
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/30218

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16119113?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/30218

PUTTING TYPES TO GOOD USE

Arjen van Weelden

ii

Copyright c© 2007 Arjen van Weelden
All rights reserved

IPA dissertation series 2007-10
ISBN: 978-90-9022041-3

Typeset with LATEX 2ε
Printed by Print Partners Ipskamp

The work in this thesis has been carried out under the auspices of the research
school IPA (Institute for Programming research and Algorithmics).

PUTTING TYPES TO GOOD USE

Een wetenschappelijke proeve op het gebied van de

Natuurwetenschappen, Wiskunde en Informatica

Proefschrift

ter verkrijging van de graad van doctor

aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. mr. S.C.J.J. Kortmann,

volgens besluit van het College van Decanen

in het openbaar te verdedigen op woensdag 17 oktober 2007

om 15:30 uur precies

door

Arjen van Weelden

geboren op 21 oktober 1978

te Arnhem

Promotor:
prof. dr. ir. Rinus Plasmeijer

Copromotor:
dr. Sjaak Smetsers

Manuscript commissie:
prof. dr. Herman Geuvers
prof. dr. Johan Jeuring Universiteit Utrecht & Open Universiteit Nederland
prof. dr. Mark P. Jones Portland State University

Preface

I would like to thank all the people who in some way supported me and this thesis.
Their influence, either in their professional role or as a friend, has improved me,
my research, and this thesis. I thank Rinus for offering me this job as a researcher
and his enthusiastic support from the start. Sjaak has my gratitude for his gentle
supervision after my research focus shifted from Dynamics to Generics. For
showing me how to teach and how to dress formally, credits must go to Erik.
Diederik must be mentioned for this ability to turn unlimited amounts of coffee
into constructive criticism. By showing me assembly code, John improved my un-
derstanding of pure and lazy programming languages. Furthermore, I thank all the
people in the Software Technology group and the Computer Science department
at the Radboud University Nijmegen. This thesis would not have been possible
without my parents, who gave me the opportunity to pursue my studies. Last but
not least, I thank Floor for her support these years. Anyone mistakenly absent
here ought to blame it on the drinks we shared on one happy occasion or the other.

Arjen
Nijmegen, August 2007

v

Table of Contents

Preface v

Table of Contents (read this to learn more about recursion) vii

1 Introduction 1
1.1 The Complexity of Software . 1
1.2 Abstraction by Functional Programming 3
1.3 Hybrid Static/Dynamic Typing 5
1.4 Polytypic Programming . 6
1.5 Scope of the Research . 7
1.6 Contents of this Thesis . 8

2 A Functional Operating System 13
2.1 Introduction . 13
2.2 Dynamics in Clean . 15
2.3 Threads in Famke . 20

2.3.1 Thread Implementation 20
2.3.2 Exceptions and Signals 24

2.4 Processes in Famke . 26
2.4.1 Process and Thread Communication 26
2.4.2 Process Management . 29

2.5 Interacting with Famke: the Shell 30
2.6 Related Work . 32
2.7 Conclusions and Future Work . 33

vii

viii TABLE OF CONTENTS

3 A Functional Shell 35
3.1 Introduction . 35

3.1.1 Esther Example: an Application Uses a Shell Function . . 37
3.1.2 Overview . 38

3.2 Dynamics in Clean . 38
3.3 Overview of the Shell . 38

3.3.1 Famke: a Type Safe Micro Kernel 39
3.3.2 A Typed File System . 39
3.3.3 Esther: a Type-Checking Shell 41
3.3.4 The Esther Command Language 43

3.4 Implementation of Esther Using Dynamics 48
3.4.1 Application . 49
3.4.2 Lambda Expressions . 50
3.4.3 Irrefutable Patterns . 51
3.4.4 Let(rec) Expressions . 52
3.4.5 Case Expressions . 53
3.4.6 Overloading . 55

3.5 Related Work . 58
3.6 Conclusions . 59

4 Bracket Abstraction Preserves Typability 61
4.1 Introduction . 61
4.2 Dynamics and the Shell Written in Clean 62
4.3 From Expression to Combinators 64
4.4 The Theorem Provers PVS . 66
4.5 The Proof in PVS . 68

4.5.1 Bracket Abstraction . 68
4.5.2 Typing . 70
4.5.3 A Polymorphic Type System 72

4.6 Related Work . 75
4.7 Conclusions . 76

5 Editors for Higher-Order Data Structures 77
5.1 Introduction . 77
5.2 The GEC Programming Toolkit 79
5.3 Dynamically Typed Higher-order GECs 82

5.3.1 Dynamics in Clean . 82
5.3.2 Creating a GEC for the type Dynamic 84

5.4 Statically Typed Higher-order GECs 87
5.4.1 Abstract Graphical Editor Components 88
5.4.2 Adding Static Type Constraints to Dynamic GECs 89

TABLE OF CONTENTS ix

5.5 Applications of higher-order GECs 91
5.6 Related Work . 93
5.7 Conclusions . 94
5.8 Screen Shots of Example Applications 95

6 Polytypic Syntax Tree Operations 97
6.1 Introduction . 97
6.2 Polytypic Programming . 99
6.3 Polytypic Parsing of Programming Languages 102
6.4 Other Polytypic Syntax Tree Operations 106

6.4.1 Restructuring Infix Expressions 106
6.4.2 Adding Local Variable Scopes 107
6.4.3 Type Inference . 108

6.5 Performance of Polytypic Parsers 110
6.5.1 A Basic Functional Language Parser 111
6.5.2 Improving the Automatically Derived Code 111
6.5.3 Using Continuation-based Parser Combinators 112
6.5.4 A Haskell 98 Parser . 113

6.6 Related Work . 114
6.7 Conclusions . 115

7 Arrows for Invertible Programming 117
7.1 Introduction . 117
7.2 From arrows to bidirectional arrows 119

7.2.1 Arrows . 119
7.2.2 Bidirectional arrows . 121
7.2.3 Arrow laws for bi-arrows 121
7.2.4 Inversion Laws . 123

7.3 Monotypic programming with bi-arrows 123
7.3.1 A motivating example 124
7.3.2 Functions are not bi-arrows 125
7.3.3 The embedding-projection bi-arrow transformer 126
7.3.4 Paterson notation . 126

7.4 Polytypic programming with bi-arrows 127
7.4.1 Polytypic traversals . 127
7.4.2 The state bi-arrow transformer 129
7.4.3 Polytypic shape . 130

7.5 Polytypic (de)serialization . 131
7.6 Monadic programming with bi-arrows 134

7.6.1 Partial polytypic zipping 134
7.6.2 Bi-arrows with zero . 136

x TABLE OF CONTENTS

7.6.3 Lifting monads to bi-arrows 137
7.7 Parsing and pretty-printing . 139

7.7.1 The plus arrow . 140
7.7.2 A concrete parser . 141
7.7.3 Parsing keywords . 141
7.7.4 Parsing expressions . 142
7.7.5 A monadic plus arrow 144
7.7.6 Parser/printer examples 145

7.8 Related Work . 146
7.9 Conclusions and Future Work . 147

8 On–the–Fly Formal Testing 149
8.1 Introduction . 149
8.2 Case Study . 150
8.3 The Test Tool GAST in a Nutshell 152
8.4 The Purse Specification for GAST 154
8.5 Testing Java Cards with GAST 155
8.6 Results . 157
8.7 Related Work . 158
8.8 Conclusions and Future Work . 159

9 General Conclusions 161
9.1 Old Future Work and New Related Work 162
9.2 Final Conclusions . 165

Bibliography 167

Summary 183

Samenvatting 185

Curriculum Vitae 187

CHAPTER 1

Introduction

This thesis presents some of my research on improving software construction
using relatively new techniques provided by functional programming languages.
This chapter starts with the initial problem description in Sect. 1.1 and the motiva-
tion for using functional techniques in Sect. 1.2. Sections 1.3 and 1.4 introduce the
two new techniques we apply to several software construction issues throughout
the body of this thesis. The scope and focus of this research is further narrowed in
Sect. 1.5. This research did not take place in isolation and the published papers,
which constitute the main chapters of this work, are written in co-authorship with
my promotor, copromotor, and several other researchers. Additionally, we would
like to take this opportunity to thank all the anonymous reviewers for their helpful
comments on the original papers. A more detailed description of the contents of
this thesis is presented in Sect. 1.6, which also mentions my research contributions
to each of the chapters.

1.1 The Complexity of Software

People are still not very good at writing correct software. The famous Dutch
computer scientist Dijkstra1 [Dij72] already warned of problems in constructing
correct software as early as 1972. He argued that the main problem was the in-
creasing number of abstraction layers required to reduce complexity, and to bridge
the gap between the hours that programs ran and the milliseconds the individual

1For the readers who expect this thesis to be about computers, I would like to quote Dijkstra
that “Computer science is no more about computers than astronomy is about telescopes”.

1

2 INTRODUCTION

computer instructions took. Computers have gotten, and will most likely continue
to get, faster and increasingly parallel and distributed. Moreover, programmers
try to add more and more features to (existing) software. Although many layers
of abstraction can already be found in both software (e.g., extensive libraries,
middle-ware, high-level domain specific programming languages) and hardware
(e.g., virtual machines, out–of–order execution, multiple pipelines, threading),
bridging the still growing gap between the running time of a program and the
computer instructions remains difficult. Obviously, the related gap between user
specifications and correct executable programs is also very wide.

