGE and Western blotting. T: Total cell. C: cytoplasm. M: 

mitochondria. All lanes were immunodecorated with antibodies targeted to Ecsit, NDUFAF1, TRAF6, 

cytoplasmic control GAPDH and mitochondrial control COXII. Ecsit is predominantly present in the 

cytoplasm, however, a smaller band of about 45 kDa is visible specifically in mitochondria. In contrast, 

cytoplasmic Ecsit binding partner TRAF6 is not detected in mitochondria. (B) Trypsin import assay. T: 

Total cell. C: cytoplasm. M: mitochondria. M +T: mitochondria + 30 U trypsin 15 minutes at 37 ºC. M 

++T: as M +T but with 100 U trypsin. M +T Lysis: as M +T but with 1% triton to lyse the mitochondria. 

Increasingly stringent trypsin digestion of mitochondrial outer membrane proteins results in 

disappearance of the 50 kDa Ecsit, whereas the 45 kDa Ecsit remains intact. NDUFS3 is used as a 

mitochondrial matrix control, Tom20 is used as an outer membrane control. (C) Immunoprecipitation 

using an anti-myc antibody in mitochondria purified from an NDUFAF1-myc-HIS inducible HEK293 cell 

line. Shown are mitochondria (M), non-bound (NB) and eluate fractions (E). Myc-immunoprecipitation 

co-elutes the 45 kDa mitochondrial Ecsit together with NDUFAF1, as opposed to mitochondrial controls 

ND1, NDUFA1, COXII and cytoplasmic control TRAF6.  
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(Legend to figure 2, continued) 

(D) Two-dimensional blue-native SDS-PAGE analysis of HeLa and HEK293 mitochondrial lysates 

demonstrates the co-localization of 45 kDa Ecsit and NDUFAF1 in three complexes of approximately 

500, 600 and 850 kDa. Complex I subunit NDUFS3 is shown to demonstrate the position of complex I 

(“A”, 1 MDa). Subcomplexes observed in our previous complex I assembly study (Ugalde et al., 2004) 

are indicated with A-H when visible. (E) HEK293 mitochondrial Ecsit signal was compared to a total cell 

preparation. “50” indicates the 50 kDa cytoplasmic Ecsit in the HEK293 total cell lysate, which is absent 

in HEK293 purified mitochondria. This demonstrates that only the 45 kDa, mitochondrial, Ecsit interacts 

with NDUFAF1 in complexes of 500-850 kDa. 

 

To establish whether it is the mitochondrial Ecsit that interacts with NDUFAF1, we 

performed anti-myc immunoprecipitations in mitochondrial lysates of inducible 

HEK293 T-REx™ cells that express myc-tagged NDUFAF1 protein (figure 2C). 

Two bands are visible for Ecsit in the total mitochondrial lysate, of 45 and 50 kDa in 

size, of which the 45 kDa form specifically co-purifies with NDUFAF1. In contrast, 

mitochondrial controls ND1, NDUFA1 and COXII do not co-purify. Cytosolic Ecsit 

binding partner TRAF6 is not found in the mitochondrial preparation, demonstrating 

that the NDUFAF1 interaction is specifically mitochondrial. 

 

Mitochondrial Ecsit and NDUFAF1 co-localize in three high molecular weight 
complexes 
 

 To investigate whether Ecsit associates to mitochondrial high-molecular weight 

protein complexes, we have performed two-dimensional blue-native PAGE analysis 

of mitochondria enriched lysates of HEK293 and HeLa cells. Although slightly 

different between the two cell lines, this shows the specific presence of Ecsit in 

three complexes of approximately 500, 600 and 850 kDa. This pattern strongly 

resembles that of OXPHOS assembly chaperone NDUFAF1, which accurately 

comigrates with Ecsit (figure 2D). At least for the HEK293 lysates, the two-

dimensional resolution shows that instead of the previously reported two NDUFAF1 

containing complexes of approximately 600 and 700 kDa (Vogel et al., 2005), 

NDUFAF1 may in fact be present in three complexes of approximately 500, 600 

and 850 kDa. To demonstrate the mitochondrial origin of these protein complexes 

and to show that this Ecsit signal represents the mitochondrial 45 kDa Ecsit, we 

have compared a mitochondrial HEK293 lysate to a total cell lysate in the same 

analysis (figure 2E). This analysis revealed the additional presence of the 50 kDa 

Ecsit in the total cell lysate, confirming that the 45 kDa mitochondrial Ecsit, but not 

the 50 kDa protein, is present in the three complexes.  
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Ecsit requires its N-terminal targeting sequence for mitochondrial localization 
 

Although only a small percentage of the total cellular Ecsit pool is targeted to 

mitochondria (figure 2A), as discussed, Ecsit is predicted to have an N-terminal 

mitochondrial targeting sequence. To experimentally verify the requirement of the 

Ecsit N-terminus for mitochondrial targeting, we have analysed Ecsit subcellular 

localization by confocal microscopy of C-terminal-GFP-tagged Ecsit with and 

without the first 48 N-terminal amino acids predicted to be required for 

mitochondrial targeting by MitoProt II (figure 3A-H). In living cells, mitochondria 

(visualized by Mitotracker Red staining) clearly co-localized with the Ecsit-GFP 

signal, demonstrating mitochondrial targeting of Ecsit-GFP (figure 3D). In contrast, 

Ecsit-GFP lacking its N-terminus accumulated in the cytosol (figure 3H). 
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Figure 3: Ecsit requires its N-terminal targeting sequence for mitochondrial localization 

(A-H) Confocal microscopy of HEK293 cells transiently transfected with an inducible Ecsit-GFP 

construct (A-D) and with an inducible Ecsit-GFP construct lacking the 48 amino acid Ecsit N-terminus 

(E-H). A and E show GFP signal. B and F show the mitochondrial network using Mitotracker Red. C and 

G show nuclear staining. D and H show the overlay between the three signals. Scale bars represent 10 

µm. Without the N-terminus, Ecsit-GFP is no longer targeted to mitochondria. Thus, Ecsit-GFP requires 

its N-terminal targeting sequence for mitochondrial localization. (I) Cell fractionation of Ecsit-GFP 

inducible HEK293 cells. “+”: induction of expression. “-“: no induction of expression. T: to tal cell. C: 

cytoplasm. M: mitochondria. NDUFS3 is used as mitochondrial control. Other antibodies used are anti-

Ecsit (“Ecsit” panel) and anti-GFP (“GFP” panel). The endogenous Ecsit signals are visible at 50 (total 

cell and cytoplasm) and 45 kDa (mitochondria). The induced Ecsit-GFP targets predominantly to 

mitochondria and is detected at approximately 70 kDa (45 kDa + 24 kDa) in two bands using the anti-

Ecsit antibody. Only one of these anti-Ecsit stained bands can be made visible using the anti-GFP 

antibody (“GFP” panel). The sensitive anti-GFP antibody also shows minor Ecsit-GFP leakage 

expression (in the not induced situation). (J) Cell fractionation of inducible HEK293 cells expressing 

Ecsit-GFP without N-terminus, as performed in figure 3I. In the induced situation, Ecsit appears 

predominantly in total cell and cytoplasm as several bands migrating at approximately 70-75 kDa (Ecsit 

panel), of which only one is detected using the anti-GFP antibody (GFP panel). Again, minor leakage 

expression is observed in the not induced situation. (K) Two-dimensional analysis of Ecsit-GFP 

incorporation into high-molecular weight Ecsit/NDUFAF1 protein complexes of 500-850 kDa. NDUFS3 

signal is used as a marker for previously observed CI subcomplexes A-H when visible (Ugalde et al., 

2004). In accordance with figure A, two types of Ecsit-GFP are visible on the anti-Ecsit incubated blot 

(“Ecsit” panel) of which only one is detectable using anti-GFP antibody (“GFP” panel). The Ecsit-GFP 

complexes comigrate with the NDUFAF1 complexes (500-850 kDa). In addition, a larger complex 

matching the size of CI (1 MDa) is indicated with an asterisk. 

 

The predominant mitochondrial targeting of Ecsit-GFP (figure 3A-D) contrasts with 

the mainly cytoplasmic localization of endogenous Ecsit (figure 2A). To further 

investigate the mitochondrial targeting of Ecsit-GFP, we have performed 

biochemical fractionation as done for endogenous Ecsit in figure 2A (figure 3I). In 

addition to the cytoplasmic localization of 50 kDa endogenous Ecsit (figure 3I, Ecsit 

panel, 50 kDa), this fractionation confirms the predominant targeting of Ecsit-GFP 

to mitochondria, in line with the confocal imaging (figure 3I, Ecsit panel, 70 kDa). 

Enriched in mitochondria are two 70 kDa Ecsit-GFP bands, likely representing 

mitochondrial Ecsit (45 kDa Ecsit + 24 kDa GFP), of which only one is stained 

using the anti-GFP antibody. Some leakage Ecsit-GFP expression is observed in 

the not induced situation using the anti-GFP antibody (figure 3I, GFP panel). This 

minor amount is also predominantly targeted to mitochondria. The same procedure 

was applied to the inducible HEK293 cells expressing Ecsit-GFP without its N-

terminal sequence (figure 3J). Using the Ecsit antibody, multiple bands of 

approximately 75 kDa were detected in the induced situation in the total cell and 

cytoplasmic fractions, but not in the mitochondrial fraction (figure 3J, Ecsit panel, 
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70-75 kDa). Also the GFP-signal was predominantly cytosolic, in line with confocal 

imaging (figure 3J, GFP panel). 

 

To verify whether the Ecsit-GFP (with N-terminus) is actually incorporated into 

mitochondrial protein complexes, we performed two-dimensional blue-native SDS-

PAGE analysis of mitochondrial lysates of Ecsit-GFP inducible cells (figure 3K). 

This analysis shows that Ecsit-GFP is normally incorporated into the endogenous 

complexes of 500-850 kDa (figure 3K, panels Ecsit and NDUFAF1). As in figure 3I, 

two 70 kDa Ecsit-GFP signals can be discerned in figure 3K, of which only one is 

detected by the anti-GFP antibody, most likely due to incomplete unfolding of the 

GFP molecule in one of the two situations. 

