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1.1 Phonetic transcriptions 

1.1.1 A brief history 

Phonetic transcriptions are written representations of speech. Similar to the way orthographic 
transcriptions represent the spelling of words as strings of symbols called graphemes, 
phonetic transcriptions describe the pronunciation of words (i.e. the sequence of speech 
sounds or phones in words) as strings of symbols that are usually referred to as phonemes or 
allophones. 

The study of phonetics and the use of phonetic transcriptions date back to around 1500 
BC, when priests in different regions of India used phonetic transcriptions as an aid to 
preserve and propagate the original pronunciation of the Vedas, religious scriptures of the 
ancient Hindus (Kemp, 1994b). These early phonetic efforts were soon incorporated in the 
description of Sanskrit (Deshpande, 1994). Because of the diversity of phonetic transcription 
systems that emerged throughout history and because of the different aims for which these 
systems were developed and used (Ohala, 1994), it was not until the advent of the Alphabet of 
the International Phonetic Association (IPA) in 1888 (Kemp, 1994a) and computer readable 
alternatives such as the ARPABET and the Speech Assessment Methods Phonetic Alphabet 
(SAMPA) in the seventies and eighties of the previous century (Shoup, 1980; Wells, 1997) 
that phonetic transcriptions could be easily used in linguistic studies and speech applications 
that crossed language boundaries (Ohala, 1994). Figure 1.1 illustrates an orthographic 
transcription, an IPA transcription, an ARPABET and a SAMPA transcription of the sentence 
“At last, this dissertation is ready”, spoken with a British accent. 

 
 
orthographic transcription at last this dissertation is ready 
IPA transcription æt l��z ��z d�s�te��n �z �
di 

ARPABET transcription aet laaz dhihz dihsaxteyshn axz rehdiy 
SAMPA transcription {t lA:z DIz dIs@teISn @z redi: 
 

Figure 1.1: An orthographic, IPA, ARPABET and SAMPA transcription of the sentence: 
“At last, this dissertation is ready”, spoken with a British accent. 

 

1.1.2 Different types of phonetic transcriptions 

Originally developed as a tool to preserve cultural and religious heritage, phonetic 
transcriptions gradually came to serve various other purposes. As a result, different 
transcription types emerged, and the term ‘phonetic transcription’ became a generic term 
covering transcriptions that can be described as: 
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- systematic or impressionistic, according to the purpose they are generated for 
- phonemic or allophonic, according to the linguistic status of their phonetic symbols 
- broad or narrow, according to the level of detail in their symbol set  
(Ladefoged, 1993:40-42; Laver, 1995:549-562).  

 
First explaining the difference between phonemic and allophonic transcriptions and 
subsequently the difference between broad and narrow transcriptions greatly facilitates the 
explanation of the systematic-impressionistic dichotomy. 

Phonemic transcriptions represent speech in terms of the basic contrasting units or 
phonemes of a language’s sound system. Phonemes can be defined as the speech sounds by 
means of which the speakers of a language can change the meaning of words. In English, for 
example, the words ‘map’ and ‘nap’ have a different meaning only because of the alternating 
use of the sounds /m/ and /n/. Therefore /m/ and /n/ are considered two different phonemes in 
English. Although large overlaps occur between the phoneme inventories of natural 
languages, each language is characterised by a specific inventory. In conversational speech, 
phonemes are often realised differently in different contexts. The phoneme /n/, for example, is 
mostly pronounced with the tip of the tongue touching the alveolar ridge behind the upper 
teeth. In most varieties of English, however, the same phoneme /n/ is pronounced with the tip 
of the tongue touching the upper teeth rather than the alveolar ridge when it occurs before a 
dental fricative such as in ‘tenth’. The phoneme /n/ is often even pronounced as a bilabial 
instead of an alveolar or a dental nasal when it precedes a bilabial stop such as in ‘brown 
bear’. Dental, bilabial and other realisations of the phoneme /n/ are called allophones of that 
phoneme when they can be attributed to the application of a structural phonological rule of the 
language to the underlying phoneme. Both the dental and the bilabial pronunciation of /n/, for 
example, are the result of a well-known English phonological rule called regressive 
assimilation of place of articulation which defines that a sound is articulated with a closure of 
the oral cavity at the same place as the closure made for the following sound. Transcriptions 
which represent the standard pronunciation of phonemes in words without reflecting any 
alternating pronunciation due to the application of phonological rules are called phonemic 
transcriptions. Transcriptions which represent the actual realisation of phonemes insofar they 
result from the application of phonological rules are called allophonic transcriptions. 
Phonemic transcriptions are useful to describe the systematic use of contrasting sounds in a 
language, but they cannot be used to represent the structurally defined pronunciation of words. 
For that purpose, allophonic transcriptions are used. 

The number of different symbols with which transcriptions are generated determines the 
phonetic detail transcriptions can represent. Phonetic transcriptions that, because of the 
limited size of their symbol set, can only describe broad or general phonetic detail are called 
broad (phonetic) transcriptions. Phonetic transcriptions that are generated with a more 
elaborate symbol set, and that can therefore also describe narrow or fine phonetic detail are 
called narrow (phonetic) transcriptions. Since the phoneme inventories of all languages are 
limited in size, phonemic transcriptions can be considered broad phonetic transcriptions. 
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Allophonic transcriptions can be either broad or narrow transcriptions, depending on the 
number of different symbols they display. 

Phonetic transcriptions are called systematic transcriptions if they represent the sound 
system or phonology of a language. Phonemic and allophonic transcriptions are systematic 
transcriptions because they represent only the contrastive sounds of a language or the 
phonologically determined variants of these sounds. As opposed to systematic transcriptions, 
impressionistic transcriptions are not phonologically but phonetically motivated. Their 
purpose is not to describe speech sounds in the phonological framework of a specific 
language, but rather to describe the pronunciation of phones with as much phonetic detail as 
their symbol set allows. Impressionistic transcriptions are often used to describe new 
languages or pathological speech for which no phonological assumptions can be made. 

The diversity of transcriptions described here shows that “there is not ONE possible 
segmental [phonetic] transcription of a given utterance, but various ones, depending on the 
aim of the research” (Cucchiarini, 1993:3). For the purpose of this dissertation, it is important 
to note that it addresses research on and with systematic broad allophonic transcriptions, 
hereafter referred to as broad phonetic transcriptions of speech. 

1.1.3 Usefulness of phonetic transcriptions for research and development 

Phonetic transcriptions started out as a means of recording the pronunciation of words some 
3400 years before the mechanical recording of sound was made possible through inventions 
of Scott (in 1857; his phonoautograph could not yet play back sound), Edison (in 1877; his 
phonograph could play back sound) and many others in the nineteenth and twentieth century 
(Straw, 1993). Phonetic transcriptions soon became part of the standard tool chest for 
descriptive linguistic research (Deshpande, 1994), and they have ever since proven useful in 
the fields of phonetics (Ladefoged, 2003), phonology (Labov, 1994; Ladefoged and 
Maddieson, 1996), sociolinguistics (Nerbonne et al., 1996), language pedagogy, lexicography 
(Wells, 2000) and the study of speech and language disorders and ensuing speech therapy 
(Howard and Heselwood, 2002). 

In addition, the advent of computers in the seventies and the strong increase in computing 
power in the eighties and the nineties of the previous century created new computer-driven 
speech applications that required the availability of ever larger amounts of phonetic 
transcriptions. Nowadays, phonetic transcriptions are also used in computer assisted 
pronunciation training (Neri et al., 2002), in automatic speech recognition (Strik and 
Cucchiarini, 1999) and in text-to-speech synthesis (Bellegarda, 2005). 

1.2 Generation of broad phonetic transcriptions 

Broad phonetic transcriptions can be generated manually, automatically or semi-
automatically. Whereas the manual production of broad phonetic transcriptions completely 
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relies on the efforts of human transcribers, automatic and semi-automatic transcription 
procedures require the use of an automatic transcription system, the output of which is either 
taken for granted (automatic transcription procedures) or manually verified and corrected by 
human transcribers (semi-automatic transcription procedures).  

1.2.1 Manual generation of broad phonetic transcriptions 

Obviously, manual transcription procedures have the longest history. Well before the advent 
of computers, people recorded speech by translating their auditory perception of the signal 
into sequences of phonetic symbols. Although human transcription quality is still generally 
considered a valuable reference for assessing the quality of automatic transcriptions (see 
Section 1.3.2), the manual generation of phonetic transcriptions has proven to be a time-
consuming and therefore expensive undertaking. Binnenpoorte (2006) reported that the 
transcription of one minute of conversational speech takes about sixty minutes when the 
transcription is made from scratch. In addition, on various occasions, human transcribers have 
shown to make biased judgements because of their phonetic expectations of the speech signal 
(Oller and Eilers, 1975), their transcription training (Ladefoged, 1960; Catford, 1974) or the 
transcription protocol they try to adhere to. Even more disturbing because more difficult to 
monitor, human transcribers often make random errors, for example due to fatigue 
(Cucchiarini, 1993). This can all translate into intra-transcriber disagreements (the same 
stretch of speech is transcribed differently by the same transcriber at two points in time) and 
inter-transcriber disagreements (the same stretch of speech is transcribed differently by 
different transcribers) (Shriberg and Lof, 1991). 

Whereas most previous phonetic, phonological and sociolinguistic studies were conducted 
on the basis of manually transcribed and therefore rather limited speech samples, computer-
driven speech applications such as computer assisted pronunciation training, automatic speech 
recognition (ASR) and text-to-speech synthesis soon required much larger amounts of 
phonetically transcribed data. In the late eighties and the early nineties of the previous 
century, this increased need for phonetically transcribed speech data instigated the recording 
and phonetic transcription of large speech corpora such as the TIMIT Acoustic-Phonetic 
Continuous Speech Corpus (Lamel et al., 1986; Fisher et al, 1986; TIMIT, 1990). Although 
TIMIT was still entirely transcribed by hand, soon a new line of research started investigating 
procedures to transcribe large speech corpora in an automatic or semi-automatic fashion 
(Binnenpoorte, 2006; Demuynck et al., 2004; Greenberg, 1997; Ljolje and Riley, 1991; Ljolje 
et al., 1997; Schiel, 1999; Vorstermans and Martens, 1994). 

1.2.2 Automatic and semi-automatic generation of broad phonetic transcriptions 

Both automatic and semi-automatic transcription procedures require the use of a computer-
driven automatic transcription system, either to deliver an example transcription that can be 
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manually verified (semi-automatic transcription procedures) or to generate a transcription that 
can be considered as is (automatic transcription procedures). Automatic phonetic 
transcriptions (APTs) can be generated in a number of ways. 

Grapheme-based transcription procedures 

One of the easiest ways to generate APTs is to substitute every word in the orthographic 
transcription with its canonical transcription, i.e. the transcription of the canonical or standard 
pronunciation of the word as if it is spoken in a formal style in isolation from the context of 
neighbouring words (Laver, 1995:551). The canonical pronunciation of words is usually 
stored in a pronunciation dictionary (or lexicon), an ordered list of words (represented as 
strings of graphemes) with their pronunciation (represented as strings of phonemes or 
allophones). The canonical pronunciation of words can be obtained manually through 
introspection or automatically through so-called grapheme-to-phoneme rules which substitute 
graphemes with phonemes (Bellegarda, 2005). 

Because grapheme-based transcription procedures consider the graphemes in orthographic 
transcriptions to contain sufficient information to derive phonetic transcriptions from, the actual 
speech signal is ignored in the transcription process. This makes grapheme-based transcription 
procedures relatively easy to implement. However, the ignorance of the speech signal as a clue 
to determine the pronunciation of words and the exclusive use of one standard pronunciation per 
word imposes severe limitations on grapheme-based transcription procedures, the most 
important limitation being their inability to account for pronunciation variation. 

This inability to transcribe the same word in different ways according to how it is actually 
pronounced is problematic because speakers tend to insert, delete and substitute speech 
sounds in real-life speech, particularly in more spontaneous speech (Cucchiarini and 
Binnenpoorte, 2002; Johnson, 2004). Transcription procedures that make their decisions on 
the basis of the acoustic properties of the speech signal instead of on the basis of the 
graphemes in the orthographic transcription alone, and that explicitly allow words to be 
transcribed in different ways do not pose such a problem. We call such procedures signal-
based transcription procedures. 

Signal-based transcription procedures 

Signal-based transcription procedures usually require the use of an ASR system. Although ASR 
systems are usually built and employed for word recognition (i.e. automatic orthographic 
transcription) conventional ASR systems can be easily converted into systems that label smaller 
linguistic units such as phones. The transcription of phones can be done through free phone 
recognition, constrained phone recognition and forced recognition (in this context also referred 
to as forced alignment). The names of these procedures refer to the degree of constraints on the 
search space of the ASR system. These constraints act as sign posts that guide the ASR system 
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to the most plausible symbolic representation of the acoustic signal. More guidance (or: the use 
of more constrained or restricted transcription methods) usually results in better transcriptions. 

Free phone recognition is the least restrictive signal-based transcription method; it only 
requires an ASR system and a set of acoustic models representing the acoustic properties of 
the sounds in the language to be transcribed. Acoustic models of ASR systems are trained by 
providing such systems with labelled speech units. After being provided with enough 
correctly labelled units (words, phones or other units of speech), acoustic models represent the 
variation in the acoustic properties of those units. ASR systems running in free phone 
recognition mode do not employ linguistic constraints to limit their transcription options, 
hence the name of the procedure. ASR systems that perform free phone recognition only rely 
on their acoustic models to locate and label phones in speech. 

Constrained phone recognition is a more restrictive transcription method because in 
addition to an ASR system with a set of trained acoustic models, it requires a phonotactic 
model that describes the (likelihood of) phone sequences in the language at hand. The use of 
phonotactic models puts a constraint on the search for the best phonetic symbol given the 
acoustic context, hence the name of the procedure. 

Forced recognition is the most restrictive transcription method, because in addition to an 
ASR system with well-trained acoustic models, it requires an orthographic transcription of the 
material that has to be transcribed and a pronunciation lexicon with one or more pronunciations 
for every word in the orthographic transcription. ASR systems that perform forced recognition 
are literally forced to retrieve the best matching pronunciation variant in the pronunciation 
lexicon for every word in the orthography, hence the name of this procedure. 

The generation of plausible pronunciation variants and the addition of such variants to 
pronunciation lexica are commonly known as lexical pronunciation modelling. As a subfield 
of ASR, lexical pronunciation modelling received much attention around the turn of the 
century. This is reflected in the organisation of various workshops on the topic (e.g. the 1998 
ESCA Tutorial and Research Workshop on modelling pronunciation variation for automatic 
speech recognition in Kerkrade, the Netherlands, and the 2002 ISCA Tutorial and Research 
Workshop on Pronunciation Modelling and Lexicon Adaptation for Spoken Language in 
Colorado, USA), special issues of scientific journals (e.g. Strik, 1999) and the publication of 
various PhD dissertations on the topic (e.g. Kessens, 2002; Saraçlar, 2000; Wester, 2002). 

Manual verification of automatic phonetic transcriptions 

In practice, the automatic phonetic transcriptions of large speech corpora are sometimes at 
least partially verified and corrected (sometimes even double-checked) by human transcribers 
in an attempt to correct the most salient transcription errors. Examples of such corpora are the 
Buckeye Corpus of Conversational Speech (Pitt et al., 2005; Pitt et al., 2006) and the Spoken 
Dutch Corpus, a recent 9M word corpus of contemporary Dutch of which the automatic 
phonetic transcriptions of a 1M word subset were manually verified and corrected by trained 
linguistics students (Gillis et al., 2001; Goddijn and Binnenpoorte, 2003; Oostdijk, 2002). 
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The use of an automatically generated example transcription was found to increase the 
transcription speed considerably as opposed to manual transcription from scratch. Demuynck 
et al. (2002) reported that their students needed 40 minutes to verify the transcription of one 
minute of spontaneous speech (and 15 minutes to manually verify the transcription of one 
minute of public lectures). This is a considerable improvement to the aforementioned 60 
minutes required to transcribe one minute of conversational speech from scratch 
(Binnenpoorte, 2006). However, semi-automatic transcription procedures also imply risks. 

No matter how well linguists are trained, expert judgements of an example transcription 
can still be biased by the linguist’s linguistic expectations (Coussé and Gillis (2006) found 
regional influences in the manually verified transcriptions of the Spoken Dutch Corpus), by 
the training the transcribers received, and by the protocol describing how and when to modify 
the example transcription. In addition, the use of an example transcription can tempt human 
transcribers into adhering to the example transcription despite contradicting acoustic cues in 
the speech signal. Demuynck et al. (2004), for example, reported cases where human 
transcribers preferred not to change the example transcription in the presence of contradicting 
acoustic cues, and cases where transcribers left phones in the example transcription that could 
not be aligned with a specific portion of the speech signal. Binnenpoorte (2006:9) therefore 
questioned “the added value of having human transcribers correct an automatically 
generated phonetic transcription”. 

 
Having described the benefits and the potential drawbacks of manual, automatic and semi-
automatic transcription procedures, a description of a good procedure to evaluate phonetic 
transcriptions seems in place. 

1.3 Validation of phonetic transcriptions 

1.3.1 Terminology: validity and reliability 

Although phonetics had already been practiced for centuries and although phonetic 
transcriptions had been used equally long, it was not until the second half of the previous 
century that linguists became aware of the importance of carefully evaluating their phonetic 
measurements before sharing their conclusions with others. Ladefoged’s introduction to his 
1960 paper on The Value of Phonetic Statements is quite illustrative in this respect: 
 

“It is odd that linguists, who pride themselves on the rigor and scientific nature of 
many of their concepts, should nevertheless be so tolerant of vague, unverified 
statements in some parts of their field. To take an example, [Bernhard] Bloch has 
made many contributions to linguistic theory in a long series of excellent 
publications, but he does not appear to have adopted any scientific procedure to 
check the validity of the phonetic statements.” 



INTRODUCTION 
 

9 

Ladefoged, who also considered himself as one of “the majority of linguists [who] constantly 
use loose unverified descriptions in all their work” (Ladefoged, 1960:387) primarily referred 
to the more general notion of phonetic statements and not so much to phonetic transcriptions 
as such. Nevertheless, his message was clear: no interpretations of speech should be 
propagated without validating them first. 

The term validity has always been important in statistics and the social sciences. In these 
fields, measures, instruments and experiments are considered valid when they measure what 
they are supposed to measure (Cucchiarini, 1993:11). Similarly, in the much younger field of 
speech corpora and annotation science, speech corpora and data annotations are considered 
valid when they meet the prescribed specifications in the corpus documentation (Van den 
Heuvel and Sanders, 2006). In a general way, the validity of a measure, an instrument, an 
experiment, a corpus or its annotations can be described as the extent to which they serve the 
purpose they are used for. 

The term validity is closely linked to, but distinct from, the notion of reliability. The 
reliability of a measure, a test or an instrument refers to its consistency or its ability to yield 
the same results in repeated measurements of the same phenomenon under identical 
conditions. Whereas validity implies reliability (an experiment can only be valid if the same 
values are found for the same variables in repeated measurements under identical conditions), 
reliability does not imply validity (an experiment can be reliable in that it measures variables 
consistently that are nonetheless inconclusive or invalid to confirm or falsify a hypothesis). 

In her study on the nature of variation in phonetic transcriptions, Cucchiarini (1993:12-13) 
described the terms validity and reliability in the context of phonetic transcriptions. She stated 
that “The validity of a transcription could be estimated by comparing the transcription to the 
reality it is supposed to represent (the ‘true’ criterion scores).” However, it was instantly 
added that “this raises two questions: what is a transcription supposed to represent and how 
can ‘true’ criterion scores be obtained?” 

Phonetic transcriptions, as stated in the introduction to this Chapter, describe the 
pronunciation of words. But, since phonetic transcriptions are the written representations of 
perceptual analyses of speech, the accuracy with which they represent the speech signal is a 
priori restricted by the auditory perception of the transcriber, and by the detail of the symbol 
set with which the transcriptions will be generated. Each mapping of a continuous speech 
signal onto a sequence of discrete phonetic symbols taken from a finite symbol set implies 
some degree of quantisation error. These errors show in the time domain as well as in the 
acoustic domain, for all acoustic properties in a certain time interval have to be represented by 
just one symbol. Obviously, the quantisation errors in both domains will be larger if fewer 
symbols are used, as is the case with broad phonetic transcriptions. Considering this, phonetic 
transcriptions cannot represent all articulatory properties characterising the pronunciation of 
words, but only “those articulatory properties of speech sounds which filter through auditory 
perception and the symbol system” (Cucchiarini, 1993: 13). This means that phonetic 
transcriptions can be validated by comparing them to a reference transcription: a segmental, 
restricted description representing exactly those articulatory properties. 
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1.3.2 Traditional validation of phonetic transcriptions 

As indicated in the previous Section, the validation of language resources (e.g. speech 
corpora) and their annotations is usually conducted by systematically comparing them with 
their specifications in the documentation of the resource (Van den Heuvel and Sanders, 2006). 
In the world of language resources such a ‘validation procedure’ serves as a quality 
assessment: language resources (and annotations) that are in agreement with their 
specifications are indirectly supposed to serve the purpose(s) they were generated for – and 
thus considered valid. 

Nowadays speech corpora are often delivered with a lexicon comprising one or more 
pronunciation variants for every word in the orthographic transcription (e.g. the databases 
constructed in the SpeechDat framework - Van den Heuvel et al., 2001), or with a broad 
phonetic transcription which is provided as an additional annotation layer (e.g. Switchboard - 
Greenberg, 1997; The Spoken Dutch Corpus - Goddijn and Binnenpoorte, 2003). These 
transcriptions are usually validated by an independent human expert who assesses the 
acceptability of the symbols in a representative subset of the transcriptions in terms of their 
correspondence to the transcription guidelines coming with the language resource (TIMIT, 
1990; Greenberg, 1997; Goddijn and Binnenpoorte, 2003; Pitt et al., 2005). The larger the 
number of agreements or the smaller the number of disagreements, the more valid phonetic 
transcriptions are considered to be. Figure 1.2 illustrates the alignment of the phonetic 
symbols in a manually verified phonetic transcription (PT) from the Spoken Dutch Corpus 
and a reference transcription (RT), and the subsequent computation of the number of symbol 
substitutions (sub), insertions (ins) and deletions (del) and the overall disagreement measure 
(percentage disagreement). 
 
 

PT E n  d A d  b @ v i l  w - -  a r d @ x
RT E n  d a -  b @ v i l  w E l  a r d I x

     sub ins         del del     sub  
Dutch e n  d a t  b e v ie l  w e l  aa r d i g

English and  that  was      pleasant  quite 
 

=×






 ++= %100
symbolsreference

insertionsdeletionsonssubstitutintdisagreeme%  %41,29%100
17

122 =×






 ++  

 
Figure 1.2: Alignment and computation of disagreement between  
a phonetic transcription (PT) and a reference transcription (RT). 

 
 
Agreements and disagreements between a transcription and its reference transcription(s) can 
be counted by hand, but increased computing power has enabled us to automatically align 
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strings of phonetic symbols on the basis of their articulatory features, and to compute the 
number of identical and different symbols accordingly (Cucchiarini, 1993). 

Since the auditory perception of human transcribers is open to subjectivity and since 
automatic phonetic transcriptions and semi-automatic transcriptions are not necessarily 
flawless either, it is generally considered impossible to generate an objective, ‘true’, ultimate 
reference transcription to compare and validate phonetic transcriptions with. The literature has 
provided useful approximations to the elusive ‘true’ transcription though, most of which were 
designed as aids for linguistic research rather than as reference transcriptions for validation 
purposes. 

In their study on speech sound acquisition by three- to six-year-olds, Shriberg et al. (1984) 
describe the generation and the use of a consensus transcription. A consensus transcription is 
generated by two or more transcribers who are forced to agree on every symbol in the 
transcription. Whereas Shriberg et al. (1984) originally described the rules to generate and use 
a narrow consensus transcription, broad consensus transcriptions can be used for the 
validation of broad phonetic transcriptions (Goddijn and Binnenpoorte, 2003). The most 
important advantage of using a consensus transcription as a reference to compare and validate 
phonetic transcriptions with is the careful consideration of every speech sound by all 
transcribers, so that the resulting transcription will most probably be very plausible. The most 
important disadvantage is the time and money required to have several human transcribers 
agree on the symbolic representation of every speech sound. In addition to this disadvantage, 
the generation of consensus transcriptions involves the risk that one or a few transcribers 
dominate the decision making. This can introduce a bias in the transcription. 

Majority vote transcriptions offer an alternative to consensus transcriptions as reference 
transcriptions for the validation of phonetic transcriptions. Kuijpers and van Donselaar (1997) 
generated such a majority vote transcription to study schwa insertion and schwa deletion in 
Dutch. Three trained transcribers transcribed the speech material individually. Their 
transcriptions were compared afterwards. In the case of discrepancies between the phonetic 
symbols in the transcriptions, the symbol used by two of three transcribers was retained. If 
there was no agreement between the transcribers, the transcription was excluded from the 
study. Although the authors used a majority vote procedure as a means of describing 
pronunciation variation, majority vote transcriptions could also be used as reference 
transcriptions to compare and validate other transcriptions with. Compared to the generation 
of consensus transcriptions, the generation of majority vote transcriptions as described in 
Kuijpers and van Donselaar (1997) cannot be dominated by one or more transcribers. In 
addition, the use of a high number of transcribers still gives a fair chance of a plausible 
reference transcription. However, the use of several transcribers (three or more in order to 
enable a majority vote when the transcribers disagree) also implies substantial time and 
monetary constraints, and it may not be easy for transcribers to reach a majority vote on every 
symbol if they have to make a complete transcription. Majority votes can be reached easier if 
transcribers have to attend to just one or a few speech processes in controlled contexts (e.g. 
the presence or absence of schwa in particular phonetic contexts).  
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As opposed to the aforementioned validation procedures which all involve the use of just 
one reference transcription, phonetic transcriptions can also be validated in terms of their 
(dis)agreements with several phonetic transcriptions made by different transcribers. Although 
such validation procedures are primarily used to assess the transcription consistency of and 
between individual transcribers, they also offer a multi-valued reference with which phonetic 
transcriptions can be compared: the disagreements between a transcription and each individual 
reference transcription can be compared with the pair wise disagreements between each of the 
reference transcriptions (Binnenpoorte et al., 2003; Greenberg et al., 1996; Kipp et al., 1996; 
Kipp et al, 1997). The validation of phonetic transcriptions in terms of various reference 
transcriptions has the same benefits and drawbacks as the use of a majority vote transcription: 
the employment of more transcribers may increase the robustness of the validation procedure 
against idiosyncratic errors in the reference transcriptions. Unfortunately, it also implies 
considerable time and budgetary investments. 

It can be concluded that each of these validation procedures is time consuming and 
expensive because of the employment of human transcribers for the generation of a reference 
transcription. This explains why the phonetic transcriptions of large speech corpora are 
commonly validated through the assessment of just a small subset of the transcriptions which 
is considered to be representative for the rest of the corpus (TIMIT, 1990; Greenberg, 1997; 
Goddijn and Binnenpoorte, 2003; Pitt et al., 2005). 

1.3.3 An alternative to traditional validation procedures: Application-oriented 
validation 

Irrespective of their individual advantages and disadvantages, each traditional validation 
procedure in which phonetic transcriptions are validated through a comparison with one or 
more reference transcriptions ignores one important part of the definition of validity given in 
the first paragraph of this Section: […] the validity of a measure or an instrument determines 
to what extent the measure or the instrument serves the purpose it is used for. Looking back at 
the aforementioned validation procedures, it appears that none of them considers the variety 
of purposes phonetic transcriptions can serve. Since phonetic transcriptions are mostly used as 
(and sometimes even specifically generated to be) instruments to serve a specific purpose or 
application (e.g. phonetic research, automatic speech recognition, text-to-speech synthesis or 
pronunciation training), it seems only natural to validate them in terms of the application they 
are meant to serve whenever that application is a given. After all, a phonetic transcription 
which resembles a reference transcription better may not always lead to a better performance 
of each application it will be employed in. Application-oriented validation procedures in 
which phonetic transcriptions would be validated in terms of the measure directly related to 
the application they have to serve (e.g. the Word Error Rate -the percentage of erroneously 
recognised words- for automatic speech recognition) would at least guarantee that the 
suitability of a transcription for that particular application is assessed in the best possible way.  
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1.4 Aims and outline of this dissertation 

The research reported in this dissertation was conducted with three aims in mind. These aims 
are reflected in Chapters 2 to 5, which report studies that were conducted between October 
2002 and March 2007 with colleagues at the Centre for Speech and Language Technology 
(CLST) at the Radboud University Nijmegen and at the Interfaculty Research Unit for 
Language and Speech, also located in Nijmegen. 
 
Our first aim was to reconsider the general applicability of traditional validation procedures 
that validate phonetic transcriptions through a comparison with one or more human-made 
reference transcriptions. Experience shows that, in particular in the context of large speech 
corpora, phonetic transcriptions are usually validated through such procedures, irrespective of 
the procedure the transcriptions were generated with (manual, automatic or semi-automatic) 
and irrespective of the research and applications they will be used for. Since phonetic 
transcriptions are often used to train automatic speech recognition systems, and since the 
relationship between recognition performance and a transcription’s resemblance to one or 
more reference transcriptions has never been proven, we conducted a study to test whether a 
traditional validation method offers a useful indication of a transcription’s suitability for the 
training of automatic speech recognition systems. This study is reported in Chapter 2. We 
validated a basic canonical transcription and a manually verified phonetic transcription in 
terms of their resemblance to a consensus transcription and in terms of the application they 
would be used for: the training of an automatic speech recognition system. The relation 
between the outputs of the traditional and the application-oriented validation procedure was 
not straightforward. This has considerable implications for the future validation of phonetic 
transcriptions. 

Our second aim was to investigate the applicability of fully automatic transcription 
procedures for the generation of human-like transcriptions of large speech databases. So-
called speech corpora are often partially provided with a semi-automatic (viz. manually 
verified) phonetic transcription. Since the employment of human transcribers is time-
consuming and expensive, we tested whether we could create human-like transcriptions by 
means of a fully automatic and therefore quicker and cheaper transcription procedure. Chapter 
3 reports how we systematically compared the output transcriptions of ten automatic 
transcription procedures with a semi-automatic (manually verified) transcription of the 
Spoken Dutch Corpus. One automatic transcription resembled the manually verified 
transcription quite closely. This result is promising because the automatic procedure by means 
of which the transcription was generated now enables us to transcribe speech corpora that 
would otherwise be too large to be ever transcribed or verified by human transcribers. 

Our third aim was to investigate the usefulness of both semi-automatic (manually verified) 
and automatic phonetic transcriptions as tools for the disclosure of linguistic knowledge in 
large speech corpora. Chapter 4 reports a study in which we used a semi-automatic 
transcription from the Spoken Dutch Corpus to investigate under what circumstances phones 
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and syllables are deleted in spontaneous Dutch. To this end, we linked information from the 
metadata and the orthographic and syntactic annotations of the Spoken Dutch Corpus to every 
phone and syllable in the semi-automatic phonetic transcription of the Spoken Dutch Corpus. 
Subsequently we fitted mixed-effect models with crossed random effects to automatically 
determine which linguistic and extra-linguistic factors favour the deletion of phones and 
syllables in spontaneous Dutch. Our results proved the value of mixed-effect modelling with 
crossed random effects for the simultaneous and automatic assessment of the degree to which 
various variables are related to a particular phenomenon, and they proved the semi-automatic 
transcriptions of the Spoken Dutch Corpus to contain a wealth of linguistic knowledge that 
can be easily accessed through the use of statistics. 

Chapter 5 reports a study in which we investigated the use of automatic phonetic 
transcriptions for automatic speaker classification. We used a classification algorithm 
(Linguistic Profiling; van Halteren, 2004) to automatically learn characteristic speech habits 
from broad phonetic and orthographic transcriptions of speech from speakers whose gender, 
age, level of education and regional background were known. This knowledge was 
subsequently used to determine the gender, age, level of education and regional background of 
unknown speakers on the basis of the orthographic and broad phonetic transcription of their 
speech. In order to train the classification algorithm, we required more phonetic transcriptions 
than were manually verified in the Spoken Dutch Corpus. Therefore, we used the most 
optimal transcription procedure from Chapter 3 to automatically generate a phonetic 
transcription of all speech that fitted our experimental design. The results of our study are 
promising but as yet inconclusive, which has led us to formulate suggestions for targeted 
additional research. 
 
Chapter 6 summarises the insights gained from the aforementioned studies on the validation, 
the automatic generation and the use of broad phonetic transcriptions. Special attention is paid 
to the implications of our studies for the validation and the automatic generation of phonetic 
transcriptions of large speech corpora. 
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Abstract 
 

Some of the speech databases and large spoken language corpora that have been 
collected during the last fifteen years have been (at least partly) annotated with a 
broad phonetic transcription. Such phonetic transcriptions are often validated in 
terms of their resemblance to a handcrafted reference transcription. However, there 
are at least two methodological issues questioning this validation method. Firstly, no 
reference transcription can fully represent the phonetic truth. This calls into question 
the status of such a transcription as a single reference for the quality of other 
phonetic transcriptions. Secondly, phonetic transcriptions are often generated to 
serve various purposes, none of which are considered when the transcriptions are 
compared to a reference transcription that was not made with the same purpose in 
mind. Since phonetic transcriptions are often used for the development of automatic 
speech recognition (ASR) systems, and since the relationship between ASR 
performance and a transcription’s resemblance to a reference transcription does not 
seem to be straightforward, we verified whether phonetic transcriptions that are to be 
used for ASR development can be justifiably validated in terms of their similarity to a 
purpose-independent reference transcription.  

To this end, we validated canonical representations and manually verified broad 
phonetic transcriptions of read speech and spontaneous telephone dialogues in terms 
of their resemblance to a handcrafted reference transcription on the one hand, and in 
terms of their suitability for ASR development on the other hand. Whereas the 
manually verified phonetic transcriptions resembled the reference transcription much 
closer than the canonical representations, the use of both transcription types yielded 
similar recognition results. The difference between the outcomes of the two validation 
methods has two implications. First, ASR developers can save themselves the effort of 
collecting expensive reference transcriptions in order to validate phonetic 
transcriptions of speech databases or spoken language corpora. Second, phonetic 
transcriptions should preferably be validated in terms of the application they will 
serve because a higher resemblance to a purpose-independent reference transcription 
is no guarantee for a transcription to be better suited for ASR development. 
 
Keywords: Broad Phonetic Transcriptions, Validation, Automatic Speech 
Recognition. 