Much literature about the problems of software construction has been pub-
lished. The current state of software development is sometimes referred to as
the “software crisis”. A citation, taken from Royce [Roy91], which emphasizes
software construction problems and mentions the “software crisis”, predates the
start of our research by more than a decade: “The construction of new software
that is both pleasing to the user/buyer and without latent errors is an unexpectedly
hard problem. It is perhaps the most difficult problem in engineering today, and
has been recognized as such for more than 15 years. It is often referred to
as the “software crisis”. It has become the longest continuing “crisis” in the
engineering world, and it continues unabated”.

While timely correct software construction is difficult, others have argued that
one can hardly call it a crisis [Gla98] and have called the idea of a “software
crisis” paradoxical. Over the years since the first computers, much software has
been written, delivered, bought, and used. Glass presents a convincing argument
[Gla06] that both the Standish Chaos Report [Sta94] and the GAO Study, as
pointed out by Blum [Blu91], are biased towards failed software projects. Glass
[Gla00], as editor of several journals, warned researchers about presenting their
research as solely a solution towards the “software crisis”. Given the sheer number
of companies that write, sell, and use software, it is a very successful industry!
While computers and software requirements have become more complex, com-
puters and software have been successful enough to become almost ubiquitous.

Nonetheless, it is still difficult to construct correct software in a timely fashion
as soon as requirements, or the software itself, becomes complex. Software in-
correctness is often only discovered after it has been constructed. The correctness
of software can be shown by proving or, to a certain degree, by testing. Testing
properties of more than trivial programs is already difficult. Giving a (partial)
correctness proof is much harder and often practically impossible. Software to aid
human testers and provers in their approach to ascertaining software correctness
exists. Unfortunately, that software is affected by the same complexity problems
and is therefore often incorrect, incomplete, and still no match for human reason-
ing. The main advantage of such tools is that they force one to be both formal and
complete in writing specifications and proofs.

1.2: ABSTRACTION BY FUNCTIONAL PROGRAMMING 3

It is our belief that functional programming languages might alleviate some of
these issues at the source of software construction. A functional language can get
the programmer off to a good start by providing him or her with a programming
language that has very good support for abstraction. This should make it easier to
construct better abstraction layers to bridge the aforementioned gap.

1.2 Abstraction by Functional Programming

Functional programming languages are based on the mathematical concept of
functions. Like mathematical functions, functional programs consist of functions
applied to values and other functions. Functional languages use a declarative
style, specifying what the program should compute without being very specific
about how it should be done. This declarative programming style does not require
explicit flow–of–control constructions and the programmer leaves decisions about
the order of evaluation to the compiler.

For a compiler to change the flow–of–control without changing the result of a
program, all expressions in the language must be free of observable side-effects.
Side-effect free functional languages are called pure. Languages that use a data-
driven evaluation order are called lazy. To prevent recomputing the result of
an expression each time it is demanded, an implementation of a lazy language
replaces each unevaluated expression by its result when it is evaluated due to a
demand. This is only valid if the replaced expression is referentially transparent,
i.e., without (in)direct side-effects.

Pure and lazy functional languages guarantee referential transparency, which
helps reasoning about programs. Reasoning about imperative programs is difficult
because equational reasoning does not work (easily) due to side-effects, such as
the assignment of values to variables, which is at the basis of imperative program-
ming. The use of side-effects can cause the program to change parts of its state
unexpectedly. These languages provide no protection against parts of a program
that implicitly and unexpectedly change the behavior of other parts.

The result of a mathematical function depends only on its input, not on any
other implicit or hidden state. The typical strategy for handling state and side-
effects in a pure and lazy language is explicit state threading. Regardless whether
this is done using monads or unique environment passing, it makes the state
of a functional program explicit. Since this is the basic construct in functional
languages, it forces the programmer to be explicit about state changes and pro-
tects the programmer (with the help of guaranteed referential transparency) from
unexpected or inconsistent behavior of the program.

Referential transparency has additional merits for reasoning about functional
programs. The declarative functional style and the ability to replace an expression

4 INTRODUCTION

with its result are ideal for equational reasoning. Furthermore, the recursive
structure of functional programming is a natural match for the use of proof by
induction. The guarantee that a function will always evaluate to the same result
given the same arguments, means that unit tests only have to test each combination
of argument values once.

Functional programming languages also feature advanced type systems. This
allows programmers to express properties of functions using types, which are
checked at compile time. Type-checking prevents certain run-time errors: “square
pegs will not go into round holes”. Languages with a strong type system have
the property that a type can be assigned to every (sub)expression in a language.
Functional languages are structured such that automatic type inference can be
used, which reduces the need for manually specifying type signatures. Since the
type checker can statically prove type safety, there is no need for run-time type-
checking.

The support for abstraction and composition in functional language manifests
itself clearly in the use of functions as arguments and as result of other functions.
Such higher-order functions are first-class citizens. Functional arguments are not
like C pointers to functions; instead they can consist of any expression that has a
function type (i.e., a type containing an arrow). This includes currying: applying
a function to some, but not all, of its arguments.

Functional languages also support easy generalization of functions that work
on the high-level structure (e.g., the branches of a tree) of its argument without
inspecting the values inside that structure (e.g., at the leafs). For instance, mapping
a function over a list requires the inspection of the structure of a list, not the
elements of that list. The (inferred) type of the function becomes polymorphic
in the type of the elements of the list, and it will automatically work on any list
regardless of the type of its elements.

For functions that are almost polymorphic but still require some operations on
the elements in which it would otherwise be polymorphic, the languages usually
provide overloading. Such operations are declared as members of classes and
become overloaded in those classes for types of those elements. This system is not
very different from using interfaces (named type classes in functional languages)
and implementations (instances of type classes) in Java. Overloaded functions
have a polymorphic type with the additional requirement that an instance of the
class in which they are overloaded exists. The type-checker can often, but not
always, deduce the type for which the programmer must provide an instance
of a certain class. Overloading is similar to higher-order parameterization of a
function. The required operations are passed as argument-functions, except that
this parameterization is implicit and the compiler provides the actual argument
function based on the requested type.

1.3: HYBRID STATIC/DYNAMIC TYPING 5

The last advantage of functional languages worth mentioning is that the se-
mantics of those languages are usually more clearly, and definitely more formally,
defined than imperative languages. As most functional languages come from
the academia, they often have a strong backing in formal, and well understood,
theories such as λ-calculus and term– and graph–rewriting. Many languages and
programming techniques have found their (experimental) origins in functional
programming languages.

In the recent past, we have seen more and more imperative programming
languages with automatic memory management (garbage collection). Functional
language implementations have been using this for a long time. In combination
with recursive data structures, automatic memory management can make direct
use of pointers obsolete. Software quality ought to improve by this means, since
explicit memory management is a common source of bugs in complex software.
Currently, we see a tendency of programmers in imperative languages to search
for, and try to use, a pure and functional subset of their favorite programming
language. Unfortunately, those programming languages have no support for en-
forcing such a subset. The programmers, and the users of the software that
they release, have to rely on their self-discipline to get the safety features that
functional languages freely provide.

1.3 Hybrid Static/Dynamic Typing

Type checking is a program analysis used in many programming languages. Usu-
ally, programming languages are either statically (at compile-time) or dynamically
(at run-time) typed. Static type checking informs the programmer early of type
errors and guarantees that a program will not give any type error at run-time.
Furthermore, knowing the types at compile-time can improve the efficiency of the
generated code.

Statically typed (correct) programs are a subset of all (correct) programs.
Obviously, there are limits to the ability of type checkers in functional languages
to prove type correctness of (i.e., type check) a program. We have heard imple-
menters of functional compiler say: “if we add one more feature to the type system
it becomes undecidable”, which shows that the static type systems are already very
advanced and close to being programming languages on their own. For instance,
it has been shown that the type checker of some functional language compilers,
with all their bells-and-whistles enabled [Wan98, Doc06], are Turing powerful.

Functional programming languages featuring a strong type system do not even
require the programmer to specify a type for all parts of the program. The type
checker found in such compilers can infer most of the types automatically. This
removes the need to specify all types while the benefit of having the types for all

6 INTRODUCTION

expressions statically checked remains. The functional language Clean features
an interesting hybrid type system that combines the static as well as the dynamic
approaches to type checking.

Clean [PvE02] is a pure and lazy functional programming language developed
at the Radboud University Nijmegen by the Software Technology group of the
Institute for Computing and Information Sciences. It is slightly different from
other functional languages such as Haskell [Pey03], (O’Ca)ML, Scheme and Lisp
(ordered from pure and lazy to impure and strict). Its approach is to incorporate
side-effects using unique environment passing instead of monads. Furthermore,
Clean is known for the efficiency of the code it generates and for the speediness
of the compiler.

To enable the elegant use of typing at run-time in combination with static
typing, Clean has a hybrid type system. Using only dynamic type-checking would
have incurred a high run-time cost and would counter the aspiration of early
(static) error detection. The hybrid type system does static checking as much
as possible. The programmer must specify which checks are performed at run-
time. However, this is done such that the static type checker can already assume
some things about the type after a successful run-time check. This allows one to
use (previously unknown) types at run-time, without invalidating the proof of the
static type checker. The Clean run-time system performs the actual type-checking
on the run-time values. A dynamic linker is part of this system and it can read (and
write) any Clean expression from (and to) disk. Reading and writing functions
is fully supported, since lazy functional expressions can contain closures, i.e.,
unevaluated (possibly cyclic or infinite) expressions with references to functions.

An additional benefit of Clean’s hybrid type system is that it enables incor-
poration of new types and new functions at run-time. This makes it possible, in
combination with the run-time type checks, to do type-safe communication of
data (values) and code (functions) of any type between different Clean programs.
It also provides the means to incorporate plug-ins in a type safe manner.