 

Ecsit knockdown in HeLa mitochondria results in NDUFAF1 decrease and impaired 
complex I assembly 
 

The mitochondrial association with assembly chaperone NDUFAF1 allows the 

possibility that Ecsit is involved in the assembly of OXPHOS complexes. To 

address this hypothesis, we investigated the effect of Ecsit knockdown on 

OXPHOS complex assembly using two small interfering RNAs (siRNA) against 

Ecsit mRNA directed against exon 4 (target #1) and against exon 7 (target #2). The 

effects of knockdown were analysed by SDS-PAGE analysis (figure 4A). Ecsit 

RNAi effectively knocks down the 45 kDa Ecsit signal and has substantially 

reduced the amount of mitochondrial NDUFAF1 (Figure 4A). Apparently, Ecsit is 

required for stable presence of NDUFAF1 within the mitochondrion. To analyse the 

effects of Ecsit knockdown on OXPHOS assembly we performed one-dimensional 

blue-native PAGE analysis (Figure 4B). Complex I is severely reduced upon Ecsit 

knockdown, whereas the amounts of the other OXPHOS complexes appear 

relatively unchanged. Furthermore, immunodetection for complex I subunit 

NDUFS3 reveals the accumulation of intermediates of about 500 kDa in size. To 

further investigate the nature of these complexes, we performed two-dimensional 

SDS PAGE analysis (figure 4C). As shown using antibodies against complex I 

subunits NDUFS3 and ND1, RNAi results in accumulation of intermediates smaller 

than complex I, indicative of disturbed assembly or stability of the holo-complex 

(figure 4C, “sub”). Furthermore, Ecsit knockdown results in a strong decrease in 

the NDUFAF1 subcomplexes of 500-850 kDa, strongly suggesting that the stability 

of these complexes relies on the presence of Ecsit and NDUFAF1 in these 

subcomplexes. 
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Figure 4: Ecsit knockdown using RNA interference results in disturbed complex I assembly 

(A) RNA interference was performed using two siRNAs (#1 and #2) against Ecsit mRNA. Following 

SDS-PAGE and Western blotting, immunodetection was performed for Ecsit, NDUFAF1, COXII and 

NDUFS3 in untreated (U), mock transfected (M) and siRNA transfected (#1, #2) HeLa cells. The Ecsit 

signal is knocked down which correlates with a severe depression in NDUFAF1 protein. Monomeric 

COXII and NDUFS3 levels remain unchanged. (B) The effect of Ecsit knockdown on OXPHOS complex 

assembly was investigated by blue-native PAGE followed by Western blotting and immunodetection of 

complex I subunit NDUFS3 (CI), complex II subunit SDHA (CII), complex III subunit core2 (CIII), 

complex IV subunit COXII (CIV) and complex V subunit ATPase α (CV). Arrows indicate accumulated 

subcomplexes detected with the anti-NDUFS3 antibody. (C) Two-dimensional blue-native SDS-PAGE 

analysis of samples analysed in figures 5A and 5B. Shown are immunodetections of Ecsit, NDUFAF1 

and complex I (NDUFS3 and ND1 signals), in untreated, mock transfected, Ecsit siRNA transfected (#1, 

#2) HeLa cells. Subcomplexes that correspond to previously described complex I subcomplexes 

(Ugalde et al., 2004) are indicated with A-H. “Sub” indicates accumulated subcomplexes after both Ecsit 

siRNA transfections. The Ecsit/NDUFAF1 complexes are indicated with 500-850 kDa. An asterisk 

indicates signal from a previous NDUFS3 detection. 
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Ecsit knockdown in HeLa mitochondria results in disturbed mitochondrial function 
 

The impaired assembly or stability of complex I upon Ecsit knockdown may have 

serious consequences for mitochondrial function. For example, complex I 

deficiency is known to result in a broad spectrum of mitochondrial disorders 

(Janssen et al., 2006), increases cellular superoxide levels (Koopman et al., 

2005a) and affects mitochondrial morphology (Koopman et al., 2005b). To 

investigate the effects of Ecsit knockdown on mitochondrial physiology and 

morphology we investigated several parameters. As demonstrated by complex I in-

gel activity assay, complex I activity drops to 50-60% of the control value (figure 

5A). Mitochondrial NAD(P)H levels were significantly increased in the siRNA 

treated cells compared to untreated and mock-treated controls (figure 5B), 

suggesting that NADH oxidation by complex I is decreased. Downstream effects of 

complex I dysfunction were assayed by measuring superoxide and cytosolic 

oxidant levels (Koopman et al., 2005a; Koopman et al., 2006a) and by determining 

the degree of mitochondrial branching (F) and number per cell (Nc) (Koopman et 

al., 2005a; Koopman et al., 2005b; Koopman et al., 2006b) (figures 5C and 5D). 

This analysis indicated that the level of cellular radical species was increased up to 

150-200% of control values (figure 5C). Although the number of mitochondria per 

cell was not affected by siRNA treatment, mitochondrial branching was reduced 

(figure 5D). Taken together, these data support the notion that Ecsit is required for 

normal mitochondrial functioning and morphology. 
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Figure 5: Ecsit knockdown using RNA interference affects mitochondrial and cellular physiology 

(A) Complex I in-gel activity (CI-IGA) and complex II (CII) expression following native electrophoresis in 

(U)ntreated, M(ock)-treated and two Ecsit RNAi knockdowns (E#1, E#2). The lower panel depicts the 

CI-IGA signals corrected for CII expression (expressed as % of the value in untreated cells) determined 

by integrated optical density analysis. (B) NAD(P)H levels in (U)ntreated, (M)ock treated and siRNA-

treated (E#1, E#2) cells. Bars represent the average of 262 (U), 293 (M), 234 (E#1) and 180 (E#2) cells. 

(C) Cellular superoxide (filled bars) and oxidant levels (open bars) in (U)ntreated, (M)ock treated and 

siRNA-treated (E#1, E#2) cells. Bars represent the average of 294 (U), 284 (M), 335 (E#1) and 93 (E#2) 

cells for superoxide levels, and 47 (U), 33 (M), 41 (E#1) and 25 (E#2) for oxidant levels. (D) Degree of 

mitochondrial branching (F, black bars) and number of mitochondria per cell (Nc, open bars) in 

(U)ntreated, (M)ock treated and siRNA-treated (E#1, E#2) cells. Bars represent the average of 50 (U), 

56 (M), 70 (E#1) and 50 (E#2) cells. In panel B, C and D numerals (a,b,c,d,) represent statistically 

significant differences with the indicated columns. Data was obtained during 2 independent experiments 

from multiple cells (N). 
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Discussion 
 

In previous studies, Ecsit has been described as a cytosolic signaling protein 

essential for the Toll pathway of innate immunity and the BMP pathway of 

embryonic development (Kopp et al., 1999; Xiao et al., 2003). In this study, we 

show N-terminal targeting of Ecsit to mitochondria, where it interacts with 

mitochondrial complex I specific assembly chaperone NDUFAF1 in three high 

molecular weight protein complexes of 500-850 kDa. Ecsit is required for correct 

complex I assembly or stability in particular, and mitochondrial function in general, 

and may thus represent a link between mitochondrial function, immune response 

and embryonic development. 

 

Cytosolic Ecsit associates with TRAF6 and MEKK-1 and is described to facilitate 

the processing of MEKK-1 (Kopp et al., 1999). MEKK-1, in turn, is able to activate 

two different pathways leading to transcriptional activation of inflammatory genes 

(Moustakas and Heldin, 2003). It now seems that, while Ecsit may facilitate the 

processing of another protein such as MEKK-1, Ecsit itself can be processed in the 

mitochondrion at its N-terminus, after which it associates with mitochondrial 

complexes including complex I assembly chaperone NDUFAF1. 

 

It is yet unclear under which factors determine whether Ecsit is targeted to either 

the mitochondrion or the cytosol. Whichever the underlying mechanism, we show, 

at least in HEK293 cells, that only a fraction of the total Ecsit amount is recruited to 

mitochondria and that this targeting depends on an N-terminal mitochondrial 

targeting sequence. In addition, we show that addition of a C-terminal GFP tag 

alters the Ecsit distribution from mainly cytoplasmic to predominantly mitochondrial. 

This shift in localization is most likely not caused by the overexpression itself, as 

the (low level) leakage expression of Ecsit-GFP in the not induced cells is also 

targeted to the mitochondrion. 

 

Even though, compared to its cytosolic counterpart, only a fraction of the Ecsit pool 

is present in mitochondria, Ecsit knockdown results in severely depressed 

NDUFAF1 amounts, demonstrating its requirement for stable mitochondrial 

presence of a complex I specific chaperone. Furthermore, Ecsit knockdown results 

in specifically disturbed complex I assembly or stability and subsequently impaired 

mitochondrial function. Similar to complex I deficient patient and rotenone-treated 

control cells, NAD(P)H, superoxide (Koopman et al., 2005a) and cytosolic oxidant 

levels (Koopman et al., 2006a) are increased in Ecsit knockdown cells. 
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Conversely, NDUFAF1 knockdown is known to result in impaired complex I 

assembly (Vogel et al., 2005) but only results in a minor decrease in the amount of 

Ecsit in the 500 kDa subcomplex (data not shown). In contrast to Ecsit knockdown, 

no accumulation of complex I intermediates can be observed after NDUFAF1 

knockdown (unpublished results), which indicates that although both proteins are 

present in the 500-850 kDa complexes their mechanism of action may be different. 

Elucidation of the exact composition of these intermediates may clarify the specific 

significance of the presence of Ecsit in these complexes for complex I assembly or 

stability.  

 

In conclusion, as Ecsit is required for stabilisation of complex I assembly 

chaperone NDUFAF1 and its absence results in impaired complex I assembly, 

accumulation of intermediates and mitochondrial dysfunction, it seems that Ecsit is 

involved in additional processes apart from its functions in immune response and 

embryonic development. This putative link between mitochondria and the immune 

response has recently gained much attention with the discovery of MAVS 

(mitochondrial antiviral signaling) (Seth et al., 2005; McWhirter et al., 2005). This 

protein is associated to the mitochondrial outer membrane via a hydrophobic C-

terminus and acts as a signaling molecule in the immune response via association 

to TRAF6, similar to what has been described for the Ecsit protein. As Ecsit is now 

also found inside the mitochondrion, Ecsit may extend the influence of this cascade 

to the inner-mitochondrial level. Possibly, Ecsit modulates the energetic 

requirements upon inflammatory response by regulating the rate of complex I 

synthesis. Alternatively, Ecsit may induce other mitochondrial processes, such as 

apoptosis, upon microbial or viral infection. Future research will have to verify 

which of these possibilities is reality. 
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Accession No.  Protein description Control   DOX 

gi|12653969 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, assembly factor 1 [Homo sapiens 0 18 

gi|12803087 Tubulin, beta polypeptide [Homo sapiens] 0 12 

gi|12653815 Tubulin, alpha, ubiquitous [Homo sapiens]  0 7 

gi|12652877 Evolutionarily conserved signaling intermediate in Toll pathway [Homo sapiens] 0 6 

gi|10436258 unnamed protein product [Homo sapiens] 0 6 

gi|12803681 Chaperonin [Homo sapiens] 0 4 

gi|1706611 EFTU_HUMAN Elongation factor Tu, mitochondrial precursor (EF-Tu) (P43) 0 3 

gi|123648 HSP7C_HUMAN Heat shock cognate 71 kDa protein (Heat shock 70 kDa protein 8) 0 3 

gi|1090507 2019238A ATP synthase:SUBUNIT=alpha 0 2 

gi|12803275 Heat shock 70kDa protein 1A [Homo sapiens] 0 2 

gi|10279705 OTTHUMP00000030560 [Homo sapiens]  0 2 

gi|113950 ANXA2_HUMAN Annexin A2 (Annexin II) (Lipocortin II) (Calpactin I heavy chain) (Chromobindin 8) (p36) (Protein I) 0 2 

gi|16306717 Alpha isoform of regulatory subunit A, protein phosphatase 2 [Homo sapiens] 0 1 

gi|14250065 Calmodulin 2 [Homo sapiens] 0 1 

gi|13904998 MYL6 protein [Homo sapiens]  0 1 

gi|11228051 unnamed protein product [Homo sapiens] 0 1 

gi|11228055 unnamed protein product [Homo sapiens] 0 1 

gi|1346345 K2C6B_HUMAN Keratin, type II cytoskeletal 6B (Cytokeratin 6B) (CK 6B) (K6b keratin) 0 1 

gi|1064990 A Chain A, Trypsin (E.C.3.4.21.4) Complexed With The Inhibitor Diisopropyl-Fluorophosphofluoridate (Dfp) 0 1 