2.1. Introduction 

Phonetic transcriptions are the written records of perceptual analyses of speech. They describe 
continuous speech signals as sequences of discrete phonetic symbols. These symbols can be 
chosen from small (more general) or large (more detailed) sets of symbols, depending on the 
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purpose the transcriptions are generated for. Transcriptions can be handmade, machine-made 
or they can be generated through a joint effort of man and machine. 

Formally speaking, the validity of phonetic transcriptions indicates the adequacy with 
which the transcriptions represent the original speech signals, and as such also the adequacy 
with which the transcriptions serve the purpose which they will be employed for (Cucchiarini, 
1993). However, the purpose for which transcriptions are made is not always unique nor 
always known in advance. Some of the speech databases and large spoken language corpora 
that have been collected during the last fifteen years (e.g. Switchboard (Godfrey et al., 1992; 
Greenberg, 1997) or the Spoken Dutch Corpus (Oostdijk, 2002; Goddijn and Binnenpoorte, 
2003)) have been (at least partly) annotated with a phonetic transcription without knowing the 
specific purpose(s) the transcriptions would serve, since the corpora were explicitly aimed at 
serving a wide variety of research and development projects. In such contexts, phonetic 
transcriptions can only be validated by means of a purpose-independent validation criterion.  

More often than not, phonetic transcriptions are validated through a comparison with 
some handmade reference transcription (RT) that is considered to be the most accurate 
representation of the speech signal that can be obtained with a given set of transcription 
symbols. In the literature several different instantiations of RTs have been used. Saraçlar et al. 
(2000) used a manual transcription that was independently produced by a phonetician. Kipp et 
al. (1996) used several independently produced manual transcriptions, each of which served 
as an independent reference. Kuijpers and van Donselaar (1997) also used several 
independently produced manual transcriptions, but they used them as a single reference by 
considering only the majority vote for every phonetic symbol. Shriberg et al (1984) argued that 
the best possible transcription is obtained by forcing two or more expert phoneticians to agree 
on each and every symbol in the transcription. A so-called ‘consensus transcription’ differs from 
a majority vote transcription in that the latter does not involve a negotiation phase during which 
individual transcribers may change their original transcript. Irrespective of the procedure 
through which a reference transcription is obtained, we will call the validation of phonetic 
transcriptions in terms of their resemblance to an RT the traditional validation method. 

There are at least two methodological issues that raise questions about the traditional 
method for validating phonetic transcriptions. The first issue relates to the status of the RT as 
the ‘true’ representation of the original speech signal. Since speech signals are the result of 
continuous dynamic gestures of articulators, each mapping of such a continuous process onto 
a sequence of symbols that are taken from a finite symbol set implies some degree of 
quantisation error. These errors show in the time domain as well as in the acoustic domain 
because all acoustic properties in a certain time interval have to be represented by just one 
symbol. Obviously, the quantisation errors in both domains will be larger if fewer symbols are 
used. The decision on the number and the identity of the symbols is to some extent dependent 
on the phonetician’s background. It can be concluded that there is no such thing as the “true” 
representation of a speech signal in the form of a sequence of discrete symbols (Cucchiarini, 
1993). Consequently, the concept of a unique symbolic representation of a speech signal is 
elusive at best. The traditional validation method, however, always requires such a unique 
representation in the form of a reference transcription. 
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The second methodological issue is less obvious. It is related to the seemingly 
undisputable operationalisation of the concept of a transcription’s validity in terms of the 
transcription’s similarity with a purpose-independent reference transcription; there may not 
always be such a clear correlation between a transcription’s similarity to a reference 
transcription and the transcription’s suitability to serve a certain purpose. For example, no 
matter what the accuracy of a broad phonetic transcription may be, it will not be suitable for a 
phonetician who wants to represent the degree of diphthongisation of long vowels, simply 
because a broad phonetic transcription only reflects two extreme stages of diphthongisation: 
the process is either fully present or completely absent. For other applications, in which the 
detail in the phonetic transcription seems to correspond to the detail required by the 
application, the usefulness of the traditional validation method may be more difficult to 
estimate in advance. One such application is the development of automatic speech recognition 
(ASR) systems.  

ASR development requires large speech databases or spoken language corpora with 
corresponding phonetic transcriptions for several different purposes, including the training of 
acoustic models and the construction of pronunciation lexica. It is intuitively reasonable to 
expect that acoustic models will be less polluted if they are trained on the basis of a ‘better’ 
transcription, and to think that words will be more accurately recognised if the recogniser’s 
pronunciation lexicon comprises ‘better’ phonetic transcriptions. If we assume that 
transcriptions are ‘better’ if they are ‘more similar’ to a reference transcription, we assume 
that the traditional validation method is suitable for validating transcriptions that are to be 
used for ASR development. 

Interestingly, however, the inverse relation between a transcription’s resemblance to an 
RT and ASR performance does not hold. Kessens and Strik (2004) investigated the 
relationship between the performance of a set of continuous speech recognisers, and the 
resemblance between an RT and phonetic transcriptions that were generated by the different 
recognisers. They concluded that recognisers with a higher recognition performance (or: a 
lower word error rate (WER)) do not guarantee the generation of phonetic transcriptions that 
are more similar to a given RT. 

Since the relationship between recognition performance and a transcription’s resemblance 
to an RT does not seem to be straightforward, this study was aimed at testing whether the 
traditional validation method offers a useful indication of a transcription’s suitability for basic 
ASR development. If, in addition to the results in Kessens and Strik (2004), we would fail to 
find a positive relationship between a transcription’s resemblance to an RT and its suitability 
to develop ASR systems, this would indicate that phonetic transcriptions may be better 
validated through an application-oriented validation method (which, in our case, would mean 
in terms of their contribution to ASR performance). Such a result would also indicate that 
ASR developers could save themselves the tedious and expensive effort of collecting 
reference transcriptions in order to validate phonetic transcriptions that may come with a new 
training database. 

We required two resources to assess the validity of phonetic transcriptions in terms of 
their contribution to ASR performance. First, we required a corpus suitable for the training 
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and the evaluation of an ASR system. This corpus had to contain at least two different 
transcriptions that could be used for that purpose. Second, we needed a fixed platform to 
develop and test the ASR system, in order to isolate the effect of the phonetic transcriptions 
from the multitude of other factors that could affect the performance of the ASR system. 

Our first requirement was met by the Spoken Dutch Corpus (Oostdijk, 2002), a 9-million-
word spoken language corpus, 10% of which comes with a manually verified broad phonetic 
transcription (Goddijn and Binnenpoorte, 2003). The second type of transcription that we 
used, viz. a canonical representation, is available in the canonical lexicon that typically comes 
with every corpus for ASR development. The corpus and the two transcriptions are described 
in more detail in Sections 2.3.1 and 2.3.2.  

The requirement of a fixed platform to isolate the transcriptions as the only factor 
affecting the recognition performance was met by fixing the training and test corpora as well 
as the language models of our system. As a consequence, we could study the effect of the two 
transcription types in relation to 1) the amount of phonetically transcribed material that was 
used to train the acoustic models (since the production of manually verified transcriptions is 
time-consuming and expensive, the amount of training speech that comes with a manually 
verified phonetic transcription cannot be expected to be as large as the amount of speech that 
can be annotated with a canonical representation), 2) the procedures with which the acoustic 
models were trained (with the canonical representations, the manually verified phonetic 
transcriptions, or through a bootstrap procedure involving both transcription types), and 3) the 
pronunciations in the recognition lexicon (canonical representations or manually verified 
phonetic transcriptions). 

Since we aimed at investigating the direct influence of the two transcriptions in a fixed 
experimental design, we did not aim at optimising recognition performance by all possible 
means. Rather, our intention behind the fixed experimental design was similar to the intention 
behind the research conducted in the framework of the AURORA project, where the ASR 
decoder was fixed, and performance improvements could only be obtained by adapting the 
acoustic features (Pearce, 2001). For the same reason, it should be clear that we did not aim at 
generating the most accurate transcription possible. Rather, we aimed at testing whether the 
traditional and the application-oriented validation method agreed on their assessments of the 
validity of the phonetic transcriptions in order to establish whether the traditional validation 
method guarantees an adequate indication of a transcription’s suitability for ASR 
development. 

This paper is organised as follows. Section 2.2 describes how canonical representations 
and manually verified phonetic transcriptions were validated in terms of the traditional 
validation method and in terms of their contribution to recognition performance. Section 2.3 
presents the speech material and the architecture of the speech recogniser. In Section 2.4, we 
present and discuss the results of the validation experiments. In Section 2.5, we discuss the 
implications of our results. 
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2.2 Experimental setup 

We validated canonical representations and manually verified phonetic transcriptions (MPTs) 
of data comprising two different speech styles: read speech and telephone dialogues. The 
details of the transcriptions are presented in Section 2.3.2. Here we confine ourselves to 
mentioning that the canonical representations were generated by concatenating the standard 
pronunciations of the words in the orthographic transcriptions. The MPTs were made by 
trained students who checked and corrected canonical representations by listening to the 
speech signal. The reference transcriptions were consensus transcriptions produced by two 
trained phoneticians.  

2.2.1 Traditional validation method 

We compared the canonical representations and the manually verified phonetic transcriptions 
with reference transcriptions of the same data. To that end we aligned the transcriptions of 
every speech style with the appropriate RT. Subsequently we summarised the disagreements 
between the transcriptions and the RT in an overall disagreement measure that was defined as: 
 

%100×






 ++=
phone

phonephonephone

N
InsDelSubntdisagreemePercentage     (1) 

 

i.e. the sum of all phone substitutions (Subphone), deletions (Delphone) and insertions (Insphone) 
divided by the total number of phones in the RT (Nphone). 

We used Align (Cucchiarini, 1996) to align the phonetic transcriptions and to compute the 
percentage disagreement between them. Align is a dynamic programming algorithm designed 
to compute the optimal alignment between two strings of phonetic symbols according to 
matrices in which the articulatory feature values for the phonetic symbols are defined. The 
optimal feature matrices were determined in previous research on similar data (Binnenpoorte 
and Cucchiarini, 2003). The matrices are presented in Appendix 2.1. 

2.2.2 Application-oriented validation method 

We validated the canonical representations and the MPTs in terms of their contribution to the 
overall recognition performance of a standard continuous speech recogniser. We adhered to 
the traditional evaluation metric for recognition performance in ASR, the word error rate 
(WER), which is defined as: 
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i.e. the sum of all word substitutions (Subword), deletions (Delword) and insertions (Insword) 
divided by the total number of words in the orthographic reference transcription (Nword). 

The overall recognition performance of a continuous speech recogniser can be influenced 
by numerous factors. Two important factors, viz. the quality of the acoustic models and the 
degree to which the pronunciation lexicon contains realistic phonetic transcriptions for words 
to be recognised, are directly dependent on the availability of suitable phonetic transcriptions. 
The quality of acoustic models depends on the suitability of the phonetic transcriptions of the 
training material, because acoustic model training involves a time-alignment of large amounts 
of speech with corresponding phonetic transcriptions. Likewise, the quality of a pronunciation 
lexicon is determined by the quality of its transcriptions, in that more realistic phonetic 
transcriptions increase the chance of words to be correctly recognised. In addition, it has 
repeatedly been found that recognition performance also depends on the (lack of) 
correspondence between the transcriptions in the recognition lexicon and the transcriptions 
with which the acoustic models are trained. As already indicated, we validated the canonical 
representations and the MPTs in terms of overall recognition performance. By fixing the 
continuous speech recogniser but for the acoustic models and the recognition lexicon, we 
guaranteed that differences in the overall recognition performance could only result from the 
transcriptions’ influence on the acoustic models and the recognition lexicon. 

Per speech style, we conducted a series of four experiments. In these experiments, we 
trained the same recogniser with different sets of acoustic models (all context-independent 
models with a fixed model topology, but trained with different transcriptions and different 
amounts of training data) and we tested the recogniser with different recognition lexica. Table 
2.1 presents a schematic overview of the four experiments. The experiments were characterised 
by three variables: 1) the amount of training data we used to train the acoustic models (large or 
small training set), 2) the (combinations of) transcriptions we trained the acoustic models with 
(canonical, MPT or a bootstrap procedure involving both transcription types – see below) and 3) 
the type of the transcriptions in the recognition lexica (canonical or MPT).  
 

Table 2.1: Overview of the recognition experiments. 
 

 size of the training sets transcriptions for the 
training of acoustic models 

transcriptions in the 
recognition lexica 

experiment 1 small canonical canonical 

experiment 2 small MPT MPT-based 

experiment 3 large canonical canonical 

experiment 4a canonical 

experiment 4b 
large bootstrap MPT + canonical 

MPT-based 
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In experiment 1, we trained acoustic models with the canonical representations of the small 
training sets (see Section 2.3.1), and we used the same transcriptions to build canonical 
recognition lexica. The results of the first experiment formed a good baseline for the second 
experiment, in which we used the MPTs of the same small training sets to train the acoustic 
models and to build MPT-based recognition lexica. Since the production of MPTs tends to be 
time-consuming and expensive, larger sets of MPTs than the ones used in this second 
experiment are hardly ever available. 

The third experiment resembled the first experiment, in that we trained acoustic models 
with canonical representations and in that we used the same canonical recognition lexica. 
However, this time we trained acoustic models with the canonical representations of much 
larger amounts of training data. The increased size of the data sets (as opposed to the first 
experiment) had to provide insight into the importance of the size of data sets for the training 
of efficient acoustic models. All acoustic models used in the first three experiments were 
generated from scratch (i.e. starting from a linear segmentation of the material). 

In ASR, one often uses modest amounts of MPTs to train initial sets of acoustic models 
that, in a second training pass, are further trained with larger amounts of automatic phonetic 
transcriptions. This training method is called bootstrapping. We applied bootstrapping since 
we assumed that acoustic models that were initially trained with a small amount of MPTs and 
that were subsequently further trained with a large amount of canonical representations would 
outperform acoustic models that were trained from scratch with only canonical 
representations. 

In the fourth experiment, we used the acoustic models of experiment 2 (which were 
trained on the MPTs of the small data sets) to align the speech data of the large data sets with 
the corresponding canonical representations of the data. Then we trained new acoustic models 
with the time-aligned canonical representations of the large data sets. Since the resulting 
acoustic models were based on a two-pass training procedure with MPTs and canonical 
representations, recognition experiments were carried out with both the canonical recognition 
lexica  (exp. 4a) and the MPT-based lexica (exp. 4b). The alternating use of these recognition 
lexica (while using the same acoustic models) enabled us to study the effect of the different 
types of transcriptions in the recognition lexica in isolation. 

To conclude, these experiments allowed us to validate the canonical representations and 
the manually verified phonetic transcriptions in terms of their suitability to train acoustic 
models and to generate recognition lexica. The transcriptions’ suitability was reflected in and 
measured in terms of the recogniser’s overall recognition performance. Whereas experiments 
1 and 2 provided insight into the general influence of the two transcription types on the 
recognition performance, experiments 1 and 3 assessed the influence of different amounts of 
training data on the training of efficient acoustic models. Experiments 4a and 4b allowed us to 
investigate the influence of the different recognition lexica on the recognition performance.  
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2.3 Material and continuous speech recogniser 

2.3.1 Speech material 

We extracted the speech material for our experiments from the Spoken Dutch Corpus (Corpus 
Gesproken Nederlands - CGN, 2004; Oostdijk, 2002). The Spoken Dutch Corpus is a 9-
million-word multi-purpose spoken language corpus comprising Dutch as spoken in the 
Netherlands and Flanders in different communicative settings. The whole corpus was 
orthographically transcribed, lemmatised, and supplied with part-of-speech tagging. A 1-
million-word subset of the corpus, the so-called core corpus, was enriched with a manually 
verified broad phonetic transcription and a syntactic annotation. 

We conducted our experiments on speech from the Netherlands. The data we used 
comprised two speech styles with different acoustic and communicative properties: read speech 
(read aloud texts from a library for the blind) and conversational telephone dialogues. The read 
speech was recorded with table-mounted microphones and sampled at 16 kHz with a 16-bit 
resolution. The material comprised monologues with a vivid prosodic structure (due to the 
material’s fictional content and the purpose the texts were read for: entertainment). The 
telephone dialogues were recorded through a telephone platform and sampled at 8 kHz with an 
8-bit A-law coding. The two speakers in each conversation were recorded on separate channels. 
 

 
Table 2.2: Statistics (number of words/tokens) of the data sets. 

 
reference sets experimental sets 

speech style 
 

large 
training set 

small 
training set 

development 
test set 

evaluation 
test set 

# words 1,108 532,451 47,517 7,940 7,940 read 
speech hh:mm:ss 0:04:57 44:55:59 4:04:28 0:40:10 0:41:39 

# words 363 263,501 41,736 6,953 6,955 telephone 
dialogues hh:mm:ss 0:01:26 18:20:05 1:29:23 0:30:02 0:29:50 

 
 
Per speech style, we divided the material into two separate data sets which will hereafter be 
called the reference sets and the experimental sets (see Table 2.2). The data in the reference 
sets were provided with a consensus transcription. This enabled us to validate the phonetic 
transcriptions according to the traditional validation method. The data in the experimental sets 
were used to validate the phonetic transcriptions in terms of their suitability for ASR 
development (a more application-oriented validation method). To this end, the transcriptions 
were used to train (large and small training sets), tune (development test sets) and test 
(evaluation test sets) our continuous speech recogniser. Except for the training sets (the large 
training sets comprised the small training sets), all data sets were mutually exclusive. 
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2.3.2 Phonetic transcriptions 

We worked with broad phonetic transcriptions of speech. All transcriptions were generated with 
the CGN phone set comprising 46 phones. However, not all of these phones occurred frequently 
enough in the training data to train robust acoustic models. In order to alleviate this problem, we 
mapped the phones in the transcriptions to the 39 phones presented in Appendix 2.2. 

The canonical representations were generated by means of a lexicon-lookup procedure in 
which every word in the orthography was substituted with its standard pronunciation as 
represented in the canonical pronunciation lexica described in Section 2.3.3. 

We extracted the MPTs of the data in the reference sets, the small training sets and the 
development and evaluation test sets from the CGN. The MPTs of the CGN are based on 
canonical representations to which all obligatory word-internal phonological processes (such 
as assimilation and degemination) were applied (Goddijn and Binnenpoorte et al., 2003; 
Booij, 1999). Cross-word processes were not applied. Human transcribers verified and 
corrected these example transcriptions according to a strict protocol. They were instructed to 
change the automatic transcriptions only if they were certain that the changes would yield a 
transcription that was substantially closer to the actual speech signal. As a consequence, the 
MPTs of the CGN may have a bias towards the canonical representations. However, such a 
check-and-correct procedure is a standard transcription procedure that has also been followed 
in other transcription projects (e.g. Greenberg, 1997). 

The RTs were made in a fundamentally different way. Whereas the MPTs were made by 
human transcribers manually verifying an automatically generated transcription, the RTs were 
generated by two expert phoneticians transcribing from scratch. The transcribers had to reach 
a consensus on every symbol in the RTs. As a consequence, our reference sets were quite 
small compared to the evaluation test sets. However, whereas consensus transcriptions are 
always limited in size, they are often used to assess the validity of transcriptions obtained by 
means of other transcription procedures (like the MPTs and the canonical representations in 
our experiments).  

2.3.3 Lexica 

Canonical pronunciation lexica 

Our canonical lexica (one for each speech style) comprised one canonical pronunciation for 
every word in the development, evaluation and small training sets. The canonical lexica were 
compiled from the TST-lexicon (in-house version of 29-09-2004) and the CGN-lexicon. The 
TST-lexicon is a comprehensive multi-purpose lexicon for language and speech processing. It 
was compiled by merging various existing electronic lexical resources such as CELEX 
(Baayen et al, 1995; CELEX Lexical Database, 2005), RBN (Referentiebestand Nederlands, 
2005), and PAROLE (PAROLE lexicon, 2005). The CGN lexicon (delivered with the first 
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release of the CGN) comprised the canonical representations of almost all unique word forms 
occurring in our data sets. The phonetic representations in the CGN lexicon were generated by 
means of TREETALK (Hoste et al., 2000), a grapheme-to-phoneme converter trained on the 
CELEX Dutch database (Baayen et al., 1995). Obvious errors in frequent words were manually 
corrected. The transcriptions of English loan words that were not yet included in the CGN 
lexicon were obtained from the CELEX English database (Baayen et al., 1995). The missing 
transcriptions of geographical names were obtained from ONOMASTICA (Quazza and van den 
Heuvel, 2000). The remaining out-of-vocabulary words were transcribed by means of a rule-
based grapheme-to-phoneme converter (Kerkhoff and Rietveld, 1994) and the transcriptions 
were manually verified. 

Pronunciation lexica with manually verified phonetic transcriptions 

The MPT-based lexica (one for each speech style) were generated through word-to-
transcription mappings between the orthographic transcriptions and the MPTs of the data in 
the development, evaluation and small training sets. We included the manually verified 
pronunciations of the words in the development and evaluation sets because not all of these 
words occurred in the small training sets. In doing so, we excluded the number of out of 
vocabulary words as an extra variable from the comparison of the canonical and the MPT-
based lexica. Similarly, in order to exclude the lexical confusability from the comparison of 
the lexica, we retained only the most frequently observed pronunciation variant per word. This 
way both the canonical and the MPT-based lexica contained precisely one pronunciation for 
every word in the orthographic transcriptions. 

The major difference between the canonical lexica and the MPT-based lexica was that the 
canonical lexica reflected the underlying morphological structure of the words and hypotheses 
about their underlying phonemic representations, whereas the MPT-based lexica mainly 
reflected knowledge about the most frequent pronunciation of the words in everyday speech. 
The MPT-based and the canonical lexica for the read speech contained different transcriptions 
for 40% of their entries, the lexica of the telephone dialogues for 45% of their entries. 

2.3.4 The continuous speech recogniser 

The continuous speech recogniser was built with the HTK toolkit (Young et al., 2001) using 
standard procedures. The characteristics of the recogniser were fixed in all experiments, 
except for the recognition lexicon and the acoustic models, which were based on the different 
phonetic transcriptions under investigation. 

Several pre-processing procedures were applied to the speech signal. First pre-emphasis 
was applied. Feature extraction was implemented as a Fast Fourier Transform using a 
Hamming window every 10 ms for 25-ms frames. The mel-scaled filter bank analysis (50-
8000 Hz for the read speech and 80-4000 Hz for the telephone dialogues) resulted in 39 
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cepstral coefficients per frame (12 coefficients and a separate energy component, and their 
delta and acceleration coefficients). 

The recogniser used one back-off bigram language model per speech style. The evaluation 
test set perplexity of the read speech was 61.12. The evaluation test set perplexity of the 
telephone dialogues made 43.22. The lower test set perplexity of the telephone dialogues 
reflects the high frequency of standard phrases in the conversations. The higher test set 
perplexity of the read speech reflects the fact that the read speech comprised fragments with 
varied content from a number of different novels that were written by different authors. The 
order of magnitude of the test set perplexities was low enough to obtain credible WERs and at 
the same time high enough to not obscure the effects of improved acoustic models.  

The acoustic models were 3-state continuous density left-right context-independent 
Hidden Markov Models. We trained speech style specific acoustic models on the canonical 
representations and the MPTs of the large and small training sets. Per set, 39 models were 
trained: 37 phone models, one model representing long silences, and one 1-state model 
modelling the optional short pauses between words (see Appendix 2.2). All models were 
gender-independent and accent-independent and comprised 32 mixture components (diagonal 
variance vectors) per state.  

2.4 Results and discussion 

2.4.1 Traditional validation method 

Table 2.3 reflects the validity of the phonetic transcriptions of both speech styles as assessed 
in terms of their overall disagreement (in % disagreement) with a reference transcription. 
 
 

Table 2.3: Validation of phonetic transcriptions in terms of their deviation from a reference transcription.        
The lower the % disagreement, the better the transcription is considered to be. 

 
speech style PT substitutions (%) deletions (%) insertions (%) % disagreement 

canonical 7.39 3.51 1.14 12.04 read speech 
MPT 3.88 1.19 0.69 5.76 

canonical 9.60 10.92 1.08 21.61 telephone 
dialogues MPT 4.68 2.64 1.08 8.4 

 

The results in Table 2.3 are very clear: 1) the MPTs consistently resembled the RTs more than 
the canonical representations did (p < .01, t-test), and 2) the deviations of the different 
transcriptions from the RTs were larger when more spontaneous speech was involved. The 
significance of the differences suggests that the power of the test was sufficiently large despite 
the moderate size of the reference sets. 
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The relatively high resemblance between the MPTs and the RTs (as compared to the 
resemblance between the canonical representations and the RTs) is probably due to the fact 
that the MPTs and the RTs, even though produced according to different protocols (cf. 
Section 2.3.2), were produced by human transcribers who based their judgments on the actual 
speech signal. The canonical representations were automatically produced without taking the 
actual speech signal into account. 

The results in Table 2.3 are in line with results published in the field. Binnenpoorte et al. 
(2003) also reported that the degree of resemblance between phonetic transcriptions and a 
reference transcription is inversely related to the degree of spontaneity of the transcribed speech, 
and proportional to the amount of manual effort devoted to the production of the transcriptions. 

In any case, the results in Table 2.3 indicate that according to the traditional validation 
method, the validity of the MPTs of the Spoken Dutch Corpus is significantly higher than the 
validity of the canonical representations of the same material. 

2.4.2 Application-oriented validation method 

Table 2.4 reflects the validity of the phonetic transcriptions of both speech styles as assessed 
in terms of the transcriptions’ contribution to recognition performance (in WER). 
 
 

Table 2.4: Validation of phonetic transcriptions in terms of their influence on recognition performance.           
The lower the WER, the more suitable the transcription is considered to be. 

 
 speech style substitutions (%) deletions (%) insertions (%) WER (%) 

read speech 7.68 2.85 0.82 11.35 experiment 1 
tel dialogues 33.43 17.12 2.60 53.16 
read speech 7.95 2.07 1.27 11.28 

experiment 2 
tel dialogues 33.56 16.97 2.56 53.09 
read speech 7.61 2.17 0.96 10.73 

experiment 3 
tel dialogues 32.47 17.97 2.13 52.57 
read speech 7.36 2.75 0.91 11.01 

experiment 4a 
tel dialogues 33.64 16.99 2.66 53.30 
read speech 7.77 2.07 1.12 10.96 

experiment 4b 
tel dialogues 33.26 17.11 2.52 52.42 

 
 
The modest nature of the recognition results in Table 2.4 can be partly explained by the lively 
prosody and fictional content characterising the read speech, and by the spontaneity and 
acoustic conditions characterising the telephone dialogues. Moreover, only bigram language 
models and context-independent acoustic models were used, since our main target, viz. 
validating phonetic transcriptions for ASR, only required the development of a standard 
recogniser that differed with respect to 1) the amount of phonetically transcribed data used to 
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train the acoustic models, 2) the type of transcriptions of the training data, and 3) the type of 
transcriptions in the recognition lexicon. It is most striking that for both speech styles, none of 
the experiments yielded significantly different WERs (p > .05, t-test). 

The recognition results of the first two experiments imply that the canonical 
representations were as suitable as the MPTs for training acoustic models on relatively small 
data sets (40K words), and for building pronunciation lexica for recognition. Remarkably, this 
did not only hold for the read speech, but also for the more spontaneous telephone dialogues 
in which the actual pronunciation could be expected to differ substantially from the canonical 
representation of the words. The MPT-based ASR system obtained a WER of 53.09%, which 
was almost identical to the 53.16% WER obtained by the system that was developed on the 
basis of the canonical representation of the words. 

A comparison of the results of the first and the third experiment illustrates that the use of 
larger training sets (500K) decreased the WERs, though not significantly (0.62% absolute 
decrease on the read speech, 0.59% absolute decrease on the telephone dialogues). We did not 
conduct a similar experiment with MPTs, since the Spoken Dutch Corpus does not provide 
MPTs for such a large training set (nor does any other corpus available to date). However, 
MPTs of smaller data sets can be used to train acoustic models which in turn can be used to 
get good initial segmentations of much larger data sets. In our fourth experiment, we validated 
MPTs and canonical representations in terms of their potential for such a bootstrapping 
procedure. 

In experiment 4a, we used the acoustic models trained on the MPTs of the small data sets 
(experiment 2) to get good initial segmentations of the large data sets. These segmentations 
were generated through a forced alignment of the canonical representations with the speech 
signal. A comparison of the results of experiments 3 and 4a illustrates that the bootstrapping 
procedure did not yield significantly different recognition results. 

A comparison of the results of experiments 4a and 4b shows that the combined use of the 
MPT-based lexicon and the bootstrapped acoustic models yielded better (though not 
significantly better) results than the use of the canonical recognition lexicon with the same 
models. Especially the recognition of the telephone dialogues was facilitated by the use of the 
MPT-based lexicon. This is probably due to a larger mismatch between the actual data and the 
canonical representation of the spontaneous telephone speech.  

At last, a comparison of the results of experiments 1 and 2 on the one hand and 
experiments 3, 4a and 4b on the other hand indicates that for both speech styles the acoustic 
models trained on the small data sets could not be improved substantially by adding more 
training material. 

Overall, our recognition results are in line with a similar study on spontaneous telephone 
dialogues in American English (Switchboard) by Saraçlar et al. (2000). In that study, 
recognition experiments were conducted with different sets of acoustic models (trained on 
MPTs and automatic phonetic transcriptions) and matching decision tree-based pronunciation 
models. Their results showed that acoustic models trained on human transcriptions 
(Greenberg, 1997) did not give lower WERs than acoustic models trained on canonical base 
forms. Saraçlar et al. (2000) found that the models trained on the MPTs gave lower phone 
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error rates, but no lower WERs than the models trained on the canonical base forms. They 
concluded that their results must have been due to the increased lexical confusability in the 
corresponding MPT-based recognition lexicon. Our results suggest that this cannot be the full 
explanation. By allowing only the most frequent transcription per word, we minimised the 
risk of increasing the lexical confusability. Still we observed similarly remarkable recognition 
results which seem to suggest that for our ASR task, the canonical representations served their 
purpose as well as the manually verified phonetic transcriptions.  

2.5 General discussion 

This study was aimed at investigating whether the validity (or: the suitability) of phonetic 
transcriptions for basic ASR development can be assessed by means of the traditional 
validation method, i.e. in terms of the transcriptions’ deviations from a handmade reference 
transcription. Previous research (Kessens and Strik, 2004) has shown that the relationship 
between recognition performance and a transcription’s resemblance to an RT should not be 
taken for granted. In order to evaluate the usefulness of the traditional validation method, we 
conducted a series of experiments in which we assessed the influence of two different types of 
transcriptions (canonical representations and manually verified phonetic transcriptions) of two 
different speech styles (read speech and telephone dialogues) on the overall recognition 
accuracy of a continuous speech recogniser. As opposed to the traditional validation method, 
the assessment of the transcriptions’ suitability for one particular purpose can be considered as 
an application-oriented validation method. 

The outcome of the traditional validation method (which did not take into account the 
purpose the transcriptions would be used for) was quite outspoken: the validity of the MPTs 
was assessed much higher than the validity of the canonical representations because the MPTs 
deviated much less from the reference transcriptions than the canonical representations did. 
The application-oriented validation method gave quite another estimate of the transcriptions’ 
validity. The assessment of the transcriptions’ suitability for ASR showed that the use of 
MPTs and canonical representations did not yield significantly different recognition 
performance. This implies that both the MPTs and the canonical representations were equally 
valid for the purpose of developing an ASR system.  

A comparison of the outcomes of the two validation methods supports different 
conclusions. First of all, it should be stressed that the application-oriented validation method 
did not contradict the usefulness of MPTs for ASR development, since we did not get better 
recognition results when using the canonical representations for this purpose. Logically, this 
also implies that the application-oriented validation method did not contradict the usefulness 
of manually verified transcriptions as such. As a matter of fact, for other purposes than 
training straightforward ASR systems (e.g. training more elaborate ASR systems), the story 
may well be different. For applications such as research in phonetics, it will probably even 
remain essential for transcriptions to reflect the speech signal as closely as possible. For such 
purposes, MPTs should definitely be preferred over canonical representations because 
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canonical representations cannot (or only partially) represent the pronunciation variation 
observed in everyday speech. 

A more important conclusion, however, is that the traditional validation method assigned 
a much higher validity rating to the MPTs than to the canonical representations. This was not 
confirmed by the outcome of our recognition experiment; the use of the canonical 
representations yielded similar recognition results. Considering the fact that the generation of 
MPTs is known to be time-consuming, expensive and error-prone (Cucchiarini, 1993), a 
preference for canonical representations seems more justified for our development task. 

To conclude, we found no consistent relationship between the distance of a broad phonetic 
transcription to a reference transcription on the one hand, and the influence of that 
transcription on the recognition performance of a continuous speech recogniser on the other 
hand. This outcome has two implications. First of all, it suggests that ASR developers can 
save themselves the time and effort of collecting expensive reference transcriptions in order to 
validate phonetic transcriptions of speech databases or spoken language corpora. Second, and 
most importantly, it implies that phonetic transcriptions should preferably be validated in 
terms of the application they will serve because a higher resemblance to a purpose-
independent reference transcription proved no guarantee for a transcription to be better suited 
for ASR development. 
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Appendix 2.1: Feature matrix to align two phonetic transcriptions of speech.  
 