1.4 Polytypic Programming

Programming simple but useful functions, like pretty-printing or comparison op-
erators, for each and every data type one uses, is boring and error prone. In certain
specialized cases, programs are better than humans are at reliably generating
correct programs, as long as they themselves are correct. In principle, it alleviates
the work of the programmer by reducing the amount of code, which not only needs
to be written, but also maintained. If the source from which the actual program is
generated is ‘simpler’ than its result, it could in principle also simplify proving.

1.5: SCOPE OF THE RESEARCH 7

Polytypic functions reduce the number of lines of code, and hopefully the
related number of errors, by requiring merely a generic specification for a small set
of types in order to work on any type. Polytypic programming [JJ97, Hin00b], also
known as generic programming, uses polytypic functions that have to be defined
for only a handful of types, but can be applied to values of any type. Given such
a (usually) terse function specification, compilers can derive the function for all
types automatically. Recently, pure and lazy functional programming languages
have been extended with support for polytypic function definitions. They are
now a part of Clean [AP03] and for Haskell there is the Generic Haskell [LCJ03]
preprocessor, which can be seen as the successor of PolyP [JJ97].

Defining a polytypic function can be described as specifying a function for
all types by specifying it only for a few simple generic types (i.e., the set of
canonical types: the unit, sum, and product type). Since all (algebraic) data types
can be described in terms of products, sums and certain basic types, a compiler can
generate function alternatives for all (algebraic) data types, given alternatives for
the basic types. These basic types are types like numbers, functions, handles, and
other types predefined and built-in the compiler. The programmer can overrule
the generated function for a specific type at any time. This is useful if one wants
a function with generic behavior over most types but only a certain specialized
action on some of the types. This has been coined “programming the exception”.

Deriving programs using polytypic functions is somewhat similar to generat-
ing code via templates (as found in C++), except that it is not only type directed
but also type safe. There is no need for type-checking the generated code if the
polytypic function definition type checks. This is an advantage over templates,
which are type checked after each instantiation. Type errors in polytypic func-
tions are detected in the polytypic code written by the programmer, in contrast to
templates, where the error messages are usually about the instantiated code.

There are advantages to generating parts of a program automatically, and with
guaranteed type safety, especially in a programs that contain many different data
types or when the data types change a lot during the development. One can easily
obtain the required behavior of a program by overruling the generated code for a
small strategically chosen set of types. This could improve the speed and quality
of both the design and maintenance of software.

1.5 Scope of the Research

When we started the research presented in this thesis, two new programming tech-
niques where emerging in the pure and lazy functional programming community:
hybrid static/dynamic typing and polytypic programming (also known as generic
programming). Overviews of those techniques have been presented in Sect. 1.3

8 INTRODUCTION

and Sect. 1.4, respectively. The hybrid static/dynamic typing is important becasue
it extends the type safety of a statically typed functional language into the run-time
world. The polytypic programming approach to writing software is attractive in its
promise to reduce the amount of code that needs to be written, better maintenance
by adding code instead of rewriting, and elegant abstract algorithms that work for
any type.

To investigate the usefulness of hybrid static/dynamic typing and polytypic
programming, we tested these techniques on some common software/program-
ming problems. Since both were very new approaches, we wanted to see them “in
action” to assess applicability, performance, and expressiveness of the program-
ming techniques themselves as well as their implementations in both Clean and
(Generic) Haskell. Any sensible definition of “common programming problems”
yields a set too large to investigate in the time given for this thesis. We therefore
limited ourselves to a handful of subjects that we believed could benefit from
strong typing at run-time or program generation based on types.

1.6 Contents of this Thesis

The chapters of this work consist of peer-reviewed published articles. The chap-
ters are mostly unmodified versions of the published work. This resulted in some
redundancy, most notably in Sect. 2.2 and Sect. 3.2, which are identical. The
second section has therefore been replaced by a reference to the first. Likewise,
introductory sections of chapters using the same technique have some overlap. We
preferred not to rewrite entire chapters, but rather keep them as close as possible
to the original articles as they were accepted by the program committees of the
various conferences, which makes each chapter self-contained. However, we did
make changes to the layout and visual style of the papers (most notably code
fragments) to improve consistency.

The (many) program fragments presented in this work are written in Haskell
and Clean. We assume some knowledge of these languages, which are very simi-
lar, and functional programming in general. Syntactical and some other essential
differences between Clean and Haskell will be explained mostly in Sect. 2.2, Sect.
5.2, and on the fly where appropriate.

Chapter 2:

The main component that provides means of communication in any computer is
the operating system. Additionally, the operating system provides a way to start
new programs. In this chapter, we present Famke: a prototype/proof–of–concept
implementation of a strongly typed functional operating system. We incorporate

1.6: CONTENTS OF THIS THESIS 9

strong dynamic typing to ensure that all communication between processes is
type safe. Furthermore, (de)serialization is not required by virtue of Clean’s
dynamic linker, which enables the transportation of any strong statically typed
(unevaluated) expression.

Famke enables the creation and management of independent distributed Clean
processes on a network of workstations. It uses Clean’s dynamic type system
and its dynamic linker to communicate values of any type, e.g., data, closures,
and functions (i.e., compiled code), between running applications in a type safe
way. Mobile processes can be implemented using Famke’s ability to communicate
functions.

We have built a simple interactive shell on top of Famke that enables user
interaction. The shell uses a functional-style command language that allows con-
struction of new processes, and it type checks the command line before executing
it. A much improved version of the shell, developed after the work in this chapter
was complete, is described in Chap. 3.

This chapter is a slight adaptation of a peer-reviewed publication [vWP02]. It
was written in collaboration with Rinus Plasmeijer, who supported me in extend-
ing the research of my Master’s thesis and improved the comprehensibility of the
paper. It received the Peter Landin award for best paper at IFL’02.

Chapter 3:

Esther is the interactive shell of Famke, a prototype implementation of a strongly-
typed operating system written in the functional programming language Clean.
As usual, the shell can be used for manipulating files, applications, data, and pro-
cesses at the command line. A special feature of Esther is that the shell language
provides the basic functionality of a strongly typed lazy functional language, at the
command line. The shell type-checks each command line and only executes well-
typed expressions. Files are also typed; applications and commands are simply
files with a function type.

The type-checking/inference performed by the shell uses the hybrid static/dy-
namic type system of Clean. The shell behaves like an interpreter, but it actually
executes a command line by combining existing compiled code of functions (and
programs from disk). Clean’s dynamic linker is used to store (and retrieve) any
expression (both data and code) with its type on disk. This linker is also used to
communicate values of any type, e.g., data, closures, and functions (i.e., compiled
code) between running applications in a type safe way.

The shell combines the advantages of interpreters (direct response) and com-
pilers (statically typed and fast code). Applications (compiled functions) can be
used, in a type safe way, in the shell. Functions defined at the command line can
be used by any compiled Clean application.

10 INTRODUCTION

This chapter is a slight adaptation of peer-reviewed publications [vWP03,
PvW04] written in collaboration with Rinus Plasmeijer, who supervised the re-
search and helped to structure the papers.

Chapter 4:

The Esther shell (presented in Chap. 3) uses bracket abstraction to translate com-
mand line expressions to Clean’s dynamics, which are then used to type check
the expressions. Bracket abstraction is an algorithm that transforms lambda ex-
pressions into combinator terms. There are several versions of this algorithm
depending on the actual set of combinators used. Most of them have been proven
correct with respect to the operational semantics. In this chapter, we focus on
typability and prove that the shell’s approach to typing expressions (after bracket
abstraction) is valid.

We present a fully machine-verified proof of the property that bracket abstrac-
tion preserves types; the types assigned to an expression before and after perform-
ing bracket abstraction are identical. To our knowledge, this is the first time that
(1) such proof has been given, and (2) the proof is verified by a theorem prover.
The theorem prover used in the development of the proof is PVS [OSRS01].

This chapter is a slight adaptation of a peer-reviewed publication [SvW06]. It
is written in collaboration with Sjaak Smetsers who performed the tedious job of
actually proving the theorems and who wrote the PVS part of the paper.

Chapter 5:

We have eased GUI programming using polytypic functional programming tech-
niques. This was done by constructing a programming toolkit with which one can
create GUIs in an abstract and compositional way using type-directed Graphical
Editor Components (GECs). In this toolkit, the programmer specifies a GUI by
means of a data model instead of low-level GUI programming. In earlier versions
of this toolkit, the data model must have a first-order type.

In this chapter, we show that the programming toolkit can be extended in two
ways, such that the data model can contain higher-order data structures. We added
support for dynamic polymorphic higher-order editors using the functional shell
Esther. We also added statically typed, higher-order editors. In principle, this
solution extends our GUI programming toolkit with the full expressive power of
functional programming languages.

This chapter is a slight adaptation of peer-reviewed publications [AvEPvW04b,
AvEPvW04c]. They were written in collaboration with Peter Achten, Marko
van Eekelen, and Rinus Plasmeijer who together designed and implemented the
GEC system, into which I incorporated the shell as a library.

1.6: CONTENTS OF THIS THESIS 11

Chapter 6:

Polytypic functional programming has the advantage that it can automatically
derive code for generic functions. However, it is not yet clear whether it can be
useful for anything other than the textbook examples. Furthermore, the generated
polytypic code is usually too slow for real-life programs. As a real-life test, we
derive a polytypic parser for the Haskell 98 syntax and look into other front-end
syntax-tree operations commonly found in functional language compilers.