Supplemental data 
 
Supplemental table 1: Number of peptide hits for eluted proteins in control and doxycycline treated NDUFAF1-TAP inducible HEK293 

cells  
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Accession number Peptide sequence Charge Peptide 

score 

gi|12652877 ASFLQTVQK 2 29 

gi|12652877 ASFLQTVQK 2 50 

gi|12652877 DLAVYNQLLNIFPK 2 40 

gi|12652877 DLAVYNQLLNIFPK 2 28 

gi|12652877 DSTGAADPPQPHIVGIQSPDQQAALAR 3 62 

gi|12652877 ELQTSSAGLEEPPLPEDHQEEDDNLQR 3 62 

gi|12652877 FAEHSVR 2 35 

gi|12652877 HMEPDLSAR 2 20 

gi|12652877 MREYGVER 2 27 

 

Supplemental table 2: Specification of the peptide hits found for the Ecsit protein 
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Supplemental table 3: Applied FT-M S settings 

 

NLC settings 

Column 100 µm ID, packed with 3 µm Reprosil C18 beads 

(Dr. Maisch GmbH, Ammerbuch, Germany) 

Gradient 60 min gradient from 3% buffer A to 30% buffer B  

Buffer A 0.5% Acetic acid 

Buffer B 80% Acetonitrile in 0.5% acetic acid 

Flowrate 300 nl.min 

 

MS settings 

Data-dependent mode Sequencing of four most abundant ions 

Dynamic exclusion 180 sec 

Mass range FTMS 300-2,000 m/z 

Resolution FTMS 100,000 

Charge state rejection Singly charged and unassigned charge states 

 

Mascot settings 

Database NCBInr, downloaded 2005-05-05 

Enzymatic cleavage Trypsin, 1 miscleavage allowed 

Parent ion mass tolerance 20 ppm 

Fragment ion mass 

tolerance 

0.8 Da 

Fixed modification Carbamidomethyl (C) 

Variable modification Oxidation (M), Deamidation (N,Q) 

 

Validation criteria 

Mass accuracy <3.5 ppm 

Proteins identified >1 peptide Average peptide score >30 

Single peptide hits Peptide score >50 

Delta score >10 
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Chapter 8 
 

General discussion 
 

The previous chapters have described the development of two subsequent models 

for complex I assembly and research into the function of complex I assembly 

chaperones in this process, leading to the discovery of the Ecsit protein in 

mitochondria. By reflecting on these data in the context of previously performed 

studies, this chapter will debate the implications of both parts of this thesis. For part 

I, a general assembly mechanism is proposed based on a comparison of complex I 

assembly between different organisms. In addition, part II debates the versatile 

nature of several assembly chaperones and discusses the possible entanglement 

of complex I assembly with processes such as apoptosis and immunity. 

 

Published in adapted form in Biochimica et Biophysica Acta 2007; doi: 

10.1016/j.bbabio.2007.07.008. 
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Introduction 
 

Mitochondrial ATP production via the OXPHOS system is one of the cornerstones 

of cellular metabolism. A prerequisite for this is a stable and properly functioning 

mitochondrial complex I (CI). Studying the assembly of this approximately 1 MDa 

complex is important. If not for elucidation of the molecular basis of CI deficiency, 

then for understanding how large mitochondrial protein complexes are assembled 

from mitochondrial and nuclear DNA-encoded subunits at the mitochondrial inner 

membrane. This thesis aims to contribute to the understanding of both. Upon 

proposal of a theoretical assembly mechanism, the preceding chapters have added 

two consecutive CI assembly models to the model proposed by Antonicka and 

colleagues (Antonicka et al., 2003). In addition, NDUFAF1 was shown to be an 

assembly chaperone for human CI and the occurrence of chaperones NDUFAF1 

and B17.2L was studied in a cohort of CI deficient patients. Description of the 

immune system protein Ecsit in mitochondria where it functions as a CI assembly 

chaperone has concluded this thesis. This chapter will place these findings into the 

context of existing studies. Consistent with the structure of this thesis, this chapter 

will discuss the two main topics separately (Part I: CI assembly; Part II: CI 

assembly chaperones). 
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Part I: CI assembly 
 

CI assembly studies: an introduction 
 

Although (bovine heart) CI stability, subunit composition and topology has been 

extensively studied using various methods to fractionate the complex (Hatefi, 1976; 

Galante and Hatefi, 1978; Han et al., 1988; Han et al., 1989; Finel et al., 1992; 

Finel et al., 1994; Finel, 1998; Sazanov et al., 2000; Carroll et al., 2003; Carroll et 

al., 2006), the assembly process of eukaryotic CI has long remained enigmatic. By 

using compounds that inhibit either translation of nuclear DNA-encoded or 

mitochondrial DNA-(mtDNA)encoded transcripts, it became clear that 

subassemblies of nuclear DNA-encoded CI subunits can be formed in the absence 

of mtDNA-encoded subunits (Hall and Hare, 1990; Hofhaus and Attardi, 1993; 

Hofhaus and Attardi, 1995; Bai and Attardi, 1998; Potluri et al., 2004). These 

findings had the important implication that CI subunits are not incorporated during 

assembly one by one (in a sequential manner), but that discrete assembly 

intermediates consisting of several subunits occur which are combined during 

assembly (in a semi-sequential manner). 

 

Additional insights were obtained with the systematic introduction systematic 

introduction of mutations in CI genes of the fungus N. crassa (for extensive reviews 

see (Schulte, 2001; Videira, 1998; Weidner et al., 1992; Schulte et al., 1994; 

Videira and Duarte, 2001; Videira and Duarte 2002)). In this organism, peripheral 

and membrane assembly intermediates are formed independently (Tuschen et al., 

1990). In turn, the membrane arm of N. crassa CI is assembled from a large and 

small intermediate. The small intermediate contains the ND2 and ND5 subunits 

(NuoN and NuoL homologues), whereas the large intermediate contains ND1, 3, 4, 

4L and 6 (NuoH, A, M, K and J homologues)(Videira, 1998; Kuffner et al., 1998). 

Generally, mutations in subunits of the one arm do not adversely affect the 

assembly of the other (Tuschen et al., 1990; Nehls et al., 1992; Duarte et al., 

1995). Exceptions to this rule are loss of the acyl carrier protein (NDUFAB1 or 

SDAP homologue), which disturbs formation of both peripheral and membrane 

arms, and loss of the 11.5 kDa protein (NDUFS5 homologue), which results in 

accumulation of membrane arm intermediates and failure to detect an active 

peripheral arm (Schneider et al., 1995; Schneider et al., 1997; Marques et al., 

2005). Altogether, these studies have resulted in one of the first models of CI 

assembly in a eukaryote (Schulte, 2001; Schulte et al., 1994). 
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Figure 1. CI assembly in Neurospora crassa 

In this model, first proposed in 1994 by Ulrich Schulte and colleagues, small and large membrane arm 

intermediates (C and B) are combined via the CIA proteins CIA30 and CIA84 to form the CI membrane 

arm (D). This arm is combined with a pre-assembled peripheral arm (A) to form mature CI (E) (Schulte 

et al., 1994; Schulte, 2001). 

 

Human CI assembly 
 

Initial investigations for CI assembly in humans and other higher eukaryotes have 

mainly contributed data concerning the requirement of mtDNA-encoded subunits 

(Chomyn, 2001). Immunoprecipitation studies in an ND4 cybrid cell line 

demonstrated that the membrane arm was not assembled when ND4 is disrupted 

(Hofhaus and Attardi, 1993). Five years later a similar study in a mouse ND6 

frameshift mutant cell line demonstrated the requirement of ND6 (Bai and Attardi, 

1998), later confirmed for human CI assembly in a CI deficient patient cell line 

carrying an ND6 mutation (Kirby et al., 2003). The ND5 subunit seems to be more 

important for activity than for assembly (Hofhaus and Attardi, 1995; Bai et al., 

2000). Cells lacking ND4 or ND5 did show small amounts of the 24 kDa subunit 

(NDUFV2) in membrane fractions, indicating that assembly is not severely 

disrupted (Bourges et al., 2004). In addition, loss of ND3 does not lead to a great 

disturbance of assembly (Kirby et al., 2004a; McFarland et al., 2004), whereas 

ND2 disruption results in disturbed assembly with accumulated intermediates 
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(Antonicka et al., 2003; Ugalde et al., 2007). Finally, ND1 mutation results in a 

severe reduction of fully assembled CI (Kirby et al., 2004b). 

 

Valuable information about the assembly of peripheral arm subunits has 

predominantly come from assembly studies in CI deficient patients. In 2001, 

Triepels and colleagues classified CI deficient patients by their assembly profiles 

by comparison of immunodetected amounts of CI subunits, suggesting an 

important role for subunits NDUFA9 and NDUFS3 (Triepels et al., 2001). In two 

patients harbouring a mutation in the NDUFS6 subunit, CI assembly was severely 

impaired and accumulation of a large 750 kDa subcomplex was observed using an 

anti-NDUFA9 antibody (Kirby et al., 2004a). In addition, mutations in subunits 

NDUFS1, NDUFS4 and NDUFV1 lead to accumulation of a subcomplex slightly 

smaller than the fully assembled complex (Scacco et al., 2003; Ugalde et al., 

2004a; Ogilvie et al., 2005; Iuso et al., 2006). Whether this subcomplex is the same 

in all of these studied cell lines is unclear, but the (near) absence of CI activity and 

the hypothesized co-localization in the tip of the peripheral arm of the complex 

support that their mutation may result in similar assembly/stability defects. 

Recently, Ogilvie and colleagues demonstrated association of assembly chaperone 

B17.2L with this complex and performed immunoprecipitation using an antibody 

raised against the B17.2L chaperone to identify associated proteins in wild type 

mitochondria (Ogilvie et al., 2005). Although the 830 kDa intermediate was not 

detected in wild type mitochondria, co-elution was observed of the ND1, NDUFS1-

4, NDUFV1 and NDUFA13 subunits, suggesting the existence of (an) assembly 

intermediate(s) with this composition. Finally, of note, NDUFS8 mutation results in 

a severe impairment of CI assembly (Ugalde et al., 2004a; Procaccio and Wallace, 

2004), and two NDUFA1 mutations have been implicated in disturbed assembly 

and inability to detect a 20 kDa subunit (presumably the NDUFB8 subunit) in the 

holo-complex (Fernandez-Moreira et al., 2007). 