Appendix 2.1a: Articulatory feature values for the consonants. 

 
consonant place voice nasal stop glide lateral fricative trill 

p 5,0 1,0 0,0 0,5 0,0 0,0 0,0 0,0 
b 5,0 2,0 0,0 0,5 0,0 0,0 0,0 0,0 
t 4,0 1,0 0,0 0,5 0,0 0,0 0,0 0,0 
d 4,0 2,0 0,0 0,5 0,0 0,0 0,0 0,0 
k 2,0 1,0 0,0 0,5 0,0 0,0 0,0 0,0 
f 5,0 1,0 0,0 0,0 0,0 0,0 0,5 0,0 
v 5,0 2,0 0,0 0,0 0,0 0,0 0,5 0,0 
s 4,0 1,0 0,0 0,0 0,0 0,0 0,5 0,0 
z 4,0 2,0 0,0 0,0 0,0 0,0 0,5 0,0 
x 2,0 1,0 0,0 0,0 0,0 0,0 0,5 0,0 
G 2,0 2,0 0,0 0,0 0,0 0,0 0,5 0,0 
m 5,0 2,0 0,5 0,0 0,0 0,0 0,0 0,0 
n 4,0 2,0 0,5 0,0 0,0 0,0 0,0 0,0 
N 2,0 2,0 0,5 0,0 0,0 0,0 0,0 0,0 
l 4,0 2,0 0,0 0,0 0,0 0,5 0,0 0,0 
r 3,0 2,0 0,0 0,0 0,0 0,0 0,0 0,5 
w 5,0 2,0 0,0 0,0 0,5 0,0 0,0 0,0 
j 3,0 2,0 0,0 0,0 0,5 0,0 0,0 0,0 
h 1,0 2,0 0,0 0,0 0,0 0,0 0,5 0,0 

 

Appendix 2.1b: Articulatory feature values for the vowels. 

 
vowel length place tongue round diphthong 

i 1,5 3,0 4,0 1,0 1,0 
I 1,0 2,5 3,5 1,0 1,0 
e 2,0 3,0 3,0 1,0 1,5 

@+ 2,0 3,0 3,0 2,0 1,5 
E 1,0 3,0 2,0 1,0 1,0 
a 2,0 2,0 1,0 1,5 1,0 
A 1,0 1,0 1,5 1,5 1,0 
o 2,0 1,0 3,0 2,0 1,5 
O 1,0 1,0 2,0 2,0 1,0 
u 1,5 1,0 4,0 2,0 1,0 
y 1,5 3,0 4,0 2,0 1,0 
Y 1,0 2,5 3,5 2,0 1,0 
@ 1,0 2,0 2,5 1,5 1,0 
E+ 2,0 2,5 3,0 1,0 2,0 
Y+ 2,0 2,5 3,0 1,0 2,0 
A+ 2,0 1,5 3,0 2,0 2,0 
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Appendix 2.2: Phone mapping 46 CGN phone set to 39 phone set.  

 
class example CGN-symbol Can/MPT symbol(s) 

plosives put p p 
 bad b b 
 tak t t 
 dak d d 
 kat k k 
 goal g k 

fricatives fiets f f 
 vat v v 
 sap s s 
 zat z z 
 sjaal S S 
 ravage Z z+j 
 licht x x 
 regen G G 
 geheel h h 

sonorants lang N N 
 mat m m 
 nat n n 
 oranje J n+j 
 lat l l 
 rat r r 
 wat w w 
 jas j j 

short vowels lip I I 
 leg E E 
 lat A A 
 bom O O 
 put Y Y 

long vowels liep i i 
 buur y y 
 leeg e e 
 deuk 2 @+ 
 laat a a 
 boom o o 
 boek u u 

schwa gelijk @ @ 
diphthongs wijs E+ E+ 

 huis Y+ Y+ 
 koud A+ A+ 

loan vowels scène E: E 
 freule Y: Y 
 zone O: O 

nasalised vowels vaccin E~ E 
 croissant A~ A 
 congé O~ O 
 parfum Y~ Y 

long silence sil 
optional short silence sp 
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Abstract 
 

Most large speech corpora are delivered with a lexicon that contains a canonical 
transcription of every word in the orthographic transcription. Such a lexicon can be 
used for generating a hypothetical ‘canonical’ phonetic transcription from the 
orthography. In addition, time and money permitting, some speech corpora are 
provided with a manually verified broad phonetic transcription of at least part of the 
material. Since the manual verification of phonetic transcriptions is time-consuming 
and expensive, we investigated whether existing automatic transcription procedures 
and combinations of such procedures can offer a quick and cheap alternative for the 
generation of phonetic transcriptions like the manually verified transcriptions 
delivered with large speech corpora. In our study, we used ten automatic 
transcription procedures to generate a broad phonetic transcription of well-prepared 
speech (read-aloud texts) and spontaneous speech (telephone dialogues) from the 
Spoken Dutch Corpus. The performance was assessed in terms of the number and the 
nature of the discrepancies between the emerging phonetic transcriptions and the 
corresponding manually verified phonetic transcriptions delivered with the Spoken 
Dutch Corpus. Some of the resulting automatic transcriptions appeared to be 
comparable to the manually verified transcriptions.  
 
Keywords: Large speech corpora, Automatic phonetic transcription, Transcription 
evaluation. 

3.1 Introduction 

In the last fifteen years we have witnessed the development of various large speech corpora. 
Well-known examples are TIMIT (1990), Switchboard (Godfrey et al., 1992), Verbmobil 
(Hess et al., 1995), the Spoken Dutch Corpus (Corpus Gesproken Nederlands - CGN, 
Oostdijk, 2002) and the Corpus of Spontaneous Japanese (Maekawa, 2003). The usability of 
such corpora largely depends on the availability of accurate annotations. It is probably fair to 
say that the lasting popularity of the not-so-big TIMIT corpus is due to the fact that it comes 
with very accurate phonetic transcriptions. Since broad phonetic transcriptions are often used 
and sometimes even required for diverse purposes such as lexical pronunciation variation 
modelling for automatic speech recognition (ASR - Strik, 2001), unit selection for speech 
synthesis (Mizutani and Kagoshima, 2005), automatic pronunciation training and assessment 
in Computer Assisted Language Learning (Neri et al., 2006; 2007) and general research on 
pronunciation variation (Riley et al., 1999), contemporary speech corpora are usually 
provided with a broad phonetic transcription of at least part of their material. 

Almost all large speech corpora are provided with a phonemic lexicon that can be used to 
generate a hypothetical canonical phonetic representation of the material. In addition, time 
and money permitting, contemporary speech corpora are at least partially enriched with broad 
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phonetic transcriptions with the help of human transcribers in order to ensure a more accurate 
representation of the material. Since the employment of human transcribers is known to be 
exceedingly time-consuming and expensive when they have to transcribe speech from scratch, 
it is common practice to provide human transcribers with an example transcription they have 
to verify on the basis of their own perception of the speech signal. Switchboard, Verbmobil 
and the Spoken Dutch Corpus are three corpora which, in addition to a canonical transcription 
of all their material, received a manually verified phonetic transcription of a limited subset of 
their data (Greenberg et al., 1996; Geumann et al., 1997; Goddijn and Binnenpoorte, 2003). 
The example transcription the transcribers of the Spoken Dutch Corpus were presented with 
already reflected the obligatory cross-word assimilation and degemination processes of Dutch 
(Binnenpoorte and Cucchiarini, 2003). The modelling of these processes decreased the 
discrepancies between the original canonical example transcription and the actual speech 
signal, and as such it also reduced the number of required corrections and the time it took the 
transcribers to complete the transcription task. Although verifying automatic transcriptions is 
quicker and therefore also less expensive than making transcriptions from scratch, however, 
verification procedures also have their drawbacks.  

It has been suggested that verifying example transcriptions may bias the resulting 
transcriptions towards the example transcriptions they are based upon (Binnenpoorte, 2006). 
In addition, the remaining costs are often still quite substantial. Demuynck et al. (2002) 
reported that their students needed 15 minutes to manually verify the transcription of one 
minute of public lectures, and 40 minutes for one minute of spontaneous speech. This explains 
why human transcribers verified an example transcription of ‘only’ one million words of the 
9-million-word Spoken Dutch Corpus, and why ‘only’ four hours of Switchboard speech were 
phonetically transcribed as an afterthought. Still, despite these drawbacks, manually verified 
phonetic transcriptions are presently considered to be the best transcriptions one can feasibly 
obtain if large amounts of speech have to be transcribed. It is therefore worthwhile 
investigating whether the same transcription quality can be obtained by means of quicker and 
cheaper automatic transcription procedures. Because of their high transcription speed and 
their limited costs, automatic transcription procedures not only hold the promise of increasing 
transcription speed and reducing transcription costs, they even have the potential of 
transcribing corpora that are too large to be ever transcribed with the help of human 
transcribers. 

Several studies already reported benefits of using automatic phonetic transcriptions 
(APTs) for the development of ASR systems (e.g. Riley et al., 1999; Saraçlar and 
Khundanpur, 2004; Tjalve and Huckvale, 2005; Wester, 2003; Yang and Martens, 2000) and 
speech synthesis systems (e.g. Bellegarda, 2005; Jande, 2005; Wang et al. 2005). However, 
since in these studies the transcriptions were used as mere tools for the development of 
specific speech applications, the procedures with which the transcriptions were generated 
were not evaluated in terms of their ability to approximate the quality of manually verified 
phonetic transcriptions. Therefore, our study was aimed at investigating whether existing 
automatic transcription procedures and combinations of such procedures can approximate 
manually verified phonetic transcriptions and, consequently, whether they can offer a sound 
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alternative to commonly used but nonetheless time-consuming and expensive verification 
procedures for the transcription of large speech corpora.  

We assessed the quality of ten transcription procedures in terms of the resemblance of 
their transcriptions and a manually verified broad phonetic transcription of read speech and of 
spontaneous telephone dialogues from the Spoken Dutch Corpus. Since we aimed at 
approximating transcriptions that were made with a limited symbol set and that originated 
from canonical example transcriptions, it should be clear that our experiments were not aimed 
at comparing or improving the transcription procedures in terms of the accuracy with which 
they can describe the actual speech signal. 

In order to ensure the applicability of the transcription procedures in contexts where only 
minimal resources are available, we optimised our procedures with limited resources and 
minimal human effort. Most procedures only required a standard continuous speech 
recogniser, an algorithm to align phonetic transcriptions, an orthographically transcribed 
corpus, a canonical lexicon and a manually verified phonetic transcription of a relatively small 
sample of the corpus. The manually verified phonetic transcription was required to tune the 
transcription procedures and to evaluate their performance. Some procedures also required 
software for the implementation of decision trees, and some (also) a list of phonological 
processes describing pronunciation variation in the language under investigation (Dutch). 
Expert human effort was limited to the compilation of such a list of phonological processes, 
and the aforementioned manual verification of an example transcription of a limited amount 
of speech. 

This paper is organised as follows. In Section 3.2, we introduce the material and tools we 
used in our study. Section 3.3 sketches the various transcription procedures. Section 3.4 
presents the evaluation of the emerging transcriptions. In Section 3.5, we discuss our results, 
and in Section 3.6, we formulate our conclusions. 

3.2 Material and tools 

3.2.1 Speech material 

We worked with speech material from the Spoken Dutch Corpus (Oostdijk, 2002). We 
considered speech of native speakers from the Netherlands only. In order not to base the 
assessment of the transcription procedures on the transcription of speech from one particular 
speech style, we chose to work with read speech as well as spontaneous telephone dialogues. 

The read speech was recorded at 16 kHz (16-bit PCM) with high-quality table-top 
microphones for the compilation of a library for the blind. The telephone dialogues, 
comprising much more spontaneous speech, were recorded at 8 kHz (8-bit A-law) through a 
telephone platform. As part of the orthographic transcription process, the speech material was 
manually segmented into speech chunks of approximately 3 seconds each. The transcribers 
were instructed to put chunk boundaries in naturally occurring pauses. Only if speech 
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stretched for substantially longer than 3 seconds without a silent pause, the transcribers were 
requested to put chunk boundaries between adjoining words with minimal cross-word co-
articulation. We adhered to this chunk-level annotation. In order to be able to focus on 
phonetic transcription proper, we excluded speech chunks that, according to the orthographic 
transcription, contained non-speech, unintelligible speech, broken words and foreign speech. 
Chunks containing overlapping speech (in the telephone dialogues) were excluded as well. 

The statistics of the data are presented in Table 3.1. We divided the data of each speech 
style into a training set, a development set and an evaluation set. To this end, we listed all 
speech chunks of all speakers, we randomised their ordering, and we extracted the subsets. This 
guaranteed mutually exclusive data sets with similar material. The resulting data sets of the two 
speech styles differ in size, but we preferred to work with all the material meeting our 
requirements rather than ignoring half of the read speech. 

 
 

Table 3.1: Statistics of the data sets. 
 
 

 
 
 
 
 
 
 

3.2.2 Canonical lexicon 

Our canonical lexicon was a comprehensive multi-purpose in-house lexicon. It was compiled 
by merging various existing lexical resources such as CELEX (Baayen et al, 1995), RBN 
(ReferentieBestand Nederlands, 2005) and PAROLE (PAROLE lexicon, 2005). The 
pronunciation forms in the lexicon reflected the standard pronunciation of words as they 
would be carefully pronounced in isolation according to the obligatory word-internal 
phonological processes of Dutch (Booij, 1999). Each word was represented by just one 
standard broad phonetic transcription. We ignored all information about syllabification and 
syllabic stress in order to ensure the applicability of the transcription procedures in research 
contexts where a lexicon with this kind of linguistic information is unavailable. 
 
 
 
 

speech style training sets development sets evaluation sets 
# word tokens 532,451 7,940 7,940 

hh:mm:ss 44:55:59 0:40:10 0:41:39 read speech 
# distinct speakers 561 126 126 

# word tokens 263,501 6,953 6,955 
hh:mm:ss 18:20:05 0:30:02 0:29:50 telephone 

dialogues 
# distinct speakers 344 92 91 



CHAPTER 3 

 38 

3.2.3 Reference transcriptions (RTs) 

We used the manually verified phonetic transcriptions of the Spoken Dutch Corpus as 
Reference Transcriptions (RTs) to tune (with the RTs of the development sets) and evaluate 
(by means of the RTs of the evaluation sets) the transcription procedures. The manually 
verified transcriptions of the Spoken Dutch Corpus were generated in three steps. First, the 
canonical representation of every word was selected from the lexicon. Subsequently, two 
cross-word phonological processes of Dutch, voice assimilation and degemination, were 
applied to the phones at word boundaries in order to decrease the discrepancies between the 
canonical transcription and the speech signal. The resulting transcriptions were finally verified 
and corrected by human transcribers. The transcribers acted according to a strict protocol 
instructing them to change the example transcription only if they were certain that it did not 
correspond to the speech signal (Binnenpoorte and Cucchiarini, 2003). 

3.2.4 Continuous speech recogniser (CSR) 

Except for the canonical transcriptions, all automatic phonetic transcriptions (APTs) were 
generated by means of a continuous speech recogniser (CSR) that was based on Hidden 
Markov Models and that was implemented with the HTK Toolkit (Young et al., 2001). Our 
CSR used 39 gender- and context independent, but speech style-specific acoustic models with 
128 Gaussian mixture components per state (37 phone models, one model for silences of 30 
ms or more and one model for the optional silence between words). 
 
 

 
 

Figure 3.1: The procedure by means of which the acoustic models were trained. 
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We trained our acoustic models in three stages with the canonical transcriptions (CAN-
PTs) of the training data (see Figure 3.1). First, we trained flat start acoustic models with 32 
Gaussian mixture components in 41 iterations. Subsequently, we used these models to obtain 
a more realistic segmentation of the speech material. We used this segmentation to bootstrap a 
new set of acoustic models, which we retrained (with 55 iterations) to models with 128 
Gaussian mixture components per state. Experiments with the development sets of both 
speech styles showed that acoustic models with 128 mixture components yielded 
transcriptions that resembled the target transcriptions more closely than transcriptions that 
were generated with models with fewer mixture components per state. 

3.2.5 Algorithm for Dynamic Alignment of Phonetic Transcriptions (ADAPT) 

ADAPT (Elffers et al., 2005) is a dynamic programming algorithm designed to align two 
strings of phonetic symbols according to the articulatory distance between them. We used 
ADAPT to align phonetic transcriptions for the generation of lexical pronunciation variants 
for forced recognition (Section 3.3.1), and for the quality assessment of the automatic 
phonetic transcriptions through their alignment with the manually verified reference 
transcriptions (Section 3.3.2). 

3.3 Method 

We investigated the suitability of ten automatic transcription procedures for the phonetic 
transcription of large speech corpora. The transcription procedures are introduced in Section 
3.3.1. In Section 3.3.2 we describe the evaluation procedure by means of which the automatic 
phonetic transcriptions and, consequently, the transcription procedures were assessed. 

3.3.1 Generation of phonetic transcriptions with different transcription procedures 

Figure 3.2 shows the ten transcription procedures by means of which our APTs were 
generated. We used three generic procedures, two combinations of these procedures, and five 
procedures in which we used decision trees to further tune the output of the aforementioned 
procedures towards the type of transcription we were trying to approximate. Most of the 
procedures required the tuning of several parameters to optimally approximate the RTs of the 
data in the development sets. The optimal parameter settings were subsequently used for the 
transcription of the data in the evaluation sets. 

 

 

 



CHAPTER 3 

 40 

 
 

Figure 3.2: Overview of the ten investigated transcription procedures. 
 

Generic transcription procedures 

Lexicon lookup (canonical) transcription procedure 

The canonical phonetic transcriptions (CAN-PTs) were generated through a lexicon lookup 
procedure. Cross-word processes were not modelled. In general, canonical transcriptions like 
these can be easily obtained, since many corpora are provided with an orthographic 
transcription and a canonical pronunciation lexicon comprising a broad phonetic transcription 
of the words in the orthographic transcription. 

Data-driven transcription procedure 

The data-driven phonetic transcriptions (DD-PTs) were based on the acoustic data. The DD-
PTs were generated through constrained phone recognition; a CSR segmented and labelled the 
speech signal by means of its acoustic models and a phonotactic model. The phonotactic 
models (one for each speech style) were trained on the RTs of the development data. 
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Figure 3.3 shows the last three steps of the data-driven transcription procedure. The first step, 
the training of the phonotactic models, is not included in the Figure. We trained bigram, 
trigram, four-gram, five-gram and six-gram models. Since the current version of HTK (v.3.2) 
only supports the use of unigram and bigram models in its first decoding pass, we used a 
bigram model in the first pass, and higher order n-gram models to rescore the resulting phone 
lattices (step 3). The final phonetic transcription of the data (step 4) was obtained with a four-
gram model. Transcription experiments with the development data of both speech styles 
indicated that the use of four-gram models yielded transcriptions that resembled the RTs more 
closely than the bi-, tri-, penta- and hexagram phonotactic models. 
 
 

 
 

Figure 3.3: Data-driven phonetic transcription through constrained phone recognition                                      
(step 1 – the training of the phonotactic models – is not included). 

 

Knowledge-based transcription procedure 

ASR research often draws on the linguistic literature for the extraction of knowledge to 
generate lexical pronunciation variants for recognition (Kessens et al., 1999; Strik, 2001). 
Figure 3.4 illustrates the three-step procedure we used to generate knowledge-based phonetic 
transcriptions (KB-PTs). 

We first compiled a list of 20 prominent phonological processes from the literature on the 
phonology of Dutch (Booij, 1999). We implemented these processes as context-dependent 
rewrite rules modelling both within-word and cross-word contexts in which phones from the 
CAN-PT could be deleted, inserted or substituted with other phones. Most of the processes 
identified by Booij (1999) could be described in terms of operations on phoneme symbols or 
articulatory features. However, some of the processes could only be described with 
information about the prosodic or syllabic structure of words. We reformulated most of these 
processes in terms of phonetic symbols and features, since we wanted to exclude non-
segmental information from our experiments (see Section 3.2.2). We implemented the rules in 
a conservative manner in order to minimise the risk of over-generation. The resulting rule set 
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comprised phonological rules describing progressive and regressive voice assimilation, nasal 
assimilation, t-deletion, n-deletion, r-deletion, schwa deletion, schwa epenthesis, 
palatalisation, degemination and more specific rules modelling pronunciation variation in 
high-frequency words (e.g. demonstratives) in Dutch. The reduction and the deletion of full 
vowels, two prominent phonological processes in Dutch, were not implemented since they 
could not be formulated without the explicit use of supra-segmental information. 
 
 

 
 

Figure 3.4: Knowledge-based phonetic transcription. 
 

 

In the second step of the procedure, we used the phonological rewrite rules to generate 
pronunciation variants from the CAN-PTs of the speech chunks. Note that it was necessary to 
apply the rules to the speech chunks rather than to the words in isolation, for cross-word 
processes could only be modelled if the neighbouring words were known. The rules only 
applied once, and their order of application was manually optimised. Analysis of the resulting 
pronunciation variants suggested that hardly any implausible variants were generated, and that 
no obvious variants were missing. It may well be, however, that two-level rules 
(Koskenniemi, 1983) or an iterative application of rewrite rules are needed for the generation 
of all plausible pronunciation variants in languages other than Dutch. 

In the third step of the procedure, the pronunciation variants (including the original CAN-
PTs) of each individual speech chunk were listed. Since the linguistic literature hardly ever 
provides accurate information on the frequency of phonological processes, and since 
trustworthy priors can only be learned from the analysis of a sufficiently large amount of 
manually verified transcriptions (the amount of manual transcriptions that is hardly every 
available), our knowledge-based pronunciation variants did not comprise prior probabilities. 
The optimal knowledge-based phonetic transcription (KB-PT) was identified through forced 
recognition. 
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Combinations of generic transcription procedures 

After having generated the CAN-PTs, DD-PTs and KB-PTs, we combined these 
transcriptions to obtain new transcriptions. Chunk-level pronunciation variants were generated 
through the automatic alignment of two APTs at a time. Since the KB-PTs were based on the 
CAN-PTs, we only combined the CAN-PTs with the DD-PTs (CAN/DD-PT) and the KB-PTs 
with the DD-PTs (KB/DD-PT) to generate new pronunciation variants in addition to the 
original CAN-PTs, DD-PTs and KB-PTs. Figure 3.5 shows how new pronunciation variants 
were generated through the alignment of the phones in two different APTs. These 
pronunciation variants were listed, after which our CSR was forced to choose the best 
matching pronunciation variant for every chunk of words in the orthographic transcriptions. 
The three steps of this combined transcription procedure are illustrated in Figure 3.6. 
 
 

 
 

Figure 3.5: Generation of pronunciation variants through the alignment of two phonetic transcriptions. 
 
 
We combined the APTs from the different transcription procedures to provide our CSR with 
additional linguistically plausible pronunciation variants for the words in the orthographic 
transcriptions. After all, canonical transcriptions do not model pronunciation variation, and 
our KB-PTs only modelled the pronunciation variation that was manually implemented in the 
form of phonological rewrite rules. The DD-PTs, however, were based on the speech signal. 
Therefore, they were potentially better at representing the actual speech signal, at the risk of 
being linguistically less plausible than the CAN-PTs and the KB-PTs.  It was reasonable to 
expect that the combination of the different transcription procedures would reinforce the 
advantages and alleviate the disadvantages of the individual procedures. 
 
 



CHAPTER 3 

 44 

 

 
 

Figure 3.6: Combination of transcription procedures (in this case: CAN-PT and DD-PT). 
 

Transcription procedures with decision trees 

The use of data-driven transcription procedures can result in too many, too few or very 
unlikely lexical pronunciation variants (Wester, 2003). Therefore, ASR developers often use 
decision trees to reduce the number of unlikely pronunciation variants and to optimise the 
number of plausible pronunciations in recognition lexica (Riley et al., 1999; Wester, 2003). 
Figure 3.7 illustrates our four-step procedure to improve the CAN-PTs, DD-PTs, KB-PTs, 
CAN/DD-PTs and KB/DD-PTs through the use of decision tree filtering. The decision trees 
were generated with the C4.5 algorithm (Quinlan, 1993), which is provided with the Weka 
package (Witten and Frank, 2005), a collection of Java-based machine learning algorithms. 

First, the APT (each of the aforementioned transcriptions individually) and the RT of the 
development data were aligned. Second, all the phones and their context phones in the APT 
were listed. We will call these phone sequences ‘phonetic windows’ for the sake of 
convenience. The size of these phonetic windows was limited to the target phone and its 
immediately left and right neighbours. Word boundaries were included as extra information in 
order to model pronunciation variation across word boundaries. The correspondences of the 
phonetic windows in the APT and the phones in the RT, and the frequencies of these 
correspondences were used to estimate: 

 
P (RT_phone | APT_phonetic_window)       (1) 
 

i.e. the probability of a phone in the reference transcription given a particular phonetic 
window in the APT. 
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Figure 3.7: Automatic phonetic transcription with decision trees. 
 
 
Figure 3.8 shows a simplified version of the decision tree trained for the phone /e/. The tree 
strongly predicts (because in the development data, in 12 out of 13 cases, it was the case) that a 
word-initial /e/ or an /e/ preceded by /@/ and followed by either /@/, /n/ or /j/ should be deleted. 
Based on the observations in the development data, in all other contexts, all /e/s in the APT 
should remain. The application of this knowledge is illustrated in the lower half of Figure 3.8. 
 
 

 
 

Figure 3.8: Illustration and application of a decision tree for the phone /e/                                                           
given its left and right context phones (# = word boundary, Ø = deletion of /e/).  

This Figure is based on Figure 2 in Wester (2002:108). 
 



CHAPTER 3 

 46 

In the third step of the procedure, the decision trees were used to generate plausible pronunciation 
variants for the APT of the unseen evaluation data. The decision trees were used to predict: 

 
 P (pronunciation_variants | APT_phonetic_window)    (2) 
 

i.e. the probability of a phone with optional pronunciation variants given a particular phonetic 
window in the APT. In our experiments, all phone variants with a probability lower than 0.1 
were ignored (Wester, 2003). This reduced the number of pronunciation variants and, more 
importantly, it pruned unlikely pronunciation variants originating from idiosyncrasies in the 
original APT. The retained phone-level variants were combined to word-level variants. These 
variants were listed in a multiple pronunciation lexicon. Their probabilities were normalised so 
that the probabilities of all variants of a word added up to 1. 

In the fourth and final step of the transcription procedure, our CSR selected the most 
likely pronunciation variant for every word in the orthographic transcription. The consecutive 
application of the decision trees to the CAN-PTs, DD-PTs, KB-PTs, CAN/DD-PTs and 
KB/DD-PTs resulted in new transcriptions hereafter referred to as [CAN-PTs]d, [DD-PTs]d, 
[KB-PTs]d, [CAN/DD-PTs]d and [KB/DD-PTs]d. 

3.3.2 Evaluation of the phonetic transcriptions and the transcription procedures  

The APTs of the data in the evaluation sets were evaluated in terms of their deviations from 
the manually verified RTs. We compared the transcriptions by means of ADAPT (Elffers et 
al., 2005). The disagreement metric was defined as: 

 

%100×






 ++=
phone

phonephonephone

N
InsDelSubntdisagreemePercentage     (3) 

 
i.e. the sum of all phone substitutions (Subphone), deletions (Delphone) and insertions (Insphone) 
divided by the total number of phones in the RT (Nphone). Considering the aim of our research, 
a smaller deviation from the reference transcription indicated a ‘better’ transcription. A 
detailed analysis of the number and the nature of the deviations allowed us to systematically 
investigate the magnitude and the nature of the improvements and deteriorations caused by the 
use of the different transcription procedures. 

3.4 Results 

The figures in Table 3.2 show the disagreements between the APTs and the RTs of the 
evaluation data. From top to bottom and from left to right we see the disagreement scores 
(%dis) between the different APTs and the RTs of the read speech and the telephone 
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dialogues. In addition, the statistics of the phone substitutions (subs), deletions (dels) and 
insertions (ins) are presented in order to provide insight into the nature of the disagreements. 
 
 

Table 3.2: Evaluation of the transcription procedures through a comparison of the transcriptions with reference 
transcriptions. Fewer disagreements (%dis) indicate better transcriptions and therefore better transcription procedures. 

 
read speech telephone dialogues  

subs dels ins %dis subs dels ins %dis 
 

CAN-PT 6.3 1.2 2.6 10.1 9.1 1.1 8.1 18.3 
DD-PT 16.1 7.4 3.6 27.0 26.0 18.0 3.8 47.8 
KB-PT 6.3 3.1 1.5 10.9 9.0 2.5 5.8 17.3 

 
CAN/DD-PT 13.1 2.0 4.8 19.9 21.5 6.2 7.1 34.7 
KB/ DD-PT 12.8 3.1 3.6 19.5 20.5 7.8 5.4 33.7 

 
[CAN-PT]d 4.8 1.6 1.7 8.1 7.1 3.3 4.2 14.6 
[DD-PT]d 15.7 7.4 3.5 26.7 26.0 18.6 3.8 48.3 
[KB-PT]d 5.0 3.2 1.2 9.4 7.1 3.5 4.2 14.8 

[CAN/DD-PT]d 12.0 2.3 4.3 18.5 20.1 7.2 5.5 32.8 
[KB/ DD-PT]d 11.6 3.1 3.1 17.8 19.3 9.4 4.5 33.1 

 
 
The proportions of disagreements observed in the CAN-PTs and the KB-PTs differed 
significantly from each other for both speech styles (p < .01; we report t-tests throughout this 
article). However, the CAN-PT of the read speech was more similar to the RT than the KB-PT 
(∆ = 6.3% rel.), while the opposite held for the telephone dialogues (∆ = 5.9% rel.). In both 
speech styles, the proportion of substitutions was about equal in the CAN-PT and the KB-PT. 
Deletions made up only a very small proportion of the discrepancies, so the most important 
difference was in the insertions; the proportion of insertions was much higher in the telephone 
speech than in the read speech. The ten most frequent mismatches in the CAN-PTs and the 
KB-PTs of the two speech styles are presented in Tables 3.3 and 3.4, respectively. We 
observed many similar mismatches due to voiced/unvoiced classification of obstruents, as 
well as insertions of schwa and various consonants (in particular /r/, /t/ and /n/). Most 
substitutions and deletions (about 62-75% for the various transcriptions) occurred at word 
boundaries, but the absolute numbers in the KB-PTs were lower due to the cross-word 
pronunciation modelling inherent to the knowledge-based transcription procedure.  

The disagreement scores obtained with the DD-PTs were much higher than the scores 
obtained with the CAN-PTs and the KB-PTs. This holds for both speech styles. Most 
discrepancies between the DD-PTs and the RTs were deletions and (a variety of) 
substitutions. In addition to consonant substitutions due to voicing, we observed various 
consonant substitutions due to place of articulation, and vowel substitutions with schwa (and 
vice versa). 
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Table 3.3: 10 most frequent mismatches between the CAN-PTs and the RTs. 

 
read speech telephone dialogues 

substitutions deletions insertions substitutions deletions insertions 
RT CAN-PT RT CAN-PT RT CAN-PT RT CAN-PT RT CAN-PT RT CAN-PT 
f v   - @ f v n - - r 
s z   - r s z   - h 
d t   - t @ E   - n 
x G   - n d t   - t 
g k   - d x G     

 
 

Table 3.4: 10 most frequent mismatches between the KB-PTs and the RTs. 
 

read speech telephone dialogues 
substitutions deletions insertions substitutions deletions insertions 

RT KB-PT RT KB-PT RT KB-PT RT KB-PT RT KB-PT RT KB-PT 
f v @ - - h f v @ - - @ 
s z n -   s z   - r 

@ E r -   d t   - t 
x G     x G   - d 
d t         - n 
t d           

 
 
The proportions of disagreements in the CAN/DD-PTs and the KB/DD-PTs were lower than 
in the DD-PTs, but much higher than in the CAN-PTs and KB-PTs. Thus, the combination of 
the transcription procedures improved the DD-PTs, but deteriorated the CAN-PTs and KB-
PTs. The CAN/DD-PTs and the KB/DD-PTs comprised twice as many substitutions as the 
CAN-PTs and the KB-PTs. Whereas the highly increased number of deletions in the 
CAN/DD-PT of the telephone dialogues (as compared to the CAN-PT) coincided with a - be 
it moderate - decrease of insertion errors, the CAN/DD-PT of the read speech showed even 
more insertions than the CAN-PT.  

We used decision trees to narrow the gap between the ten aforementioned APTs (5 
procedures x 2 speech styles) and the reference transcriptions. In nine out of ten cases, the use 
of decision trees improved the original transcriptions; only the [DD-PT]d of the telephone 
dialogues comprised more disagreements than the original DD-PT. The magnitude of the 
improvements differed substantially, though. The improvements were negligible for the DD-
PTs, somewhat larger for the APTs that emerged from the combined procedures, and most 
outspoken for the CAN-PTs and the KB-PTs. This is quite remarkable, because one would 
expect the biggest improvement for the worst baseline. Our results show the opposite. For 
both speech styles, the [CAN-PT]d proved most similar to the RT. The [KB-PTs]d were 
slightly worse. The [CAN-PTs]d comprised on average 20.5% less mismatches with the RTs 
than the original CAN-PTs, which is a significant improvement at a 99% confidence level. 
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Likewise, we observed on average 14.1% less mismatches in the [KB-PTs]d than in the 
original KB-PTs (p < .01). 

3.5 Discussion 

3.5.1 Reflections on the evaluation procedure 

We assessed our automatic phonetic transcriptions in terms of their resemblance to reference 
transcriptions that were based on example transcriptions. Previous studies have shown that the 
use of an example transcription for verification speeds up the transcription process (relative to 
manual transcription from scratch), but that it also tempts human experts into adhering to the 
example transcription despite contradicting acoustic cues in the speech signal. Demuynck et 
al. (2004), for example, reported cases where human transcribers preferred not to change the 
example transcription in the presence of contradicting acoustic cues, and cases where 
transcribers left phones in the example transcription that could not be aligned with a specific 
portion of the speech signal. 

This observation is important for our study, because it implies that our RTs may have 
been biased towards the canonical example transcriptions they were based upon. Considering 
that both the RTs and the KB-PTs were based on the CAN-PTs, it is reasonable to assume that 
the quality assessments of the CAN-PTs and the KB-PTs have been positively biased in our 
experiments. At the same time, the assessment of the DD-PTs may have been negatively 
biased, since these transcriptions were only based on the signal. Most probably, the 
transcribers’ instruction to accept the example transcription as long as the acoustic evidence 
did not unequivocally suggest another transcription has contributed to the discrepancies 
between the DD-PTs and the RTs. 

3.5.2 On the suitability of a low-cost transcription procedure for the automatic 
phonetic transcription of large speech corpora 

Generic transcription procedures 

Lexicon lookup (canonical) transcription procedure 

The quality of the CAN-PT of the telephone dialogues (18.3% disagreement) was rather good 
as compared to human inter-labeller disagreement scores reported in the literature. Greenberg 
et al. (1996), for example, reported 25 to 20% disagreements between human transcriptions of 
American English telephone conversations, and Kipp et al. (1997) reported 21.2 to 17.4% 
inter-labeller disagreements between human transcriptions of German spontaneous speech. 
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Binnenpoorte (2006), assessing the inter-labeller disagreements between manually verified 
phonetic transcriptions of spontaneous conversations in the Spoken Dutch Corpus, reported 
between 14 and 11.4% disagreements. The proportion of disagreements between the CAN-PT 
and the human RT (10.1% disagreement) of the read speech was still relatively high as 
compared to human inter-labeller disagreement scores reported in the literature. Kipp et al. 
(1996) reported 6.9 to 5.6% disagreements between human transcriptions of German read 
speech, and Binnenpoorte (2006) reported 6.2 to 3.7% inter-labeller disagreements between 
manually verified transcriptions of Dutch read speech.  

Considering the very low cost of CAN-PTs, and considering the similarities with 
previously published human inter-labeller disagreement scores, it appears that the production 
of CAN-PTs is a viable option in transcription projects in which limited resources are 
available. However, we still found a high proportion of substitutions and insertions at word 
boundaries. This is not surprising, because cross-word phonological processes were not 
accounted for in the CAN-PTs. 