We present a types–as–grammar approach, which uses polytypic programming
(in both Generic Haskell and Clean) to derive the code for a parser automatically
based on the syntax tree type, without using external tools. Moreover, we show
that using polytypic programming can even be useful for data–specific syntax tree
operations, such as scope checking and type inference.

Simple speed tests show that the performance of polytypic parsers can be
abominable for real-life inputs. However, we show that much performance can
be recovered by applying (extended) fusion optimization on the generated code.
We have actually produced a derived parser using this technique whose speed is
close to that of one generated by a specialized Haskell parser generator.

This chapter is a slight adaptation of a peer-reviewed publication [vWSP05]. It
was written in collaboration with Rinus Plasmeijer and Sjaak Smetsers. I initiated
this topic of research and contributed in implementing the parser combinators and
grammars in Clean and Haskell. Sjaak Smetsers applied the fusion technique that
makes it a viable approach to parser generation.

Chapter 7:

Functional programming, in a polytypic way, reduces the amount of code that
needs to be written manually. Functional programming also provides tremendous
support for abstraction. Using an abstraction called arrows, one can abstract over
the flow of data in a functional program. In this chapter, we combine polytypic
programming with abstraction over the order of applications, in an attempt to re-
duce the code that needs to be written manually even further. We present a way to
program invertible functions by specifying merely one direction of computation.
We further generalize this by specifying them in a polytypic way to make them
useful for any data type.

Invertible programming occurs in the area of data conversion where it is re-
quired that the conversion in one direction is the inverse of the other. For that
purpose, we introduce bidirectional arrows (bi-arrows). The bi-arrow class is
an extension of Haskell’s arrow class with an extra combinator that changes the
direction of computation. The advantage of the use of bi-arrows for invertible
programming is the automatic preservation of invertibility properties by using

12 INTRODUCTION

only invertible combinators. Programming with bi-arrows in a polytypic way
exploits this aspect the most. Besides bidirectional polytypic examples, including
invertible serialization, we define a monadic bi-arrow transformer, which we use
to construct a bidirectional parser/pretty printer.

This chapter is a slight adaptation of a peer-reviewed publication [vWSP05].
It was written in collaboration with Artem Alimarine, Sjaak Smetsers, Marko
van Eekelen, and Rinus Plasmeijer. My contribution consisted mainly of de-
signing, implementing, and proving the polytypic invertible bi-arrows and writing
the paper together with Sjaak Smetsers and Marko van Eekelen, based on the
preliminary research of Artem Alimarine and Rinus Plasmeijer.

Chapter 8:

This chapter presents a case study on the use of formal methods in specification-
based, black-box testing of a smart card applet. The system under test is a sim-
ple electronic purse application running on a Java Card platform. The applet’s
specification is given as a State Chart model, and transformed into a functional
form to serve as the input for GAST, an on–the–fly test generation, execution, and
analysis tool. The GAST tool is an automated test system that uses systematic
polytypic derivation of test cases. We show that it can also be used for testing
properties of an imperative program running on a (simulated) Java card. We show
that automated, formal, specification-based testing of smart card applets is of high
value, and that errors can be detected using this model-based testing.

This chapter is a slight adaptation of a peer-reviewed publication [vWOF+05],
written in collaboration with Martijn Oostdijk, Lars Frantzen, Pieter Koopman,
and Jan Tretmans. My contribution mainly consisted of writing the Clean spec-
ification of the purse, extending the test system to enable it to interface with the
Java applet, performing all tests, and presenting the results in the paper.

Chapter 9:

We look back upon the research presented in Chap. 9 and mention some related
and future work that came up later in Sect. 9.1. The results of, and lessons learned
during the research presented in this thesis are concluded in Sect. 9.2.

CHAPTER 2

Towards a Strongly Typed Functional Operating System

ARJEN VAN WEELDEN∗
RINUS PLASMEIJER

2.1 Introduction

Functional programming languages like Haskell [Pey03] and Clean [PvE02] offer
a very flexible and powerful static type system. Compact, reusable, and readable
programs can be written in these languages while the static type system is able
to detect many programming errors at compile time. However, this works only
within a single application.

Independently developed applications often need to communicate with each
other. One would like the communication of objects to take place in a type safe
manner as well. Not only communication of simple objects, but objects of any
type, including functions. In practice, this is not easy to realize. The compile-
time type information is generally not kept inside a compiled executable, and
therefore cannot be used at run-time. In real life therefore, applications often
only communicate simple data types like streams of characters, ASCII text, or use
some ad-hoc defined (binary) format. Although more and more applications use
XML to communicate data together with the definitions of the data types used,
most programs do not support run-time type unification, cannot use previously
unknown data types or cannot exchange functions (i.e., code) between different

∗This work was supported by STW as part of project NWI.4411.

13

14 A FUNCTIONAL OPERATING SYSTEM

programs in a type safe way. This is mainly because the used programming
language has no support for such things.

In this chapter, we present a prototype implementation of a micro kernel,
called Famke (functional micro kernel experiment). It provides explicit non-
deterministic concurrency and type safe message passing for all types to processes
written in Clean. By adding servers that provide common operating system ser-
vices, an entire strongly typed, distributed operating system can be built on top of
Famke.

Clearly, we need a powerful dynamic type system [ACPP91] for this purpose
and a way to extend a running application with new code. Fortunately, the new
Clean system offers some of the required basic facilities: it offers a hybrid type
system with static as well as dynamic typing (dynamics) [Pil97, Pil99], including
run-time support for dynamic linking [VP03] (currently on Microsoft Windows
only). To achieve type safe communication, Famke uses the above-mentioned
facilities offered by Clean to implement lightweight threads, processes, exception
handling and type safe message passing without requiring additional language
constructs or run-time support.

It also makes use of an underlying operating system to avoid some low-level
implementation work and to integrate better with existing software (e.g., resources
such as the console and the file system). With Famke, we want to accomplish the
following objectives without changing the Clean compiler or run-time system.

• Present an interface (API) for Clean programmers with which it is easy to
create (distributed) processes that can communicate expressions of any type
in a type safe way;

• Present an interactive shell with which it is easy to manage, apply and com-
bine (distributed) processes, and even construct new processes interactively.
The shell should type check the command line before executing it in order
to catch errors early;

• Achieve a modular design using an extensible micro kernel approach;
• Achieve a reliable system by using static types where possible and, if static
checking cannot be done (e.g., between different programs), dynamic type
checks;

• Achieve a system that is easy to port to another operating system (if the
Clean system supports it).

We will introduce the static/dynamic hybrid type system of Clean in Sect. 2.2.
Sections 2.3 and 2.4 present the micro kernel of Famke, which provides coopera-
tive thread scheduling, exception handling, and type safe communication. It also

2.2: DYNAMICS IN CLEAN 15

provides an interface to the preemptively scheduled processes of the underlying
operating system. These sections are very technical, but necessary to understand
the interesting sections that follow. On top of this micro kernel, an interactive
shell has been implemented, which we describe in Sect. 2.5. The crucial role of
dynamics will become apparent in these sections. Related work is discussed in
Sect. 2.6, and we conclude and mention future research in Sect. 2.7.

2.2 Dynamics in Clean

This section gives an introduction into Clean’s hybrid static/dynamic type system.
We show how any statically typed expression in Clean can be converted into a stat-
ically typed object called Dynamic, which contains both the original expression
and its static type. Dynamic objects can be written to disk and read by any other
Clean program. Clean’s dynamic linker takes care of incorporating any necessary
code referenced by closures (unevaluated expressions) in a Dynamic.

Clean offers a hybrid type system: in addition to its static type system, it also
has a (polymorphic) dynamic type system [ACPP91, ACP+92, Pil99, VP03]. This
allows programs to use (statically) untyped values, so called dynamics. A dynamic
in Clean is a value of static type Dynamic, which contains an expression as well
as a representation of the (static) type of that expression.

Dynamics can be formed (i.e., lifted from the static to the dynamic type sys-
tem) using the special constructor dynamic applied to a value and, optionally, its
type. The type will be inferred if it is omitted1.

dynamic 42 :: Int2

dynamic map fst :: A3.a b: [(a, b)]→ [a]

Function alternatives and case patterns can pattern match on (run-time) values
of (the static) type Dynamic, i.e., bring them from the dynamic back into the
static type system. Such pattern matches consist of a value pattern and a type
pattern. In the example below, matchInt returns Just the value contained inside
the dynamic if it has type Int; and Nothing if it has any other type. The pattern
matches on types are translated into run-time type unifications. If the unification
fails, the next alternative is tried, as in a common (value) pattern match.

::4Maybe a = Nothing | Just a

1Types containing universally quantified variables are currently not inferred by the compiler.
We will sometimes omit these types for ease of presentation.

2Numerical denotations are not overloaded in Clean.
3Clean’s syntax for the forall extension of Haskell.
4Defines a new data type in Clean, Haskell uses the data keyword.