 

An attempt to coherently incorporate the available assembly data into a model was 

first made in 2003, when Antonicka and colleagues published their human CI 

assembly model, based on the occurrence of CI subcomplexes in a cohort of CI 

deficient patients (Antonicka et al., 2003). Different genetic defects resulting in CI 

deficiency can result in the accumulation of similar subcomplexes, which were 

argued to be illustrative of assembly intermediates. In the model, membrane and 

peripheral arm assembly does not occur independently as described for N. crassa 

but rather via membrane anchoring of preformed nuclear DNA-encoded scaffold of 

subunits. This provided a useful framework for future assembly studies, although 
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the observed subcomplexes were derived from CI deficient patient cell lines and 

hence no distinction could be made between products of assembly, disturbed 

assembly, CI instability or degradation. In 2004, this study was followed by another 

based on a conditional assembly system (Ugalde et al., 2004b). In this system, the 

dynamics of assembly intermediate formation could be followed in time by 

removing a block in mitochondrial translation. Although this system is artificial and 

nuclear DNA-encoded pre-assemblies may still have pre-formed, it allowed 

studying of the dynamics of subcomplex formation in time. In contrast to the 2003 

study, it showed several similarities with the N. crassa model, in that membrane 

and peripheral arms could seemingly be assembled independently via distinct 

substructures. 

 

In an additional study in 2007, NDUFS3 containing subcomplexes were made 

visible at high resolution using leakage expression of an inducible NDUFS3-GFP 

expression system in HEK293 cells. It confirmed several of the detected 

subcomplexes and demonstrated the presumable entry-point of mitochondrial 

DNA-encoded subunits into the assembly process (Vogel et al., 2007a). This study 

led to the model shown in figure 2. In this model, an early peripheral arm assembly 

intermediate is membrane anchored prior to expansion with additional peripheral 

and membrane arm assembly modules. In the proposed assembly model, the 

distinction between membrane and peripheral arm assembly was no longer as 

black and white as described in the previous study and for N. crassa. In fact, apart 

from the absence of NDUFA9 in early assembly intermediates, the model is 

generally similar to the 2003 study by Antonicka and colleagues. In both studies, 

an early peripheral arm assembly intermediate is membrane anchored prior to 

expansion with additional membrane arm and peripheral arm assembly modules. 
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Figure 2. Current model for human complex I assembly 

An evolutionary conserved core structure consisting of at least the NDUFS2 and NDUFS3 subunits is 

formed, expanded and anchored to the mitochondrial inner membrane (1-4). Upon membrane insertion, 

the complex is further assembled via the addition of pre-formed membrane and dehydrogenase 

modules (5-7). 

 

Comparison of existing complex I assembly models 
 

Homology searches have revealed a high degree of conservation of certain 

modules of the complex between various organisms. Archaeal, cyanobacterial, 

bacterial and mammalian CI share great structural resemblance, although the 

electron input device (NADH dehydrogenase in mammalian CI) varies. Such 

phylogenetic studies have led to models describing the modular evolution of CI 

(Friedrich et al., 1993; Friedrich and Weiss, 1997; Finel, 1998; Friedrich and 

Scheide, 2000; Mathiesen and Hagerhall, 2003; Friedrich and Bottcher, 2004). In 

these models, CI is proposed to have originated by fusion of pre-existing protein 



General discussion 

 221 

assemblies constituting modules for electron transfer and proton transport. In more 

detail, CI is proposed to have originated from an ancestral soluble nickel-iron 

hydrogenase (sharing homology with the NDUFS2 and NDUFS7 subunits). This 

hydrogenase has gained a quinone binding site and has become membrane bound 

upon acquisition of a protein of unknown function (NDUFS3) and ferrodoxin-type 

(NDUFS8), ion translocating (ND5) and quinone-binding (ND1) subunits. This 

structure was subsequently expanded by triplication of proton translocating 

subunits (ND2 and ND4). After the complex has lost its nickel-iron active site and 

its ability to react with molecular hydrogen, finally, membrane subunits (ND3, ND4L 

and ND6) and the NADH dehydrogenase module (NDUFS1, NDUFV1 and 

NDUFV2) are acquired. 

 

It has been suggested that the co-evolutionary structural relationship between CI 

subunits may be reflected by the order of assembly and composition of assembly 

intermediates (Videira 1998; Vogel et al., 2004). If so, how does the current model 

for CI assembly in humans relate to assembly studies performed in other 

organisms? If co-evolution of groups of subunits is partially mirrored in the human 

assembly system, would one not expect to see similarities in other organisms? Can 

a general assembly mechanism be extracted from these studies? 

 

 
 
Figure 3: Topology of the bacterial NDH-1 subunits 

Bacterial NDH-1 is composed of the 14 most conserved CI subunits, which are termed NuoA-N (see 

also chapter 1, table 1). 
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Through the years, the assembly process of CI has been investigated in various 

organisms, such as Chlamydomonas reinhardtii, E. coli, N. crassa, Cricetulus 

griseus and Homo sapiens (Tuschen et al., 1990; Braun et al., 1998; Cardol et al., 

2002; Antonicka et al., 2003; Ugalde et al., 2004; Yadava et al., 2004; Cardol et al., 

2006). Comparison between the CI assembly mechanisms in different organisms 

may result in a consensus that allows understanding of the general mechanism of 

CI assembly. A useful starting point for the comparison between CI assembly 

mechanisms in different organisms is the structure of bacterial CI (NDH-1) (figure 

3) (Leif et al., 1993). The underlying assumption is that the basic framework for the 

CI assembly process in all organisms is represented by the combination of its most 

conserved structural components. Figure 4 (on page 224) summarizes the 

assembly models proposed for the various organisms, simplified by only showing 

assembly of the 14 ‘minimal’ CI subunits. Details of each assembly scheme are 

given below, always referring to the NDH-1 homologue of each subunit. 

 

In E. coli CI assembly, incorporation of the NuoE, F and G subunits (forming the 

NADH dehydrogenase module) requires the presence of NuoB, C and D (forming 

the hydrogenase module) (Braun et al., 1998). It is yet unclear whether this 

combination takes place before or after the addition of membrane arm subunits. 

Regarding membrane arm assembly, certain point mutations in the NuoH subunit 

of E. coli and Paracoccus denitrificans CI result in severely disturbed assembly 

(Kervinen et al., 2006). In addition, disruption of the NuoJ gene did not result in 

disturbed assembly, suggesting that this membrane subunit is added to the 

complex at a final stage (Kao et al., 2005). Finally, the distal location of the NuoM 

and NuoL subunits makes it likely that these subunits are added at a late stage in 

assembly (Baranova et al., 2007a; Holt et al., 2003; Baranova et al., 2007b). 

 

Another organism in which CI assembly has been studied is C. reinhardtii. In this 

organism, frameshift mutations for ND1/ND6 resulted in a failure to detect the 850 

kDa holo-CI (Remacle et al., 2001; Cardol et al., 2002). Using the same strategy, 

absence of ND4 or ND4/5 resulted in accumulation of a 650 kDa subcomplex. Also, 

ND5 deletion did not abolish CI assembly but rather seemed to destabilize the 

complex. Consequently, it was proposed that, as opposed to the ND1 and ND6 

subunits, the ND4 and ND5 subunits (NuoM and L homologues) are incorporated 

at a late stage in assembly (Cardol et al., 2002). Recent investigation of the role of 

ND3 and ND4L (NuoA and K homologues) in assembly resulted in the first 

assembly model for this organism, in which a nuclear encoded precomplex of 200 
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kDa, containing the 76 kDa (NuoG homologue) and 49 kDa (NuoD homologue) 

subunits, is membrane anchored by combining with ND1 (NuoH homologue), ND3, 

ND4L and ND6 (NuoJ homologue) and subsequently expanded to result in holo-CI 

with the addition of ND4 and ND5 (Cardol et al., 2006).  

 

As discussed, CI assembly was extensively studied in the fungus N. crassa. In 

brief, peripheral and membrane assembly intermediates were shown to be formed 

independently (Tuschen et al., 1990). Furthermore, the assembly of the membrane 

arm occurs via the combination of a small and large intermediate (Nehls et al., 

1992). 

 

A useful model system for subsequent CI assembly studies in higher eukaryotes 

proved to be C. griseus (Chinese hamster)(Au et al., 1999; Scheffler and Yadava, 

2001; Potluri et al., 2004; Yadava et al., 2004; Yadava and Scheffler, 2004). By 

using (inducible) complementation of the MWFE and ESSS subunits (homologues 

of the human CI NDUFA1 and NDUFB11 subunits) it was demonstrated that the 

stability of Chinese hamster homologues of peripheral arm subunits NDUFS1, 2, 3, 

7, 8 and NDUFV1, 2 (NuoB, C, D, E, F, G, I homologues) was unaffected by the 

absence of MWFE, although holo-CI was not assembled. These data strongly 

suggest that the peripheral arm can be assembled without the presence of a 

membrane arm, analogous to assembly in N. crassa. Furthermore, incorporation of 

MWFE is proposed to require membrane arm subunits and the subunit may serve 

as a membrane anchor to which membrane subunits are attached during CI 

assembly. Likewise, the ESSS subunit was shown only to be incorporated into CI 

when membrane subunits are available (Potluri et al., 2004). 

 

Finally, human CI assembly has been studied and three models were proposed 

(Antonicka et al., 2003; Ugalde et al., 2004b; Vogel et al., 2007a). Although 

different at points, the models agree in that a peripheral scaffold containing 

NDUFS2 and NDUFS3 (NuoD and C homologues) is first anchored to the 

membrane by ND1 (NuoH homologue) prior to addition of the NADH 

dehydrogenase module subunits (NuoE, F and G) and remaining membrane 

subunits. 
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Figure 4: Schematic representation of existing CI assembly models 

A consensus assembly model is proposed based on what is known about CI assembly in different 

organisms. Assembly of the basic building blocks by analogy to bacterial NDH-1 is shown for 

Escherichia coli, Chlamydomonas reinhardtti, Neurospora crassa, Cricetulus griseus (Chinese hamster) 

and Homo sapiens. Based on these schemes, a consensus can be extracted in which a core of nuclear 

DNA-encoded subunits is anchored to the mitochondrial inner membrane and expanded with membrane 

modules and the electron input (dehydrogenase) module. It is yet unclear in which exact order the 

modules are added (indicated with question marks). 