Data-driven transcription procedure 

Constrained phone recognition proved suboptimal to approximate the manually verified 
phonetic transcriptions. The high number and the wide variety of substitutions suggest that the 
use of phonotactic models did not sufficiently tune our CSR towards the RTs. The high 
number of deletions implies that, in spite of extensive tuning of the phone insertion penalty, 
our CSR had too large a preference for transcriptions containing fewer symbols. Close 
inspection of the DD-PTs suggested that many deletions were systematic, but unlikely. Thus, 
it is not likely that the discrepancy between the DD-PTs and the RTs are fully due to a bias 
towards canonical representations of the human transcribers. Kessens and Strik (2004) 
observed that the use of shorter acoustic models for sounds like /@/ (e.g. two-state models 
that can be aligned to signal segments as short as 20 ms instead of the conventional three-state 
models that cover at least 30 ms of the speech signal) may reduce this tendency for deletions, 
but the diverse nature of the deletions in our results makes a substantial reduction of deletions 
through the mere use of shorter acoustic models rather unlikely. 

Knowledge-based transcription procedure 

The use of linguistic knowledge to model pronunciation variation at the lexical level 
improved the quality of the transcription of the telephone dialogues, but it deteriorated the 
transcription of the read speech. The availability of pronunciation variants is probably more 
beneficial for the transcription of spontaneous speech, since more spontaneous speech is often 
characterised by a larger degree of pronunciation variation (Goddijn and Binnenpoorte, 2003). 
Most probably, the CSR often preferred non-canonical variants for the transcription of the 
read speech, while the human transcribers had a preference for the canonical example 
transcription, according to their instruction.  
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The knowledge-based multiple pronunciation lexicon of the telephone dialogues 
comprised on average 1.39 pronunciation variants per word, the lexicon of the read speech 
1.47 variants per word. The higher average number of pronunciation variants in the read 
speech lexicon can be explained by the fact that the pronunciation variants of both speech 
styles were derived from the canonical transcriptions by applying a fixed set of rules. Since 
the words in the telephone dialogues were shorter than the words in the read speech (an 
average of 3.3 vs. 4.1 canonical phones per word in the telephone dialogues and the read 
speech), the canonical transcription of the telephone dialogues was less susceptible to the 
application of rewrite rules than the canonical transcription of the read speech. 

In order to estimate the possible impact of the application of knowledge-based rewrite rules 
on the CAN-PTs, we computed the maximum and minimum accuracy that could be obtained 
with the knowledge-based recognition lexica for read and spontaneous speech. For every chunk, 
every combination of the pronunciations of the words was aligned with the RT, and the highest 
and the lowest disagreement measures were retained. We found that the knowledge-based 
recognition lexicon of the telephone dialogues was able to provide KB-PTs of which 22.6 to 
only 13.2% of the phones differed from the RT. The knowledge-based lexicon of the read 
speech was able to provide KB-PTs of which 16.3 to only 7.4% of the phones differed from the 
RT. The eventual quality of the KB-PTs (17.3% and 10.9% disagreement for the telephone 
dialogues and the read speech, respectively) shows that there was still room for improvement; 
the acoustic models of our CSR often opted for suboptimal transcriptions.  

Combinations of generic transcription procedures 

The blend of data-driven pronunciation variants with canonical or knowledge-based variants 
into CAN/DD and KB/DD lexica allowed our CSR to better approximate human transcription 
behaviour than through constrained phone recognition alone, but the combination of the 
procedures did not outperform the canonical lexicon lookup (CAN-PT) and the knowledge-
based transcription procedure (KB-PT). The improvement with regard to the original DD-PTs 
must have been due to the fact that the CSR could now only select phoneme sequences from 
the multiple pronunciation lexica. This constituted a substantial bias in the direction of the 
RTs as compared to the constrained phone recognition through which the DD-PTs were 
generated. The fact that the CAN/DD and KB/DD transcriptions suffered from the addition of 
the signal-based pronunciation variants could be due to the added variants closer resembling 
the signal than the canonical representations did (and the representations derived by means of 
phonological rules), whereas the transcribers adhered to the canonical example transcriptions. 
We conclude that the mere combination of signal-based and canonical or knowledge-based 
lexical pronunciation variants was not effective for approximating the manually verified 
phonetic transcriptions. 
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Transcription procedures with decision trees 

Contrary to our expectations, the [DD-PT]d of the telephone dialogues differed more from the 
RT (though not significantly more, p > .1) than the original DD-PT. The [DD-PT]d of the read 
speech was only slightly (again, not significantly, p > .1) better than the original DD-PT. The 
inability of the decision trees to tune the data-driven transcriptions towards the RTs was 
probably due to the high degree of confusability in the recognition lexica in the absence of 
reliable estimates of prior probabilities. The recognition lexicon for the telephone dialogues 
had an average of 9.5 variants per word, and the lexicon for the read speech an average 
number of 3.5 variants per word. 

Note that, contrary to the pronunciation variants in the knowledge-based recognition 
lexica, the pronunciation variants in the [DD-PT]d lexica were based on the speech signal 
rather than on the application of phonological rewrite rules on the CAN-PT. This resulted, in 
particular for the [DD-PTs]d of the more spontaneous telephone dialogues, in more 
discrepancies with the RTs, all of which were modelled in the decision trees. Even after 
pruning unlikely pronunciation variants from the decision trees, the decision trees apparently 
still comprised enough pronunciation variants to boost the average number of pronunciation 
variants per word in the recognition lexica. From experience with ASR tasks it is known that 
an average number of 2.5 pronunciations per word is close to the optimum in terms of word 
error rate (Kessens et al., 2003). It was shown that the addition of more pronunciation variants 
to recognition lexica increases the risk of lexical confusability. In our study, for the purpose of 
automatic phonetic transcription, the CSR had to choose between highly similar alternatives. 
Apparently, an average of 9.5 pronunciation variants per word in the recognition lexicon for 
the telephone dialogues was too high, whereas an average of 3.5 variants in the lexicon for the 
read speech seemed tolerable, even though it was more than the optimum of 2.5 variants 
previously reported for ASR. 

The small improvements obtained through the use of decision trees for the enhancement 
of the CAN/DD-PTs and the KB/DD-PTs, as well as the large improvements obtained through 
the use of decision trees for the enhancement of the CAN-PTs and the KB-PTs can be 
explained along the same line of reasoning. The numerous discrepancies between the 
CAN/DD-PTs and the KB/DD-PTs on the one hand and the RTs on the other hand yielded 
numerous pronunciation variants in the resulting recognition lexica (though less than in the 
DD-PT lexica). The higher similarity between the original [CAN-PTs]d, the [KB-PTs]d and 
the RTs led to fewer branches in the decision trees and fewer pronunciation variants in the 
resulting recognition lexica. As a consequence, the corresponding prior probabilities of the 
variants were intrinsically more robust than the probabilities in the data-driven lexica 
comprising more pronunciation variants per word. 

Recall that we did not implement vowel reduction and deletion for the generation of the 
KB-PTs, and that we based our KB-PTs on canonical transcriptions without using supra-
segmental information. We investigated whether the disregard of this knowledge in our 
knowledge-based transcription procedure made a substantial contribution to the discrepancies 
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between the KB-PTs (and consequently also the [KB-PTs]d) and the RTs. This proved not to 
be the case; the missing vowel rules and the reformulation of the phonological processes did 
not hamper the pronunciation variation modelling in the knowledge-based transcriptions 
procedures to any substantial degree. 

We obtained our best transcriptions by means of the procedure in which our fully 
canonical transcriptions were tuned towards the manually verified reference transcriptions by 
means of pronunciation variation modelling inspired by speech processes that were attested in 
the reference transcriptions. Apparently, learning intra-word and cross-word phonological 
processes from a small sample of real transcriptions works better than predicting the results of 
these processes from linguistic and phonetic knowledge. It remains to be explained why the 
KB-PTs were a less effective starting point for the learning process. We think that this is most 
likely due to a canonically-oriented bias in the RTs that was so strong that no other point of 
departure could close the gap. Thus, in order to approximate manually verified transcriptions 
resulting from the auditory verification of close-to-canonical example transcriptions (like in 
the Spoken Dutch Corpus), it is worthwhile learning the most obvious differences between the 
canonical and the reference transcriptions through the use of decision trees. One should bear 
in mind, though, that a canonical point of departure may be suboptimal to approximate RTs 
that are not based on a (similar) example transcription. 

3.5.3 What about the remaining discrepancies? 

The number of remaining discrepancies in the [CAN-PTs]d of the telephone dialogues (14.6% 
disagreement) and the read speech (8.1% disagreement) was only slightly higher than human 
inter-labeller disagreement scores reported in the literature. Recall that Binnenpoorte (2006) 
reported human inter-labeller disagreements between 14 and 11.4% on transcriptions of Dutch 
spontaneous conversations, and between 6.2 and 3.7% disagreements on transcriptions of 
Dutch read speech from the Spoken Dutch Corpus. In the context of the figures reported in 
Binnenpoorte (2006), a closer look at the 20 most frequent dissimilarities distinguishing our 
[CAN-PTs]d from the human RTs shows a comparable number of insertions and deletions, 
and a set of substitutions in which the mismatches between voiced and voiceless phones were 
dominant (see Table 3.5).  

Similar disagreements were previously observed between different human transcribers 
who verified the same example transcription (Binnenpoorte et al., 2003). Therefore, we 
believe that our automatic transcription procedures have faced the same ‘mission impossible’ 
as humans when making broad phonetic transcriptions. The limited number of phonetic 
symbols available forces human transcribers and machines to classify auditory observations in 
a continuous space into discrete categories. For observations that are close to (hypothetical) 
category boundaries, forced choices inevitable cause a large proportion of disagreements. 
Fortunately, if for some application in which phonetic transcriptions must be used 
independent criteria can be formulated for classifying a fricative as voiced or unvoiced (to 
mention one of the most volatile phonetic differences in Dutch) it is probably quite easy to 
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train an acoustic classifier to re-label all fricatives in the corpus according to the new criteria. 
Most probably, such a re-labelling will be equally advantageous for manually verified broad 
phonetic transcriptions, for the same reason: they also involve classifications that may not 
fully adhere to the newly introduced criteria. Thus, we can conclude that we found a very 
quick, simple and cheap transcription procedure able to approximate manually verified 
phonetic transcriptions of a large speech corpus by training an automatic procedure on the 
basis of a relatively small set of data. Our procedure applied uniformly to well-prepared and 
spontaneous speech. It remains to be shown that the procedure is equally effective for manual 
transcriptions that are made in a way that is significantly different from the procedure used in 
the Spoken Dutch Corpus (and in most other large speech corpora, for that matter). However, 
the machine learning procedure on which our approach is based seems sufficiently general 
and powerful to approximate different types of transcriptions, as long as learning can be 
initialised from a starting point that is not too far from the eventual target. 

 
 

Table 3.5: 20 most frequent mismatches between the [CAN-PTs]d and the RTs. 
 

read speech telephone dialogues 
substitutions deletions insertions substitutions deletions insertions 

RT [CAN-PT]d RT [CAN-PT]d RT [CAN-PT]d RT [CAN-PT]d RT [CAN-PT]d RT [CAN-PT]d 

v f @ - - @ d t @ - - @ 
s z r - - d z s r - - t 
g k n - - r v f n - - r 
d t h - - t g k h - - d 
t d   - h @ A   - n 
G x   - n G x   - j 
@ A     A a     
z s     t d     
A a     s z     
@ a     f v     

 

3.6 Conclusions 

The aim of our study was to investigate whether existing automatic transcription procedures 
and combinations of such procedures can approximate the quality of manually verified 
phonetic transcriptions of speech. If such procedures would be able to do so, we would have a 
quick and cheap alternative to deploying human experts for the generation of the type of 
transcription of large speech corpora. We used ten automatic transcription procedures to 
generate a phonetic transcription of well-prepared speech (read-aloud texts) and of 
spontaneous speech (telephone dialogues) from the Spoken Dutch Corpus. The resulting 
transcriptions were compared to the corresponding manually verified phonetic transcriptions 
from the Spoken Dutch Corpus.  
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Our results showed that, in order to approximate the quality of the manually verified 
phonetic transcriptions in the Spoken Dutch Corpus, one only needs an orthographic 
transcription, a canonical lexicon, a small sample of manually verified phonetic transcriptions, 
software for the implementation of decision trees and a standard continuous speech 
recogniser. Our study suggests that it is sufficient to verify the phonetic transcription of only a 
small portion of a corpus by hand in order to automatically generate similar transcriptions for 
the remainder of the corpus by means of decision trees. The best point of departure for such 
an automatic procedure will probably depend on the procedure by means of which the manual 
reference transcriptions were obtained.  
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Abstract 

We studied the frequencies of phone and syllable deletions in spontaneous Dutch, and 
the extent to which such deletions are influenced by the various linguistic and 
sociolinguistic factors represented in the transcriptions, word segmentations and 
metadata of the Spoken Dutch Corpus. In addition to providing insight into the 
frequencies of phone and syllable deletions and the factors influencing them, our 
study illustrates the new opportunities for analysing rich and therefore complex 
corpus data offered by a recently developed statistical modelling technique: the 
possibility to model the effects of random factors as crossed instead of nested with 
generalised linear mixed effects models. 

We observed average phone and syllable deletion rates of 7.57% and 5.46% 
respectively. 20.32% of the words had at least one phone missing, and 6.89% of the 
words had at least one syllable deleted. The mixed effects models for phone and 
syllable deletion had several effects in common, which implies that both types of 
deletion are to a large extent influenced by the same factors. The strongest factors 
across both models were lexical stress, word duration and the segmental context of 
the syllable onset of the following word. 
 
Keywords: segment deletion, corpus linguistics, statistical modelling. 

4.1 Introduction 

Over the years, large phonetically transcribed speech corpora have proven valuable resources 
for studying pronunciation variation. Switchboard (Godfrey et al., 1992; Greenberg et al., 
1996) and the Buckeye Corpus of Conversational Speech (Pitt et al., 2005), to name just two 
examples, have proven useful for -among other things- creating an inventory of testified 
speech processes in everyday conversational English (Greenberg et al., 1996), studying the 
frequencies of these processes (Johnson, 2004) and investigating how these processes are 
influenced by various linguistic and sociolinguistic effects (e.g. Bell et al., 2003; Raymond et 
al., 2006). Historically, most phonetically transcribed speech corpora comprise (American) 
English. Therefore most corpus studies on pronunciation variation were conducted on 
English. The recent release of the 9-million-word Spoken Dutch Corpus (CGN; Oostdijk, 
2002) now offers new opportunities for studying pronunciation variation in a language other 
than English, and for testing whether knowledge gleaned for American English also holds for 
another language. The CGN contains material from various speech styles, it was annotated 
with metadata including speaker characteristics, it was segmented at the word level and it was 
provided with an orthographic transcription, a broad phonetic transcription and POS tags. The 
word segmentations and phonetic transcriptions of a 1-million-word subset of the CGN, the 
so-called core corpus, were manually verified. We used the annotations, word segmentations 
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and metadata of the spontaneous telephone dialogues in this core corpus to study the deletion 
of phones and syllables in spontaneous Dutch. 

The first aim of our study was to establish the frequencies of phone and syllable deletions 
in spontaneous Dutch, and the extent to which such deletions are influenced by the linguistic 
and sociolinguistic factors reflected in the annotations, word segmentations and metadata of 
the CGN. Previous studies on (factors affecting) pronunciation variation were mostly 
conducted by means of controlled experiments. As a result they were often restricted with 
respect to the number and selection of investigated pronunciation processes, factors and 
words. Studies often considered one or a few speech processes at a time (e.g. Jurafsky et al. 
(2001) considered vowel reduction and final /t,d/-deletion and Raymond et al. (2006) 
considered word-internal /t,d/-deletion in American English). Likewise, studies often 
considered the effects of one or a few factors at a time (e.g. Bell et al. (2003) included the 
effects of preceding and succeeding disfluencies, word predictability, utterance position and 
gender) and/or a limited number or a selection of words (e.g. Bell et al. (2003) investigated 
the pronunciation of the 10 most frequent English function words and Keune et al. (2005) 
investigated the pronunciation of 14 Dutch words ending in ‘-lijk’). In our present study, we 
aimed at modelling the deletion of phones and syllables in spontaneous Dutch without any 
further restrictions on the nature of the deletions, factors and words under investigation: we 
modelled the effects of a wide range of linguistic and sociolinguistic factors on the phone and 
syllable deletions in the spontaneous telephone dialogues of the CGN. 

An ancillary goal of our study was to explore the new opportunities for analysing rich and 
therefore complex corpus data offered by a recently developed statistical modelling technique: 
the possibility to model the effects of random factors as crossed instead of nested with 
generalised linear mixed effects models (Baayen et al., 2007). Mixed effects models allow for 
the inclusion of a mixture of fixed-effect factors and random-effect factors in the same model. 
Fixed-effect factors such as ‘word class’ are factors with a limited set of levels whose effects 
on a response variable (in our case: phone or syllable deletion) will remain unchanged in 
successive experiments. By contrast, random-effect factors such as ‘speaker’ or ‘word’ are 
randomly sampled from large populations. Because of this random selection, the effects of the 
different levels of random-effect factors (e.g. individual speakers or words) are usually not 
compared with each other but instead considered to describe the variation in effects of the 
population they were sampled from. Including fixed and random effects in one mixed effects 
model allows for generalising the effects of the fixed factors to the populations from which 
the random factors were sampled. In addition, including random effects alongside fixed 
effects allows for modelling any remaining speaker- or item-specific random effects that were 
not explicitly (as fixed effects) included in the model. 

Mixed effects models, as argued in Pinheiro and Bates (2000), are robust with respect to 
missing data (this increases the stability of the estimates of fixed effects), they are easily 
applicable to designs with complex mixtures of factors, and at the same time they are 
parsimonious with regard to the number of parameters they need to estimate (random-effects 
factors only require one parameter: the variance from the group mean; fixed-effect factors 
require just as many parameters as there are levels). The possibilities to cope with missing 
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data, complex factorial designs, the ability to do all this in a computationally efficient way 
and to model both fixed-effects and random-effects factors in one model makes mixed effects 
models highly suitable for linguistic corpus studies. However, until recently, two or more 
random-effects factors in the same mixed-effects model could only be modelled as nested 
(e.g. the random-effects factor ‘syllable’ nested within the random-effects factor ‘word’ 
nested within the random-effects factor ‘speaker’). This imposed serious limitations on the 
use of mixed-effects models for linguistic studies. 

Nesting a factor A within a factor B implies the assumption that the levels of factor A are 
different within different levels of factor B. Thus, nesting a random-effects factor ‘word’ 
within a random-effects factor ‘speaker’ would force us to assume that the properties of 
individual words (e.g. word length, word class) differ so substantially for different speakers 
that their identity is no longer an issue across speakers. This assumption is demonstrably 
incorrect for many (psycho)linguistic data sets, and it could result in anti-conservative P-
values for the fixed effects, making them too easily significant in addition to the random 
effects. In other words, this assumption could increase the risk of type I errors (i.e. 
erroneously considering an effect significant). Fortunately, it is now possible to model random 
effects in mixed-effects models as crossed instead of nested. This possibility allowed us to 
include random-effects factors such as ‘speaker’ and ‘word’ simultaneously as independent 
sources of random variation, and fixed-effects factors related to these random-effects factors 
(e.g. ‘gender’ for ‘speaker’, and ‘word frequency’ for ‘word’) as independent fixed effects. In 
turn, this enabled us to assess in one model which linguistic and sociolinguistic variables 
predict segment deletion over and above the random variation that came with the subjects and 
items (e.g. ‘word’) sampled. 

This paper is organised as follows. Section 4.2 presents our data and methodology. In 
Section 4.3, we present and discuss the results of our analyses. Section 4.4 summarises our 
conclusions. 

4.2 Methodology 

4.2.1 Data preparation 

We based our study on the annotations, word segmentations and metadata of the spontaneous 
telephone dialogues in the core corpus of the CGN. Excluding broken and (partially) 
unintelligible words, we obtained a dataset of 178,271 word tokens (8,539 types) with 
manually verified word boundaries, manually verified orthographic and broad phonetic 
transcriptions and POS tags. Similar to Johnson (2004), we generated a canonical 
representation of the material by concatenating the citation forms of the words. These citation 
forms (including syllable boundaries and lexical stress marks) were retrieved through lexicon 
lookup. The phones in the canonical representation and the manually verified broad phonetic 
transcription were aligned with ADAPT (Elffers et al., 2005). In this process, the syllable 
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boundaries and lexical stress marks of the canonical representation were copied onto the 
manually verified transcriptions of the CGN to identify phone and syllable deletions in these 
transcriptions (see Figure 4.1). 
 
 
 

 
 

 
Figure 4.1: Identification of two phone deletions and one syllable deletion through  

the alignment of a canonical transcription (CT) and a broad phonetic transcription (PT). 
 
 
 
For every canonical syllable, we retrieved linguistic information at the utterance1, word and 
syllable level from the orthographic and canonical transcriptions, the POS tags and the word 
segmentations. For every canonical phone, we retrieved the same information and additional 
information at the phone level. Sociolinguistic (speaker) information was extracted from the 
metadata. All linguistic and sociolinguistic information (e.g. the current word was an 
adjective and spoken by a male subject) was stored in a separate information vector for every 
canonical phone and syllable to allow for modelling the effects on phone and syllable deletion 
of the various linguistic and sociolinguistic factors (in the above example the factor ‘word 
class’ with the level ‘adjective’ and the factor ‘gender’ with the level ‘male’). 

At the utterance level, we considered the duration (in ms excluding long silent pauses) and 
the number of canonical phones and syllables. From this information we computed the 
articulation rate in phones and syllables per second. At the word level, we considered the 
word identity, the word duration (in ms excluding silent pauses), the number of canonical 
phones and syllables, the position in the utterance (initial, final, initial-final, mid), the word 
class (nouns, verbs, adjectives, adverbs, pronouns, interjections, articles, numerals, 
conjunctions, prepositions), and the number of times the word was previously uttered by one 
of the interlocutors and by the current speaker (to model the effects of given/new 
information). We also considered the word’s frequency and the mutual information of the 
word and its neighbours (both computed on the orthographic transcription of the 544,215 
word tokens in the telephone dialogues of the CGN that were not included in the core corpus), 
whether the word preceded a long silence (>250 ms) or a disfluency (repetition, broken word, 
filled pause) and whether the following word started with a consonant or a vowel. At the 
syllable level, we considered the syllable identity, the syllable's position in the word (initial, 
final, initial-final, mid), the number of canonical phones, and whether the syllable had lexical 
stress (retrieved through lexicon lookup). At the phone level, we considered the phone identity, 
its position in the word (initial, final, initial-final, mid), syllable (initial, final, initial-final, mid) 
and in the consonant/vowel structure of the syllable (e.g. CC_V), whether the phone was part of 
the syllable’s onset, nucleus or coda and whether the phone had lexical stress (retrieved through 
                                                 
1 Utterances were defined as stretches of speech that were marked with capitals and punctuation marks in the 
orthographic transcription of the CGN. 

CT Ei G @ l @ k 
PT Ei -   - l @ k 
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lexicon lookup). In addition, we considered the identity of the speaker, his or her gender, age 
(year of birth), regional background (the region the speaker spent most of the time between the 
age of 4 and 16) and level of education (high, mid, low). In the last field of each information 
vector, we marked whether the phone or syllable was deleted. Like Johnson (2004) in his study 
on phone and syllable reductions in conversational English, we considered syllables deleted if 
their syllabic nucleus was absent. Contrary to English, Dutch normally does not have syllabic 
nasals, laterals or rhotics. Therefore we considered syllables deleted if a vocalic nucleus was no 
longer present. 

4.2.2 Analyses 

We first counted the number of phone and syllable deletions to gain insight into the 
frequencies of such deletions in spontaneous Dutch. The results of these quantitative analyses 
are presented in Section 4.3.1. Subsequently, we fitted two generalised linear mixed effects 
models with a logistic link function to the information vectors: a model for phone deletion and 
a model for syllable deletion. We assumed binomial variance. Both models were defined by 
sequentially including every linguistic and sociolinguistic factor from the information vectors 
in the model. A factor was only retained if it contributed significantly (p < .05) to the model’s 
goodness of fit. Factors were pruned from the model if their contribution was no longer 
significant after the inclusion of additional factors. Goodness of fit was assessed with Somers’ 
Dxy, a rank correlation between predicted probabilities and observed responses which is 
closely related to the receiver operating characteristic curve area (Harrell et al, 1996). The 
results of the statistical analyses are presented in Section 4.3.2. All statistical computations 
were conducted with the lme4 package (Bates, 2005; Bates and Sarkar, 2005) for R (R 
development core team, 2005). In order to keep building the models computationally feasible, 
we fitted models on a randomly selected 10% subset of the material. 

Our study required the inclusion of fixed-effect and random-effect factors. Recall that 
fixed-effect factors such as ‘word class’ are factors whose levels (e.g. ‘adjective’) are selected 
from a limited set of values, and repeatable in successive experiments (the word ‘beautiful’ 
will always be an adjective). By contrast, random-effect factors such as ‘speaker’ are factors 
whose levels (in this case: individual speakers) are randomly sampled from a larger 
population. In statistical modelling, especially when fitting models with a large number of 
fixed-effect factors, fixed-effect factors with a large number of levels (e.g. the factor phone, 
which had 42 levels to account for the different phones in the transcriptions) are often treated 
as random-effect factors. This drastically reduces the number of estimated parameters in the 
model: fixed-effect factors require as many parameter estimates as there are levels (thus 42 for 
the factor ‘phone’) whereas random variables can be modelled by one parameter: the variance 
from the group mean. Decreasing the number of parameter estimates in a model increases the 
transparency and hence the interpretability of the model. Post-hoc inspection of the best linear 
unbiased predictors for the random-effect factors makes it possible to investigate which levels 
of each random-effect factor (e.g. the level /@/ for the factor ‘phone’) influenced the deletion 
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of phones and syllables more or less than the random intercept representing the mean effect of 
all the levels of the factor (Baayen, forthcoming). 

In our study, ‘speaker’, ‘word’ and ‘syllable’ were straightforward cases of random-effect 
factors because they were all randomly sampled from large populations. In addition, in order to 
limit the number of parameters in the models, we treated the otherwise fixed-effects factors 
‘regional background of the speaker’ (16 levels), ‘phone’ (42 levels) and ‘the position of the 
phone in the consonant/vowel structure of the syllable’ (e.g. CC_V, 57 levels) as random 
effects. All remaining factors in the enumeration of factors below were obvious fixed-effect 
factors and treated as such. 

4.3 Results 

4.3.1 Frequencies of segment deletions 

Phone deletions 

We counted 42,556 phone deletions out of 562,294 phones in 85,050 content and 93,221 
function words2. This implies an overall phone deletion rate of 7.57%. Table 4.1 lists the 
deletion rates of the individual phones (with 95% confidence intervals), and the proportion of 
all phone deletions accounted for by the deletion rates of the individual phones. 83.69% of all 
phone deletions concerned deletions of one of the 7 following phones: /@/ (22.91% of all 
deletions), /r/ (19.59%), /n/ (13.12%), /t/ (12.27%), /l/ (5.74%), /h/ (5.39%) and /d/ (4.66%). 
This was not just because these phones are common in Dutch; the individual deletion rates of 
these phones proved higher than the deletion rates of other phones. We found the following 
proportion of deletions for each of these phones: /r/ (28.79% - 95% confidence interval: 1.05), 
/h/ (21.25% - 1.55), /@/ (16.10% - 0.59), /n/ (12.40% - 0.61), /l/ (12.29% - 0.92), /t/ (11.40% - 
0.58), /d/ (7.06% - 0.6). 

Looking at the data from a more general perspective, the deletion of plosives (/p/, /b/, /t/, 
/d/, /k/, /g/) and sonorants (/m/,/n/,/N/, /l/, /r/, /j/, /w/) took up a large portion of all phone 
deletions: 18.06% resp. 42.09% (60.15% in all). This is in line with Johnson (2004), who also 
reported most phone deletions in his sample of American English to concern plosives and 
sonorants. The deletion of full vowels (including diphthongs, nasalised and loan vowels) 
accounted for only 6.73% of all phone deletions. The deletion of /@/ however in itself 
accounted for 22.91% of all phone deletions. Mind that, since we considered the deletion of 
citation form phones, the low average deletion rate of full vowels (6.73%) and the high 
average deletion rate of /@/ (22.91%) do not imply that the deletion of full vowels proceeded 
through a two-step procedure via reduction to schwa and subsequent deletion of schwa. In 
other words, the lower figure for vowel deletions (6.73%) was not because vowels were first 

                                                 
2 Nouns, verbs, adverbs and adjectives were considered content words. All other words were treated as function words. 



CHAPTER 4 

 64 

reduced to /@/ and afterwards deleted and counted as deletions of /@/. Rather, the fact that 
22.91% of all phone deletions was accounted for by deletions of /@/ simply implies that /@/, 
which often occurs in syllables without lexical stress and without prosodic accent, is highly 
susceptible to deletion. To complete this description of average phone deletion rates, the 
deletion of fricatives (/f/, /v/, /s/, /z/, /x/, /G/ and /h/) accounted for the remaining 10.22% of 
the phone deletions. 

 
 

Table 4.1: Deletion rates of phones (%del, with 95% confidence intervals) and proportions of phone deletions 
accounted for by the individual phone deletion rates (% of all deletions). SAMPA symbols are used. Classes: 

PLosives, FRicatives, SOnorants, Short Vowels, Long Vowels, DIphthongs, LoanVowels, Nasalised Vowels, @. 
 

class phone # tokens % del % of all 
deletions class phone # tokens % del % of all 

deletions
PL p 7,213 1.14 (0.51) 0.19 SV I 15,387 5.68 (0.74) 2.05 

 b 6,520 1.12 (0.53) 0.17  E 21,014 1.95 (0.38) 0.96 
 t 45,814 11.40 (0.58) 12.27  A 26,026 0.97 (0.24) 0.59 
 d 28,074 7.06 (0.60) 4.66  O 10,827 1.43 (0.46) 0.36 
 k 22,128 1.45 (0.32) 0.75  Y 3,834 2.58 (1.03) 0.23 
 g 68 5.88 (13.23) 0.01 LV i 11,869 1.70 (0.47) 0.47 

FR f 4,346 2.37 (0.93) 0.24  y 1,909 1.00 (0.97) 0.04 
 v 9,524 0.68 (0.34) 0.15  e: 15,479 0.81 (0.29) 0.30 
 s 19,920 5.19 (0.62) 2.43  2 1,002 0.00 0.00 
 z 9,998 0.43 (0.27) 0.10  a: 27,407 1.59 (0.30) 1.02 
 S 253 0.00 0.00  o: 14,589 0.99 (0.33) 0.34 
 Z 132 0.00 0.00  u 5,958 0.55 (0.40) 0.08 
 x 16,507 3.76 (0.59) 1.46 DI Ei 7,213 0.78 (0.42) 0.13 
 G 3,551 5.32 (1.51) 0.44  9y 1,470 0.14 (0.53) 0.00 
 h 10,802 21.25 (1.55) 5.39  Au 3,719 0.48 (0.48) 0.04 

SO N 2,724 0.51 (0.59) 0.03 LoV E: 29 0.00 0.00 
 m 17,607 1.89 (0.41) 0.78  9: 6 0.00 0.00 
 n 45,055 12.40 (0.61) 13.12  O: 7 0.00 0.00 
 J 26 0.00 0.00 NaV E~ 2 0.00 0.00 
 l 19,882 12.29 (0.92) 5.74  A~ 71 50.70 (23.99) 0.08 
 r 28,950 28.79 (1.05) 19.59  O~ 4 0.00 0.00 
 w 15,181 5.91 (0.76) 2.11  Y~ - - - 
 j 19,636 1.54 (0.35) 0.71 @ @ 60,561 16.10 (0.59) 22.91 

 
 
When assessing phone deletion at the word level, we found that 17.56% of the words had one 
phone missing, 2.16% had two phones missing, and 0.60% had three or more phones missing. 
We found relatively more phone deletions in function words (18,382 out of 213,975 phones - 
8.59%) than in content words (24,174 out of 348,319 phones - 6.94%), but at the same time 
we observed more individual content words than function words with phone deletions: 
22.76% of the content words and 18.10% of the function words had at least one phone 
missing. This implies that the phone deletions in the function words were concentrated in a 
proportionally smaller subset of the words than was the case with the content words. This fits 
in with Johnson’s observation for English that the function words in the Buckeye Corpus 
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deviate more from their citation forms (in terms of phone substitutions, deletions and 
insertions) than the content words, and with previous observations that function words, as 
opposed to content words, are more susceptible to segment reduction and deletion. As 
Raymond et al. (2006:62) summarises, function words are generally less salient than content 
words because they have lower semantic content, they are more common, they are generally 
shorter and they usually occur in unaccented positions. As a result, function words are often 
reduced and/or cliticised in connected speech. Content words on the other hand are often 
multisyllabic and more likely to receive prosodic accent, which results in fuller pronunciation 
variants. 

In general, the phone deletion rates we found for Dutch were a little lower than the figures 
reported for American English in the Buckeye Corpus. Johnson (2004) reported that a little 
over 20% of the words in his dataset had one phone deleted (we found 17.56%) and that 5% 
of the words had two or more phones missing (we found 2.66%). However, just like Johnson 
(2004), we have to conclude that, given the short average word length (in our study 3.14 
canonical phones per word – the top 50 of most frequent word types, which accounted for 
56.47% of all word tokens, contained one word type with 4 canonical phones and 49 types 
with three or less phones), the proportion of words with one or more missing phones is 
remarkably large. Table 4.2 illustrates how the phone deletions were distributed in words of 
different length (in terms of the number of syllables and phones per word). 
 