16 A FUNCTIONAL OPERATING SYSTEM

matchInt :: Dynamic→ Maybe Int
matchInt (x :: Int) = Just x
matchInt other = Nothing

A type pattern can contain type variables that are bound to the offered type, if
the run-time unification succeeds. In the example shown below, dynamicApply
tests whether the argument type of the function f inside the first argument of
dynamicApply can be unified with the type of the value x inside the second
argument. If this is the case then dynamicApply can safely apply f to x. The
type variables a and b will be instantiated by the run-time unification. At compile
time it is generally unknown what type a and b will be, but if the type pattern
match succeeds, we can assume that applying f to x is type safe. This yields
a value with the type that is bound to b by unification, which is wrapped in a
dynamic.

dynamicApply :: Dynamic Dynamic→ Dynamic5

dynamicApply (f :: a→ b) (x :: a) = dynamic f x :: b6

dynamicApply df dx = dynamic ”Error : cannot apply”

Type variables in dynamic patterns can also relate to a type variable in the static
type of a function. Such functions are called type dependent functions [ACPP91].
A caret (ˆ) behind a variable in a pattern associates it with the type variable with
the same name in the static type of the function. The static type variable then
becomes overloaded in the predefined TC (or type code) class. The TC class is used
to ‘carry’ the type representation. The compiler automatically generates instances
for this class, which contain the necessary methods to convert values to dynamics
and vice versa. In the example below, the static type variable t will be determined
by the (static) context in which it is used, and will impose a restriction on the
actual type that is accepted at run-time by matchDynamic. It yields Just the
value inside the dynamic (if the dynamic contains a value of the required context
dependent type) or Nothing (if it does not).

matchDynamic :: Dynamic→ Maybe t | TC t7

matchDynamic (x :: tˆ) = Just x
matchDynamic other = Nothing

5Clean separates argument types by whitespace, instead of→.
6The type b is also inferred by the compiler.
7Clean uses a | to announce context restrictions. In Haskell this would be written as

(TC t) ⇒ Dynamic → Maybe t.

2.2: DYNAMICS IN CLEAN 17

Reading and Writing of Dynamics

The dynamic run-time system of Clean supports writing dynamics to disk and
reading them back again, possibly in another application or during another exe-
cution of the same application. This is not a trivial feature, since Clean is not
an interpreted language: it uses compiled code. Since a dynamic may contain
unevaluated functions, reading a dynamic implies that the corresponding code
produced by the compiler has to be added to the code of the running application.
To make this possible one needs a dynamic linker. Furthermore, one needs to
be able to retrieve the type definitions and function definitions associated with a
stored dynamic. The need for function definitions comes from lazy evaluation,
which can introduce closures in values that refer to functions and their code. With
the ability to read and write dynamics, type safe plug-ins can be realized in Clean
relatively easily.

A dynamic can be written to a file on disk using the writeDynamic function.

writeDynamic :: String Dynamic *8World→ (Bool, *World)

In the producer example below a dynamic is created which consists of the appli-
cation of the function sieve to an infinite list of integers. This dynamic is then
written to file using the writeDynamic function. Evaluation of a dynamic is done
lazily. The producer does not demand the result of the application of sieve to
the infinite list. Therefore, the application is written to file in its unevaluated form.
The file therefore contains a calculation that will yield a potential infinite integer
list of prime numbers.

producer :: *World→ *World
producer world

= writeDynamic ”primes” (dynamic sieve [2..]) world
where

sieve :: [Int]→ [Int]
sieve [prime:rest] = [prime:sieve filter]
where

filter = [h \\ h <- rest | h mod prime �= 0]

When the dynamic is stored to disk, not only the dynamic expression and its type
has to be stored somewhere. To allow the dynamic to be used as a plug-in by any
other application additional information has to be stored as well. One also has to
store:

8This is a uniqueness attribute, indicating that the world environment is passed around in a
single threaded way. Unique values allow safe destructive updates and are used for I/O in Clean.
The value of type World corresponds to the hidden state of the IO monad in Haskell.

18 A FUNCTIONAL OPERATING SYSTEM

• the code corresponding to the function definitions that are referred to in
closures inside the dynamic;

• the definitions of all the types involved needed to check type consistency
when matching on the type of the dynamic in another Clean program.

The required code and type information will be generated by the compiler and is
stored in a special database when an application is compiled and linked. For the
detail of the bookkeeping of the code database, we refer to [VP03]. The code and
type information is created and stored once at compile-time, while the dynamic
value and dynamic type can be created and stored several times at run-time. The
run-time system has to be able to find both kinds of information when a dynamic
is read in.

A dynamic can be read from disk using the readDynamic function.

readDynamic :: String *World→ (Bool, Dynamic, *World)

This readDynamic function is used in the consumer example below to read the
earlier stored dynamic. The dynamic pattern match checks whether the dynamic
expression is an integer list. In case of success the first 100 elements are taken.
In case that the read in dynamic is not of the indicated type, the consumer aborts.
Actually, it is not possible to do something with a read-in dynamic (besides pass-
ing it around to other functions or saving it to disk again), unless the dynamic
matches some type or type scheme specified in the pattern match of the receiving
application.

consumer :: *World→ [Int]
consumer world

#9 (ok, dyn, world) = readDynamic ”primes” world
= take 100 (extract dyn)

where
extract :: Dynamic→ [Int]
extract (list :: [Int]) = list
extract other = abort ”dynamic type check fa i led ”

To turn a dynamically typed expression into a statically typed expression, the
following steps are performed by the run-time system of Clean:

• The type of the dynamic and the type specified in the pattern are unified with
each other. If the unification fails, the dynamic pattern match also fails.

9Clean uses environment passing, instead of monads, for side effects. It supports let-before (#)
to increase readability.

2.2: DYNAMICS IN CLEAN 19

• If the unification is successful, it is checked that the type definitions of types
with the same name coming from different applications are equal. If one of
the involved type definitions differs, the dynamic pattern match fails. Types
are equivalent if and only if their type definitions are syntactically the same
(modulo alpha-conversion and the order of algebraic data constructors).

• If all patterns match, the corresponding function alternative is chosen and
evaluated.

• It is possible that for the evaluation of the, now statically typed, expression
parts of its representation on disk are required. In that case, the expression
is reconstructed out of the information stored in the dynamic on disk. The
corresponding code needed for the evaluation of the expression is added to
the running application, after which the expression can be evaluated.

Running prog1 and prog2 in the example below will write a function and a
value to dynamics on disk. Running prog3 will create a new dynamic on disk that
contains the result of ‘applying’ (using the dynamicApply function) the dynamic
with the name “function” to the dynamic with the name “value”. The closure 40
+ 2 will not be evaluated until the * operator needs it. In this case, because the
‘dynamic application’ of df to dx is lazy, the closure will not be evaluated until
the value of the dynamic on disk named “result” is needed. Running prog4 tries to
match the dynamic dr, from the file named “result”, with the type Int. After this
succeeds, it displays the value by evaluating the expression, which is semantically
equal to let x = 40 + 2 in x * x, yielding 1764.

prog1 world = writeDynamic ”function” (dynamic (*)) world

prog2 world = writeDynamic ”value” (dynamic 40 + 2) world

prog3 world =
let (ok1, df, world1) = readDynamic ”function” world

(ok2, dx, world2) = readDynamic ”value” world1
in writeDynamic ” resu l t ” (dynamicApply df dx) world2

prog4 world =
let (ok, dr, world1) = readDynamic ” resu l t ” world
in (case dr of (x :: Int)→ x, world1)

A dynamic will be read in lazily only after successful run-time unification (trig-
gered by a pattern match on the dynamic). The dynamic linker will take care
of the actual linking of the code to the running application and the checking of
the type definitions referenced by the dynamic being read. The dynamic linker is

20 A FUNCTIONAL OPERATING SYSTEM

able to find the code and type definitions in the database in which they are stored
at compile time. The amount of data and code that the dynamic linker will link
depends on how far the dynamic expression is evaluated.

Dynamics written by one application program can safely be read by any other
Clean application. Dynamics can always be read by both programs, but type
pattern matches will only succeed when the type definitions used in the Dynamic
match those in the program. The reading program is run-time extended with the
definitions of the new types and the code of new functions found in the dynamic.
Known types and constructors in the dynamic are mapped to the corresponding
types and constructors in the program. Therefore, two Clean applications can
communicate values of any type they like, including function types, in a type safe
manner.

2.3 Threads in Famke

Here we show how a programmer can construct concurrent programs in Clean,
using Famke’s thread management and exception handling primitives.

Currently, Clean offers only very limited library support for process manage-
ment and communication.

Old versions of Concurrent Clean [NSvEP91] did offer sophisticated support
for parallel evaluation and lightweight processes, but no support for exception
handling. Concurrent Clean was targeted at deterministic, implicit concurrency,
but we want to build a system for distributed, non-deterministic, explicit concur-
rency.

Porting Concurrent Clean to Microsoft Windows is a lot of work, and still
would not give us exactly what we want. Although Microsoft Windows offers
threads to enable multi-tasking within a single process, there is no run-time sup-
port for making use of these preemptive threads in Clean. We could emulate
threads using the preemptive processes that Microsoft Windows provides by mul-
tiple incarnations of the same Clean program, but this would make the threads
unacceptably heavyweight, and it would prevent them from sharing the Clean
heap, and we still would not have exception handling.

Therefore, Famke does her own scheduling of threads in order to keep them
lightweight and to provide exception handling.

2.3.1 Thread Implementation

In order to implement cooperative threads we need a way to suspend running
computations and to resume them later. Wand [Wan80] shows that this can be
done using continuations and the call/CC construct offered by Scheme and other

2.3: THREADS IN FAMKE 21

functional programming languages. We copy this approach using first class con-
tinuations in Clean. Because Clean has no call/CC construction, we have to write
the continuation passing explicitly. Our approach closely resembles Claessen’s
concurrency monad [Cla99], but our primitives operate directly on the kernel state
using Clean’s uniqueness typing, and we have extended the implementation with
easily extendable exception handling (see Sect. 2.3.2).