 

A general concept for complex I assembly 
 

It is clear that there are differences between the various models. The investigated 

organisms are part of different evolutionary lineages and assembly of e.g. the 

membrane or peripheral CI arm has been studied more extensively in the one 

organism than in the other. Nevertheless, a general concept can be extracted. It 

seems that a nuclear scaffold formed by the NuoC and NuoD subunits forms the 

starting point of peripheral arm assembly, which is subsequently anchored to the 

mitochondrial inner membrane after the addition of NuoB and NuoI and early ND 

homologue subunits such as NuoH and NuoA. Whether or not more membrane 

subunits are present and whether this subassembly also includes the NADH 

dehydrogenase fragment (NuoE, F, G) is not clear. This subassembly is expanded 

with additional membrane subunits (NuoJ, K, L, M, N) to result in holo-CI. This 

model fits very well with theoretical data predicting subunit topology by evolutionary 

conservation (Friedrich and Weiss, 1997), and is compatible with the first described 

crystal structure of a CI peripheral arm for Thermus thermophilus (Sazanov and 

Hinchliffe, 2006). 

 

Future perspectives 
 

Investigations for the assembly process of human CI have demonstrated that many 

different intermediates are formed along the way, some of which may be 

breakdown products of larger assemblies, some of which may be true assembly 

intermediates (Antonicka et al., 2003; Ugalde et al., 2004b; Vogel et al., 2007a). 

The most recent assembly study at some points suggests that assembly is not 

necessarily a static process in which subassemblies are sequentially combined, but 

rather a dynamic process in which subunits or subcomplexes may be recycled 

during assembly. For example, the origin of assembly intermediate 1 is rather 

enigmatic, as it appears both after breakdown and during assembly (see figure 2). 

In addition, subcomplexes 2 and 3 appear in an equal ratio during assembly, 

suggesting that the formation of these subcomplexes is tightly linked. The 
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possibility of recycling during assembly is an interesting subject for future assembly 

studies, in which turnover rates of subunits and kinetics of the assembly process 

should be investigated.  

 

Another topic for future studies is the step in which a preformed nuclear DNA-

encoded subassembly is anchored to the mitochondrial inner membrane. 

Identification of which of the complex I subcomplexes are membrane bound can be 

aided by fractionation of the mitochondrial subcompartments (matrix, inner and 

outer membranes and inter membrane space proteins), followed by BN-PAGE 

analysis of each fraction. Along these lines, also demanding future attention is that 

although several assembly intermediates were observed for nuclear-DNA encoded 

subunits during human CI assembly, no clear membrane arm assembly 

intermediates have been observed e.g. like for N. crassa CI assembly (Tuschen et 

al., 1990; Nehls et al., 1992). One of the technical limitations is the absence of 

proper antibodies for detection of the ND subunits during assembly. In this case, 

studying disturbed assembly upon ND subunit mutation may indirectly provide the 

solution (Ugalde et al., 2007).  

 

Possibly, CI assembly of the membrane arm occurs co-translationally, e.g. like CIV 

in yeast mitochondria. A search for factors such as Oxa1 that link mitochondrial 

translation to the membrane insertion of mtDNA-encoded CI subunits is a 

promising endeavour. In addition, one can imagine that both iron-sulfur cluster 

containing preformed subassemblies and hydrophobic membrane subassemblies 

would require chaperones for stabilization and combination without aggregation or 

production of radical species. An ongoing search for these chaperones is required 

for a better understanding of the assembly process, which brings us to the next 

paragraph. 

 

Part II: Assembly chaperones 
 

To assemble a fully functional mitochondrial CI is to combine 38 subunits encoded 

by the nuclear genome and seven subunits encoded by the mitochondrial genome. 

Chapter 1 has demonstrated that assembly, in addition to just the combination of 

these subunits, encompasses nuclear and mitochondrial transcription, translation, 

processing, export, import, membrane insertion, stabilization and activation, 

including numerous feedback mechanisms required to coordinate the process. 

When viewed from this perspective, the absolute requirement of chaperone 

proteins in the CI assembly process becomes evident.   
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The classical definition of a chaperone 
 

What exactly is a chaperone? Chaperones were first discovered when several 

genes, conserved from bacteria to mammals, were found activated upon transient 

heat stress in Drosophila, encoding the later termed heat-shock proteins (HSPs) 

(Ritossa, 1962; Ritossa, 1996). Later, a solid ground for the definition of chaperone 

function was provided with the demonstration that BiP, a protein interacting with 

proteins transiting through the ER prior to their assembly into macromolecular 

structures, is also a member of the HSP70 family (Pelham, 1984; Pelham, 1986) 

(for a review see (Morange, 2005)). In general, a chaperone is any protein that 

binds to an unfolded or partially folded target protein to prevent misfolding, 

aggregation, and/or degradation of it. Chaperones also facilitate the target protein's 

proper folding. A more detailed definition was proposed by John Ellis: “molecular 

chaperones are currently defined in functional terms as a class of unrelated 

families of protein that assist the correct non-covalent assembly of other 

polypeptide-containing structures in vivo, but which are not components of these 

assembled structures when they are performing their normal biological functions. 

The term assembly in this definition embraces not only the folding of newly 

synthesized polypeptides and any association into oligomers that may occur, but 

also includes any changes in the degree of either folding or association that may 

take place when proteins carry out their functions, are transported across 

membranes, or are repaired or destroyed after stresses such as heat shock.” (Ellis, 

1987; Ellis et al., 1989; Ellis and van der Vlies, 1991; Ellis, 1993).  

 

Human CI chaperones 
 

In 1998, Kuffner and colleagues used essentially the same definition (Ellis and van 

der Vlies, 1991) to term Complex I Intermediate Associated proteins CIA30 and 

CIA84 chaperones for N. crassa CI assembly (Kuffner et al., 1998). Disruption of 

the 21.3 kDa nuclear DNA-encoded subunit (homologue of the human NDUFS8 

subunit) resulted in accumulation of a large membrane arm intermediate, to which 

CIA30 and CIA84 were found associated. Metabolic labeling experiments 

demonstrated that CIA84 cycles between a bound and unbound state to this 

intermediate. Additionally, knockout of the cia genes resulted in a membrane arm 

subunit knockout phenotype. In conclusion, the authors stated that the CIA proteins 

are involved in the assembly of the larger complex without being a component of 

the final functional structure, hence fitting the definition of chaperone (Kuffner et al., 

1998). 
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Both human orthologues of the CIA proteins have been found. CIA84 orthologue 

PTCD1 was identified in a bioinformatics screen, but its function in human CI 

assembly remains uninvestigated (Gabaldon et al., 2005). In line with what is 

described for N. crassa, CIA30 orthologue NDUFAF1 seems to have an important 

role in human CI assembly as its knockdown using RNA interference resulted in 

impaired CI assembly/stability (Janssen et al., 2002; Vogel et al., 2005). 

Surprisingly, NDUFAF1 association with high-molecular weight protein complexes 

was only moderately decreased in a translation deficient patient cell line harbouring 

a mutation in mitochondrial Elongation Factor G1 (EFG1) and in an ND1 patient 

cybrid cell line, both displaying little or no CI and assembly intermediates (Vogel et 

al., 2007c). At present, in contrast to its N. crassa counterpart CIA30, it is still 

uncertain whether NDUFAF1 directly associates to CI subunits, with which its 

mechanism of action remains rather enigmatic. 
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A second assembly chaperone for human CI was predicted and confirmed in 2005 

(Gabaldon et al., 2005; Ogilvie et al., 2005). In line with the above description of a 

chaperone, B17.2L was found associated to a large CI subcomplex, is absolutely 

required for assembly but not part of the final structure (Ogilvie et al., 2005). As 

opposed to NDUFAF1, which consistently appears associated to protein 

complexes of 500-850 kDa, B17.2L was found associated to a high-molecular 

weight CI subcomplex only after mutation of NDUFV1 or NDUFS4 subunits of CI. 

With the use of immunoprecipitation, in control cells, B17.2L was found associated 

to CI subunits ND1, NDUFS2, NDUFS3, NDUFV1, NDUFV2, NDUFS4 and GRIM-

19. 

 

The most recently identified protein demonstrated to be essential for CI assembly 

is Ecsit (Evolutionary Conserved Signaling Intermediate of the Toll pathway)(Vogel 

et al., 2007b). Ecsit is predominantly cytosolic, but a small amount is recruited to 

the mitochondrion via its N-terminal targeting sequence. Once imported, this 

mitochondrial Ecsit is incorporated into the same three high-molecular weight 

chaperone complexes of 500-850 kDa as NDUFAF1. Although only a relatively 

small amount is mitochondrial, as demonstrated by siRNA knockdown, Ecsit is 

required for stable mitochondrial presence of NDUFAF1, CI assembly/stability and 

normal mitochondrial physiology (Vogel et al., 2007b). Hence, being required for CI 

assembly but not a component of the final functional structure, also Ecsit fits the 

definition of a CI chaperone. 

 

Complex I assembly chaperones, versatile proteins 
 

Only a few chaperones found for an approximately 1 MDa enzyme complex is a 

rather meagre score. By analogy to the other OXPHOS complexes, many more 

must surely exist, but why have they not been detected? One obvious answer is 

that the Saccharomyces cerevisiae toolbox of genetics that has proven so fruitful 

for studying e.g. CIV assembly is not available for CI, as it does not have CI. 

Another answer may lie in the versatile nature of assembly chaperones. First of all, 

many yet undiscovered chaperones that can associate to CI assembly 

intermediates (such as B17.2L) may not be detectable in their high-molecular 

weight associations under normal circumstances as their binding is transient. For 

example, the CIA proteins in N. crassa were only found after introduction of a 

mutation that resulted in accumulation of a large membrane arm assembly 

intermediate (Kuffner et al., 1998). Second, most chaperones may fit the broadest 

possible interpretation of the classical definition of a chaperone, in the sense that 
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chaperones may not need to associate directly to assembly intermediates in order 

to have a strong influence on CI assembly or stability. A protein that influences CI 

assembly or stability may do so indirectly, for example by facilitating the processing 

or maturation of another chaperone. Third, when chaperones function in additional 

processes rather than being confined to a function in CI assembly, this 

subsequently makes them harder to find from a CI-limited perspective. Several 

examples of this scenario exist. 

 

For example, B17.2L was initially described as Mimitin, the so-called myc induced 

mitochondrial protein (Tsuneoka et al., 2005). Its transcription was shown to be 

directly stimulated by c-myc and its levels were found elevated in esophageal 

squamous cell carcinoma (ESCC) tumors. As its suppression using RNA 

interference led to decreased cell proliferation in several tissue types, a role in c-

myc mediated cell proliferation was proposed. It was shortly later that Ogilvie and 

colleagues described its requirement for human CI assembly (Ogilvie et al., 2005). 