 
Table 4.2: Frequencies of phone deletion in words of different length (95% confidence intervals between brackets). 
 

 content words function words 
# syllables/word # phones % phone deletion # phones % phone deletion

1 155,463 6.82 (0.25) 191,208 8.66 (0.25) 
2 108,329 6.02 (0.28) 18,813 8.39 (0.80) 
3 61,444 9.27 (0.46) 2,113 5.35 (1.97) 
4 17,515 5.85 (0.70) 1,351 6.88 (2.78) 

5 or more 5,568 5.85 (1.25) 490 6.73 (4.67) 
# phones/word # phones % phone deletion # phones % phone deletion

1 24 0.00 10,080 6.14 (0.95) 
2 23,520 3.21 (0.46) 111,294 7.24 (0.31) 
3 101,862 7.74 (0.33) 66,978 11.56 (0.49) 
4 52,624 6.13 (0.41) 11,492 5.89 (0.87) 
5 46,035 5.78 (0.43) 5,220 4.96 (1.20) 
6 42,222 8.20 (0.53) 4,284 8.52 (1.70) 
7 27,377 7.23 (0.62) 2,191 22.23 (3.53) 
8 22,664 8.81 (0.74) 280 7.86 (6.72) 
9 13,860 7.61 (0.89) 180 1.67 (4.76) 

10 or more 18,131 6.38 (0.72) 1,976 7.79 (2.42) 
total 348,319 6.94 (0.17) 213,975 8.59 (0.24) 
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Table 4.2 shows both for content and function words a steady decrease in the phone deletion 
rates in monosyllabic and bisyllabic words and words with 4 syllables or more. Function 
words, as already indicated, in general showed higher phone deletion rates than content 
words. This did not hold for trisyllabic words though: trisyllabic content words were 
remarkably more susceptible to phone deletion than trisyllabic function words. Moreover, 
trisyllabic content words were remarkably more susceptible to phone deletion than other 
content words, whereas trisyllabic function words had relatively fewer phones deleted than the 
other function words. Closer inspection of the deletions in trisyllabic words per word class 
showed that in particular trisyllabic (and often very common) adverbs such as ‘allemaal’, 
‘helemaal’, ‘inderdaad’ and adjectives such as ‘natuurlijk’, ‘eigenlijk’, ‘waarschijnlijk’, 
‘allerlei’ were highly susceptible to phone deletion (see Table 4.3 for the frequencies of phone 
deletions in trisyllabic words per word class).  

The last column in Table 4.3 summarises the phone deletion rates computed over all phones 
per word class. These figures show that in particular articles, pronouns and conjunctions were 
prone to deletion. This is in line with the findings of Greenberg (1998) for American English: 
these word classes were found to depart most regularly from their canonical form. We found 
that interjections, nouns and numerals were least prone to phone deletion. The low deletion rate 
of the interjections can be largely explained by the frequent use of filled pauses, which by 
default were transcribed by means of their citation form /@/. The low deletion rate of both 
nouns and numerals can be explained by the high information valence associated with these 
words. Numerals are probably the class of function words with the highest information value, 
which explains why they were less prone to phone deletions, as were the nouns. 
 

 
Table 4.3: Frequencies of phone deletion in trisyllabic words (fourth column) and all words (last column)  

(95% confidence intervals between brackets). 
 

 word class 
# phones in 

trisyllabic words 
% phone dels in 
trisyllabic words 

# phones in  
all words 

% phone dels in 
all words 

noun 19,930 5.05 (0.61) 83,704 3.98 (0.27) 
verb 14,727 5.39 (0.74) 116,702 6.76 (0.29) 

adjective 15,272 11.63 (1.02) 58,544 7.72 (0.43) 
adverb 11,515 18.41 (1.42) 89,369 9.43 (0.38) 

content 

total 61,444 9.27 (0.46) 348,319 6.94 (0.17) 
pronoun 976 2.56 (2.12) 81,984 10.82 (0.43) 

interjection 164 7.32 (8.71) 45,613 2.89 (0.31) 
numeral 589 8.32 (4.65) 8,379 4.66 (0.91) 

conjunction 119 11.77 (12.46) 31,935 11.31 (0.70) 
preposition 265 4.91 (5.69) 32,405 7.76 (0.59) 

article - - 13,659 12.69 (1.12) 

function 

total 2,113 5.35 (1.97) 213,795 8.59 (0.24) 
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The figures in Table 4.2 also show that content words with two phones or less were less 
susceptible to phone deletion than content words with three or more phones. This can 
probably to a large extent be explained by the frequent use of discourse words like ‘ja’ (yes) 
and ‘mm’ (uhu), which often constitute a speech utterance of their own and are therefore well 
pronounced. The deletion rates of content words with three or more phones were relatively 
stable. Johnson (2004) observed a similar effect for American English: 1, 2, and 3-phone 
content words showed increasing deletion rates, content words with more phones showed 
relatively stable deletion rates between 7% and 12%. Johnson (2004) reported a similar 
tendency for English function words: he found a constant rise in deletion rates for 1, 2 and 3-
phone function words, and a relatively stable deletion rate for words with more phones. We 
did also notice increasing deletion rates for 1, 2, and 3-phone function words, with a 
remarkably high number of phone deletions in 3-phone function words (11.56%). This high 
deletion rate was largely due to the frequent occurrence of final /r/-deletions in common 
words such as ‘naar’ (towards), ‘daar’ (there), ‘maar’ (but), ‘hoor’ (discourse word) and 
‘voor’ (for) and due to the frequent use of words such as ‘m’n’ (from: ‘mijn’ - my), ‘z’n’ 
(from ‘zijn’ - his) and ‘d’r’ (from ‘haar’ – her, or from ‘daar’ - there) in which the canonical 
vowel nucleus (i.c. /@/) was deleted. These observations largely explain the high average 
phone deletion rates of /r/ and /@/ reported in Table 4.1, and the high average syllable 
deletion rates in monosyllabic function words that will be reported below.  

Contrary to the observations in Johnson (2004), the phone deletion rates in longer function 
words (more than three phones) were all but stable. In particular the average phone deletion 
rate in 7-phone function words and (to a lesser extent because of the limited number of phones 
this figure was based upon) the average phone deletion rate in 9-phone function words were 
clearly distinct from the deletion rates of the remaining function words. The 22.23% phone 
deletion rate in 7-phone function words is largely due to heavy reductions in the preposition 
‘volgens’, which occurred 170 times (and accounted for 54.31% of the 313 7-phone function 
word tokens) and which had an average phone deletion rate of 34.96%. This large deletion 
rate can be explained by the fact that in 155 out of 170 cases, the preposition ‘volgens’ 
preceded the pronoun ‘mij’ in the multi-word expression ‘volgens mij’ (according to me). 
Previous research on multi-word expressions has shown that (function) words in such frequent 
N-grams often undergo heavier reduction than the same words in other contexts (Bell et al., 
2003; Binnenpoorte et al., 2005). 

Syllable deletions 

We observed that 12,534 out of 229,670 syllables (5.46%) were deleted. As with the 
frequencies for phone deletion, we observed relatively more syllable deletions in function 
words (6,592 out of 98,690 syllables - 6.68%) than in content words (5,964 out of 130,981 
syllables - 4.54%). 7.09% of the function words had 1 syllable missing, and a negligible 
0.01% had 2 syllables missing. 6.33% of all content words was pronounced with 1 syllable 
missing, 0.33% had 2 or more syllables missing. These results are not in line with the 
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observations for American English reported in Johnson (2004), where relatively more content 
words (6%) than function words (4.5%) were reported to have at least one missing syllable. 
The relatively high syllable deletion rate in function words in our data can be explained by the 
frequent use in Dutch of clitics such as ‘‘k’ (from: ‘ik’ - I), ‘d’r’ (from ‘haar’ – her, or from 
‘daar’ - there), ‘m’n’ (from: ‘mijn’ - my), ‘’t’ (from: ‘het’ – it) and ‘’n’ (from ‘een’, - a). The 
citation forms for these shortened word forms contain a /@/ as their syllabic nucleus, but this 
/@/ was often deleted in our material. We counted 6,963 such /@/ deletions in function word 
clitics. This accounts for the deletion of 2.62% of the syllables in the function words. The 
remaining 4.06% (6.68% – 2.62%) syllable deletion rate is comparable to the 4.5% syllable 
deletion rate reported for function words in American English, and below the 4.54% phone 
deletion rate we counted in the content words3. Ignoring the deletion of citation form schwas 
due to cliticisation, we found fewer syllable deletions in function words (4.06%) than in 
content words (4.46%). 
 

 
Table 4.4: Frequencies of syllable deletion (95% confidence intervals between brackets). 

 
content words 

# canonical syl totals no syl del (%) -1 syl del (%) -2 syl del (%) -3 syl del (%) 
1 52,638 98.35 (0.22) 1.65 (0.22)   
2 43,460 94.34 (0.44) 5.66 (0.44)   
3 25,224 91.80 (0.68) 6.42 (0.61) 1.78 (0.33)  
4 7,324 94.51 (1.06) 4.61 (0.98) 0.82 (0.43) 0.04 (0.12) 
5 1,795 93.70 (2.31) 4.35 (1.95) 1.78 (1.29) 0.17 (0.49) 
6 360 95.00 (4.85) 3.89 (4.37) 1.11 (2.66)  
7 105 98.10 (7.05) 1.90 (7.05)   
8 56 98.21 (10.72) 1.79 (10.72)   
9 18 100    

function words 
# canonical syl totals no syl del (%) -1 syl del (%) -2 syl del (%) -3 syl del (%) 

1 88,427 93.02 (0.34)  6.98 (0.34)   
2 8,632 95.69 (0.87) 4.19 (0.86) 0.12 (0.16)  
3 963 96.47 (2.46) 3.12 (2.33) 0.42 (1.01)  
4 484 97.52 (3.06) 2.48 (3.06)   
5 160 96.88 (6.37) 3.13 (6.37)   
6 24 100    

 
 
 

Table 4.4 shows the distribution of syllable deletions over N-syllable content and function 
words. Not surprisingly, the deletion of just one syllable was more common than the deletion 
of more syllables. Compared to the corresponding deletion rates reported by Johnson (2004) 
for conversational English, however, we found much higher deletion rates for Dutch 
                                                 
3 We also counted 487 cliticised content words (mostly adverbs such as ‘’ns’ (from: ‘eens’ - once) and ‘d’rop’ 
(from: ‘daarop’ - on there)). However, /@/-deletion in these words only accounted for the deletion of 0.08% of 
the syllables in the content words. The impact on the overall syllable deletion rate in the content words was 
therefore not at all comparable to the impact of the cliticised function words on the syllable deletion rate in 
function words. 
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monosyllabic function words, and much lower deletion rates for Dutch content words with 
three syllables or more and function words with two syllables or more. Hardly any of the 
syllabic nuclei in the monosyllabic content words were deleted (1.65%). The most frequent 
syllabic nucleus deleted in monosyllabic content words was the [I]. The phone was deleted 
850 times, of which 844 times in the singular verb form ‘is’ of ‘zijn’ (to be). It accounted for 
39.01% of the deleted nuclei in monosyllabic content words. Contrary to the resistance to 
deletion of vocalic nuclei in monosyllabic content words, we found that 6.98% of the syllabic 
nuclei in monosyllable function words were deleted. /@/ was the most frequently deleted 
syllabic nucleus in monosyllabic function words. The deletions of schwas accounted for 
77.26% of all deleted nuclei in monosyllabic function words. 55.43% of all deleted schwas in 
these words occurred in clitics. The second most deleted syllabic nucleus in monosyllabic 
function words was [I] in the frequently used personal pronoun ‘ik’ (I) and the preposition ‘in’ 
(in). It accounted for 6.88 % of all deleted nuclei. 

4.3.2 Modelling segment deletion 

Phone deletions 

We fitted a generalised linear mixed effects model to the data, in the way as described in 
Section 4.2.2, with speaker, phone, syllable, word, syllabic structure and regional background 
of the speaker as crossed random effects and phone deletion as response variable. Somers' 
Dxy of the final model was equal to 0.86, which corresponds to a receiver operating 
characteristic curve area of 0.93 and which indicates that the model provided a good fit to the 
data. Most fixed-effects predictors were significant at at least the 0.01 level. Inclusion of the 
random effects in the model was supported by likelihood ratio tests (ANOVA tests, all p-
values < 0.05). In addition to the effects of the phone identity (σ̂ = estimated standard 
deviation of the random effect = 1.56), syllabic structure (σ̂  = 1.06) and the regional 
background of the speaker (σ̂  = 0.16) which were all treated as random-effects factors to 
limit the number of parameter estimates in the model (see Section 4.2.2) we observed main 
effects for eight fixed-effects factors over and above the random variation that came with the 
speakers (σ̂  = 0.24) and the items (words (σ̂  = 0.86) and syllables (σ̂  = 0.93)) sampled. 

We found a large main effect of word class. This is not surprising considering the large 
differences between the average phone deletion rates for the word classes presented in the last 
column of Table 4.3. We also found a large main effect of lexical stress: syllables with lexical 
stress were less likely to undergo phone deletion (Z = -10.99, p < 0.001). This effect has 
previously been described in the literature (see Raymond et al. (2006:65) and the references 
therein). Similar to previous studies such as Bell et al. (2005), we observed a main effect of 
word frequency: more frequent words were more susceptible to phone deletion (Z = 4.09, p < 
0.001). In addition, we observed a main effect for the position of the phone in the syllable. We 
found that phones were much less likely to be deleted in onset (Z = -6.22, p < 0.001) and 
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nucleus positions (Z = -4.99, p < 0.001) than in coda positions. This is in line with findings for 
American English: Greenberg (1998) observed that syllable onsets are generally similar to 
their canonical form and thus usually preserved, that syllabic nuclei are usually preserved 
because they constitute the cores of syllables, and that phones in coda positions are often 
deleted or at least substituted with surface realisations that are homorganic with the phone of 
the following syllable’s onset. Since in our study, we did not model cross-word phonological 
processes in the canonical representation of the material, it may very well be that we found 
many phone deletions in coda position as a result of subsequent assimilation and 
degemination with the onset of the following word. This probably also explains the additional 
main effects of the position of the phone in the word (initial phone, last phone, somewhere in 
between), and of the segmental context of the following word (first phone consonant or 
vowel). We found that deletions further into the word were more likely (with comparable 
deletion likelihoods for phones in word-final position (Z = 8.38, p < 0.001) and all remaining 
non-initial positions (Z = 10.33, p < 0.001)), and we found that words starting with a vowel 
were less likely to induce phone deletion in the preceding word than words starting with a 
consonant (Z = -3.63, p < 0.001). In addition to these main effects, we observed that 
utterances with more canonical phones were less likely to undergo phone deletion (Z = -3.09, 
p < 0.01). Remarkably in the context of this effect but not in contrast with it is that words with 
more canonical phones were more likely to undergo phone deletion (Z = 17.59, p < 0.001). At 
last, we noticed a large effect of the (log of the) duration of the word (in ms). The longer the 
actual duration of a word, the smaller the chance that phones were deleted (Z = -46.71, p < 
0.001). 

Inspection of the best linear unbiased predictors (BLUPs in short) for the phone random 
effect (i.e. the by-phone adjustments to the overall intercept) revealed that, according to our 
model, /h/, /d/ and /@/ were most likely to be deleted, and that /p/, /k/ and /N/ were least 
easily deleted. The ordering of the BLUPs from highest likelihood for phone deletion to lowest 
likelihood for deletion generally agreed with the ordering of the individual deletion rates of 
the phones in Table 4.1. Inspection of the BLUPs for syllabic structure showed that, according 
to the model, phones were most likely to be deleted in C_CV, _C, CVC_C, and CVCC_ 
structures and most resistant to deletion in CV_C, CCV_C and V_ structures. Whereas we 
didn’t find support for the high deletion rates of phones in C_CV position, most of these 
findings were confirmed by our frequency counts. The susceptibility of the vocalic nucleus to 
deletion in VC syllables, which is clearly deviant from the findings of Greenberg (1998) for 
American English, can to a large extent be explained by the frequent use of clitics in Dutch. 
The deletion of schwa in such clitics accounted for 58.44% of all deletions in VC (or: _C) 
clusters. The deletion of schwa in what was in the orthography transcribed as the full form of 
the indefinite article ‘een’ (/@n/ - a) accounted for another 7.58%, and the deletion of /I/ in 
the singular tense ‘is’ (/Is/ - from: zijn - to be) and the personal pronoun ik (/Ik/ - I) accounted 
for another 22.25% of the deletions in VC clusters. 
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Syllable deletions 

The generalised linear mixed effects model for syllable deletion was fitted with speaker (σ̂  = 
0.29), word (σ̂  = 1.73) and syllable (σ̂  = 2.00) as random-effects factors and syllable 
deletion as response variable. We considered including the regional background of the speaker 
and the syllabic structure as additional random effects, but likelihood ratio tests proved that 
these factors had no significant additional effect on syllable deletion. Because we were 
working at the syllable level (i.e. with the syllable as basic unit) including the random-effects 
factor phone was not an issue. Somers' Dxy was equal to 0.92 and the receiver operating 
characteristic curve area was equal to 0.96. These results indicate that also the syllable model 
fitted the data very well. All fixed-effects predictors were significant at at least the 1% level. 
Similar to our model for phone deletion, we observed main effects of word class and lexical 
stress. As expected, syllabic stress rendered syllable deletion less likely (Z = -12.22, p < 
0.001). As opposed to what we saw in the model for phone deletion, words starting with a 
vowel increased the likelihood of syllable deletion in the previous word (Z = 12.45, p < 
0.001). Considering the high deletion rate of schwas in our material, it is not unlikely that 
many schwas in unstressed and unaccented word-final syllables were deleted to ease the 
articulatory transition to the vowel of the next word. We also found a main effect of the (log 
of the) number of canonical syllables in the utterances: as the number of syllables increased, 
the likelihood of syllable deletion increased as well (Z = 2.90, p < 0.01). Somewhat related, 
we noticed that a higher articulation rate (expressed in canonical syllables per second) 
rendered syllable deletions more likely (Z = 4.27, p < 0.001). Furthermore, we found that 
syllables in utterance-initial words were more prone to deletion (Z = 4.04, p < .0.001) and 
that, similar to what we found for phone deletion, longer word durations are strong cues for 
the preservation of syllabic nuclei (Z = -32.49, p < 0.001). 

Discussion 

Fitting mixed-effects models for phone and syllable deletion taught us which linguistic and 
sociolinguistic factors in the annotations, word segmentations and metadata of the CGN affect 
phone and syllable deletion over and above the random variation that came with the speakers, 
words and syllables we sampled. Because we were able to include random-effects factors 
such as speaker, word and syllable identity as crossed instead of nested (the same indirectly 
also holds for all the other factors related to these random-effects factors), we were able to 
investigate in a methodologically sound way the relative effect of every factor over and 
above the effects of the other factors listed in Section 4.2. This makes analyses of mixed-
effects models with crossed random effects interesting for two reasons. In our study, it was 
interesting to analyse which factors were significant in the models, but it was equally 
interesting to see that the (potential) effects of factors which were previously reported to 
influence segment deletion were ‘covered’ by other factors. For example, mutual 
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information (word predictability) which was previously reported to influence phone 
deletions (e.g. Bell et al., 2005) did not appear in our final model definitions, and word 
frequency was only significant in the phone deletion model. This may be due to several 
reasons. For example, we computed word frequency and mutual information on ‘only’ 
544,215 words, and we chose to keep our models easily computable by not including 
correlations between factors. Computing estimates for word frequency and mutual 
information on a larger dataset and including correlations in the models may eventually render 
factors like word frequency and mutual information significant. We leave these issues open 
for further research. In any case, the absence of effects of e.g. word frequency (only in the 
syllable deletion model) and mutual information (in both model definitions) does not mean 
that these factors do not affect phone and syllable deletion. Rather, this implies that in our 
model definitions other factors showed a stronger effect on the deletion of phones and 
syllables. Actually, word frequency was part of the syllable model definition until we 
included ‘word identity’ as random effects factor. In both models, the effects of mutual 
information were probably covered by word frequency. Such knowledge is unlikely to be 
gained in controlled experiments on selected data sets aimed at studying the effects of one 
or a few factors at a time, but it can be of interest for pronunciation variation modelling of 
everyday conversational speech. 

A comparison of the models for phone and syllable deletion shows that both types of 
segment deletion are to a large extent influenced by the same factors. We noticed main effects 
of word class, lexical stress, the segmental context of the following word (starts with a 
consonant or vowel), and the duration (in ms) of the pronunciation of the word. An interesting 
difference between the two models was the effect of the speaker’s regional background (in 
addition to the by-speaker adjustments) on phone deletion. We did not notice such an effect 
on syllable deletion. This may indicate that more substantial deletions as gauged by syllable 
deletion (e.g. /Eix@l@k/ (‘eigenlijk’) reducing to /Eik/) are common to all speakers (but see 
Keune et al. (2005) for the presence of sociolinguistic variation for a subset of words in the 
CGN ending in the suffix -lijk), irrespective of their regional background. 

4.4 Conclusions 

We studied the frequencies of phone and syllable deletions in spontaneous Dutch, and the 
extent to which such deletions are influenced by the interplay of linguistic and sociolinguistic 
factors than can be retrieved from the word segmentations, annotations and metadata in large 
annotated speech corpora such as the Spoken Dutch Corpus. We modelled the effects of 
various factors by means of a recently developed statistical modelling technique: the 
possibility to model the effects of random factors as crossed instead of nested with 
generalised linear mixed effects models. 

We found average phone and syllable deletion rates of 7.57% and 5.46% respectively. 
22.76% of the content words and 18.10% of the function words had at least one phone 
missing, and 6.66% of the content words and 7.10% of the function words had at least one 
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syllable missing. The high syllable deletion rate in function words was largely due to the 
frequent use of clitics in Dutch. Even though our figures of phone and syllable deletion are 
lower than the figures reported in Johnson (2004) for American English, our analyses also 
suggest that phone and syllable deletions are common in everyday conversational Dutch. 

The mixed effects models for phone and syllable deletion had several effects in common, 
which implies that both types of deletion are to a large extent influenced by the same factors. 
An interesting difference between the models was that phone deletion appeared influenced by 
the regional background of the speaker (in addition to the by-speaker adjustments included in 
both the phone and syllable models) whereas syllable deletion was not. The strongest factors 
across both models were lexical stress, word duration and whether the following word starts 
with a vowel or a consonant. 

Our study illustrates new opportunities for analysing rich and complex corpus data by 
means of generalised linear mixed effects models with crossed random effects. The use of 
such statistical models is useful for exploratory research like ours (we investigated the effects 
of a wide variety of linguistic and sociolinguistic factors on segment deletion) and for 
hypothesis testing (e.g. for testing whether a specific factor has an effect on a specific speech 
process in addition to the effects of other factors). Generalised linear mixed effects models in 
general are useful for studying complex corpus data because they can cope with missing data, 
because they can model the effects of many factors in one model, and because they are 
parsimonious with regard to the number of parameters they need to estimate for their random 
and fixed-effects factors. The recent possibility to include random-effects factors as crossed 
instead of nested now makes it possible to include several random-effects simultaneously as 
independent sources of random variation. This no longer presupposes the assumption that the 
levels of random-effects factors are dependent of each other, and this makes it possible to assess 
in a methodologically sound way in one model which linguistic and sociolinguistic variables 
predict segment deletion over and above the random variation that comes with the sampled 
levels of the random effects. Including random effects as crossed instead of nested decreases the 
risk of type I errors because it prevents fixed-effects factors of modelling random variation 
that should be better modelled by means of by-subject and by-item adjustments (i.e. by means 
of random-effects factors). Through this new modelling technique, linguistic phenomena such 
as segment deletion can now be studied in a methodologically sound way in corpus data as a 
function of the interplay of many factors instead of in controlled experimental environments 
designed for studying the effects of one or a few factors at a time.  
 
 
 
 
 
 
 
 
 



CHAPTER 4 

 74 

 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CHAPTER 

SPEAKER CLASSIFICATION BY MEANS OF 
ORTHOGRAPHIC AND BROAD PHONETIC 

TRANSCRIPTIONS OF SPEECH
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Reformatted from: 
 
Van Bael, C., Halteren, H. van (in press). Speaker Classification by means of Orthographic 
and Broad Phonetic Transcriptions of Speech. In: Müller, C., Schötz, S. (Eds.) Speaker 
Classification. Lecture Notes in Computer Science/Artificial Intelligence, Vol. 4343, 
Springer, Heidelberg – Berlin - New York. 



CHAPTER 5 

 76 

Abstract 
 

We investigated whether a classification algorithm originally designed for authorship 
verification can be used to classify speakers according to their gender, age, regional 
background and level of education by investigating the lexical content and the 
pronunciation of their speech. Contrary to other speaker classification techniques, 
our algorithm did not base its decisions on direct measurements of the speech signal; 
rather it learned characteristic speech features of speaker classes by analysing the 
orthographic and broad phonetic transcriptions of speech from members of these 
classes. The resulting class profiles were subsequently used to verify whether 
unknown speakers belonged to these classes. 
 
Keywords: Speaker Classification, Linguistic Profiling, Orthographic Transcriptions, 
Broad Phonetic Transcriptions. 

5.1 Introduction 

Human listeners can rely on multiple modalities to determine a speaker’s gender, age, regional 
background and -be it with less confidence- his or her level of education. Visual as well as 
auditory input can provide us with cues about a speaker’s gender and age. In addition, 
auditory input can teach us a great deal about a speaker’s regional background and level of 
education. 

The aim of our study was to investigate whether Linguistic Profiling, a supervised 
learning classification algorithm originally designed for authorship verification (van Halteren, 
2007), can also be used to classify speakers according to their gender, age, regional 
background and level of education by investigating the lexical content and the pronunciation 
of their speech. Our procedure differed from conventional procedures for speaker 
classification in that our algorithm analysed written representations of speech rather than the 
speech signal proper; it analysed orthographic and broad phonetic transcriptions of speech to 
identify regularities in the use of words and the pronunciation of speakers of different genders, 
ages, regional backgrounds and levels of education. These regularities were subsequently 
combined into feature sets: one set of features describing the use of words as reflected in the 
orthographic transcriptions, and a second set of features describing the pronunciation 
characteristics as reflected in the broad phonetic transcriptions. These feature sets were used 
to accept or reject unknown speakers as members of speaker classes that were defined in 
terms of the four aforementioned speaker characteristics. Since we wanted to study the 
performance of the algorithm with the individual features sets, the algorithm worked with one 
feature set at a time. The performance of the algorithm was evaluated through a comparison of 
its classification of unknown speakers with the information on the speakers as provided in the 
metadata of the speech material. 
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This chapter is organised as follows. In Section 5.2, we describe the corpus material and the 
transcriptions. In Section 5.3, we describe the classification algorithm, the definition of 
speaker classes, the two sets of classification features and our general experimental setup. 
Subsequently, in Section 5.4, we present and discuss the results of the classification 
experiments, and in Section 5.5 we present our conclusions and our plans for future research. 

5.2 Corpus material and transcriptions 

We conducted our classification experiments with transcriptions of spontaneous telephone 
dialogues from the Spoken Dutch Corpus (Corpus Gesproken Nederlands, CGN), a 9-million 
word corpus comprising standard Dutch speech from native speakers in the Netherlands and 
in Flanders (Oostdijk, 2002). We considered recordings of telephone dialogues between 
speakers from the Netherlands only. These recordings were separated into two samples each 
(one sample per speaker). After excluding dialogues for which the metadata were incomplete 
as far as relevant for our classification variables (see Section 5.3.2), and after excluding 
samples of which large parts were tagged as unintelligible in the orthographic transcriptions, 
we counted 663 samples from 340 different speakers. These samples ranged from 321 to 2221 
words in length and comprised a total of 689,021 word tokens. 

In addition to the words in the orthographic transcriptions, we also considered their part-
of-speech tags. The orthographic transcriptions of the words in the CGN were created fully 
manually, the part-of-speech tags were generated automatically and manually corrected 
afterwards (Oostdijk, 2002). 

In order to study pronunciation characteristics we needed canonical representations of the 
words in the orthographic transcriptions (i.e. written representations of the standard 
pronunciation of the words in isolation from the context of neighbouring words (Laver, 1995)) 
and broad phonetic transcriptions reflecting their actual pronunciation in the speech 
recordings. We generated a canonical representation of each recording by substituting every 
word in the orthographic transcription with its representation in a canonical pronunciation 
lexicon. The broad phonetic transcriptions were generated automatically because the CGN 
provides manually verified phonetic transcriptions of only 115,574 out of the 689,021 words 
in our samples. We used an automatic transcription procedure which proved capable of 
closely approximating the manually verified phonetic transcriptions of the CGN (Van Bael et 
al., 2006; see also Chapter 3 of this thesis). In this procedure, the canonical representation of 
every utterance was first expanded into a network of alternative pronunciations. A continuous 
speech recogniser then chose the best matching phonetic transcription through forced 
recognition. In order to ensure the automatic generation of plausible phonetic transcriptions, 
we excluded speech utterances that, according to the orthographic transcriptions, contained 
non-speech, unintelligible speech, broken words and foreign speech. Samples containing 
overlapping speech were excluded as well. This resulted in automatic transcriptions for 
252,274 out of 689,021 words, i.e. 136,700 words more than the 115,574 words for which the 
CGN could have provided a manually verified transcription. 
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5.3 Classification methodology 

5.3.1 Classification algorithm 

Linguistic Profiling is a supervised learning algorithm (van Halteren, 2007). It first registers 
all classification features (e.g. pronunciation processes) that occur in at least N training 
samples (e.g. speech samples of individual speakers) of a corpus1. The algorithm then builds a 
‘profile’ of each training sample by listing the number of standard deviations the count of 
each of the classification features deviates from the average count in the whole corpus. 
Subsequently, class-specific profiles are generated by averaging the profiles of all training 
samples from a specific (speaker) class (e.g. male speakers). The distance between the profile 
of a test sample and the profile of a given class of speakers is compared with a threshold value 
in order to determine whether the speaker of the sample should be attributed to that speaker 
class. The degree to which the distance does or does not exceed the threshold value indicates 
the confidence of the decision. We evaluated the algorithm’s classification accuracy by 
comparing its decisions with the actual characteristics of the test speakers as provided in the 
metadata of the CGN. Since Linguistic Profiling is a verification algorithm, we measured its 
accuracy initially in terms of False Accept Rates (FARs) and False Reject Rates (FRRs). 
Since these values are threshold-dependent, however, we present a threshold-independent 
derivative instead, viz. the Equal Error Rate (EER), which is the value at which the FAR and 
the FRR are equal. 

5.3.2 Classification variables 

We assigned the 663 selected samples to different classes according to the gender, age, 
regional background and level of education of the speakers. 

The establishment of a male and a female speaker class was straightforward. We separated 
the samples into two classes: one class with 276 samples from 148 male speakers and another 
class with 387 samples from 192 female speakers. 

All speakers were born between 1928 and 1981. We classified the speech samples age-wise 
according to two classification schemes. First, for every year, we generated a binary split of all 
speakers into those who were born in or before that year (e.g. ≤ 1955), and those who were born 
after that year (e.g. > 1955). This yielded classes with 24 to 639 samples from 11 to 329 
speakers. In addition, for every year, we defined a class with subjects born within a symmetric 
eleven-year window around the target year (e.g. 1950 -1955- 1960). This yielded classes with 
67 to 174 samples from 32 to 98 speakers. 

 

                                                 
1 For each new classification task, the threshold (N) is empirically determined in order to keep the amount of 
information Linguistic Profiling has to deal with computable. 
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We retrieved the regional background of the speakers from the metadata of the CGN. We 
classified the speech samples in 16 classes according to the region speakers mainly lived in 
between the age of 4 and 16. Table 5.1 presents the distribution of samples per region. As a 
result of the large number of classes (we adhered to the original classification of the CGN), 
some classes contained only a few samples, in particular classes 2e (6), 3c (12) and 2f (13). 
However, since merging regional classes would probably have resulted in classes with more 
heterogeneous speech behaviour (which would probably have made speech from these classes 
harder to characterise and distinguish), we held on to the subdivision in 16 regional classes. 
 

Table 5.1: Distribution of samples and speakers in terms of the speakers’ regional backgrounds.                    
From left to right: abbreviation, general geographical region in the Netherlands, specific                    

geographical region, number of samples per class, number of individual speakers per class. 

 general regions specific geographical regions sample speaker
1a South Holland, excl. Goeree Overflakee 105 55
1b North Holland, excl. West Friesland 112 50
1c 

central 
West Utrecht, incl. the city of Utrecht 21 12

2a Zeeland, incl. Goeree Overflakee + Zeeland Flanders 42 21
2b East Utrecht, excl. the city of Utrecht 42 19
2c Gelderland river area, incl. Arnhem + Nijmegen 52 27
2d Veluwe up to the river IJssel 19 14
2e West Friesland 6 4
2f 

transitional 

Polders 13 4
3a Achterhoek 18 10
3b Overijssel 37 20
3c Drenthe 12 7
3d Groningen 17 11
3e 

peripheral,  
North East 

Friesland 20 10
4a North Brabant 113 60
4b peripheral, South Limburg 34 16
 663 340

 
 
The metadata of the CGN also provided us with information on the level of education of the 
speakers. The speakers were tagged as having enjoyed higher education (university or 
polytechnic), secondary education or only primary education (no completed secondary 
education). In our samples, we counted 256 speakers who had enjoyed higher education, 75 
speakers with secondary education and only 9 speakers with primary education. Because of 
the skewness of the distribution of speakers in these three classes, and because we didn’t have 
reason to believe that the 9 subjects of the third class would heavily increase the heterogeneity 
in the large second class if we would merge these classes, we merged the 9 speakers of the 
third class with the 75 speakers of the second class. As a result, two speaker classes were 
established: highly educated subjects (256 speakers in 496 samples) and moderately educated 
subjects (84 speakers in 167 samples). 



CHAPTER 5 

 80 

5.3.3 Classification features 

Per speaker class, the classification algorithm retrieved a set of lexical features from the 
orthographic transcriptions, and a set of pronunciation features from the broad phonetic 
transcriptions of the samples. The values of both feature sets were grouped into separate 
classification profiles modelling class-specific lexical use on the one hand and class-specific 
pronunciation characteristics on the other hand. 

Lexical features 

The lexical features largely resembled the features that were used for the authorship 
verification experiments in van Halteren (2007). This time, however, full syntactic analyses 
were not considered because the Amazon parser used in van Halteren (2007) has been 
developed for the analysis of written instead of spoken Dutch2. The lexical profiles 
represented the average utterance length in terms of number of word tokens, counts of uni-, 
bi-, and trigrams of words and the part-of-speech tags of the words. All counts were 
normalised for sample length by translating them to their frequency per 1000 tokens. In 
addition to these features, we tagged each utterance with information about the length, the 
linguistic status (declarative, interrogative and exclamatory, based on the punctuation marks) 
and the speaker (current speaker or interlocutor) of the preceding utterance. Only the features 
occurring in at least five samples were used. This led to a feature set of about 150.000 features 
potentially useful for classification. 

Pronunciation features 

We characterised ‘pronunciation features’ in terms of the segmental differences between the 
canonical (standard) representations and the broad phonetic transcriptions of the words in the 
speech samples. We aligned the canonical and broad phonetic transcriptions with ADAPT, a 
dynamic programming algorithm designed to align strings of phonetic symbols according to 
their articulatory distance (Elffers et al., 2005). Figure 5.1 illustrates the alignment of a 
canonical (Can) and a broad phonetic transcription (PT), and the derivation of a pronunciation 
process: the deletion of schwa. 