:: Thread a :== (a→ KernelOp)→ KernelOp10

:: KernelOp :== Kernel→ Kernel

threadExample :: Thread a
threadExample = λcont kernel→ cont x kernel‘
where

x = · · · / / 11 calculate argument for cont
kernel‘ = · · · kernel · · · / / operate on the kernel state

A function of the type Thread, such as the example function above, gets the tail
of a computation (named cont; of type a→ KernelOp) as its argument and com-
bines that with a new computation step, which calculates the argument (named x)
for the tail computation, to form a new function (of type KernelOp). This function
returns, when evaluated on a kernel state (named kernel; of type Kernel), a new
kernel state.

:: ThreadId / / abstract thread id

:: *Kernel12 = {currentId :: ThreadId, newId :: ThreadId,
ready :: [ThreadState], world :: *World}

:: ThreadState = {thrId :: ThreadId, thrCont :: KernelOp}

:: Void = Void / / written more elegantly as () in Haskell

The kernel state (of type Kernel) is a record that contains the information required
to do the scheduling of the threads. It contains information like the current running
thread (named currentId), the threads that are ready to be scheduled (in the
ready list), and the world state which is provided by the Clean run-time system.
Clean’s uniqueness type system makes these types a little more complicated, but
we will not show this in the examples in order to keep them readable.

10Clean uses :== to indicate a type synonym, whereas Haskell uses the type keyword.
11This is a single line comment in Clean, Haskell uses --
12Record types in Clean are surrounded by { and }. The * before Kernel indicates that the

record must always be unique. Therefore, the * can then be omitted in the rest of the code.

22 A FUNCTIONAL OPERATING SYSTEM

newThread :: (Thread a)→ Thread ThreadId

newThread thread = λcont k=:{newId, ready}13 → cont newId

{k & newId = inc newId, ready = [threadState:ready]}14

where
threadState = {thrId = newId, thrCont = thread (λ_ k→ k)}

threadId :: Thread ThreadId
threadId = λcont k=:{currentId}→ cont currentId k

The newThread function starts the given thread concurrently with the other threads.
Threads are evaluated for their effect on the kernel and the world state. They there-
fore do not return a result, hence the polymorphically parameterized Thread a
type. It relieves our system from the additional complexity of returning the result
to the parent thread. The communication primitives that will be introduced later
enable programmers to extend the newThread primitive to deliver a result to the
parent. Threads can obtain their thread identification with threadId.

Scheduling of the threads is done cooperatively. This means that threads must
occasionally allow rescheduling using yield, and should not run endless tight
loops. The schedule function then evaluates the next ready thread. StartFamke
can be used like the standard Clean Start function to start the evaluation of the
main thread.

yield :: KernelOp Kernel→ Kernel
yield cont k=:{currentId, ready}

= {k & ready = ready ++ [threadState]}
where

threadState = {thrId = currentId, thrCont = cont}

schedule :: Kernel→ Kernel
schedule k=:{ready = []} = k / / nothing to schedule
schedule k=:{ready = [{thrId, thrCont}:tail]} =

let k‘ = {k & ready = tail, currentId = thrId}
k‘‘ = thrCont k‘ / / evaluate the thread until it yields

in schedule k‘‘

StartFamke :: (Thread a) *World→ *World
StartFamke mainThread world = (schedule kernel).world
where

13r=:{f} denotes the (lazy) selection of the field f in the record r. r=:{f = v} denotes the
pattern match of the field f on the value v.
14{r & f = v} denotes a new record value that is equal to r except for the field f, which is

equal to v.

2.3: THREADS IN FAMKE 23

firstId = · · · / / first thread id
kernel = {currentId = firstId, newId = inc firstId,

ready = [threadState], world = world}
threadState = {thrId=firstId, thrCont=mainThread (λ_ k→ k)}

The thread that is currently being evaluated returns directly to the scheduler when-
ever it performs a yield action, because yield does not evaluate the tail of the
computation. Instead, it stores the continuation at the back of the ready queue
(to achieve round-robin scheduling) and returns the current kernel state. The
scheduler then uses this new kernel state to evaluate the next ready thread.

Programming threads using a continuation style is cumbersome, because one
has to carry the continuation along and one has to perform an explicit yield often.
Therefore, we added thread-combinators resembling a more common monadic
programming style. Our return, >>= and >> functions resemble the monadic
return, >>= and >> functions of Haskell15. Whenever a running thread performs
an atomic action, such as a return, control is voluntarily given to the scheduler
using yield.

return :: a→ Thread a
return x = λcont k→ yield (cont x) k

(>>=) :: (Thread a) (a→ Thread b)→ Thread b
(>>=) l r = λcont k→ l (λx→ r x cont) k

(>>) l r = l >>= λ_→ r

combinatorExample = newThread (print [’ hello ’]) >>
print [’world ’]

where
print [] = return Void
print [c:cs] = printChar c >> print cs

The combinatorExample above starts a thread that prints ”hello” concurrent
with the main thread that prints ”world”. It assumes a low-level print routine
printChar that prints a single character. The output of both threads is interleaved
by the scheduler, and is printed as ”hweolrllod”.

15Unfortunately, Clean does not support Haskell’s do-notation for monads, which would make
the code even more readable.

24 A FUNCTIONAL OPERATING SYSTEM

2.3.2 Exceptions and Signals

Thread operations (e.g., newThread) may fail because of external conditions such
as the behavior of other threads or operating system errors. Robust programs
quickly become cluttered with lots of error checking code. An elegant solution
for this kind of problem is the use of exception handling.

There is no exception handling mechanism in Clean, but our thread continua-
tions can easily be extended to handle exceptions. Because of this, exceptions can
only be thrown or caught by a thread. This is analogous to Haskell’s ioError and
catch functions, with which exceptions can only be caught in the IO monad.

In contrast to Haskell exceptions, we do not want to limit the set of exceptions
to system defined exceptions and strings, but instead allow any value. Exceptions
are therefore implemented using dynamics. This makes it possible to store any
value in an exception and to extend the set of exceptions at compile-time or even
at run-time. To provide this kind of exception handling, we extend the Thread
type with a continuation argument for the case that an exception is thrown.

:: Thread a :== (SucCnt a)→ ExcCnt→ KernelOp
:: SucCnt a :== a→ ExcCnt→ KernelOp
:: ExcCnt :== Exception→ KernelOp

:: Exception :== Dynamic

throw :: e→ Thread a | TC e
throw e = λsc ec k→ ec (dynamic e :: eˆ) k

rethrow :: Exception→ Thread a
rethrow exception = λsc ec k→ ec exception k

try :: (Thread a) (Exception→ Thread a)→ Thread a
try thread catcher =

λsc ec k→ thread (λx _→ sc x ec) (λe→ catcher e sc ec) k

The throw function wraps a value in a dynamic (hence the TC context restriction)
and throws it to the enclosing try clause by evaluating the exception continuation
(ec). rethrow can be used to throw an exception without wrapping it in a dynamic
again. The try function catches exceptions that occur during the evaluation of its
first argument (thread) and feeds it to its second argument (catcher). Because
any value can be thrown, exception handlers must match against the type of the
exception using dynamic type pattern matching.

The kernel provides an outermost exception handler (not shown here) that
aborts the thread when an exception remains uncaught. This exception handler

2.3: THREADS IN FAMKE 25

informs the programmer that an exception was not caught by any of the handlers,
and shows the type of the occurring exception.

return :: a→ Thread a
return x = λsc ec k→ yield (sc x ec) k

(>>=) :: (Thread a) (a→ Thread b)→ Thread b
(>>=) l r = λsc ec k→ l (λx→ r x sc) ec k

The addition of an exception continuation to the thread type also requires small
changes in the implementation of the return and bind functions. Note how
the return and throw functions complement each other: return evaluates the
success continuation while throw evaluates the exception continuation. This
implementation of exception handling is relatively cheap, because there is no
need to test if an exception occurred at every bind or return. The only overhead
caused by our exception handling mechanism is the need to carry the exception
continuation along with it.

:: ArithErrors = DivByZero | Overflow

exceptionExample = try (divide 42 0) handler

divide x 0 = throw DivByZero
divide x y = return (x / y)

handler (DivByZero :: ArithErrors) = return 0 / / or any other value
handler other = rethrow other

The divide function in the example throws the value DivByZero as an exception
when the programmer tries to divide by zero. Exceptions caught in the body
of the try clause are handled by handler, which returns zero on a DivByZero
exception. Caught exceptions of any other type are thrown again outside the try,
using rethrow.

In a distributed or concurrent setting, there is also a need for throwing and
catching exceptions between different threads. We call this kind of inter-thread ex-
ceptions signals. Signals allow threads to throw kill requests to other threads. Our
approach to signals, or asynchronous exceptions as they are also called, follows
the semantics described by Marlow et al. in an extension of Concurrent Haskell
[MPMR01]. We summarize our interface for signals below.

throwTo :: ThreadId e→ Thread Void | TC e
signalsOn :: (Thread a)→ Thread a
signalsOff :: (Thread a)→ Thread a

26 A FUNCTIONAL OPERATING SYSTEM

Signals are transferred from one thread to the other by the scheduler. A signal
becomes an exception again when it arrives at the designated thread, and can
therefore be caught in the same way as other exceptions. To prevent interruption
by signals, threads can enclose operations in a signalsOff clause, during which
signals are queued until they can interrupt. Regardless of any nesting, signalsOn
always means interruptible and signalsOff always means non-interruptible. It
is therefore always clear whether program code can or cannot be interrupted.
This allows easy composition and nesting of program fragments that use these
functions. When a signal is caught, control goes to the exception handler and the
interruptible state will be restored to the state before entering the try.