 

Another example is the finding of specifically impaired CI assembly/stability upon 

knockdown of Apoptosis Inducing Factor (AIF) in mice (Vahsen et al., 2004; Joza 

et al., 2005). The AIF protein is a signaling molecule in apoptosis and has an N-

terminal mitochondrial localization sequence. Upon apoptosis-induced 

mitochondrial outer membrane permeabilisation it translocates to the nucleus, 

chaperoned by HSP70. Once in the nucleus, it performs a role in chromatin 

condensation (Modjtahedi et al., 2006). Loss of AIF leads to increased ROS 

production and AIF knockdown desensitises different cell types to different 

apoptotic stimulants. In addition to this role in apoptosis, AIF knockout results in a 

drop in the mouse homologues of CI subunits NDUFA9, NDUFB6, NDUFS7 and 

GRIM19, CI activity and embryonic lethality, demonstrating its requirement for CI 

integrity (Vahsen et al., 2004). Whether the effect of AIF is confined to OXPHOS 

complex CI alone is debated, as its Saccharomyces cerevisiae homologue 

knockout exhibit reduced growth on non-fermentable carbon sources, and siRNA 

for AIF additionally resulted in a slight CIII defect. Whichever the exact mechanism, 

a protein such as AIF shows that a protein can be a signaling molecule in 

apoptosis and be specifically required for CI assembly or stability. Such 

chaperones may represent signaling nodes between various subcellular processes 

and the assembly of the OXPHOS system. 
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Finally, a recent example is described in chapter 7 of this thesis, with the finding of 

Ecsit (Evolutionary Conserved Signaling Intermediate of the Toll pathway) inside 

the mitochondrion (Vogel et al., 2007b). The Ecsit protein is a signaling protein in 

the (cytosolic) Toll-pathway and mediates communication between ligand binding 

at the plasma membrane to activation of transcription of pro-inflammatory genes 

(Kopp et al., 1999; Kopp and Medzhitov, 1999). Ecsit is predominantly present in 

the cytosol, but a small amount is recruited to the mitochondrion via its N-terminal 

targeting sequence. Once imported, this mitochondrial Ecsit is incorporated 

together with CI assembly chaperone NDUFAF1 into three high-molecular weight 

complexes of 500-850 kDa. Although only a relatively small amount is 

mitochondrial, as demonstrated by siRNA knockdown, Ecsit is required for CI 

assembly or stabilization, normal mitochondrial physiology and for stable 

mitochondrial presence of NDUFAF1 in its wild type complexes (Vogel et al., 

2007b). As the NDUFAF1 protein complexes exist even when CI assembly is 

severely impaired (chapter 6), but rely on a signaling protein for stable presence in 

the mitochondrion, this suggests that they may represent regulatory complexes 

rather than CI assembly intermediates. Although yet speculative, Ecsit may extend 

the cascade of the immune response to the inner-mitochondrial level, e.g. to 

control the amount of ATP production or to induce apoptosis upon inflammation. 

 

CI assembly, a prominent example of mitochondrial integration with the rest of the 
cell? 
 

That assembly chaperones may have additional functions apart from their 

requirement for CI assembly is in line with the growing awareness that 

mitochondria are more than just a powerhouse that provides ATP. They are plastic 

organelles, entangled with various (sub) cellular processes such as the cell cycle, 

apoptosis and development, via signaling cascades that include kinases and 

phosphatases that ultimately regulate mitochondrial metabolic activity (McBride et 

al., 2006).  

 

Although the link between immunity and mitochondrial function of Ecsit has yet to 

be established, the finding of the Ecsit protein in mitochondria may represent 

another connection between mitochondria and non-mitochondrial process. Could 

mitochondria be a key link between the immune cascade and the decision to either 

go into apoptosis (via loss of membrane potential, release of inner membrane 

proteins and induction of caspases) or to activate interferons and cytokine 

production and promote cell survival? The recent finding of the mitochondrial 

antiviral signaling protein MAVS seems to support this idea. MAVS (also termed 
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VISA, Cardif and IPS-1) is the first described direct link between immune signaling 

cascades and mitochondria (Seth et al., 2005; Xu et al., 2005; Kawai et al., 2005; 

Meylan et al., 2005). It is bound to the mitochondrial outer membrane via its C-

terminal transmembrane sequence and is required to activate pathways that lead 

to interferon production. Interestingly, its knockdown by siRNA leads to an increase 

in (mitochondria mediated) apoptosis, suggesting that MAVS could protect cells 

from apoptosis during the early stages of viral infection, maximizing the production 

of cytokines from the infected cell (McWhirter et al., 2005). Another argument in 

favour of a central mitochondrial role in the switch to apoptosis comes from the 

large body of evidence demonstrating that the release of any of several 

mitochondrial intermembrane proteins such as cytochrome c, AIF, endonuclease G 

and SMAC/Diablo can either initiate or amplify cell death cascades (Yi et al., 2006). 

Taken together, mitochondria may be at the center of a delicate balance between 

the host immune response and virus-induced apoptosis (Lin et al., 2006).  

 

Is it possible that this balance is somehow controlled via maintenance of CI 

integrity and reactive oxygen species (ROS) production, or is this a bridge too far? 

Studies for the composition and function of CI have demonstrated that several CI 

subunits may have multiple functions in addition to their structural presence in CI. 

In the case of apoptosis, a prominent example is NDUFS1, for which an apoptotic 

function is described as a substrate of caspases, as its cleavage is a requirement 

for the mitochondrial changes associated with apoptosis (Ricci et al., 2004). 

Another example is NDUFA13 (GRIM-19, or Gene associated with Retinoid-

interferon-Induced Mortality-19 in bovine CI) which is also a cell death regulatory 

protein induced by interferon-beta and retinoic acid and released from the 

mitochondrion upon apoptosis (Fearnley et al., 2001; Huang et al., 2004; Huang et 

al., 2007). A recent study performed by Huang and colleagues demonstrated that 

IFN-β/RA stimulation resulted in upregulation of the GRIM-19 and NDUFS3 

subunits of CI, elevated mitochondrial reactive oxygen species (ROS) levels and 

induction of apoptosis (Huang et al., 2007). RNA interference (RNAi) of GRIM-19 

and NDUFS3 prevented this IFN-β/RA stimulated apoptosis. Other death stimuli 

such as UV, CPT and staurosporine caused cell death without upregulation of 

GRIM-19 and NDUFS3, and RNAi for these subunits together with these stimuli did 

not prevent cell death (as with IFN-β/RA). Therefore, it seems that IFN-β/RA 

stimulation can specifically induce apoptosis via CI and ROS upregulation, hence 

providing another link between cytokine-induced immune pathways and 

mitochondrial integrity (Fearnley et al., 2001; Huang et al., 2004; Huang et al., 

2007). 
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A final argument in favour of a prominent role for CI in mitochondrial integrity in 

immunity and apoptosis comes from tumor necrosis factor (TNF)-α stimulated ROS 

production. TNF-α is a cytokine, secreted upon inflammation, which has 

widespread physiological functions in immune regulation and apoptosis. 

Stimulation of cells with TNF-α, interleukin (IL)-1β or pathogens leads to the 

translocation of nuclear factor (NF)-kB to the nucleus and the activation of 

inflammatory response genes. In addition, signal transduction triggered by TNF-α 

induces an increase in intracellular ROS via the TRAF2 protein (Chandel et al., 

2001). Interestingly, TNF-α induction of ROS does not occur when respiratory 

chain activity is obstructed using rotenone, and transfection of rho-0 cells with 

TRAF2 did not result in activation of NF-kB (whereas it did in control cells). It thus 

seems that mitochondrial ROS generation is required for NF-kB activation via 

TRAF2. The significant increase of ROS levels detected by DCFH-DA in response 

to TRAF2-mediated signaling triggered by TNF receptor-related proteins may play 

a regulatory role in apoptosis (Chandel et al., 2001). In addition, stimulation of 

human articular chondrocytes with TNF-α and IL-1β significantly decreased the 

activity of CI and the production of ATP, suggesting that the primary source of 

TNF-α induced ROS production may be CI (Lopez-Armada et al., 2006). 

 

To control the integrity of the mitochondrial inner membrane is to control cell fate. If 

a stable CI is requirement for this integrity, this adds a new perspective to the 

investigations for CI assembly and or stability (figure 5). Putative chaperones 

involved in its assembly or stability may represent extensions of various cellular, 

cytoplasmic pathways into the mitochondrion. With this said, research for CI 

assembly chaperones has gained a new dimension, hopefully aiding the 

understanding of a broad spectrum of clinical phenotypes associated with 

mitochondrial disorders. 

 

Future perspectives 
 

Although NDUFAF1 and Ecsit are a requirement for CI assembly/stability, their 

function is yet unknown. Analysis of the composition of the NDUFAF1 containing 

protein complexes may elucidate the function of these complexes, e.g. by finding 

proteins involved in a well described pathway. In addition, it will be interesting to 

study whether mitochondrial Ecsit is indeed an extension of the cytosolic immune 

cascade. This could be done by analysis of CI function and stability and the 
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recruitment of Ecsit to mitochondria, e.g. upon microbial infection or stimulation of 

the Toll-like receptor pathway. 

 

How to find more chaperones for complex I assembly? An obvious approach is to 

affinity purify previously described assembly intermediates and to analyse their 

composition e.g. by mass spectrometry. For example, by labeling the NDUFS3 

subunit with an affinity purification tag and by using the proper separation 

technique (sucrose gradient ultracentrifugation, BN-PAGE) one should be able to 

affinity purify the six observed NDUFS3 containing subcomplexes. However, as 

assembly chaperones may only transiently bind to assembly intermediates, another 

sensible method is to analyse an accumulated intermediate in a disturbed 

assembly system, either using drugs such as doxycycline or cycloheximide or by 

investigating CI deficient patient cell lines which display an accumulated assembly 

intermediate. Other strategies are to analyze the mitochondrial proteome for 

proteins that are yet unannotated but are predicted to contain protein-protein 

interaction motifs or to perform phylogenetic analyses for genes that have co-

evolved with CI subunits. Whichever the exact strategy may be, future studies will 

surely deliver more than the currently known chaperones B17.2L, NDUFAF1 and 

Ecsit. 
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Figure 5. Mitochondria on the crossroads between immune response and apoptosis 

Extracellular ligands and cytokines such as TNF are recognized at the plasma membrane via Toll-like receptors (TLRs) and TNF receptors 1 and 2 

(TNFR-1, 2) respectively, which trigger cascades that stimulate the production of cytokines such as interferons (IFN) via nuclear translocation of 

transcription factors such as NF-kB. Alternatively, the cell can switch on apoptotic pathways via DNA  caspase cleavage, disturbance of the 

mitochondrial membrane potential via Bid, Bax and Bak and subsequent release of pro-apoptotic factors such as cytochrome c, Smac/DIABLO and 

Omi/HtrA2. In addition, caspase independent cell death can be induced with the release of apoptosis inducing factor (AIF) and Endonuclease G 

(EndoG) from the mitochondrion. Mitochondria, and CI in particular, may constitute an important factor in the choice between cytokine production and 

apoptosis. Apoptosis is linked to CI integrity via NDUFS1 cleavage, ROS production and release of AIF, required for CI stability, from the 

mitochondrion. Immune pathways have recently been linked to mitochondria via the finding of mitochondrial antiviral signaling protein (MAVS) at the 

mitochondrial surface, which links recogition of dsRNA (an intermediate of viral replication) to production of interferons. Cytosolic signaling molecule 

Ecsit, part of the Toll-like receptor cascade, is found inside the mitochondrion. As Ecsit is required for CI stability/assembly, Ecsit may represent a 

mitochondrial extension of the immune pathway, controlling cell fate by controlling mitochondrial  integrity via CI (question marks).  
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Final remarks 
 

In conclusion, the complicated sequence of events eventually resulting in 

combination of the 38 nuclear DNA-encoded and seven mtDNA-encoded CI 

subunits requires the action of many proteins that are not part of the final functional 

structure. The entire process from translation to assembly encompasses a 

multitude of processes ensuring the proper import, processing and stabilization of 

subunits and subcomplexes. Once at the level of subcomplexes, based on 

assembly studies performed in different organisms, this most likely results in the 

membrane anchoring of a scaffold of highly conserved nuclear DNA-encoded CI 

subunits and subsequent expansion with preassembled dehydrogenase and proton 

translocation modules. Regarding the human CI assembly model, whether 

membrane insertion truly occurs upon addition of mtDNA-encoded subunit ND1 is 

yet to be demonstrated, as is the existence of intermediates for membrane arm 

subunits and the dehydrogenase (flavoprotein) assembly module. In any case, the 

proposed model serves as a solid framework for future studies for CI assembly. 