The segmental differences between a canonical and a broad phonetic transcription can be 
influenced by (at least) four main variables: the socio-situational setting (transcriptions of 
spontaneous speech typically yield more mismatches than transcriptions of prepared speech 
(Binnenpoorte, 2006), the consistency of the transcriptions (human transcribers may not 
always transcribe in a consistent manner (Cucchiarini, 1993), the use of words (the use of 
                                                 
2 Part of the CGN is annotated for syntactic structure, but the amount of annotated data would have been 
insufficient to be of use for our experiments. 
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specific words triggers specific pronunciation processes), and the pronunciation habits of the 
speakers (the focus of our study). Since we aimed at classifying speakers according to genuine 
speaker-specific pronunciation features only, we tried to filter out all pronunciation features 
that were due to the other three variables. 
 
 
 
 
 
 
 
 

Figure 5.1: Alignment of a canonical (Can) and a broad phonetic transcription (PT) and  
derivation of a pronunciation process (deletion of schwa). SAMPA symbols are used,  

word boundaries are marked as vertical bars. 
 
 
The first two variables (the socio-situational setting and the consistency of the transcriptions) 
were irrelevant for our study since we considered the transcriptions of speech uttered in one 
socio-situational setting only, and since the transcriptions were generated by a consistent 
automatic transcription procedure. This left us with one more variable to control: the lexical 
context in which the pronunciation processes occurred, which we modelled by means of the 
frequency of the current word and information about its context (its co-occurrence with 
surrounding words and the position of the word in the utterance). 

We controlled for lexical context by means of a three-step procedure. First, we set up a 
ten-fold cross-validation training in which we consecutively built ten models for the impact of 
the lexical context on pronunciation, each time on the basis of 90% of the samples. The 
models represented the counts of all pronunciation processes observed in their canonical 
contexts. Next, we used each of these models in turn to predict the pronunciation in the left-
out samples. For every canonical phone the pronunciation model predicted the probability of 
different phones being actually pronounced, considering all canonical contexts seen in the 
training material. As a final step, we compared the predicted pronunciation processes with the 
pronunciation processes observed in the automatic phonetic transcription. To this end, we 
counted the actual occurrences of all pronunciation processes in every sample, and for each 
process we calculated the difference between the predicted and the observed probability. 
These differences were considered to mainly indicate speaker-specific pronunciation 
processes, since these pronunciation processes were present in addition to the pronunciation 
processes that were predicted on the basis of the lexical context of the pronunciation 
processes. This additional variation was numerically represented as a feature vector of 94 
numerical values, one for each of the 94 different pronunciation processes that were 
encountered in our material. 

Can | d @ | A p @ l | v A l t | 
PT | d - | A p @ l | f A l t | 
Dutch de appel valt 
English the apple drops 

@ → Ø / [ | d ] ___ [ | A p @ l | v A l t | ] 
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To investigate to what extent our approach was successful in removing the influence of 
the speakers’ use of words on the observed pronunciation processes, we computed the 
Kullback-Leibler distance between the predicted and the observed pronunciation processes. 
This distance halved when the predictions were based on the observations of pronunciation 
processes in their lexical context instead of on the observations of the pronunciation processes 
by themselves, without considering their context. This leads us to believe that a significant 
part of the influence of the lexical context was indeed modelled by our method. 

5.3.4 Experimental setup 

We organised our classification experiments as ten-fold cross-validations. To this end, we divided 
the 663 samples in ten mutually exclusive sample sets of comparable size. Each speaker occurred 
in one set only. Per classification variable (gender, age, regional background and level of 
education) and per feature set (lexical and pronunciation), we consecutively used nine sample sets 
to train the algorithm, and the remaining set to test the algorithm. Each time, Linguistic Profiling 
was trained and tested with a range of parameter settings. Upon completion, we considered the 
algorithm’s accuracy at the parameter settings yielding the best performance over all ten folds in 
order to determine its performance ceiling. 

After running our experiments, it became clear that the use of this Oracle approach had a 
negative consequence, in particular when we assessed the algorithm’s performance for speaker 
classes with a small number of samples. We found that the EERs at the best performing parameter 
settings were lower than 50%, even when we attempted the classification of speakers in classes 
with randomly selected speakers. This is not surprising: there will always be some degree of 
variance around the expected value of 50% accuracy, and by selecting the best performing settings 
we are likely to end up with a score better than 50%. This effect grows stronger as the number of 
samples in the classification profiles becomes smaller. 

In order to determine whether the algorithm’s classification was above or below chance rate, 
we experimentally determined the mean and standard deviation of the algorithm’s EER for the 
classification of speakers in randomly selected speaker classes of various sizes. When 300 or more 
random samples were used, we found a mean random group EER of 44% with a standard 
deviation under 2%. When our algorithm considered 50 to 100 random samples, we found a mean 
random group EER of 40% with a standard deviation of 3%. When smaller groups of random 
samples were considered, the mean random group EER gradually decreased while its standard 
deviation increased. 

To facilitate the interpretation of the classification results in the upcoming sections, we 
compare each EER with the expected distribution of the random group EERs. We mark each EER 
with one asterisk if the probability that it belongs to the distribution of the random group EERs is 
smaller than 0.05, with two asterisks when p<0.01 and with three asterisks when p<0.001. In all 
cases where p<0.05, we will call the classification "effective". Since both the expected EER value 
and the variance depend on group size, all values reported below for different speaker classes can 
only be compared directly if the number of speech samples in the classes is comparable.  
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5.4 Classification results 

5.4.1 Classification in terms of gender 

For both genders, we conducted a ten-fold cross-validation in which nine tenths of the 
transcriptions were used to identify gender-specific lexical and pronunciation features, and in 
which the transcriptions of the remaining samples were used to test the classification algorithm. 
Table 5.2 presents the results of this experiment for both genders and feature sets. The results 
were obtained with the algorithm’s optimal parameter settings for each of the two feature sets. 
 

 
Table 5.2: Best possible speaker classification in terms of gender with lexical and pronunciation features. 

 
lexical features pronunciation features gender # samples 

EER (%) EER (%) 
male 276 23 *** 41 

female 387 24 *** 42 
 
 
 
Whereas the use of the lexical features led to an effective classification with error rates of about 
24%, the use of the pronunciation features did not. In other words, the pronunciation features 
could not help the algorithm distinguish between the phonetic transcriptions of male and female 
speakers. The frequent misclassification of speakers from their pronunciation features may be due 
to several reasons. The most obvious reason would be the absence of gender-specific 
pronunciation characteristics at the broad phonetic level. A more disturbing reason (disturbing 
because it would question the validity of our automatic phonetic transcriptions as a knowledge 
source for our experiments), would be an inadequate representation of gender-specific 
pronunciation features in the automatic phonetic transcriptions. 

There are two reasons to assume that the mediocre classification performance of our 
algorithm was due to the absence of gender-specific pronunciation characteristics at the broad 
phonetic level rather than to inadequacies in the automatic phonetic transcriptions. First, the 
linguistic literature has not yet reported systematic gender-specific pronunciation differences at 
the broad phonetic level.  The only systematic gender-specific pronunciation characteristics that 
have so far been reported were based on measurements of the overall speech rate (Byrd, 1994; 
Verhoeven et al., 2004), and on measurements at levels of finer phonetic detail (e.g. a structural 
difference between the dimensions of the vowel space of male and female speakers (Henton, 
1994)). None of these gender-specific pronunciation characteristics can be reflected in a broad 
phonetic transcription of speech, e.g. in the form of systematic phone deletions or substitutions. 
Second, our results are in line with Binnenpoorte et al. (2005), who could not discover gender-
specific pronunciation characteristics through the alignment of a canonical and a manually 
verified (instead of an automatic) transcription of male and female speech from the CGN either. 
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5.4.2 Classification in terms of age 

For every year of birth between 1928 and 1981, we tried to classify the speakers in terms of 
them being born before that year (24 to 631 samples per class), after that year (32 to 639 
samples per class), or in an eleven-year window around that year (67 to 174 samples per class 
- see Section 5.3.2). Since these classification experiments yielded many data points, we 
confine ourselves to a description of the general tendencies. 

Despite the fact that the algorithm was able to retrieve and successfully use age-specific 
pronunciation features for most of these classes, it still performed better with the lexical 
profiles than with the pronunciation profiles. The binary before/after classifications showed 
relatively stable classification accuracies: ignoring three outliers at each side of the time scale, 
the EERs ranged between 18% and 23% for the lexical profiles (with a mean EER over all age 
classes of 20.5%) and between 26% and 36% for the pronunciation profiles (mean EER over 
all classes: 32.4%). The use of the lexical profiles consistently led to effective classification 
(p<0.001), the use of the pronunciation profiles as well (p<0.01, and in 90% of the tests even 
p<0.001). 

The classification of speakers according to the eleven-year intervals showed more 
variation: ignoring the same three outliers at each side of the time scale, we obtained error 
rates between 19% and 41% with the lexical profiles (mean EER over all classes: 32.0%), and 
between 28% and 46% with the pronunciation profiles (mean EER over all classes: 38.5%). 
The use of the lexical profiles led to effective classification for the years at the outskirts of the 
time scale (p<0.001 for the years between 1928 and 1942, and between 1973 and 1981) 
whereas there was hardly any effective classification noticeable for the years between 1942 
and 1973. The use of the pronunciation features showed a similar pattern, although fewer 
effective classifications were found. 

5.4.3 Classification in terms of regional background 

Table 5.3 presents the results of the classification of our speakers according to the regional 
background they lived in between the age of 4 and 16. We classified the speakers in terms of 
16 geographical regions (see Table 5.1 in Section 5.3.2) and by means of the two feature sets. 

Table 5.3 shows that the classification algorithm obtained effective classification for 10 
out of 16 regions when using the lexical classification features. This indicates that the 
orthographic transcriptions of (at least part of) the investigated speech contained useful 
information with which our classification algorithm could classify unknown speakers. The 
EERs in Table 5.3 can only be compared for speaker classes comprising a comparable number 
of speech samples, because the EERs decreased when speaker classes with fewer samples 
were considered (e.g. compare the 36% EER with class 1b, which was made up of 112 
samples, with the 26% EER with class 1c with only 21 samples). This means that we cannot 
draw conclusions about specific regions being more easily recognised than other regions. 
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Table 5.3: Best possible speaker classification in terms of regional background                                                     
with lexical and pronunciation features. 

 
lexical features pronunciation features 

region # samples 
EER (%) EER (%) 

1a 105             35 *              38 
1b 112             36 *              40 
1c 21             26 *              29 
2a 42             23 ***              34 
2b 42             36              37 
2c 52             32 *              40 
2d 19             30              32 
2e 6             21              21 
2f 13             14 **              30 
3a 18             19 **              33 
3b 37             27 *              37 
3c 12             23              24 
3d 17             36              26 
3e 20             38              31 
4a 113             32 ***              40 
4b 34             27 *              22 *** 

 

 
The results in Table 5.3 also show the inability of the algorithm to retrieve and use 
geographically determined pronunciation features from the broad phonetic transcriptions. The 
classification algorithm was only able to effectively classify speakers of one region (Limburg, 
a peripheral region in the South East of the Netherlands). 

The poor performance of the classification algorithm with the pronunciation features can 
be due to several reasons. First of all, some of the above mentioned regions may have 
characteristic features, but of a kind that are usually not represented at the broad phonetic 
level. For example, the Dutch phoneme /r/ has many allophonic variants, some of which have 
been reported characteristic for specific regions in the Netherlands (Verstraeten and Van de 
Velde, 2001). However, in our study these different realisations could not be used for 
classification because the broad phonetic transcriptions did not distinguish allophonic variants 
of the phoneme /r/. A second possible explanation for the disappointing performance of our 
algorithm is the absence of distinguishing pronunciation features in our automatic phonetic 
transcriptions. To verify whether this could indeed be so, we examined the pronunciation of 
word-final /n/ preceded by schwa in plural nouns and verbs, since this pronunciation process 
is known to be typical for speakers in specific regions of the Netherlands, notably 2d and 3a 
(Hol, 2006). A comparison between the speech samples for which both automatic and 
manually verified phonetic transcriptions were available showed that the automatic phonetic 
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transcriptions did not represent the pronunciation of such word-final /n/s, whereas the 
manually verified phonetic transcriptions of the CGN did at least in some cases. A third 
possible explanation for the mostly ineffective classification performance is the potential 
mismatch between the geographical boundaries of the 16 regions defined in the CGN and the 
regions that can actually be characterised by means of outspoken pronunciation features. A 
fourth potential explanation is the heterogeneity of the speaker populations in the regional 
classes, either because the pronunciation features in these classes are inherently heterogeneous 
or because some speakers in the CGN are not particularly representative of their region. 
Finally, of course, we should also consider potential limitations of Linguistic Profiling for the 
purpose of classifying speakers on the basis of pronunciation features. Perhaps its capabilities 
were hampered by the fact that it could only use 94 pronunciation features, while there were 
some 150.000 lexical features, comparable to the number of features used in van Halteren 
(2006).  

Further research is needed to clarify the way in which the above mentioned factors affect 
the classification of speakers on the basis of manual or automatic broad phonetic transcriptions. 

5.4.4 Classification in terms of education level 

Finally, we investigated whether our classification algorithm was able to classify speakers in 
terms of their level of education. Table 5.4 presents the classification results for the two speaker 
classes (highly educated and moderately educated) with both the lexical and the pronunciation 
features. Again, we show the Equal Error Rates at the algorithm’s optimal parameter settings. 
 

Table 5.4: Best possible speaker classification in terms of education level                                                             
with lexical and pronunciation features. 

lexical features pronunciation features level of education # samples
EER (%) EER (%) 

highly educated 496 41              46 
moderately educated 167 41              44 

 
 
 
The results in Table 5.4 show that the algorithm was not able to classify speakers effectively 
in terms of their level of education. The classification results with the pronunciation features 
reflect the inconclusive results reported in Keune et al. (2005). While they found significant 
differences between the reductions of phones in 14 frequent words ending in –lijk spoken by 
highly versus moderately educated Flemish speakers (the moderately educated speakers 
reduced more phones), there was no significant difference between the phone reductions of 
highly and moderately educated speakers from the Netherlands.  

Although our results do not imply that speakers cannot be categorised according to the 
influence of their education on their speech, the high EERs do imply that the lexical features 
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as well as the pronunciation features were unsuitable for classifying speakers according to 
their education level. Future research should clarify whether a further division of the speakers 
into smaller, more specific classes can improve classification accuracy. 

5.4.5 More specific speaker classes 

In the previous sections, we classified speakers in classes that were defined by one speaker 
characteristic (gender, age…) at a time. However, someone’s speech is likely to be influenced 
by the interplay of all four aforementioned speaker characteristics. This implies that, when we 
classify speakers in broad classes of which all members have only one characteristic in 
common, the ‘class-specific’ speech features may show a great deal of dispersion. Evidently, 
speaker classification with very broad and therefore perhaps partially overlapping 
classification profiles for different speaker classes is more difficult than speaker classification 
with well defined and more exclusive classification profiles. 

Therefore, we attempted an integrated classification of our speakers according to all four 
speaker characteristics by using classes of speakers for which all four characteristics were 
fixed. In order to have sufficient training data for each combined class, we restricted this 
experiment to the classification of highly educated women who were born before or in 1975 
and who were raised in region 1a (South Holland) or 4a (North Brabant), and the 
classification of highly educated women who were born after 1975 and who were raised in 
North Brabant. Class profiles were created for each of these classes. Table 5.5 presents the 
results of this classification experiment. 

 

Table 5.5: Best possible speaker classification in terms of three specific speaker classes  according to                    
a joint assessment of four speaker characteristics: gender, age, education, regional background. 

highly educated 
women lexical features pronunciation features 

born  raised in  
# samples

EER (%) EER (%) 
≤1975 1a 29          24 **              36 
≤ 1975 4a 28     30              30 
> 1975 4a 23     31              28 

 
 
 
In order to evaluate the possible benefit of classifying speakers in more specific speaker 
classes rather than in general classes, one would ideally want to compare the EERs in Table 
5.5 with the EERs reported in Sections 5.4.1 to 5.4.4. However, as was explained in Section 
5.3.4, such a direct comparison is impossible because of the different number of samples in 
the speaker classes in the previous sections. It is possible, however, to compare the EERs 
obtained with the lexical and the pronunciation features for the three specific speaker classes 
in Table 5.5. These comparisons (24-36%, 30-30%, 31-28%) show that per speaker class, the 
EERs obtained with both feature types were much more similar than in the previous sections. 
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We hypothesise that in the previous sections, where we classified speakers in general 
speaker classes that were defined by only one common speaker characteristic (e.g. gender), 
classification was affected by an influence from the interplay of the remaining speaker 
characteristics (age, regional background and level of education) on the speech features in the 
classes.  It may well be that in these circumstances, the classification algorithm could still 
benefit from the abundance of lexical classification features (around 150.000) to use the most 
distinguishing features for classification and to ignore less characteristic features. At the same 
time, the algorithm may have had more difficulties to select and use features out of the much 
smaller set of 94 pronunciation features which were characteristic of the classes and which 
were not influenced by an interplay of speaker characteristics. 

5.5 Conclusions and plans for future research 

We investigated whether Linguistic Profiling, a supervised learning algorithm originally 
designed for authorship verification, can be used to classify speakers according to their 
gender, age, regional background and level of education on the basis of the lexical content and 
the pronunciation of their speech. Our approach differed from conventional speaker 
classification procedures in that our algorithm analysed written representations of speech 
rather than the speech signal proper; it analysed orthographic and broad phonetic 
transcriptions of speech in order to identify regularities in lexical content and pronunciation. 

We conducted experiments to determine the performance of our algorithm for speaker 
classification with the aforementioned lexical and pronunciation features. These experiments 
showed that the algorithm was often able to retrieve and use characteristic lexical features from 
the orthographic transcriptions. The lexical features enabled the classification algorithm to 
distinguish between male and female speakers, to classify speakers in terms of their age, and to 
determine the region speakers spent most of their childhood in (this held for 10 out of 16 
investigated regions). Despite these encouraging results, however, the use of the lexical features 
proved insufficient to effectively classify speech from moderately or highly educated speakers 
and from people who spent their childhood in specific (6 out of 16 investigated) regions in the 
Netherlands. Moreover, the algorithm’s performance is probably not good enough for 
operational speaker classification: in general, we found equal error rates between 20% and 40%. 

When the classification algorithm had access only to the pronunciation features as 
reflected in our automatic broad phonetic transcriptions, it was hardly ever able to classify 
speakers effectively. We have argued that this may be explained by 1) the absence in the 
material of distinguishing pronunciation features at the broad phonetic level, 2) the failure of 
the automatic phonetic transcription procedure to capture distinguishing pronunciation 
features, 3) a mismatch between our speaker classes and groups of speakers that possibly 
show distinguishing speech features, 4) the heterogeneity of our speaker classes (either 
because they are inherently heterogeneous or because the speakers were not representative of 
their classes), and 5) the limitations of our algorithm for classification with a small number of 
classification features. 
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In future research, some of these potential explanations may be further investigated. As for 
1), we had hoped that the relatively large amounts of broad phonetic transcriptions would enable 
our algorithm to identify class-specific pronunciation features at the broad phonetic level. 
However, our approach to defining potentially useful pronunciation processes resulted in fewer 
than 100 such features, which appeared insufficient to distinguish speaker classes effectively. It 
remains to be seen if and how the number and the distinctiveness of the pronunciation features 
can be increased. One option might be to move towards more detailed phonetic transcriptions. 
This would increase the number of possible mappings between canonical representations and 
actual realisations, and hence potentially also the number of different pronunciation processes 
that can be used for classification. This approach may seem counterproductive because it 
might reduce the number of pronunciation processes that occur at least five times (the 
criterion used in this study). However, if more detailed transcriptions can be made reliably, we 
might gain after all, since the use of more diverse phonetic symbols can result in the definition 
of more diverse but also more systematic phone mappings representing characteristic 
pronunciation features. At the same time it is clear that the further we would move away from 
a broad phonetic transcription of speech, the closer we would come to traditional signal-based 
classification procedures. As for 2), we have identified at least one regional pronunciation 
phenomenon, viz. the presence of word-final /n/ preceded by schwa in plural nouns and verbs, 
which was not systematically represented in the automatic transcriptions. It may well be that 
the same holds for other pronunciation phenomena that are conventionally considered as 
characteristic for some geographical region; the automatic transcription procedure, which was 
based exclusively on local properties of the speech signal may have selected its symbols less 
‘systematically’ than the human transcribers who may have been biased towards conventional 
regional characteristics on the basis of subtle cues in the signal. Again, this seems to suggest 
that we should try and move towards more detailed phonetic transcriptions. As for 3) and 4), 
we may attempt to classify speakers in more specific classes, hopefully with more 
homogeneous speech behaviour. In most cases, this is likely to mean a subdivision of the 
classes used in this study. Recall that we classified our speakers in just 16 predefined 
geographical regions, and that we attempted the classification of speakers in just two classes 
defined by their level of education. The training and use of more specific speaker classes may 
increase the homogeneity of speech characteristics in these classes, but it would inevitably 
also introduce a data sparseness problem. Finally, as for 5), we may consider increasing the 
number of classification features for our algorithm, but we have already argued that it is not 
obvious how this can be accomplished. Alternatively, we may consider investigating 
classification techniques that are designed to operate with smaller numbers of features. 

Finally, for a real application rather than for a scientific investigation like this study, it 
will probably be suboptimal to base classifications on a single type of classification features. 
For the best possible classification, we should give the classifier access to as many and as 
large a variety of features as possible. This means combining both the lexical and 
pronunciation features presented here, and probably also other features which have proven 
useful for speaker classification, e.g. acoustic features that can be directly retrieved from the 
speech signal as illustrated in Müller and Schötz (2007). 
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The studies in this dissertation were conducted with three aims in mind. The first aim was to 
reconsider the general applicability of validation procedures that validate phonetic 
transcriptions through a comparison with a human-made reference transcription (Chapter 2). 
The second aim was to investigate to what extent one can approximate human-like 
transcriptions with a fully automatic transcription procedure (Chapter 3). The third aim was to 
investigate the usefulness of both semi-automatic (manually verified) and fully automatic 
phonetic transcriptions as tools for the disclosure of linguistic knowledge in large speech 
corpora (Chapters 4 and 5). In this chapter, I discuss the results of the studies reported in 
Chapters 2 to 5. 

6.1 Validation of broad phonetic transcriptions 

Large speech corpora such as the SpeechDat databases are usually validated through a 
systematic test to verify that they meet their specifications. Corpus specifications (e.g. the 
intended number of female speakers) and tolerance margins for these specifications (e.g. a 
permitted deviation of 5%) are normally defined before or in the initial stage of corpus 
compilation. Speech corpora are validated to assure their quality and/or to improve their 
quality on the basis of the suggestions made by the validating authority. Validation reports are 
sometimes included with corpora to provide an indication of the extent to which they meet 
their specifications (Van den Heuvel and Sanders, 2006). 

The validation of speech corpora also involves the validation of their transcriptions. The 
validation of phonetic transcriptions, whether provided in a pronunciation lexicon or as a 
separate annotation layer, is usually conducted by an external expert (a validator) who 
assesses the acceptability of a representative subset of the transcriptions in terms of their 
correspondence to the transcription guidelines (e.g. Goddijn and Binnenpoorte, 2003; Pitt et 
al., 2005). In order to avoid pointless discussions due to subjective judgements, validators are 
instructed to give the provided transcription the benefit of the doubt and to consider a 
transcription erroneous only if it is unmistakably linguistically implausible (if transcriptions in 
lexica are assessed) or if it clearly does not match the actual speech signal (if time-aligned 
transcriptions are assessed). In the latter case, one of the usual formal validation procedures 
for phonetic transcriptions consists of a comparison of the sequence of symbols in the corpus 
transcription with the symbols in a reference transcription. If the number of deviations is 
within the tolerance margin defined in the corpus specification, phonetic transcriptions are 
considered valid. The fewer deviations between a transcription and a reference transcription, 
the better the transcription is considered to be. 

In Chapter 2, we reconsidered the general applicability of this generic validation 
procedure. The validation of phonetic transcriptions in terms of their deviations from a 
reference transcription is ignorant of the purpose(s) transcriptions are generated for. Since 
phonetic transcriptions are often used for training automatic speech recognition systems, and 
since the relation between recognition performance and the quality of such transcriptions 
expressed as the deviation from a reference transcription is difficult to predict, we tested to 
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what extent this relation holds. The purpose of this study was to investigate whether the 
conventional validation method offers a useful indication of a transcription’s suitability for the 
training of an automatic speech recognition system. We compared a basic canonical 
transcription and a manually verified phonetic transcription in terms of their resemblance to a 
consensus transcription (Shriberg et al., 1984) and in terms of the quality measure of the 
application we would use them for, viz. automatic speech recognition. The relation between 
the results of the conventional and the application-oriented validation procedure was not 
straightforward. 

The outcome of the traditional validation method was clear: the quality of the manually 
verified phonetic transcriptions was assessed as much higher than the quality of the canonical 
representations, because the manually verified phonetic transcriptions differed less from the 
reference transcription than the canonical representations. The application-oriented validation 
method gave another estimate of the transcriptions: the use of manually verified phonetic 
transcriptions and canonical representations did not yield significantly different recognition 
performance. This implies that the manually verified phonetic transcriptions and the canonical 
representations were equally suitable for the purpose of developing an automatic speech 
recognition system. 

A comparison of the outcomes of the two validation methods supports different 
conclusions. First of all, it should be stressed that the application-oriented validation method 
did not contradict the usefulness of manually verified phonetic transcriptions for the 
development of speech recognition systems, since we did not get better recognition results 
with the canonical representations. As a matter of fact, for other purposes than training 
today’s automatic speech recognition systems, the story may well be different. For many, if 
not all, research in phonetics, to name just one example, it will remain essential for 
transcriptions to reflect the speech signal as closely as possible. For such purposes, manually 
verified phonetic transcriptions should definitely be preferred over canonical representations, 
for canonical representations do not (or only partially) represent the pronunciation variation 
observed in everyday speech. 

A more important conclusion, however, is that the traditional validation method 
unnecessarily favoured the manually verified phonetic transcriptions above the canonical 
representations which can be obtained with substantially less effort. This was not justified by 
the outcome of our recognition experiment; the use of the canonical representations yielded 
similar recognition results. Most probably, this finding can be explained by a specific feature 
of statistical pattern recognition. The use of canonical representations both for training and 
testing results in a smaller training-test mismatch than using manual transcriptions in training 
and canonical representations in testing.  

To sum up, we found no consistent relationship between the distance of a broad phonetic 
transcription to a reference transcription on the one hand, and the influence of that 
transcription on the recognition performance of a continuous speech recogniser on the other 
hand. This outcome has two implications. First of all, our experiments showed that canonical 
transcriptions can serve the purpose of training automatic speech recognition systems equally 
well as more expensive manually verified phonetic transcriptions. This would never be 
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reflected in a traditional validation of transcriptions. Therefore, developers of automatic 
speech recognition systems need to invest in the manual verification of phonetic transcriptions 
only for specific purposes, e.g. in-depth analysis of what caused recognition errors, or as a 
tool for modelling pronunciation variation. Second, and most importantly, the results of our 
experiments imply that phonetic transcriptions should preferably be validated in terms of the 
application they will serve because a higher resemblance to a purpose-independent reference 
transcription proved no guarantee for a transcription to be better suited for the development of 
automatic speech recognition systems. 

This is a shift in paradigm with important implications for the future. Our results suggest 
that a manual reference transcription should no longer be considered the self-evident golden 
criterion to generate phonetic transcriptions with regardless of the purposes for which the 
transcriptions will be used. Rather, our results suggest that the validity of transcriptions 
should be tested by using the criterion measure for the application. By taking this approach 
the status of human reference transcriptions shifts from them being a golden standard and 
final goal for any transcription to just another competing transcription that can be 
outperformed by any other transcription that scores better for a given task. This is a new 
perspective for transcription validation that deserves exploration for other applications than 
automatic speech recognition as well. 

6.2 Automatic generation of broad phonetic transcriptions 

Large speech corpora such as the SpeechDat databases are invariably delivered with a 
pronunciation lexicon that contains a canonical transcription of the words in the orthographic 
transcription (Van den Heuvel et al., 2001). Such a lexicon can be used for generating a 
hypothetical ‘canonical’ phonetic transcription from the orthography by substituting every 
word with its canonical transcription. In addition, money and time permitting, some speech 
corpora are at least partially provided with a manually verified broad phonetic transcription.  
Such transcriptions are made through a joint effort of man and machine: human experts check 
and correct a (usually canonical) example transcription according to a transcription protocol 
and their own perception of the speech signal. Parts of Switchboard (Greenberg, 1997) and the 
Spoken Dutch Corpus (Goddijn and Binnenpoorte, 2003) were transcribed this way. 

Over the years, manually verified phonetic transcriptions have proven useful for diverse 
purposes such as lexical pronunciation variation modelling for automatic speech recognition 
(ASR - Strik, 2001), unit selection for speech synthesis (Mizutani and Kagoshima, 2005), 
automatic pronunciation training and assessment in Computer Assisted Language Learning 
and general research on pronunciation variation (Greenberg et al, 1996; Riley et al., 1999). 
However, since the employment of human transcribers for such verification procedures is 
time-consuming and expensive, we investigated to which extent one can approximate 
manually verified transcriptions by means of quicker and cheaper automatic transcription 
procedures. In Chapter 3, we tried to approximate manually verified phonetic transcriptions of 
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read speech and spontaneous telephone dialogues from the Spoken Dutch Corpus (Oostdijk, 
2002) by means of a diverse set of automatic transcription procedures. 

One transcription procedure proved capable of approximating the phonetic transcriptions 
of the Spoken Dutch Corpus quite well. This procedure requires the use of a small seed corpus 
with manually verified target transcriptions, an orthographic transcription of the corpus to be 
transcribed, a canonical pronunciation lexicon, a basic speech recognition system and 
software for the implementation of decision trees. The procedure hinges on the availability of 
powerful machine learning techniques, such as decision trees. We first used decision trees for 
learning the (statistics of the) discrepancies between the phonetic symbols in a canonical 
‘base’ transcription and the manual target transcriptions. The canonical transcription was 
generated by replacing every word in the orthography with its canonical pronunciation taken 
from the lexicon. Subsequently, we used the trained decision trees for expanding a similar 
base transcription of the remainder of the corpus into a pronunciation network with multiple 
pronunciation variants per word. The automatic speech recognition system chose the best 
matching pronunciation variant through forced recognition. 

Our target transcriptions, viz. the manually verified phonetic transcriptions of the Spoken 
Dutch Corpus, were based on a canonical example transcription. This probably explains why 
our transcription procedure approximated the target transcriptions best when starting from a 
canonical transcription instead of a transcription which was based on the speech signal or on 
phonological knowledge reported in the literature. This way the forced recognition (in 
combination with the decision trees for generating pronunciation variants) performed the same 
task as the human transcribers of the Spoken Dutch Corpus: they modified the canonical 
example transcriptions in the direction of the human perception of the speech signal. 

One should bear in mind that a canonical point of departure may be suboptimal to 
approximate target transcriptions that are based on a different type of example transcription. 
However, the machine learning procedure on which our approach is based seems sufficiently 
general and powerful to approximate different types of transcriptions, as long as learning can 
be initialised from a base transcription that is not too far from the target transcription. The 
larger the distance between the base transcription and the target transcription, the more 
discrepancies have to be modelled. The more complex the discrepancies, the more 
pronunciation variants (with smaller lexical probabilities) will be generated for forced 
recognition. Obviously, the larger the number of pronunciation variants and the smaller the 
difference between their lexical probabilities, the more difficult it is for a speech recognition 
system to select the best matching pronunciation variant. 

The findings of this study may be beneficial for future corpus designers, because the use 
of machine learning techniques may offer a quick and cheap alternative to employing human 
transcribers for the manual verification of example transcriptions. Our study suggests that it is 
sufficient to verify the phonetic transcription of only a small portion of a corpus by hand in 
order to automatically generate similar transcriptions for the remainder of the corpus by 
means of automatic procedures. Even though our procedure requires the availability of a small 
seed corpus of target transcriptions, the generation of such a small set of transcriptions is 
almost always (much) cheaper than providing manual transcriptions for the full corpus. 
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6.3 Research with broad phonetic transcriptions 

6.3.1 Linguistic research with manually verified phonetic transcriptions 

In Chapter 4, we studied the frequencies of phone and syllable deletions in the manually 
verified phonetic transcriptions of the spontaneous telephone conversations from the Spoken 
Dutch Corpus. We found average phone and syllable deletion rates of 7.57% and 5.46% 
respectively. 22.76% of the content words and 18.1% of the function words had at least one 
phone missing, and 6.66% of the content words and 7.10% of the function words had at least 
one syllable missing. These statistics indicate that phones and syllables are frequently deleted 
in everyday conversational Dutch. 

In addition to studying the statistics of phone and syllable deletions, we investigated to 
what extent various (socio)linguistic factors represented in the parallel annotations and the 
metadata of the Spoken Dutch Corpus are predictive for the deletion of phones and syllables. 
We did this by fitting two separate models to the data: one model for phone deletion and one 
for syllable deletion. Since we aimed at studying the simultaneous effects of various factors 
on deletion rather than the effects of a small number of selected factors at a time, we made use 
of mixed-effect models. Such statistical models are able to include both fixed-effects and 
random-effects factors, and they are convenient for studying complex corpus data because they 
can cope with missing data, because they can model the effects of many factors in one model, 
and because they are parsimonious with regard to the number of parameters they need to 
estimate for their random and fixed-effects factors. Until recently, however, two or more 
random-effects factors in the same mixed-effects model could only be modelled as nested. This 
imposed serious limitations on the use of mixed-effects models for linguistic studies. 

The recent possibility to include random-effects factors as crossed instead of nested now 
makes it possible to include several random-effects simultaneously as independent sources of 
random variation. This no longer presupposes the assumption that the levels of random-effects 
factors are dependent of each other, and this makes it possible to assess in a methodologically 
sound way in one model which linguistic and sociolinguistic variables predict deletions over 
and above the random variation that comes with the sampled levels of the random effects. 
Including random effects as crossed instead of nested decreases the risk of type I errors because 
it prevents fixed-effects factors of modelling random variation that should be better modelled 
by means of by-subject and by-item adjustments (i.e. by means of random-effects factors). 
Through this new modelling technique, linguistic phenomena such as phone and syllable 
deletion can now be studied in a methodologically sound way in corpus data as a function of 
the interplay of many factors instead of in controlled experimental environments designed for 
studying the effects of one or a few factors at a time. 