The try construction allows elegant error handling. Unfortunately, there is no
automated support for identifying the exceptions that can be thrown by a function.
This is partly because exception handling is written in Clean and not built in the
language/compiler, and partly because exceptions are wrapped in dynamics and
can therefore not be expressed in the type of a function. Furthermore, exceptions
of any type can be thrown by any thread, which makes it hard to be sure that all
(relevant) exceptions are caught by the programmer. However, the same can be
said for an implementation that uses user-defined strings, in which non-matching
strings are also not detected at compile-time.

2.4 Processes in Famke

In this section, we will show how a programmer can execute groups of threads
using processes on multiple workstations, to construct distributed programs in
Clean.

Famke uses Microsoft Windows processes to provide preemptive task switch-
ing between groups of threads running inside different processes. Once processes
have been created on one or more computers, threads can be started in any one of
them. We start by introducing Famke’s message passing primitives for communi-
cation between threads and processes. The dynamic linker plays an essential role
in getting the code of a thread from one process to another.

2.4.1 Process and Thread Communication

Elegant ways for type-safe communication between threads are Concurrent Has-
kell’s M-Vars [PGF96] and Concurrent Clean’s lazy graph copying [NSvEP91].
Unfortunately, M-Vars do not scale very well to a distributed setting because of
two problems, described by Stolz and Huch in [SH01]. The first problem is that
M-Vars require distributed garbage collection because they are first class objects,
which is hard in a distributed or mobile setting. The second problem is that the

2.4: PROCESSES IN FAMKE 27

location of the M-Var is generally unknown, which complicates reasoning about
them in the context of failing or moving processes. Automatic lazy graph copying
allows processes to work on objects that are distributed over multiple (remote)
heaps, and suffers from the same two problems.

Distributed Haskell [HN01] solves the problem by implementing an asyn-
chronous message-passing system using ports. Famke uses the same kind of ports.
Ports in Famke are channels that vanish as soon as they are closed by a thread,
or when the process containing the creating thread dies. Accessing a closed port
yields an exception. Using ports as the means of communication, it is always clear
where a port resides (at the process of the creating thread) and when it is closed
(explicitly or because the process died). In contrast with Distributed Haskell, we
do not limit ports to a single reader (which could be checked at compile-time using
Clean’s uniqueness typing). The single reader restriction also implies that the port
vanishes when the reader vanishes but we find it too restrictive in practice.

:: PortId msg / / abstract port id
:: PortExceptions = UnregisteredPort | InvalidMessageAtPort | · · ·

newPort :: Thread (PortId msg) | TC msg
closePort :: (PortId msg)→ Thread Void | TC msg

writePort :: (PortId msg) msg→ Thread Void | TC msg
writePort port m

= windowsSend port (dynamicToString (dynamic m :: msgˆ))

readPort :: (PortId msg)→ Thread msg | TC msg
readPort port = windowsReceive port >>= λmaybe→

case maybe of
Just s → case stringToDynamic s of

(True, (m :: msgˆ))→ return m
_→ throw InvalidMessageAtPort

Nothing→ readPort port / / make it appear blocking

registerPort :: (PortId msg) String→ Thread Void | TC msg
lookupPort :: String→ Thread (PortId msg) | TC msg

dynamicToString :: Dynamic→ String
stringToDynamic :: String→ (Bool, Dynamic)

All primitives on ports operate on typed messages. The newPort function creates
a new port and closePort removes a port. writePort and readPort can be used
to send and receive messages. The dynamic run-time system is used to convert

28 A FUNCTIONAL OPERATING SYSTEM

the messages to and from a dynamic. Because we do not want to read and write
files each time we want to send a message to someone, we will use the low-
level dynamicToString and stringToDynamic functions from the dynamic run-
time system library. These functions are similar to Haskell’s show and read,
except that they can (de)serialize functions and closures. They should be handled
with care, because they allow you to distinguish between objects that should be
indistinguishable (e.g., between a closure and its value). The actual sending and
receiving of these strings is done via simple message (string) passing primitives of
the underlying operating system. The registerPort function associates a unique
name with a port, by which the port can be looked up using lookupPort.

Although Distributed Haskell and Famke both use ports, our system is capable
of sending and receiving functions (and therefore closures) using Clean’s dynamic
linker. The dynamic type system also allows programs to receive, through ports
of type (PortId Dynamic), previously unknown data structures, which can be
used by polymorphic functions or functions that work on dynamics such as the
dynamicApply functions in Sect. 2.2. An asynchronous message passing system,
such as presented here, allows programmers to build other communication and
synchronization methods (e.g., remote procedure calls, semaphores and channels).

Here is a skeleton example of a database server that uses a port to receive
functions from clients and applies them to the database.

:: DBase = · · · / / list of records or something like that

server :: Thread Void
server = openPort >>= λport→

registerPort port ”MyDBase” >>
handleRequests emptyDBase

where
emptyDBase = · · · / / create new database
handleRequests db = readPort port >>= λf→

let db‘ = f db in / / apply function to database
handleRequests db‘

client :: Thread Void
client = lookupPort ”MyDBase” >>= λport→

writePort port mutateDatabase
where

mutateDatabase :: DBase→ DBase
mutateDatabase db = · · · / / change the database

The server creates, and registers, a port that receives functions of the type DBase→ DBase.
Clients send functions that perform changes to the database to the registered port.

2.4: PROCESSES IN FAMKE 29

The server then waits for functions to arrive and applies them to the database db.
These functions can be safely applied to the database because the dynamic run-
time system guarantees that both the server and the client have the same notion of
the type of the database (DBase), even if they reside in different programs. This
is also an example of a running program that is dynamically extended with new
code.

2.4.2 Process Management

Since Microsoft Windows does preemptive scheduling of processes, our scheduler
does not need any knowledge about multiple processes. Instead of changing the
scheduler, we let our system automatically add an additional thread, called the
management thread, to each process upon creation. This management thread is
used to handle signals from other processes and to route them to the designated
threads. On request from threads running at other processes, it also handles the
creation of new threads inside its own process. This management thread, in
combination with the scheduler and the port implementation, forms the micro
kernel that is included in each process.

:: ProcId / / abstract process id
:: Location :== String

newProc :: Location→ Thread ProcId
newThreadAt :: ProcId (Thread a)→ Thread ThreadId

The newProc function creates a new process at a given location and returns its
process id. The creation of a new process is implemented by starting a pre-
compiled Clean executable, the loader, which becomes the new process. The
loader is a simple Clean program that starts a management thread. The function
newThreadAt starts a new thread in another process. The thread is started inside
the new process by sending it to the management thread at the given process id
via a typed port. When the management thread receives the new thread, it starts it
using the local newThread function. The dynamic linker on the remote computer
then links in the code of the new thread automatically.

Below you will see an example of starting a thread at a remote process and
getting the result back to the parent. The remote function creates a port to which
the result of the given thread must be sent. It then starts a child thread at the
remote location pid that calculates the result and writes it to the port, and returns
the port enclosed in a Remote node to the parent. When the parent decides that it
wants the result, it can use join to get it and to close the port.

:: *Remote a = Remote (PortId a)

30 A FUNCTIONAL OPERATING SYSTEM

remote :: ProcId (Thread a)→ Thread (Remote a) | TC a
remote pid thread =

newPort >>= λport→
newThreadAt pid (thread >>= writePort port) >>
return (Remote port)

join :: (Remote a)→ Thread a | TC a
join (Remote port) = readPort port >>= λresult→

closePort port >>
return result

The extension of our system with this kind of heavyweight process enables the
programmer to build distributed concurrent applications. If one wants to run
Clean programs that contain parallel algorithms on a farm of workstations, this is
a first step. However, non-trivial changes are required to the original program to
accomplish this. These changes include splitting the program code into separate
threads and making communication between the threads explicit. The need for
these changes is unfortunate, but our system was primarily designed for explicit
distributed programs (and eventually mobile programs), not to speedup existing
programs by running them on multiple processors.

This concludes our discussion of the micro kernel and its interface that pro-
vides support for threads (with exceptions and signals), processes and type-safe
communication of values of any type between them. Now it is time to present the
first application that makes use of these strongly typed concurrency primitives.

2.5 Interacting with Famke: the Shell

In this section, we introduce our shell that enables programmers to construct new
(concurrent) programs interactively.

A shell provides a way to interact with an operating system, usually via a
textual command line/console interface. Normally, a shell does not provide a
complete programming language, but it does enable users to start pre-compiled
programs. Although most shells provide simple ways to combine multiple pro-
grams, e.g., pipelining and concurrent execution, and support execution-flow con-
trols, e.g., if-then-else constructs, they do not provide a way to construct new
programs. Furthermore, they provide very limited error checking before executing
the given command line. This is mainly because the programs mentioned at the
command line are practically untyped because they work on, and produce, streams
of characters. The intended meaning of these streams of characters varies from
one program to the other.

2.5: INTERACTING WITH FAMKE: THE SHELL 31

Our view on pre-compiled programs differs from common operating systems
in that they are dynamics that contain a typed function, and not untyped executa-
bles. Programs are therefore typed and our shell puts this information to good
use by actually type-checking the command line before performing the specified
actions. For example, it could test if a printing program (:: WordDocument→
PostScript) matches a document (:: WordDocument).

The shell supports function application, variables, and a subset of Clean’s
constant denotations. The shell syntax closely resembles Haskell’s do-notation,
extended with operations to read and write files.

Here follow some command line examples with an explanation of how they
are handled by the shell.