 

The role of assembly chaperones in this process could be more diverse than 

previously thought. On the one hand, the direct association of B17.2L to CI 

subunits shows that chaperones can directly affect assembly or stability of CI 

substructures. On the other, the association of assembly chaperone NDUFAF1 

with cytosolic signaling molecule Ecsit in structures that may not represent 

assembly intermediates suggests that some chaperone proteins may excert their 

function via regulatory complexes. Regulation could e.g. take place via direct 

feedback between assembly and activity of mitochondrial respiration and the 

particular energy requirements of the cell. If such a system exists, this opens up a 

new field in mitochondrial research in which not the assembly process itself, but a 

mechanism regulating the activity of the process is the focus of attention. Further 

investigation of this possibility aids the elucidation of both the mechanism of CI 

assembly and the understanding of many yet poorly understood CI deficiencies. 
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Summary 
 

Complex I (CI) assembly is a prominent example of how communication between 

the mitochondrion and the nucleus is required to make mitochondrial protein 

complexes, and investigation of the process will deliver insight into how the initial 

symbiosis between proto-mitochondrion and eukaryotic cell has developed into 

evolutionary integration. In a more applied context, in the case of mutation in one 

of the 45 CI subunits, studying disturbed CI assembly can aid the understanding 

and diagnosis of the many yet unexplained CI deficiencies. These are the major 

cause of mitochondrial disorders, which often result in severe multi-system 

disorders and ultimately in early childhood death.  

 

To understand the assembly of a macromolecular mitochondrial complex such as 

CI we should study both the intermediate assembly steps and the function of 

proteins proposed to coordinate and chaperone its assembly. 

 

Chapter 1 serves as an introduction to the research field of CI and provides an 

overview of the multiple processes involved in its assembly. Following this 

introduction, the thesis is divided into two parts. Part I describes investigations for 

the specific subassemblies that occur during the course of CI assembly. Based on 

these data, the first CI assembly models have been established. Part II discusses 

the existence and function of CI assembly chaperones. 

 

PART I: The complex I assembly scheme 
 

Theoretical studies have indicated that groups of CI subunits have co-evolved as 

modular structures in different organisms. Chapter 2 discusses the possibility that 

CI assembly reflects this modular build-up in the formation of modular 

subassemblies. Experimental support for this is presented in Chapter 3, in which 

CI assembly is investigated in a conditional assembly system. In this system, 

mitochondrial translation was first inhibited resulting in depletion of mtDNA 

encoded CI subunits, hence severely hampering CI assembly. Upon removal of 

this inhibition, the formation of specific subassemblies, indicative of assembly 

intermediates, could be studied. Composition analysis of the subassemblies 

demonstrated that the two structural arms of CI, the peripheral and membrane 

arms, assemble via distinct subassemblies corresponding to the modular evolution 

scheme. A different strategy to study CI assembly is described in Chapter 4. By 
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using leakage expression of an inducible NDUFS3-GFP construct, steady state 

labelling of six subassemblies was observed, of which two clearly accumulated 

after inhibition of mitochondrial translation. Removal of the inhibition resulted in the 

reversal of this effect and formation of larger subcomplexes, strongly suggesting 

that these two subcomplexes are true assembly intermediates which require 

mtDNA-encoded subunits for progression in assembly. By analysis of the stability 

of the observed subcomplexes, several breakdown products could be distinguished 

that can confuse (future) assembly analyses. Altogether, these studies have 

contributed to our insight into which assembly intermediates occur and which are of 

particular importance, providing a framework model for complex I assembly. 

 

PART II: Complex I assembly chaperones 
 

By analogy to the other oxidative phosphorylation complexes, many CI assembly 

chaperones are speculated to exist, but only two were found during the course of 

this project: B17.2L and NDUFAF1. Although NDUFAF1 is a homologue of 

Neurospora crassa CI assembly chaperone CIA30, it was yet unclear whether it is 

also an orthologue. Therefore, in Chapter 5, we investigated its subcellular 

localization and the effect of its knockdown using RNA interference. NDUFAF1 was 

specifically targeted to mitochondria and appeared present in several high-

molecular weight complexes. The specifically impaired CI activity and assembly 

after RNA interference demonstrated that NDUFAF1 is absolutely required for CI 

assembly in human mitochondria, supporting orthology between CIA30 and 

NDUFAF1. Chapter 6 describes the occurrence of chaperones B17.2L and 

NDUFAF1 in a set of CI deficient patients displaying varying assembly 

disturbances. B17.2L specifically appeared in a 830 kDa subcomplex in patients 

that carry a mutation in CI subunits NDUFS4 or NDUFV1, whereas NDUFAF1 

association to high-molecular weight protein complexes was only mildly different 

between the patients. Furthermore, even though a patient harbouring a mutation in 

mitochondrial elongation factor G1 displayed no CI assembly intermediates, 

NDUFAF1 was nevertheless present in its high-molecular weight associations. This 

suggests that the NDUFAF1-containing protein complexes may not represent 

assembly intermediates and that B17.2L and NDUFAF1 may operate differently in 

assembly. A novel CI chaperone, Ecsit, is described in Chapter 7. Ecsit is known 

as a cytosolic signaling intermediate in the Toll pathway, a cascade that mediates 

transcription of pro-inflammatory genes in response to binding of antigens at the 

plasma membrane. This chapter describes the unexpected finding of Ecsit in 

mitochondria, in the same mitochondrial high-molecular weight complexes as 
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NDUFAF1. Its knockdown results in decreased NDUFAF1 amount, specifically 

impaired CI assembly or stability and mitochondrial dysfunction. Ecsit may 

constitute a link between immunity and mitochondrial function, e.g. by regulation of 

the energy requirement or induction of apoptosis upon microbial or viral infection, 

via CI. 

 

In conclusion, Chapter 8 provides the general discussion, reflecting on both parts 

of this thesis. In part I, CI assembly is compared between different organisms in 

order to extract a general mechanism. It seems that assembly initiates with 

membrane anchoring of a highly conserved core of nuclear DNA-encoded CI 

subunits, which is subsequently expanded with membrane and peripheral arm 

modules. Part II discusses the function of molecular chaperones in CI assembly. 

The classical definition of a chaperone is discussed in relation to the function of 

currently known CI chaperones. Finding of the novel chaperone Ecsit in 

mitochondria signifies that CI-specific assembly chaperones may have an 

additional, regulatory function and are not simply the ‘glue’ that sticks assembly 

subcomplexes together. Discovery of mitochondrial Ecsit is in line with recent 

findings demonstrating that mitochondrial and immune function are closely related. 

If mitochondrial Ecsit is truly an extension of the immune cascade into 

mitochondria, the effects of disturbed CI assembly could be greater than previously 

anticipated which may help in explaining a broader spectrum of the clinical 

consequences of disturbed CI assembly. 
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Samenvatting 
 

Complex I (CI) assemblage is een vooraanstaand voorbeeld van hoe 

communicatie tussen het mitochondrion en de celkern nodig is voor de vorming 

van mitochondriële eiwitcomplexen. Door het bestuderen van het 

assemblageproces kan dus waardevolle informatie worden vergaard over hoe de 

symbiose tussen het proto-mitochondrion en de eukaryote cel zich heeft ontwikkeld 

tot evolutionaire integratie. In een meer toegepaste context, in gevallen van 

mutatie in één der 45 eiwitonderdelen (de zogenaamde subunits) van CI, kan het 

bestuderen van verstoorde CI assemblage leiden tot een beter begrip en betere 

diagnose van tot op heden onverklaarde CI deficiënties. Deze zijn de belangrijkste 

oorzaak van mitochondriële ziekten, welke vaak resulteren in ernstige multi-

systeem defecten en uiteindelijk in dood op jonge leeftijd. 

 

Voorwaarde voor het begrijpen van de assemblage van een macromoleculair 

mitochondrieel eiwitcomplex als CI is het bestuderen van zowel de tussenstappen 

van het assemblageproces (de zogenaamde intermediairen) als de eiwitten die het 

proces coördineren en vergemakkelijken (de zogenaamde chaperones). 

 

Hoofdstuk 1 dient ter inleiding op het CI onderzoek en geeft een overzicht van de 

verschillende processen die leiden tot haar uiteindelijke assemblage. Na deze 

introductie is dit proefschrift opgedeeld in twee delen. Deel I beschrijft onderzoek 

naar welke intermediairen worden gevormd tijdens het assemblageproces, wat 

uiteindelijk heeft geleid tot het opstellen van de eerste assemblagemodellen. Deel 

II beschrijft het bestaan en de functie van CI assemblage chaperones. 

 

Deel I: Het complex I assemblage model 
 

Theoretische studies hebben aangetoond dat groepen van CI subunits zijn geco-

evolueerd als modulaire structuren in verschillende organismen. Hoofdstuk 2 

bespreekt de mogelijke overeenkomsten tussen CI assemblage en deze modulaire 

opbouw. Experimentele aanwijzingen voor dit idee worden besproken in 

Hoofdstuk 3, waarin CI assemblage wordt bestudeerd in een conditioneel 

assemblage systeem. In dit systeem wordt mitochondriële eiwitsynthese eerst 

geremd waardoor CI assemblage ernstig wordt verstoord. Vervolgens wordt deze 

remming verwijderd waardoor CI assemblage weer kan plaatsvinden en 

assemblage intermediairen ontstaan. Analyse van de samenstelling van deze 
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intermediairen toonde aan dat de twee structurele armen van CI, de perifere en de 

membraan arm, worden opgebouwd uit intermediairen die overeenkomen met de 

modulaire opbouw van CI. Een andere strategie om CI assemblage te 

onderzoeken wordt besproken in Hoofdstuk 4. Door het gebruik van zeer milde 

constitutieve expressie van een induceerbaar NDUFS3-GFP construct kan de 

vorming van CI assemblage intermediairen die NDUFS3-GFP bevatten direct 

worden gevolgd in de tijd. Op deze manier zijn zes intermediairen geïdentificeerd, 

van welke er twee specifiek ophopen na remming van mitochondriële 

eiwitsynthese. Het verwijderen van de remming doet deze ophoping verdwijnen en 

leidt tot het ontstaan van grotere intermediairen en CI. Dit toont aan dat deze 

intermediairen zeer waarschijnlijk echte assemblage intermediairen zijn welke 

mitochondrieel DNA gecodeerde CI subunits nodig hebben om voort te gaan 

tijdens assemblage. Analyse van de stabiliteit van de onderzochte intermediairen 

toonde bovendien aan welke intermediairen mogelijk afbraakproducten van CI zijn, 

wat verwarring in toekomstige studies naar CI assemblage kan voorkomen. 