We found that our mixed effects models for phone and syllable deletion had several 
effects in common, which implies that both types of deletion are to a large extent influenced 
by the same factors. The strongest factors across both models were lexical stress, word 
duration and whether the following word starts with a vowel or a consonant. 
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Even though the collection of factors included in our study is not exhaustive (e.g. in future 
research we could include signal-based information and correlations between factors), our 
study illustrates new opportunities for analysing rich and complex corpus data by means of 
generalised linear mixed effects models with crossed random effects. The use of such 
statistical models is useful for exploratory research like ours (we investigated the 
simultaneous effects of a wide variety of linguistic and sociolinguistic factors on segment 
deletion) as well as for hypothesis testing (e.g. for testing whether a specific factor has an 
effect on a specific speech process in addition to the effects of other factors, or for testing 
whether a correlation between two factors has a larger effect than another correlation between 
factors). Since mixed effects models with crossed random effects can be fitted to all kinds of 
data with random and fixed effects, this technique offers new promising opportunities for 
many kinds of linguistic studies in large and richly annotated speech corpora. Considering the 
wide applicability of mixed effects models, these studies can easily transcend the field of 
pronunciation variation modelling. 

The findings presented in Chapter 4 are clearly affected by the choice for the reference 
transcription relative to which we identified the deletions. As in previous research for 
(American) English the reference transcriptions consisted of concatenations of citation forms 
of the words in an accurate verbatim transcription of the speech. Such a reference does not 
account for (almost) obligatory assimilations and degeminations across word boundaries. 
Future research should clarify the impact of this decision on the general trends in deletions of 
phones, but also of syllables.  

6.3.2 Linguistic research with automatic phonetic transcriptions 

In chapter 5, we used automatic phonetic transcriptions for automatic speaker classification. 
We used a classification algorithm (Linguistic Profiling; van Halteren, 2004) which had 
previously proven successful for authorship verification, to automatically learn characteristic 
speech habits from broad phonetic and orthographic transcriptions of speech from speakers 
whose gender, age, level of education and regional background were known. This knowledge 
was subsequently used to determine the gender, age, level of education and regional 
background of unknown speakers on the basis of the orthographic and broad phonetic 
transcription of their speech. In order to train the classification algorithm, we required more 
phonetic transcriptions than were manually verified in the Spoken Dutch Corpus. Therefore, 
we used the most optimal transcription procedure from Chapter 3 to automatically generate a 
phonetic transcription of all speech that fitted our experimental design. Our approach clearly 
differed from conventional speaker classification procedures in that our algorithm analysed 
written representations of speech rather than the speech signal proper. 

Our experiments showed that the classification algorithm was often able to retrieve and 
use characteristic lexical features from the orthographic transcriptions. The lexical features 
enabled the classification algorithm to distinguish between male and female speakers, to 
classify speakers in terms of their age, and to determine the region speakers spent most of 
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their childhood in (this held for 10 out of 16 investigated regions). Despite these encouraging 
results, however, the use of the lexical features proved insufficient for the algorithm to 
effectively distinguish between speech from moderately and highly educated speakers. 
Moreover, the algorithm’s performance is probably not good enough for operational speaker 
classification: in general, we found equal error rates between 20% and 40%. 

When the classification algorithm had access only to the pronunciation features as 
reflected in our automatic broad phonetic transcription, it was hardly ever able to classify 
speakers effectively. We have argued that this may be explained by 1) the absence in the 
material of distinguishing pronunciation features at the broad phonetic level, 2) the failure of 
the automatic phonetic transcription procedure to capture distinguishing pronunciation 
features, 3) a mismatch between our speaker classes and groups of speakers that possibly 
show distinguishing speech features, 4) the heterogeneity of our speaker classes (either 
because they are inherently heterogeneous or because the speakers were not representative of 
their classes), and 5) the limitations of our algorithm for classification with a small number of 
classification features. 

In future research, some of these potential explanations may be further investigated. As 
for 1), we had hoped that the relatively large amounts of broad phonetic transcriptions would 
enable our algorithm to identify class-specific pronunciation features at the broad phonetic 
level. However, our approach to defining potentially useful pronunciation processes resulted 
in fewer than 100 such features, which appeared insufficient to distinguish speaker classes 
effectively. It remains to be seen if and how the number and the distinctiveness of the 
pronunciation features can be increased. One option might be to move towards more detailed 
phonetic transcriptions. This would increase the number of possible mappings between 
canonical representations and actual realisations, and hence potentially also the number of 
different pronunciation processes that can be used for classification. If more detailed 
transcriptions can be made reliably, we might gain after all, since the use of a larger number 
of different phonetic symbols can result in the definition of more diverse, but also more 
systematic phone mappings representing characteristic pronunciation features. At the same 
time it is clear that the further we would move away from a broad phonetic transcription of 
speech, the closer we would come to the signal-based classification procedures. As for 2), we 
have identified at least one regional pronunciation phenomenon, viz. the presence of word-
final /n/ preceded by schwa in plural nouns and verbs, which was not systematically 
represented in the automatic transcriptions. It may well be that the same holds for other 
pronunciation phenomena that are conventionally considered as characteristic for some 
geographical region; the automatic transcription procedure, which was based exclusively on 
local properties of the speech signal may have selected its symbols less ‘systematically’ than 
the human transcribers who may have been biased towards conventional regional 
characteristics on the basis of subtle cues in the signal. Again, this seems to suggest that we 
should try and move towards more detailed phonetic transcriptions. As for 3) and 4), we may 
attempt to classify speakers in more specific classes, hopefully with more homogeneous 
speech behaviour. In most cases, this is likely to mean a subdivision of the classes used in this 
study. Recall that we classified our speakers in just 16 predefined geographical regions, and 
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that we attempted the classification of speakers in just two classes defined by their level of 
education. The training and use of more specific speaker classes may increase the 
homogeneity of speech characteristics in these classes, but it would inevitably also introduce a 
data sparseness problem. Finally, as for 5), we may consider increasing the number of 
classification features for our algorithm, but we have already argued that it is not obvious how 
this can be accomplished. Alternatively, we may consider investigating classification 
techniques that are designed to operate with smaller numbers of features. 

Finally, for a real application rather than for a scientific investigation like our study, it will 
probably be suboptimal to base classifications on a single type of classification features. For 
the best possible classification, we should give the classifier access to as many and as large a 
variety of features as possible. This means combining both the lexical and pronunciation 
features presented here and probably also other features that can be directly retrieved from the 
speech signal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER 6 

 100 

 
 
 
 
 
 
 
 



 

Bibliography 
 
 
Baayen, R.H. (forthcoming). Analyzing Linguistic Data. A Practical Introduction to Statistics. 

Cambridge University Press. 
 

Baayen, R.H., Davidson, D.J., Bates, D.M. (2007). Mixed Effects Modeling with Crossed 
Random Effects for Subjects and Items, submitted manuscript. 

 

Baayen, R.H., Piepenbrock, R., Gulikers, L. (1995). The CELEX Lexical Database (Release 
2). Philadelphia, PA: Linguistic Data Consortium, University of Pennsylvania, USA. 

 

Bates, D. M. (2005). Fitting Linear Mixed Models in R. In: R News, Vol. 5, pp. 27–30. 
 
 

Bates, D.M., Sarkar, D. (2005). lme4: Linear Mixed Effects Models using S4 Classes, R 
Package Version 0.9975-7. 

 

Bell, A., Jurafsky, D., Fosler-Lussier, E., Girand, C., Gregory, M., Gildea, D. (2003). Effects 
of Disfluencies, Predictability, and Utterance Position on Word Form Variation in English 
Conversation. In: Journal of the Acoustical Society of America, Vol.113/2, pp. 1001-1024. 

 

Bellegarda, J.R. (2005). Unsupervised, Language-independent Grapheme-to-phoneme 
Conversion by Latent Analogy. In: Speech Communication, Vol. 46/2, pp. 140-152. 

 

Binnenpoorte, D. (2006). Phonetic Transcriptions of Large Speech Corpora. PhD  
Thesis, Radboud University Nijmegen, the Netherlands. 

 

Binnenpoorte, D., Cucchiarini, C. (2003). Phonetic Transcription of Large Speech Corpora: 
How to Boost Efficiency without Affecting Quality. In: Proceedings of the International 
Congress of Phonetic Sciences (ICPhS), Barcelona, Spain, pp. 2981-2984. 

 

Binnenpoorte, D., Goddijn S.M.A., Cucchiarini, C. (2003). How to Improve Human and 
Machine Transcriptions of Spontaneous Speech. In: Proceedings of the ISCA/IEEE 
Workshop on Spontaneous Speech Processing and Recognition (SSPR), Tokyo, Japan, pp. 
147-150. 

 

Binnenpoorte, D., Van Bael, C., Os, E. den, Boves, L. (2005). Gender in Everyday Speech 
and Language: A Corpus-based Study. In: Proceedings of Interspeech, Lisbon, Portugal, 
pp. 2213-2216. 

 

Booij, G. (1999). The Phonology of Dutch. Oxford University Press, New York. 

 

Byrd, D. (1994). Relations of Sex and Dialect to Reduction. In: Speech Communication, Vol. 
15, pp. 39-54. 

 

Catford, J.C. (1974). Phonetic Fieldwork. In: Sebeok, T.A. (Ed.) Current Trends in 
Linguistics, Mouton, The Hague, the Netherlands, Vol. 12, pp. 2489-2505. 

 

CGN - Het Project Corpus Gesproken Nederlands/ The Spoken Dutch Corpus (2005). 
[http://lands.let.kun.nl/cgn/ehome.htm]. 

 



BIBLIOGRAPHY 

 102 

Coussé E., Gillis S. (2006). Regional Bias in the Broad Phonetic Transcriptions of the Spoken 
Dutch Corpus. In: Proceedings of the International Conference on Language Resources 
and Evaluation (LREC), Paris, France, pp. 2080-2083. 

 

CELEX Lexical Database (2005). [http://www.ru.nl/celex/]. 

 

Cucchiarini, C. (1993). Phonetic Transcription: a Methodological and Empirical Study. PhD 
Thesis, University of Nijmegen, the Netherlands. 

 

Cucchiarini, C. (1996). Assessing Transcription Agreement: Methodological Aspects. In: 
Clinical Linguistics and Phonetics, Vol. 10/2, pp. 131-155. 

 

Cucchiarini, C., Binnenpoorte, D. (2002). Validation and Improvement of Automatic Phonetic 
Transcriptions. In: Proceedings of the International Conference on Spoken Language 
Processing (ICSLP), Denver, USA, pp. 313-316. 

 

Demuynck, K., Laureys, T., Gillis, S. (2002). Automatic Generation of Phonetic 
Transcriptions for Large Speech Corpora. In: Proceedings of the International Conference 
on Spoken Language Processing (ICSLP), Denver, USA, pp. 333-336. 

 

Demuynck. K., Laureys, T., Wambacq, P., Van Compernolle, D. (2004). Automatic Phonemic 
Labeling and Segmentation of Spoken Dutch. In: Proceedings of the International 
Conference on Language Resources and Evaluation (LREC), Lisbon, Portugal, pp. 61-64. 

 

Deshpande, M. M. (1994). Ancient Indian Phonetics. In: Asher, R. E., Simpson, J. M. Y. 
(Eds.) The Encyclopedia of Language and Linguistics, Oxford: Pergamon, UK, Vol. 6, pp. 
3053-3058. 

 

Elffers, B., Van Bael, C., Strik, H. (2005). ADAPT: Algorithm for Dynamic Alignment of 
Phonetic Transcriptions. Internal Report, Department of Language and Speech, Radboud 
University Nijmegen, the Netherlands. [http://lands.let.ru.nl/literature/elffers.2005.1.pdf]. 

 

Fisher, W., Doddington, G., Goudie-Marshall, K. (1986). The DARPA Speech Recognition 
Research Database: Specifications and Status. In: Proceedings of the Defense Advanced 
Research Projects Agency (DARPA) Speech Recognition Workshop, SAIC-86/1546, pp. 
93-99. 

 

Geumann, A., Oppermann, D., Schaeffler, F. (1997). The Conventions for Phonetic 
Transcription and Segmentation of German Used for the Munich Verbmobil Corpus. 
Verbmobil Memo 129-96, University of Munich, Germany. 

 

Gillis S., Cucchiarini C., Goddijn S., Pols L. (2001). Protocol voor Brede Fonetische 
Transcriptie. Universiteit Antwerpen (UIA), Antwerp, Belgium. Unpublished Document. 

 

Goddijn, S.M.A., Binnenpoorte, D. (2003). Assessing Manually Corrected Broad Phonetic 
Transcriptions in the Spoken Dutch Corpus. In: Proceedings of the International Congress 
of Phonetic Sciences (ICPhS), Barcelona, Spain, pp. 1361-1364. 

 

Godfrey, J., Holliman, E., McDaniel, J. (1992). SWITCHBOARD: Telephone Speech Corpus 
for Research and Development. In: Proceedings of the IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP), San Francisco, USA, pp. 737-740. 



BIBLIOGRAPHY 
 

 103

Greenberg, S. (1997). The Switchboard Transcription Project in Research Report #24. In: 
1996 Large Vocabulary Continuous Speech Recognition Summer Research Workshop 
Technical Report Series, Center for Language and Speech Processing, Johns Hopkins 
University, Baltimore, MD, USA. 

 

Greenberg, S. (1998). Speaking in Shorthand - A Syllable-centric Perspective for Understanding 
Pronunciation Variation. In: Proceedings of the ESCA Workshop on Modeling Pronunciation 
Variation for Automatic Speech Recognition, Kerkrade, the Netherlands, pp. 47-56. 

Greenberg, S., Hollenback, J., Ellis, D. (1996). Insights into Spoken Language Gleaned from 
Phonetic Transcription of the Switchboard Corpus. In: Proceedings of the International 
Conference on Spoken Language Processing (ICSLP), Philadelphia, USA, pp. S24-27. 

 

Halteren, H. van. (2004). Linguistic Profiling for Author Recognition and Verification. In: 
Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics, 
Barcelona, Spain, pp. 200-207. 

 

Halteren, H. van (2007). Author Verification by Linguistic Profiling: An Exploration of the 
Parameter Space. In: ACM Transactions on Speech and Language Processing, Vol. 4/1. 
[http://portal.acm.org/citation.cfm?id=1217098.1217099]. 

 
 

Harrell F.E. Jr., Lee K.L., Mark D.B. (1996). Multivariable Prognostic Models: Issues in 
Developing Models, Evaluating Assumptions and Adequacy, and Measuring and Reducing 
Errors. In: Statistics in Medicine, Vol. 15/4, pp.361–387. 

 

Henton, C. (1994). Acoustic Variability in the Vowels of Female and Male Speakers. In: The 
Journal of the Acoustical Society of America, Vol. 94/4, pp. 2387. 

 

Hess, W., Kohler, K.J., Tillman, H.-G. (1995). The Phondat-Verbmobil Speech Corpus. In: 
Proceedings of Eurospeech, Madrid, Spain, pp. 863-866. 

 

Heuvel, H., van den, Boves, L., Moreno, A., Omologo, M., Richard, G., Sanders, E. (2001). 
Annotation in the SpeechDat Projects. In: International Journal of Speech Technology, 
Vol. 4, pp. 127-143. 

 

Heuvel, H. van den, Sanders, E. (2006). Valid Validations: Bare Basics and Proven 
Procedures. In: Proceedings of the Workshop “Quality Assurance and Quality 
Measurement for Language and Speech Resources”, held at the International Conference 
on Language Resources and Evaluation (LREC), Genoa, Italy, (CD-ROM) 

 

Hol, A.R. (2006). Dialectgrenzen in Gelderland. In: Wingens, M.F.M., Demoed, H.B., 
Scholten, F.W.J. (Eds.) Gelders Erfgoed, Gelders cultuurhistorisch kwartaalblad, Vol. 
2006/2, pp. 11-13. 

 

Hoste, V., Daelemans, W., Tjong Kim Sang, E., Gillis, S. (2000). Meta-learning for Phonemic 
Annotation of Corpora. In: Proceedings of the International Conference on Machine 
Learning (ICML), Stanford University, CA, USA, pp. 375-382. 

 

Howard, S.J., Heselwood, B. (2002). Learning and Teaching Phonetic Transcription for 
Clinical Purposes. In: Clinical Linguistics and Phonetics, Vol. 16, pp. 371-401. 

 



BIBLIOGRAPHY 

 104 

Jande, P.A. (2005). Inducing Decision Tree Pronunciation Variation Models from Annotated 
Speech Data. In: Proceedings of Interspeech, Lisbon, Portugal, pp. 1945-1948. 

 

Johnson, K. (2004). Massive Reduction in Conversational American English. In: Yoneyama, 
K., Maekawa, K. (Eds.) Spontaneous Speech: Data and Analysis. The National Institute for 
Japanese Language, Tokyo, pp. 29-45. 

 

Jurafsky, D., Bell, A., Gregory, M., Raymond, W.D. (2001). The Effect of Language Model 
Probability on Pronunciation Variation. In: Proceedings of the IEEE International Conference on 
Acoustics, Speech, and Signal Processing (ICASSP), Salt Lake City, Utah, USA, pp. 801-804. 

 

Kemp, J. A. (1994a). Phonetic Transcription: History. In: Asher, R. E., Simpson, J. M. Y. 
(Eds.) The Encyclopedia of Language and Linguistics, Oxford: Pergamon, UK, Vol. 6, pp. 
3040-3051. 

 

Kemp, J. A. (1994b). Phonetics: Precursors of Modern Approaches. In: Asher, R. E., 
Simpson, J. M. Y. (Eds.) The Encyclopedia of Language and Linguistics, Oxford: 
Pergamon, UK, Vol. 6, pp. 3103-3106. 

 

Kerkhoff, J., Rietveld, T. (1994). Prosody in Niros with Fonpars and Alfeios. In: Proceedings 
of the Department of Language and Speech, University of Nijmegen, Vol. 18, pp. 107-119. 

 

Kessens, J.M. (2002). Making a difference. On Automatic Transcription and Modeling of 
Dutch Pronunciation Variation for Automatic Speech Recognition. PhD Thesis, University 
of Nijmegen, the Netherlands. 

 

Kessens, J.M., Cucchiarini, C., Strik, H. (2003). A Data-driven Method for Modeling 
Pronunciation Variation. In: Speech Communication, Vol. 40/4, pp. 517-534. 

 

Kessens, J.M., Strik, H. (2004). On Automatic Phonetic Transcription Quality: Lower Word 
Error Rates Do Not Guarantee Better Transcriptions. In: Computer Speech and Language, 
Vol. 18, pp. 123-141. 

 

Kessens, J.M., Wester, M., Strik, H. (1999). Improving the Performance of a Dutch CSR by 
Modeling Within-word and Cross-word Pronunciation Variation. In: Speech 
Communication, Vol. 29, pp. 193-207. 

 

Keune, K., Ernestus, M., Hout, R. van, Baayen, R.H. (2005). Variation in Dutch: From 
Written MOGELIJK to Spoken MOK. In: Corpus Linguistics and Linguistic Theory, Vol. 
1-2, pp. 183-223. 

 

Kipp, A., Wesenick, M.-B., Schiel, F. (1996). Automatic Detection and Segmentation of 
Pronunciation Variants in German Speech Corpora. In: Proceedings of the International 
Conference on Spoken Language Processing (ICSLP), Philadelphia, USA, pp. 106-109. 

 

Kipp, A., Wesenick, M.-B., Schiel F. (1997). Pronunciation Modelling applied to Automatic 
Segmentation of Spontaneous Speech. In: Proceedings of Eurospeech, Rhodes, Greece, pp. 
1023-1026. 

 



BIBLIOGRAPHY 
 

 105

Koskenniemi, K. (1983). Two-level Morphology: A General Computational Model of Word-
form Recognition and Production. Technical Report Publication No. 11, Dept. of General 
Linguistics, University of Helsinki, Finland. 

 

Kuijpers, C., Donselaar, W. van. (1997). The Influence of Rhythmic Context on Schwa 
Epenthesis and Schwa Deletion in Dutch. In: Language and Speech, Vol. 41/1, pp. 87-108. 

 

Labov, W. (1994). Principles of Linguistic Change. Blackwell, Cambridge, MA, USA. 

 

Ladefoged, P. (1960). The Value of Phonetic Statements. In: Language, Vol. 36, pp. 387-396. 

 

Ladefoged, P. (1993). A Course in Phonetics - Third Edition. Harcourt Brace College 
Pulishers, Forth Worth, TX, USA. 

 

Ladefoged, P. (2003). Phonetic Data Analysis: An Introduction to Fieldwork and 
Instrumental Techniques. Malden, MA: Blackwell Publishing, USA. 

 

Ladefoged, P., Maddieson, I. (1996). The Sounds of the World's Languages. Oxford: 
Blackwell Publishers, UK. 

 

Lamel, L.F., Kassel, R.H., Seneff, S. (1986). Speech Database Development: Design and 
Analysis of the Acoustic-phonetic Corpus. In: Proceedings of the Defense Advanced 
Research Projects Agency (DARPA) Speech Recognition Workshop, SAIC-86/1546, 
pp.100-109. 

 

Laver, J. (1995). Principles of Phonetics. Cambridge University Press, Cambridge, UK. 

 

Ljolje, A., Hirschberg, J., Santen, J.P.H. van (1997). Automatic Speech Segmentation for 
Concatenative Inventory Selection. In: van Santen, J.P.H., Sproat, R.W., Olive, J.P., 
Hirschberg, J. (Eds.) Progress in speech synthesis, Springer, New York, USA, pp. 305-
311. 

 

Ljolje, A., Riley, M.D. (1991). Automatic Segmentation and Labeling of Speech. In: 
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal 
Processing (ICASSP), Toronto, Canada, pp. S473-S476. 

 

Maekawa, K. (2003). Corpus of Spontaneous Japanese: Its Design and Evaluation. In: 
Proceedings of the ISCA/IEEE Workshop on Spontaneous Speech Processing and 
Recognition (SSPR), Tokyo, Japan, pp. 7-12. 

 

Mizutani, T., Kagoshima, T. (2005). Concatenative Speech Synthesis Based on the Plural Unit 
Selection and Fusion Method. In: IEICE Transactions on Information and Systems, Vol. 
E88-D/11, pp. 2565-2572. 

 

Müller, C., Schötz, S. (Eds.) Speaker Classification. Lecture Notes in Computer 
Science/Artificial Intelligence, Vol. 4343, Springer, Heidelberg – Berlin - New York. In 
Press. 

 

Nerbonne, J., Heeringa, W., Hout, E. van den, Kooi, P. van der, Otten, S., Vis, W. van de 
(1996). Phonetic Distance between Dutch Dialects. In: Durieux, G., Daelemans, W., Gillis, 
S. (Eds.) CLIN IV, Papers From the Sixth CLIN Meeting. University of Antwerp, Center 
for Dutch Language and Speech, Antwerp, Belgium, pp. 185-202. 



BIBLIOGRAPHY 

 106 

 

Neri, A., Cucchiarini, C., Strik, H. (2006). Selecting Segmental Errors in Non-native Dutch 
for Optimal Pronunciation Training. In: International Review of Applied Linguistics, Vol. 
44/4, pp. 357-404. 

 

Neri, A., Cucchiarini, C., Strik, H. (2007). Pronunciation Training in Dutch as a Second 
Language on the Basis of Automatic Speech Recognition. In: Stem, Spraak en 
Taalpathologie, Vol. 15/11, pp. 159-169. 

 

Neri, A., Cucchiarini, C., Strik, H., Boves, L. (2002). The Pedagogy-Technology Interface in 
Computer Assisted Pronunciation Training. In: Computer Assisted Language Learning, 
Vol. 15/ 5, pp. 441-467. 

 

Ohala, J. J. (1994). Phonetic Transcription: History. In: Asher, R. E., Simpson, J. M. Y. (Eds.) 
The Encyclopedia of Language and Linguistics, Oxford: Pergamon, UK, Vol. 6, pp. 3040-
3053. 

 

Oller, D.K., Eilers, R.E. (1975). Phonetic Expectation and Transcription Validity. In: 
Phonetica, Vol. 31, pp. 288-304. 

 

Oostdijk, N. (2002). The Design of the Spoken Dutch Corpus. In: Peters, P., Collins, P., 
Smith, A. (Eds.) New Frontiers of Corpus Research. Rodopi, Amsterdam, pp. 105-112. 

 

PAROLE lexicon. (2005). [http://ww2.tst.inl.nl]. 

 

Pearce, D. (2001). Developing the ETSI Aurora Advanced Distributed Speech Recognition 
Front-end & What Next? In: Proceedings of the IEEE Workshop on Automatic Speech 
Recognition and Understanding (ASRU), Madonna di Campiglio, Trento, Italy, pp. 131-
134. 

 

Pinheiro, J.C., Bates, D.M. (2000) Mixed-effects models in S and S-PLUS. Statistics and 
Computing. Springer, New York. 

 

Pitt, M.A., Dilley, L., Johnson, K., Kiesling, S., Raymond, W., Hume, E., Fosler-Lussier, E. 
(2006). Buckeye Corpus of Conversational Speech (2006; 1st release). 
[http://www.buckeyecorpus.osu.edu] Columbus, OH: Department of Psychology, Ohio 
State University (Distributor), USA. 

 

Pitt, M.A., Johnson, K., Hume, E., Kiesling, S., Raymond, W. (2005). The Buckeye Corpus of 
Conversational Speech: Labeling Conventions and a Test of Transcriber Reliability. In: 
Speech Communication, Vol. 45/1, pp. 89-95. 

 

Quazza, S., Heuvel, H. van den. (2000). Lexicon Development for Speech and Language 
Processing. In: Van Eynde, F., Gibbon, D. (Eds.) Lexicon Development for Speech and 
Language Processing. Kluwer Academic Publishers, Dordrecht, pp. 207-233. 

 

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Mateo: Morgan Kaufmann, 
USA.  

 

R Development Core Team. (2005). R: A Language and Environment for Statistical 
Computing. Vienna: R Foundation for Statistical Computing. [http://www.r-project.org/]. 

 



BIBLIOGRAPHY 
 

 107

Raymond, W.D., Dautricourt, R., Hume, E. (2006). Word-internal /t,d/ Deletion in 
Spontaneous Speech: Modeling the effects of Extra-linguistic, Lexical, and Phonological 
Factors. In: Language Variation and Change, Vol. 18, pp. 55-97. 

 

Referentiebestand Nederlands (RBN). (2005). [http://ww2.tst.inl.nl]. 

 

Riley, M., Byrne, W., Finke, M., Khudanpur, S., Ljolje A, McDonough, J., Nock, H., 
Saraçlar, M., Wooters, C., Zavaliagkos, G. (1999). Stochastic Pronunciation Modelling 
from Hand-labelled Phonetic Corpora. In: Speech Communication, Vol. 29, pp. 209-224. 

 

Saraçlar, M. (2000). Pronunciation Modeling for Conversational Speech Recognition. 
PhD thesis, Johns Hopkins University, Baltimore, MD, USA. 

 

Saraçlar, M., Khundanpur, S. (2004). Pronunciation Change in Conversational Speech and its 
Implications for Automatic Speech Recognition. In: Computer Speech and Language, Vol. 
18, pp. 375-395. 

 

Saraçlar, M., Nock, H., Khudanpur, S. (2000). Pronunciation Modeling by Sharing Gaussian 
Densities across Phonetic Models. Computer Speech and Language, Vol. 14, pp. 137-160. 

 
 

Schiel, F. (1999). Automatic Phonetic Transcription of Non-Prompted Speech. In: 
Proceedings of the International Congress of Phonetic Sciences (ICPhS), San Francisco, 
USA, pp. 607-610. 

 

Shoup, J. E. (1980).  Phonological Aspects of Speech Recognition. In: Lea, W.A. (Ed.) 
Trends in Speech Recognition, Prentice-Hall, New York, USA, pp. 125-138. 

 

Shriberg, L.D., Kwiatkowski, J., Hoffman, K. (1984). A Procedure for Phonetic Transcription 
by Consensus. In: Journal of Speech and Hearing Research, Vol. 27, pp. 456-465. 

 

Shriberg, L.D., Lof, L. (1991). Reliability Studies in Broad and Narrow Phonetic 
Transcription. In: Clinical Linguistics and Phonetics, Vol. 5, pp. 225-279. 

 

Straw, W. (1993). Rock Formation: Music, Technology, and Mass Communication. In: 
Canadian Journal of Communication, Vol. 18/4.  
[http://www.cjc-online.ca/viewarticle.php?id=210]. 

 

Strik, H. (Ed.) (1999). Special Issue of Speech Communication on ‘Modeling Pronunciation 
Variation for Automatic Speech Recognition’, Vol. 29/2-4. 

 

Strik, H. (2001). Pronunciation Adaptation at the Lexical Level. In: Proceedings of the ISCA 
Tutorial and Research Workshop (ITRW) 'Adaptation Methods for Speech Recognition', 
Sophia-Antipolis, France, pp. 123-131. 

 

Strik, H., Cucchiarini, C. (1999). Modeling Pronunciation Variation for ASR: a Survey of the 
Literature. In: Special Issue of Speech Communication on ‘Modeling Pronunciation 
Variation for Automatic Speech Recognition’, Vol. 29/2-4, pp. 225-246. 

 

TIMIT Acoustic-Phonetic Continuous Speech Corpus (1990). National Institute of Standards 
and Technology Speech Disc 1-1.1, NTIS Order No. PB91-505065, 1990. 

 



BIBLIOGRAPHY 

 108 

Tjalve, M., Huckvale, M. (2005). Pronunciation Variation Modelling using Accent Features. 
In: Proceedings of Interspeech, Lisbon, Portugal, pp.1341-1344. 

 

Van Bael, C., Boves, L., Strik, H., Heuvel, H. van den (2006). Automatic Phonetic Transcription 
of Large Speech Corpora: a Comparative Study. In: Proceedings of the International 
Conference on Spoken Language Processing (ICSLP), Pittsburgh PA, USA, pp. 1085-1088. 

 

Verhoeven, J., De Pauw, G., Kloots, H. (2004). Speech Rate in a Pluricentric Language: A 
Comparison between Dutch in Belgium and the Netherlands. In: Language and Speech, 
Vol. 47/3, pp. 297-308. 

 

Verstraeten, B., Van de Velde, H. (2001). Socio-geographical Variation of /r/ in Standard Dutch. 
In: Van de Velde, H., Hout, R. van (Eds.) r-atic - Sociolinguistic, Phonetic and Phonological 
Characteristics of /r/.  Etudes & Travaux - ILVP/ULB. No 4. Brussels, pp. 45-61. 

 

Vorstermans, A., Martens, J.P. (1994). Automatic Labeling of Corpora for Speech Synthesis 
Development. In: Proceedings of the International Conference on Spoken Language 
Processing (ICSLP), Yokohama, Japan, pp. 1747-1750. 

 

Wang, L., Zhao, Y., Chu, M., Soong, F., Cao, Z. (2005). Phonetic Transcription Verification 
with Generalised Posterior Probability. In: Proceedings of Interspeech, Lisbon, pp. 1949-
1953. 

 

Wells, J.C. (1997). SAMPA Computer Readable Phonetic Alphabet. In: Gibbon, D., Moore, 
R., Winski, R. (Eds.) Handbook of Standards and Resources for Spoken Language 
Systems. Berlin and New York: Mouton de Gruyter. Part IV, section B. 

 

Wells, J.C. (2000). Longman Pronunciation Dictionary. Second edition. Harlow: Pearson 
Education Limited, UK. 

 

Wester, M. (2002). Pronunciation Variation Modeling for Dutch Automatic Speech 
Recognition. PhD Thesis, University of Nijmegen, the Netherlands. 

 

Wester, M. (2003). Pronunciation Modeling for ASR - Knowledge-based and Data-derived 
Methods. In: Computer Speech and Language, Vol. 17/1, pp. 69-85. 

 

Witten, I.H., Frank, E. (2005). Data Mining: Practical Machine Learning Tools and 
Techniques, 2nd Edition. Morgan Kaufmann, San Francisco, USA. 

 

Yang, Q., Martens, J.-P. (2000). Data-driven Lexical Modelling of Pronunciation Variations 
for ASR. In: Proceedings of the International Conference on Spoken Language Processing 
(ICSLP), Beijing, China, pp. 417-420. 

 

Young, S., Evermann, G., Kershaw, D., Moore, G., Odell, J., Ollason, D., Valtchev, V., 
Woodland, P. (2001). The HTK Book (for HTK version 3.2), Cambridge University 
Engineering Department, UK. 

 



 

Summary 
 

This section provides a brief summary of the six chapters in this thesis. 

Chapter 1 – Introduction 

Phonetic transcriptions represent the pronunciation of words as strings of characters from 
specifically designed symbol sets. More elaborate symbol sets allow for the representation of 
more phonetic detail. The degree of phonetic detail in phonetic transcriptions is an important 
factor in determining which purposes the transcriptions can and cannot be used for. 

This dissertation reports work on and with so-called broad phonetic transcriptions. Broad 
phonetic transcriptions are capable of describing only the most general pronunciation 
variation in speech, but they have nonetheless proven useful for phonetics, phonology, 
sociolinguistics, language pedagogy, lexicography, for the study of speech and language 
disorders and for speech therapy. Moreover, in the last three decades, broad phonetic 
transcriptions have also been used in computer-driven speech applications such as computer 
assisted pronunciation training, automatic speech recognition and text-to-speech synthesis. 

Broad phonetic transcriptions can be generated manually, automatically and semi-
automatically. Manual transcriptions are usually preferred over automatic and semi-automatic 
transcriptions, because they are entirely based on the auditory perception and the expertise of 
human transcribers. However, the fully manual transcription of speech has proven to be time-
consuming and expensive. Therefore, large speech corpora are often transcribed by means of a 
semi-automatic transcription procedure in which human transcribers verify and correct an 
automatically generated hypothetical transcription, instead of transcribing the speech signal 
from scratch. Such check-and-correct procedures have proven to be much quicker and cheaper 
than fully manual transcription, but they have also shown to imply the risk of generating 
transcriptions that are biased towards the hypothetical transcription they are based upon. In 
addition, such procedures still require a considerable amount of time and effort because of the 
involvement of human transcribers. 

Phonetic transcriptions are customarily evaluated in terms of their validity, i.e. the 
accuracy with which they describe the auditory perception of speech as strings of phonetic 
symbols. Experience shows that, in particular in large transcription projects, phonetic 
transcriptions are usually validated in terms of their resemblance to one or more handcrafted 
reference transcriptions, irrespective of the procedure by means of which the transcriptions 
were generated and irrespective of the application(s) the transcriptions will be used for. Since 
phonetic transcriptions are often generated to serve one or a few particular purposes or 
applications which are not necessarily all linguistically oriented, it seems sensible to validate 
phonetic transcriptions in terms of measures that are directly relevant for the purpose(s) they 
will be used for, instead of in terms of their resemblance to a fixed reference transcription. 
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Chapter 2 - Validation of Phonetic Transcriptions in the Context of 
Automatic Speech Recognition 

Phonetic transcriptions are nowadays widely used for the development of automatic speech 
recognition systems. Developers of such systems usually use phonetic transcriptions of 
existing speech corpora of which the validity was previously assessed in terms of their 
resemblance to a purpose-independent handcrafted reference transcription. Although some 
applications may fare best with transcriptions that closely resemble such a general reference 
transcription, it is not clear whether this also holds for automatic speech recognition. In the 
experiment described in Chapter 2, we verified whether it is safe to validate phonetic 
transcriptions in terms of their similarity to a purpose-independent reference transcription if 
the transcriptions are to be used for the development of automatic speech recognition systems. 

To this end, we evaluated two types of transcriptions (a canonical representation and a semi-
automatic (viz. manually verified) phonetic transcription) of well-prepared and spontaneous 
speech in terms of their resemblance to a handcrafted reference transcription on the one hand, and 
in terms of their suitability for ASR development on the other hand. Then we compared whether 
the two evaluations attributed the same validity rating to both types of transcriptions. Whereas the 
manually verified phonetic transcriptions resembled the reference transcription much closer than 
the canonical representations, the use of both transcription types yielded similar recognition 
results. The difference between the outcomes of the two evaluations has two implications. 

First, this result implies that whenever possible, the validation of phonetic transcriptions 
should be carried out in terms of the quality measure of the application the transcriptions will be 
used for. In addition, it implies that in spite of the high costs and the time required to generate 
them, manually verified phonetic transcriptions are not necessarily preferable for the development 
of automatic speech recognition systems; we obtained similar recognition results with a 
recognition system that was developed with a much cheaper canonical representation of speech. 

Chapter 3 – Automatic Phonetic Transcription of Large Speech Corpora 

The employment of human transcribers for the manual transcription of large speech corpora is 
(usually too) time-consuming and expensive. A common workaround is to employ human 
transcribers for the verification of automatically generated transcriptions instead of for fully manual 
transcription from scratch. The Spoken Dutch Corpus is one such corpus that was partially provided 
with a manually verified phonetic transcription. Experience indeed showed that the verification of a 
canonical transcription was considerably quicker than manual transcription from scratch. 
Nevertheless, it still took a considerable amount of time to manually verify the automatically 
generated transcriptions of a 1-million-word subset of the corpus. Therefore, we investigated 
whether manually verified transcriptions such as the transcriptions of the Spoken Dutch Corpus can 
be approximated by means of a fully automatic transcription procedure. Should this be the case, it 
would imply a considerable time gain and cost reduction for future transcription projects. 
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We used several automatic transcription procedures to generate transcriptions of a small 
sample of well-prepared speech (read-aloud texts) and spontaneous speech (telephone 
dialogues) from the Spoken Dutch Corpus. The transcriptions were compared with the 
corresponding manually verified phonetic transcriptions of the Spoken Dutch Corpus. We 
found an automatic transcription procedure that by means of decision trees and a small seed 
corpus of target transcriptions proved capable of approximating the quality of the manually 
verified phonetic transcriptions. Considering that most of the remaining discrepancies 
between the automatic transcriptions and the manually verified phonetic transcriptions can 
probably be attributed to uncertainties that are typical of human transcription behaviour, our 
study suggests that it is sufficient to verify the phonetic transcription of only a small portion 
of a corpus by hand in order to automatically generate similar transcriptions for the remainder 
of the corpus by means of machine learning algorithms such as decision trees. 

Chapter 4 – Segment Deletion in Spontaneous Speech: A Corpus 
Study using Mixed Effects Models with Crossed Random Effects 

Over the years, large annotated speech corpora such as Switchboard and the Buckeye Corpus 
of Conversational Speech have proven useful for -among other things- creating an inventory 
of testified speech processes in everyday conversational English, studying the frequencies of 
these processes and investigating how these processes are influenced by various linguistic and 
sociolinguistic factors. Because most phonetically transcribed speech corpora comprise 
(American) English, most corpus studies on pronunciation variation were conducted on 
English. The recent release of the richly annotated 9-million-word Spoken Dutch Corpus now 
offers new opportunities for studying pronunciation variation in a language other than 
English, and for testing whether findings for English generalise to another language. 

The first aim of our study was to establish the frequencies of segment deletions in 
spontaneous Dutch, and the extent to which such deletions are influenced by the linguistic and 
sociolinguistic factors reflected in the annotations, word segmentations and metadata of the 
CGN. We defined segment deletion as the deletion of phones and syllables that can be 
inferred from the symbolic alignment of canonical and manually verified phonetic 
transcriptions from the so-called core corpus of the Spoken Dutch Corpus. We found average 
phone and syllable deletion rates of 7.57% and 5.46% respectively. 22.76% of the content 
words and 18.10% of the function words had at least one phone missing, and 6.66% of the 
content words and 7.10% of the function words had at least one syllable missing. Yet, the 
total number of phone deletions in function words was larger than in content words. This can 
be explained by the larger number of function words that had multiple phones missing. These 
results are in line with findings reported for American English. Phone and syllable deletions 
are just as well common in everyday conversational Dutch as they are in English. 

An ancillary goal of our study was to explore the new opportunities for analysing complex 
corpus data offered by a recently developed statistical modelling technique: the possibility to 
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model the effects of random factors as crossed instead of nested with generalised linear mixed 
effects models (GLMMs). Mixed effects models are interesting for linguistic corpus studies 
because they allow for the inclusion of factors with repeatable levels (e.g. word class) and 
randomly sampled levels (e.g. speaker) in the same model, because they can cope with 
missing data and with complex factorial designs, and because they can do all this in a 
computationally efficient way. Until recently, however, factors with randomly sampled levels 
could only be modelled with nested designs. This imposed serious limitations on the use of 
mixed-effects models for linguistic studies, because it could increase the risk of type I errors, 
i.e. erroneously considering an effect significant. The recent possibility to model random 
effects as crossed instead of nested alleviates this problem. The mixed effects models we 
fitted for phone and syllable deletion had several effects in common, which implies that both 
types of deletion are to a large extent influenced by the same factors. The strongest factors 
across both models were lexical stress, word duration and the segmental context of the 
syllable onset of the following word. 

Because we could include random-effects factors such as speaker, word and syllable 
identity as crossed instead of nested, we were able to assess in a methodologically sound way 
the relative effect of every linguistic and sociolinguistic factor in the annotations, word 
segmentations and metadata of the Spoken Dutch Corpus over and above the random 
variation that came with the speakers, words and syllables we sampled. In our study, it was 
not only interesting to analyse which factors were significant in the models, but it was equally 
interesting to see that the (potential) effects of factors which were previously reported to 
influence segment deletion were ‘covered’ by other factors. For example, mutual information 
(word predictability) which was previously reported to influence phone deletions did not 
appear in our final model definitions, and word frequency was only significant in the phone 
deletion model. This implies that in our model definitions other factors showed a stronger 
effect on the deletion of phones and syllables. Actually, word frequency was part of the 
syllable model definition until we included ‘word identity’ as random effects factor. In both 
models, the effects of mutual information were probably covered by word frequency. Such 
knowledge is unlikely to be gained in controlled experiments on selected data sets aimed at 
studying the effects of one or a few factors at a time, but it can be of interest for pronunciation 
variation modelling in everyday conversational speech. 

Chapter 5 – Speaker Classification by means of Orthographic and 
Broad Phonetic Transcriptions of Speech 

In Chapter 5, we attempted automatic speaker classification on the basis of orthographic and 
automatically generated phonetic transcriptions. Our approach differed from conventional 
speaker classification approaches in that our classification algorithm did not classify speakers 
on the basis of direct acoustic measurements of the speech signal, but on the basis of written 
representations of the signal instead. 
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The classification algorithm first analysed orthographic and automatic broad phonetic 
transcriptions of speech from speakers whose gender, age, regional background and level of 
education were represented in the metadata of the Spoken Dutch Corpus. From these analyses, the 
algorithm identified regularities in the use of words and pronunciation processes of speakers from 
specific speaker classes (e.g. male speakers, highly educated speakers, speakers from Groningen). 
Per speaker class, these regularities were organised into two separate ‘classification profiles’: one 
lexical profile representing class-specific use of words, and a pronunciation profile representing 
class-specific pronunciation processes. These classification profiles were subsequently used to 
accept or reject unknown speakers as members of various speaker classes on the basis of the 
orthographic and broad phonetic transcriptions of their speech. 

The classification algorithm proved able to retrieve and use characteristic features from 
the orthographic transcription. However, the algorithm’s performance with the lexical profiles 
was probably not good enough for operational speaker classification: in general, we found 
equal error rates between 20% and 40%. When the classification algorithm had access only to 
the pronunciation features it extracted from the automatic broad phonetic transcription, it was 
hardly ever able to classify speakers effectively. We have given several possible explanations 
for this, and we have argued how these suggestions can be investigated in future research. 

Chapter 6 – General Discussion 

The studies in this dissertation were conducted with three aims in mind. These aims concerned 
the validation, the automatic generation and the use of broad phonetic transcriptions.  

In Chapter 2, we reconsidered the general feasibility of procedures that validate phonetic 
transcriptions by means of a comparison with a purpose-independent human-made reference 
transcription. The experiments showed that canonical transcriptions can serve the purpose of 
developing basic automatic speech recognition systems equally well as more expensive 
manually verified phonetic transcriptions that resembled a handcrafted reference transcription 
better. This finding can probably be explained by a specific feature of statistical pattern 
recognition: using canonical representations both for training and testing speech recognition 
systems results in a smaller training-test mismatch than using manual transcriptions for training 
and canonical representations for testing. On the basis of this finding, we have argued that 
developers of automatic speech recognition systems need to invest in the manual verification of 
phonetic transcriptions only for specific purposes, e.g. for in-depth analyses of what caused 
recognition errors, or for modelling pronunciation variation. A second, more important 
implication of our results is that phonetic transcriptions should preferably be validated in the 
context of the application they will serve, because a higher resemblance to a purpose-
independent reference transcription proved no guarantee for a transcription to be better suited 
for the development of automatic speech recognition systems. 

In Chapter 3, we investigated to what extent one can approximate expensive manually 
verified phonetic transcriptions with a fully automatic and therefore quicker and cheaper 
transcription procedure. We found a procedure that by means of decision trees and a small 
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seed corpus of target transcriptions proved capable of approximating the manually verified 
phonetic transcriptions of the Spoken Dutch Corpus. This finding may be of use of for future 
corpus designers, because the use of machine learning techniques such as decision trees may 
offer a quick and cheap alternative to employing human transcribers for the manual 
verification of automatically generated transcriptions of large speech corpora. Our study 
suggests that it is sufficient to verify the phonetic transcription of only a small portion of a 
corpus by hand in order to automatically generate similar transcriptions for the remainder of 
the corpus by means of decision trees. Even though our procedure requires the availability of 
a small seed corpus of target transcriptions, the generation of such a small set of transcriptions 
is almost always (much) cheaper than providing such transcriptions for a full corpus. 

In Chapter 4, we studied the statistics of phone and syllable deletions in spontaneous 
Dutch on the basis of manually verified phonetic transcriptions from the Spoken Dutch 
Corpus. In addition, statistical analyses of these transcriptions in the context of the other 
annotations and metadata of the Spoken Dutch Corpus showed to which extent phone and 
syllable deletions are influenced by the interplay of various (socio)linguistic factors. The 
statistical analyses were made possible by a recent development in computational statistics: 
the possibility to model random effects in mixed effects models in a principled way as crossed 
instead of nested. The availability of large and richly annotated speech corpora on the one 
hand, and the new possibility to model random effects as crossed in mixed effects models on 
the other, now makes it possible to study linguistic phenomena such as segment deletion as a 
function of the interplay of many factors instead of in controlled experimental environments 
designed for studying the effects of one or a few factors at a time. Since mixed effects models 
with crossed random effects can be fitted to all kinds of data with random and fixed effects, 
this technique offers new promising opportunities for many kinds of linguistic studies on large 
and richly annotated speech corpora. 

In Chapter 5, we investigated whether a classification algorithm originally designed for 
authorship verification can also be used to classify speakers in terms of their gender, age, 
regional background and level of education by analysing orthographic and automatically 
generated broad phonetic transcriptions of their speech. The classification algorithm was able 
to retrieve and use characteristic features from the orthographic transcriptions. Despite some 
encouraging results, however, the algorithm’s performance was not good enough for 
operational speaker classification: in general, we found equal error rates between 20% and 
40%. When the classification algorithm had access only to the automatic phonetic 
transcription, it was hardly ever able to classify speakers effectively. We hypothesised that 
this may be explained by 1) the absence of distinguishing pronunciation features at the broad 
phonetic level, 2) the failure of the automatic phonetic transcription procedure to capture 
distinguishing pronunciation features, 3) a mismatch between our speaker classes and groups 
of speakers that possibly show distinguishing speech features, 4) the heterogeneity of our 
speaker classes (either because they are inherently heterogeneous or because the speakers 
were not representative of their classes), and 5) the limitations of our algorithm for 
classification with a small number of classification features. We defined suggestions for future 
research to verify these hypotheses. 



 

Samenvatting (summary in Dutch) 
 

Deze sectie geeft een korte samenvatting van de zes hoofdstukken in dit proefschrift. 

Hoofdstuk 1 – Inleiding 

Fonetische transcripties representeren de uitspraak van woorden door middel van symbolen uit 
een speciaal ontworpen alfabet. Hoe uitgebreider het alfabet, hoe meer fonetisch detail ermee 
gerepresenteerd kan worden. De mate van detail in fonetische transcripties bepaalt in grote mate 
voor welke doelen de transcripties wel of niet gebruikt kunnen worden. 

In dit proefschrift zijn vier onderzoeken opgenomen over en met zogenaamde brede 
fonetische transcripties. Hoewel brede fonetische transcripties slechts de meest algemene 
kenmerken van spraak kunnen representeren, hebben ze hun nut al bewezen voor fonetische, 
fonologische en sociolinguïstische studies, voor taalonderwijs, lexicografie, voor de studie 
van spraak- en taalstoornissen en voor logopedie. Sinds de jaren tachtig van de vorige eeuw 
worden brede fonetische transcripties bovendien vaak gebruikt in toepassingen van 
spraaktechnologie zoals computergebaseerde uitspraaktraining, automatische spraakherkenning 
en spraaksynthese. 

Brede fonetische transcripties kunnen handmatig, automatisch of semi-automatisch 
gegenereerd worden. Handmatig gegenereerde fonetische transcripties genieten meestal de 
voorkeur boven automatisch gegenereerde transcripties omdat zij volledig gebaseerd zijn op 
de auditieve perceptie en de kunde van menselijke transcribenten. Helaas is de manuele 
transcriptie van spraak tijdrovend en daarom ook duur. Daarom worden grote spraakcorpora 
vaak getranscribeerd door middel van een semi-automatische procedure waarin menselijke 
transcribenten een automatische fonetische transcriptie verifiëren en waar nodig corrigeren. 
Hoewel zulke semi-automatische procedures sneller en goedkoper zijn dan volledig 
handmatige procedures, kost het menselijke transcribenten vaak nog veel tijd om de 
fonetische transcripties van een grote verzameling spraakmateriaal te verifiëren. Bovendien 
houden zulke procedures het risico in dat de uiteindelijke transcripties onterecht veel lijken op 
de automatisch gegenereerde transcripties die geverifieerd werden. 

Fonetische transcripties worden meestal geëvalueerd in termen van hun validiteit of de 
accuraatheid waarmee ze de auditieve perceptie van spraak beschrijven met een rij fonetische 
symbolen. In de praktijk wordt de validiteit van fonetische transcripties meestal bepaald in 
termen van hun gelijkenis met één of meer handgemaakte referentietranscripties, ongeacht de 
procedure waarmee de fonetische transcripties gemaakt werden, en ongeacht de toepassing(en) 
waarvoor de transcripties gebruikt zullen worden. Aangezien fonetische transcripties vaak 
gemaakt worden voor één of een aantal specifieke doelen of toepassingen die niet noodzakelijk 
linguïstisch van aard zijn, lijkt het logisch(er) om fonetische transcripties te valideren in de 
context van deze doelen en toepassingen in plaats van in de context van hun gelijkenis met een 
vaste referentietranscriptie. 
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Hoofdstuk 2 – Validatie van Fonetische Transcripties voor 
Automatische Spraakherkenning 

Fonetische transcripties worden tegenwoordig vaak gebruikt voor de ontwikkeling van 
automatische spraakherkenners. Ontwerpers van zulke systemen gebruiken meestal fonetische 
transcripties uit bestaande spraakcorpora, transcripties dus waarvan de validiteit eerder al 
bepaald werd op basis van hun gelijkenis met een handgemaakte referentietranscriptie. 
Hoewel sommige toepassingen misschien beter werken met transcripties die erg lijken op een 
handgemaakte referentietranscriptie, is het niet duidelijk of dit ook geldt voor automatische 
spraakherkenning. In het tweede hoofdstuk van dit proefschrift hebben we daarom 
geverifieerd of het verstandig is om fonetische transcripties te valideren in termen van hun 
gelijkenis met een algemene referentietranscriptie als de transcripties gebruikt zullen worden 
voor de ontwikkeling van een automatische spraakherkenner. 

We evalueerden twee soorten fonetische transcripties (een canonieke representatie en een 
manueel geverifieerde transcriptie) van voorgelezen en spontane spraak in termen van hun 
gelijkenis met een handgemaakte referentietranscriptie enerzijds, en in termen van hun 
geschiktheid voor de ontwikkeling van een automatische spraakherkenner anderzijds. 
Vervolgens vergeleken we de uitkomst van de evaluaties. Hoewel de handmatig geverifieerde 
transcripties meer gelijkenissen vertoonden met de referentietranscriptie dan de canonieke 
representaties (en dus een hogere validiteit toebedeeld kregen), werden op basis van beide types 
transcripties vergelijkbare herkenresultaten geboekt. Dit resultaat heeft twee implicaties. 

In de eerste plaats impliceert dit resultaat dat fonetische transcripties bij voorkeur 
gevalideerd moeten worden in de context van het kwaliteitscriterium van de toepassing 
waarvoor zij gebruikt zullen worden. Verder impliceert dit resultaat dat ongeacht de hoge 
kosten en de tijd die vereist zijn om manueel geverifieerde fonetische transcripties te maken, 
zulke transcripties niet noodzakelijk beter geschikt zijn voor de ontwikkeling van 
automatische spraakherkenners; we behaalden vergelijkbare herkenresultaten met een 
spraakherkenner die ontwikkeld was met een veel goedkopere canonieke representatie.  

Hoofdstuk 3 – Automatische Fonetische Transcriptie van Grote 
Spraakcorpora 

Het is meestal te tijdrovend en te duur om menselijke transcribenten in te huren voor de 
handmatige transcriptie van grote spraakcorpora. In plaats daarvan worden transcribenten 
vaak ingehuurd voor de verificatie van automatisch gegenereerde voorbeeldtranscripties. Het 
Corpus Gesproken Nederlands (CGN) is een recent corpus dat gedeeltelijk voorzien werd van 
een dergelijke manueel geverifieerde fonetische transcriptie. Al snel bleek echter dat ook een 
verificatieprocedure nog behoorlijk veel tijd in beslag kan nemen. Daarom onderzochten we 
met het oog op toekomstige transcriptieprojecten of het mogelijk is om de kwaliteit van 
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manueel geverifieerde transcripties zoals die van het CGN te benaderen met behulp van een 
volledig automatische en dus ook snellere en goedkopere transcriptieprocedure. 

We gebruikten verschillende automatische transcriptieprocedures om een brede fonetische 
transcriptie te genereren van een kleine hoeveelheid voorgelezen en spontane spraak 
(voorgelezen verhalen en telefoongesprekken) uit het CGN. Vervolgens werden deze 
transcripties vergeleken met de manueel geverifieerde fonetische transcripties van het CGN. 
We vonden een automatische transcriptieprocedure die met behulp van beslissingsbomen en 
een kleine hoeveelheid voorbeeldtranscripties de kwaliteit van de manueel geverifieerde 
fonetische transcripties van het CGN kan benaderen. De resterende verschillen tussen de 
automatisch gegenereerde transcripties en de manueel geverifieerde fonetische transcripties 
zijn grotendeels vergelijkbaar met de verschillen die vaak ook tussen de transcripties van 
menselijke transcribenten gevonden worden. Dit suggereert dat men kan volstaan met de 
handmatige verificatie van een kleine hoeveelheid spraakmateriaal van een corpus om 
vervolgens de rest van het corpus automatisch te voorzien van een gelijkaardige transcriptie. 

Hoofdstuk 4 – Segmentdeletie in Spontane Spraak: Een 
Corpusonderzoek met ‘Mixed Effects Models’ met ‘Crossed Random 
Effects’ 

Door  de jaren heen hebben grote geannoteerde spraakcorpora zoals Switchboard en het Buckeye 
Corpus of Conversational Speech hun nut bewezen voor onder andere het inventariseren van 
uitspraakprocessen en voor het bestuderen van de frequenties van deze processen en de manier 
waarop deze processen beïnvloed worden door verschillende linguïstische en sociolinguïstische 
factoren. Omdat de meeste fonetisch getranscribeerde spraakcorpora Engelse spraak bevatten 
werden de meeste corpusstudies naar uitspraakvariatie uitgevoerd op het Engels. De recente 
oplevering van het uitvoerig geannoteerde Corpus Gesproken Nederlands biedt nu de 
mogelijkheid om uitspraakvariatie te bestuderen in een andere taal dan het Engels, en om te testen 
of onze kennis over uitspraakvariatie in het Engels ook geldt voor het Nederlands. 

Het eerste doel van ons onderzoek was vast te stellen hoe vaak klanken en lettergrepen niet 
uitgesproken worden in spontane Nederlandse spraak, en in welke mate zulke ‘deleties’ (ten 
opzichte van de standaarduitspraak van woorden) beïnvloed worden door linguïstische en 
sociolinguïstische factoren die kunnen afgeleid worden uit de annotaties, woordsegmentaties en 
metadata van het CGN. We lokaliseerden segmentdeleties door middel van een symbolische 
oplijning van canonieke en manueel geverifieerde fonetische transcripties van woorden in het 
CGN. We vonden dat 7.57% van alle klanken en 5.46% van alle lettergrepen in de 
standaarduitspraak van de woorden niet uitgesproken werden. In 22.76% van de 
inhoudswoorden en in 18.10% van de functiewoorden ontbrak minstens één klank, en 6.66% 
van de inhoudswoorden en 7.10% van de functiewoorden hadden minstens één ontbrekende 
lettergreep. Toch was het totale aantal klankdeleties in functiewoorden groter dan in 
inhoudswoorden; in functiewoorden komt het veel vaker voor dat meer dan één klank niet 
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gerealiseerd wordt. Deze resultaten liggen op dezelfde lijn als resultaten die vroeger al 
gerapporteerd werden voor het Engels. Het niet uitspreken van klanken en lettergrepen in 
spontane spraak is dus blijkbaar net zo gebruikelijk in het Nederlands als in het Engels. 

Een bijkomend doel van ons onderzoek was gericht op het onderzoeken van de 
bruikbaarheid van een nieuwe statistische techniek voor het analyseren van complexe 
corpusgegevens. Sinds kort is het mogelijk om in ‘generalised linear mixed effects models’ 
(GLMMs) ‘random factors’ in een ‘crossed’ en dus niet langer enkel in een ‘nested’ design te 
modelleren. GLMMs zijn intrinsiek interessant voor het uitvoeren van taalkundig onderzoek 
op grote hoeveelheden corpusmateriaal omdat deze modellen het mogelijk maken om factoren 
met herhaalbare waarden (zoals woordklasse) en factoren met willekeurig gesamplede 
waarden (zoals spreker) te modelleren in één model, omdat ze met ontbrekende gegevens 
kunnen omgaan, en omdat ze dit alles kunnen op een computationeel efficiënte manier. Tot 
voor kort echter konden verschillende random-effects factoren enkel in een nested design 
gemodelleerd worden. Dit beperkte de bruikbaarheid van GLMMs voor taalkundige studies 
omdat het de kans op type I fouten (d.w.z. de invloed van een factor op een taalkundig 
fenomeen onterecht als significant beschouwen) vergrootte. De recente mogelijkheid om 
random factors als crossed in plaats van nested te modelleren lost dit probleem grotendeels 
op. De GLMMs waarmee we klank- en lettergreepdeleties modelleerden hadden verschillende 
factoren gemeen. Dit wil zeggen dat volgens onze modellen klank- en lettergreepdeleties in 
spontane Nederlandse spraak voor een groot deel beïnvloed worden door dezelfde factoren. 
De sterkste factoren die een invloed hadden op zowel klank- als syllabedeleties waren lexicale 
klemtoon, woordduur en de eerste klank (consonant of vocaal) van het volgende woord. 

Omdat we random-effects factoren zoals spreker, woord en lettergreep als crossed in 
plaats van nested konden modelleren, konden we op een methodologisch verantwoorde 
manier de relatieve effecten van elke linguïstische en sociolinguïstische factor bepalen, 
ongeacht de willekeurige variatie in de deleties die resulteerde uit de grote verscheidenheid 
aan sprekers, woorden en lettergrepen die we onderzochten. Het bleek niet alleen interessant 
om te analyseren welke factoren een significante invloed uitoefenden op het niet uitspreken 
van klanken. Het was net zo interessant om te merken dat de (potentiële) effecten van 
bepaalde factoren overschaduwd werden door de effecten van andere factoren. Mutual 
information bijvoorbeeld (de voorspelbaarheid van woorden gegeven de omliggende 
woorden) werd in het verleden vaak als invloedrijke factor beschouwd voor het niet 
uitspreken van klanken en syllabes. Deze factor zat echter niet in onze uiteindelijke modellen 
voor klank- en syllabedeletie. Dit houdt in dat in onze modeldefinities de invloeden van 
andere factoren (m.n. woordfrequentie) op klankdeletie harder doorwogen dan de invloed van 
mutual information. Zulke kennis is moeilijk te verkrijgen op basis van gecontroleerde 
experimenten op zorgvuldig geselecteerde spraakbestanden, maar kan wel interessant zijn 
voor uitspraakmodellering van alledaagse spontane spraak. 
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Hoofdstuk 5 – Sprekerclassificatie op basis van Orthografische en 
Brede Fonetische Transcripties van Spraak 

Hoofdstuk 5 beschrijft een experiment met automatische sprekerclassificatie op basis van 
orthografische en automatisch gegenereerde brede fonetische transcripties. Onze aanpak 
verschilde van de aanpak in traditionele sprekerclassificatieprocedures omdat ons algoritme 
de sprekers niet classificeerde op basis van directe akoestische analyses van het spraaksignaal, 
maar op basis van symbolische representaties van dat signaal. 

Het algoritme analyseerde eerst orthografische en automatisch gegenereerde fonetische 
transcripties van spraak van sprekers waarvan het geslacht, de leeftijd, de regionale 
achtergrond en het opleidingsniveau bekend waren in de metadata van het Corpus Gesproken 
Nederlands. Uit deze analyses extraheerde het algoritme kenmerkend woordgebruik en 
specifieke uitspraakprocessen voor verschillende sprekerklassen (bijvoorbeeld mannelijke 
sprekers, hoog opgeleide sprekers, sprekers uit Groningen). Deze kenmerken werden per 
sprekerklasse opgeslagen in twee ‘classificatieprofielen’: één profiel dat kenmerkend 
woordgebruik representeerde, en één profiel dat kenmerkende uitspraakprocessen voorstelde. 
Deze classificatieprofielen werden vervolgens gebruikt om nieuwe sprekers op basis van een 
analyse van een orthografische en een fonetische transcriptie van hun spraak in te delen in de 
verschillende sprekerklassen. 

Het classificatiealgoritme kon kenmerkende eigenschappen extraheren uit de 
orthografische transcripties. De accuraatheid van het algoritme was echter niet hoog genoeg 
om het te kunnen gebruiken voor praktische sprekerclassificatie. Het algoritme had ook grote 
moeite om sprekers te classificeren op basis van de uitspraakkenmerken die uit de 
automatische fonetische transcriptie geëxtraheerd werden. We hebben hier verschillende 
verklaringen voor gegeven en we hebben suggesties gedaan voor verder onderzoek naar deze 
verklaringen. 

Hoofdstuk 6 – Algemene Discussie 

De studies in dit proefschrift werden uitgevoerd met drie doelen voor ogen. Deze doelen 
hadden betrekking op de validatie, de automatische productie en het gebruik van brede 
fonetische transcripties. 

In hoofdstuk 2 verifieerden we of het verstandig is om fonetische transcripties te valideren 
op basis van hun gelijkenis met een handgemaakte referentietranscriptie. De experimenten 
toonden aan dat canonieke transcripties net zo geschikt zijn voor de ontwikkeling van een 
standaard automatische spraakherkenner als duurdere manueel geverifieerde transcripties die 
meer gelijkenis vertonen met een handgemaakte referentietranscriptie. We concludeerden dat 
ontwikkelaars van spraakherkenners beter enkel nog voor specifieke doeleinden investeren in 
de manuele verificatie van fonetische transcripties. Hierbij kan gedacht worden aan grondige 
analyses om te bepalen hoe bepaalde herkenfouten tot stand komen, of aan fonetische 
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transcripties die als hulpmiddel moeten dienen bij de modellering van uitspraakvariatie. 
Bovendien, en belangrijker nog, impliceerde dit resultaat dat fonetische transcripties het beste 
gevalideerd kunnen worden in de context van de toepassing waarvoor ze gebruikt zullen 
worden. Een transcriptie die meer leek op een handgemaakte referentietranscriptie bleek 
immers niet noodzakelijk beter geschikt voor de ontwikkeling van een automatische 
spraakherkenner. 

In Hoofdstuk 3 onderzochten we in welke mate de kwaliteit van dure manueel 
geverifieerde fonetische transcripties benaderd kan worden met een volledig automatische en 
daardoor snellere en goedkopere transcriptieprocedure. We vonden een eenvoudige procedure 
die met behulp van beslissingsbomen en een kleine hoeveelheid nauwkeurige transcripties de 
kwaliteit van de manueel geverifieerde fonetische transcripties van het Corpus Gesproken 
Nederlands kon benaderen. Deze bevinding kan belangrijk zijn voor de transcriptie van 
toekomstige spraakcorpora, omdat het gebruik van zelflerende systemen zoals 
beslissingsbomen een snel en goedkoop alternatief kan bieden voor het inhuren van 
menselijke transcribenten voor de handmatige verificatie van voorbeeldtranscripties. Ons 
onderzoek suggereert dat het voldoende is om een nauwkeurige fonetische transcriptie van 
een klein deel van een corpus te maken, om vervolgens volledig automatisch een gelijkaardige 
transcriptie te maken van de rest van het corpus. Dit kan leiden tot een behoorlijke tijdswinst 
en een verlaging van de transcriptiekosten. 

In Hoofdstuk 4 bestudeerden we de deletie van klanken en lettergrepen in spontane 
Nederlandse spraak op basis van analyses van manueel geverifieerde fonetische transcripties van 
het CGN. Deze transcripties bleken een goede bron van informatie te zijn om de frequentie van 
foon- en lettergreepdeleties te bestuderen, en bovendien konden we deze transcripties ook 
gebruiken om te modelleren tot op welke hoogte zulke deleties door het samenspel van 
verschillende (socio)linguïstische factoren bepaald worden. We konden onze analyses uitvoeren 
dankzij een recente ontwikkeling in de computationele statistiek: de mogelijkheid om ‘random 
effects’ in ‘mixed effects’ modellen als ‘crossed’ in plaats van ‘nested’ te modelleren. De 
beschikbaarheid van grote en uitgebreid geannoteerde spraakcorpora enerzijds en de nieuwe 
mogelijkheid om willekeurige effecten als ‘crossed’ te modeleren in ‘mixed effects models’ 
anderzijds zorgen ervoor dat het nu mogelijk is om taalkundige verschijnselen zoals 
segmentdeletie te bestuderen in functie van het samenspel van vele factoren in plaats van in 
gecontroleerde experimentele omgevingen die opgezet zijn om het effect van één of een klein 
aantal factoren te bestuderen. Aangezien ‘mixed effects models’ gebruikt kunnen worden voor het 
modelleren van ‘random’ en ‘fixed effects’ biedt deze techniek nieuwe mogelijkheden voor 
taalkundige studies op grote en uitgebreid geannoteerde spraakcorpora. 

In Hoofdstuk 5 onderzochten we of een automatisch classificatiealgoritme sprekers uit het 
Corpus Gesproken Nederlands kon classificeren volgens hun geslacht, leeftijd, regionale 
achtergrond en opleidingsniveau op basis van een analyse van hun uitspraak en woordgebruik. 
Onze aanpak verschilde van de aanpak in traditionele procedures omdat ons algoritme de 
sprekers niet classificeerde op basis van directe akoestische analyses van het spraaksignaal, 
maar op basis van symbolische representaties van dat signaal. Het algoritme bleek in staat om 
karakteristieke lexicale kenmerken uit de orthografische transcripties te extraheren. Ondanks 
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deze bemoedigende resultaten echter maakte het algoritme op basis van deze informatie teveel 
fouten om het in de praktijk voor sprekerclassificatie te kunnen gebruiken. Het algoritme had 
zelfs nog meer moeite om sprekers te classificeren op basis van uitspraakkenmerken die uit de 
automatisch gegenereerde brede fonetische transcripties geëxtraheerd werden. We 
argumenteerden dat dit mogelijk verklaard kan worden door 1) de afwezigheid van 
onderscheidende uitspraakprocessen op het brede fonetische niveau, 2) tekortkomingen in 
onze automatische transcriptieprocedure om eventuele onderscheidende uitspraakprocessen te 
representeren, 3) een discrepantie tussen de door ons gedefinieerde sprekerklassen en de 
groepen sprekers die in de realiteit onderscheidende spraakkenmerken vertonen, 4) de 
heterogeniteit van onze sprekerklassen (omdat de klassen in de praktijk inherent heterogeen 
zijn of omdat de sprekers niet representatief waren voor hun klassen), en 5) de beperkingen 
van ons algoritme voor classificatie met een beperkt aantal classificatiekenmerken. We 
definieerden enkele vervolgstudies om deze verklaringen verder te onderzoeken. 
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