Tesamen hebben genoemde studies bijgedragen aan het inzicht van welke 

assemblage intermediairen voorkomen en welke van cruciaal belang zijn. 

 

Deel II: Complex I assemblage chaperones 
 

Analoog aan de andere oxidatieve phosphorylering complexen wordt vermoed dat 

er ook voor CI veel assemblage chaperones moeten bestaan. Er zijn er echter 

maar twee gevonden tijdens de looptijd van dit project: B17.2L en NDUFAF1. 

Hoewel NDUFAF1 bekend is homoloog te zijn aan Neurospora crassa CI 

assemblage chaperone CIA30, was onbekend of het ook een ortholoog is. Daarom 

is in Hoofdstuk 5 onderzocht of NDUFAF1 ook mitochondrieel is en wat het effect 

is van zijn afwezigheid middels RNA interferentie. NDUFAF1 bleek mitochondrieel 

en RNA interferentie leidde tot een sterke afname in CI assemblage en activiteit, 

wat ondersteunt dat NDUFAF1 net als CIA30 in Neurospora crassa nodig is voor 

CI assemblage. In Hoofdstuk 6 wordt onderzocht hoe B17.2L en NDUFAF1 

associëren met hoogmoleculair gewicht eiwitcomplexen in een groep CI deficiënte 

patiënten. Het bleek dat waar B17.2L specifiek associeerde met een 830 kDa groot 

complex in patiënten met een NDUFS4 of NDUFV1 mutatie, NDUFAF1 juist weinig 

tot geen variatie vertoonde in zijn associatie met eiwitcomplexen tussen de 

patiënten. Zelfs in een patient met een mutatie in mitochondrieel elongatie factor 

G1, welke geen CI intermediairen vertoonde, was NDUFAF1 nog aanwezig in de 

eiwitcomplexen. Dit steunt de gedachte dat de NDUFAF1 eiwitcomplexen mogelijk 

geen assemblage intermediairen zijn en dat B17.2L en NDUFAF1 op een 



Samenvatting 

 253 

verschillende manier betrokken zijn in het assemblageproces. Een nieuwe CI 

assemblage chaperone, Ecsit, wordt beschreven in Hoofdstuk 7. Ecsit is bekend 

als een cytosolisch eiwit betrokken bij de Toll-receptor gemedieerde 

immuuncascade, welke ligandbinding aan het plasmamembraan koppelt aan de 

productie van cytokines. Dit hoofdstuk beschrijft de verrassende aanwezigheid van 

Ecsit in het mitochondrion, waar het in dezelfde eiwitcomplexen aanwezig is als 

NDUFAF1. RNA interferentie van Ecsit leidde tot een afname in NDUFAF1, 

verstoorde CI assemblage of stabiliteit en mitochondriële disfunctie. Mogelijk is 

Ecsit een link tussen de immuunrespons en mitochondriële functie, bijvoorbeeld 

door regulatie van de energiebehoefte of inductie van apoptose na infectie, via CI. 

 

Tenslotte levert Hoofdstuk 8 de algemene discussie, waarin wordt teruggekeken 

naar beide delen van dit proefschrift. In deel I wordt CI assemblage tussen 

verschillende organismen vergeleken om een algemeen assemblage mechanisme 

op te stellen. Het blijkt dat assemblage begint met het koppelen van een deel van 

CI aan het membraan, waarna het deelcomplex verder wordt uitgebreid met 

membraan en perifere arm modules. Deel II bespreekt de functie van bekende CI 

assemblage chaperones en spiegelt deze aan de klassieke definitie van een 

chaperone. De vondst van de nieuwe chaperone Ecsit in het mitochondrion toont 

aan dat CI specifieke assemblage chaperones mogelijk additionele, regulatieve 

functies kunnen hebben en niet simpelweg de ‘lijm’ zijn die intermediairen aan 

elkaar plakt. Mitochondrieel Ecsit past goed in data uit recente publicaties die een 

hechte relatie tussen immuunrespons en mitochondrion suggereren. Als 

mitochondrieel Ecsit inderdaad een extensie is van de immuunrespons tot in 

mitochondrion, zou dit kunnen helpen in het verklaren van een breder spectrum 

van de klinische consequenties van verstoorde CI assemblage. 
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Ons lichaam bruist van activiteit. Of we nu rustig op de bank zitten, een marathon 

lopen, of een appeltje eten, we worden continu van energie voorzien door onze 

stofwisseling. Die stofwisseling zorgt er onder meer voor dat het pas verorberde 

appeltje wordt afgebroken tot moleculaire bouwstenen, welke worden ingezet voor 

lichaamsonderhoud, groei en, als voornaamste, aanmaak van energie in de vorm 

van adenosine trifosfaat (ATP). Een volwassen man zet per dag wel 65 kg van 

deze energiedrager om. Dat is leuk om te weten, maar in het dagelijkse leven is 

energie zo vanzelfsprekend dat we er niet bij stilstaan. Behalve als iemand in onze 

naaste omgeving wordt getroffen door een erfelijke stofwisselingsziekte. 

 

Erfelijke stofwisselingsziekten zijn aangeboren stoornissen in de stofwisseling. 

Deze kennen vele verschijningsvormen, waarbij het Nijmegen Center for 

Mitochondrial Disorders (NCMD) zich richt op mitochondriële ziekten. Deze ziekten 

worden veroorzaakt door stoornissen in de energiefabriek van de cel: het 

mitochondrion. Binnen het NCMD verdiept onze onderzoeksgroep zich specifiek in 

een der mitochondriële ziekten genaamd complex I deficiëntie. Complex I is één 

van de vijf enzymcomplexen uit het oxidatieve fosforyleringssysteem, dat het 

grootste aandeel van de mitochondriële ATP voorziening voor zijn rekening neemt. 

Zoals de naam al doet vermoeden, is bij complex I deficiëntie de primaire oorzaak 

van de stofwisselingsziekte een tekort aan of slecht functionerend complex I. Vaak 

zijn meerdere, veel energie verbruikende organen tegelijk aangedaan zoals de 

hersenen, ogen, hart- en skeletspieren, lever en nieren. Deze zogenaamde 

multisysteme defecten hebben een incidentie van 1:10.000 levende geboorten en 

resulteren meestal in een dood op jonge leeftijd. Helaas is er nog weinig inzicht in 

de moleculaire oorzaak van deze deficiënties, waardoor het opzetten van 

diagnostische en therapeutische strategieën tot op heden problematisch is 

gebleken. 

 

In de meeste gevallen van complex I deficiëntie speelt verstoorde aanmaak van 

complex I een prominente rol. Deze aanmaak vereist communicatie tussen de 

celkern en het mitochondrion, waarbij de 38 kerngecodeerde en 7 door het 

mitochondrieel DNA gecodeerde eiwitten worden gecombineerd tot een functioneel 

enzymcomplex. Mijn promotieonderzoek heeft zich bezig gehouden met dit 

zogenaamde assemblageproces. Het bestuderen hiervan dient om inzicht te 

verkrijgen in de moleculaire achtergrond van complex I deficiëntie ten behoeve van 
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het ontwikkelen van diagnostiek, en ter bevordering van fundamenteel inzicht in de 

aanmaak van oxidatieve phosphoryleringscomplexen. 

 

Dit proefschrift beschrijft in twee delen de uitkomst van vier jaar onderzoek naar 

het assemblageproces van complex I. Deel I beschrijft drie studies naar hoe de 

afzonderlijke bouwstenen van complex I worden gecombineerd tot een volwassen 

enzymcomplex. Allereerst is een hypothetisch assemblagemodel opgesteld naar 

aanleiding van onderzoeken naar de structuur van het complex in verschillende 

organismen. Vervolgens zijn twee studies beschreven met tot doel het vinden van 

tussenstappen in het assemblageproces. Deze studies hebben geleid tot de 

identificatie van enkele belangrijke tussenstappen en uiteindelijk tot een 

basismodel voor complex I assemblage. In deel II van dit proefschrift zijn 

hulpeiwitten bij assemblage, de zogenaamde chaperone eiwitten, onderzocht. 

Deze zijn noodzakelijk voor het juist verlopen van het proces, maar maken geen 

onderdeel uit van het gevormde enzymcomplex. In de drie beschreven studies is 

achtereenvolgens het belang van één van die hulpeiwitten aangetoond, is de 

verschijningsvorm van hulpeiwitten in een groep patienten met verschillende 

stoornissen in complex I assemblage onderzocht en is een nieuw hulpeiwit ontdekt, 

genaamd Ecsit. Verrassend genoeg was Ecsit voorheen bekend van zijn rol in de 

immuunrespons, een proces waarvan lang werd gedacht dat het niets met het 

mitochondrion te maken heeft. 

 

Dit laatste ondersteunt de gedachte dat het mitochondrion geen autonome 

energiecentrale binnen de cel is, maar juist vervlochten met cellulaire processen 

zoals gereguleerde celdood (apoptose) en de immuunrespons. De mogelijke 

koppeling tussen complex I assemblage en andere processen blijkt hiervan een 

uitstekend voorbeeld te zijn. Ten eerste zijn verscheidene complex I subunits 

betrokken bij additionele processen zoals vetzuursynthese en apoptose. Ten 

tweede blijken assemblage chaperones ook betrokken bij respectievelijk myc-

geinduceerde celproliferatie, de immuunrespons en gereguleerde celdood.  

 

Hopelijk leiden toekomstige studies binnen deze veelbelovende onderzoekslijn tot 

een verdere bevestiging van het belang van complex I assemblage voor 

mitochondriële en cellulaire functie. Implicaties in celdood en immuunrespons 

zouden bijvoorbeeld het begrip kunnen vergroten van waarom complex I deficiënte 

patiënten zo snel achteruit gaan na een virale infectie. In een bredere context kan 

de bijdrage van mitochondriën aan erfelijke stofwisselingsziekten en processen als 

Parkinson, kanker en veroudering beter worden verklaard. In al deze gevallen 



Samenvatting voor niet-ingewijden 

 257 

speelt onze energievoorziening een belangrijke rol. Opdat u daaraan denkt bij uw 

volgende appeltje. 
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