> map (add 1) [1..10]

The names map and add are unbound (do not appear in the left hand side of a
let of lambda expression) in this example and our shell therefore assumes that
they are names of files (dynamics on disk). All files are supposed to contain
dynamics, which together represent a typed file system. The shell reads them in
from disk, practically extending its functionality with these functions, and inspects
the types of the dynamics. It uses the types of map (let us assume that the file
map contains the type that we expect: (a→ b) [a]→ [b]), add (let us assume:
Int Int→ Int) and the list comprehension (which has type: [Int]) to type-
check the command line. If this succeeds, which it should given the types above,
the shell applies the partial application of add with the integer one to the list of
integers from one to ten, using the map function. The application of one dynamic
to another is done using the dynamicApply function from Sect. 2.2, extended
with better error reporting. With the help of the dynamicApply function, the shell
constructs a new function that performs the computation map (add 1) [1..10].
This function uses the compiled code of map, add, and the list comprehension. Our
shell is a hybrid interpreter/compiler, where the command line is interpreted/com-
piled to a function that is almost as efficient as the same function written directly
in Clean and compiled to native code. Dynamics are read in before executing
the command line, so it is not possible to change the meaning of a part of the
command line by overwriting a dynamic.

> inc <- add 1; map inc [2,4..10]

Defines a variable with the name inc as the partial application of the add function
to the integer one. Then it applies the map function using the variable inc to the
list of even integers from two to ten. The dynamic linker detects that map and add
are already linked in, and reuses their code.

> inc <- add 1; map inc [’a ’.. ’z ’]

32 A FUNCTIONAL OPERATING SYSTEM

Defines the variable inc as in the previous example, but applies it, using the map
function, to the list of all the characters in the alphabet. This obviously fails with
the usual type error: Cannot unify [Int] with [Char].

> write ” resu l t ” (add 1 2); x <- read ” resu l t ”; x
> add 1 2 > result; x < result; x

Both the above examples do the same thing, because the < (read file) and > (write
file) shell operators can be expressed using predefined read and write functions.
The sum of one and two is written to the file with the name result. The variable
x is defined as the contents of the file with the name result, and the result
of the command line is the contents of the variable x. In contrast to the add
and map functions, which are read from disk by the shell before type-checking
and executing the command line, result is read in during the execution of the
command line.

> newThread server;
> p <- lookupPort ”MyDBase”; writePort p (insertDBase MyRecord)

The first line in the example above creates a new thread that executes the server
from Sect. 2.4.1. Let us assume that we have two dynamics on disk: one with the
name insertDBase containing a function that can insert a record into a database,
and one with the name MyRecord containing a record for the database. In the
second line, we get the port of the server by looking it up using the name My-
DBase. We send the function insertDBase applied to MyRecord to the server
by writing the closure to the port. This example shows how we can interactively
communicate with threads in a type safe way.

2.6 Related Work

There are concurrent versions of both Haskell and Clean. Concurrent Haskell
[PGF96] offers lightweight threads in a single UNIX process and provides M-Vars
as the means of communication between threads. Concurrent Clean [NSvEP91] is
only available on multiprocessor Transputers and on a network of single-processor
AppleMacintosh computers. Concurrent Clean provides support for native threads
on Transputer systems. On a network of Apple computers, it ran the same Clean
program on each processor, providing a virtual multiprocessor system. Concurrent
Clean provided lazy graph copying as the primary communication mechanism.
Both concurrent systems cannot easily provide type safety between different pro-
grams or between multiple incarnations of a single program.

Another difference between Famke and the concurrent versions of Haskell and
Clean is the choice of communication primitives. Neither lazy graph copying nor

2.7: CONCLUSIONS AND FUTURE WORK 33

M-Vars scale very well to a distributed setting because they require distributed
garbage collection. This issue has led to a distributed version of Concurrent
Haskell [HN01] that also uses ports. However, its implementation does not allow
functions or closures to be sent over ports, because it cannot serialize functions.
Support for this could be provided by a dynamic linker for Concurrent Haskell.

Both Cooper [CM90] and Lin [Lin98] have extended StandardMLwith threads
(implemented as continuations using call/CC) to form a small functional operating
system. Both systems implement the basics needed for a stand-alone operating
system. However, none of them supports the type-safe communication of any
value between different computers.

Erlang [AVWW96] is a functional language specifically designed for the de-
velopment of concurrent processes. It is completely dynamically typed and pri-
marily uses interpreted byte-code, while Famke is mostly statically typed and
executes native code generated by the Clean compiler. A simple spelling error in
a token used during communication between two processes is often not detected
by Erlang’s dynamic type system, sometimes causing deadlock.

Back et al. [BTS+98] built two prototypes of a Java operating system. Al-
though they show that Java’s extensibility, portable byte code and static/dynamic
type system provides a way to build an operating system where multiple Java
programs can safely run concurrently, Java lacks the power of polymorphic and
higher-order functions and closures (to allow laziness) that our functional ap-
proach offers.

Haskell provides exception handling without changing its pure and lazy foun-
dation. In [MPMR01] support for asynchronous exceptions has been added to
Concurrent Haskell. Our implementation of signals closely follows their ap-
proach.

The Scheme Shell [Shi94] integrates a shell into the programming language
in order to enable the user to use the full expressiveness of Scheme. Es [HR93]
is a shell that supports higher-order functions and allows the user to construct
new functions at the command line. Neither shell provides a way to read and
write typed objects from and to disk, not do they provide type safety, because they
operate on untyped executables.

2.7 Conclusions and Future Work

In this chapter, we presented the basics of our prototype functional operating
system called Famke. Famke is written entirely in Clean and provides lightweight
threads, exceptions and heavyweight processes, and a type safe communication
mechanism, using Clean’s dynamic type system and dynamic linking support.
Furthermore, we have built an interactive shell that type checks the command line

34 A FUNCTIONAL OPERATING SYSTEM

before executing it. With the help of these mechanisms, it becomes feasible to
build distributed concurrent Clean programs running on a network. Programs can
easily be extended with new code at run-time using the dynamic run-time system
of Clean.

We can extend our kernel in a modular way by putting all extensions in sepa-
rate dynamics, which would allow us to tailor our system (at run-time) to a given
situation. Nevertheless, there remain issues that need further research.

We would like to give the programmer more information about what excep-
tions a function may throw. Unfortunately, we have not yet found a way to do this
without compromising the flexibility of our approach.

The implementation of ports given in this chapter does not check if the name
is unique (when registering) or even exists (when looking up), entrusting this
responsibility upon the programmer. Fortunately, this situation will be detected
at run-time because it causes an exception at the receiving end. We intend to
repair it in a more mature implementation.

The current focus of further research on Famke is to increase the power and
usability of the shell.

CHAPTER 3

A Functional Shell that Operates on
Typed and Compiled Applications

ARJEN VAN WEELDEN∗
RINUS PLASMEIJER

3.1 Introduction

Functional programming languages like Haskell [Pey03] and Clean [PvE02] offer
a very flexible and powerful static type system. Compact, reusable, and readable
programs can be written in these languages while the static type system is able
to detect many programming errors at compile time. However, this works only
within a single application.

Independently developed applications often need to communicate with each
other. One would like the communication of objects to take place in a type safe
manner as well. Not only communication of simple objects, but objects of any
type, including functions. In practice, this is not easy to realize. The compile-time
type information is generally not available to the compiled executable at run-time.
In real life therefore, applications often only communicate simple data types like
streams of characters, ASCII text, or use some ad-hoc defined (binary) format.

Programming languages, especially pure and lazy functional languages like
Clean and Haskell, provide good support for abstraction (e.g., subroutines, over-
loading, polymorphic functions), composition (e.g., application, module system,

∗Part of this work was supported by InterNLnet.

35

36 A FUNCTIONAL SHELL

higher-order functions), and verification (e.g., strong type-checking and infer-
ence). In contrast, command line languages used by operating system shells
usually have little support for abstraction, composition, and especially verifica-
tion. They do not provide higher-order subroutines, complex data structures, type
inference, or type-checking before evaluation. Given their limited set of types
and their specific area of application (in which they have been, and still are, very
successful), this is not experienced as a serious problem.

Nonetheless, we think that command line languages can benefit from some of
the programming language facilities, as this will increase their flexibility, reusabil-
ity, and security. We have previously done research on reducing run-time errors
(e.g., memory access violations, type errors) in operating systems by implement-
ing a micro kernel in Clean that provides type safe communication of any value of
any type between functional processes, called Famke (FunctionAl Micro Kernel
Experiment) [vWP02]. This has shown that (moderate) use of dynamic typing
[ACPP91], in combination with Clean’s dynamic run-time system and dynamic
linker [Pil99, VP03], enables processes to communicate any data (and even code)
of any type in a type safe way.

During the development of a shell/command line interface for our prototype
functional operating system it became clear that a normal shell cannot really make
use (at run-time) of the type information derived by the compiler (at compile-
time). To reduce the possibility of run-time errors during execution of scripts or
command lines, we need a shell that supports abstraction and verification (i.e.,
type-checking) in the same way as the Clean compiler does. In order to do this,
we need a better integration of compile-time (i.e., static typing) and run-time (i.e.,
interactivity) concepts.

Both the shell and micro kernel are built on top of Clean’s hybrid static/dy-
namic type system and its dynamic I/O run-time support. It allows programmers
to save any Clean expression, i.e., a graph that can contain data, references to
functions, and closures, to disk. Clean expressions can be written to disk as a
dynamic, which contains a representation of their (polymorphic) static type, while
preserving sharing. Clean programs can load dynamics from disk and use run-
time type pattern matching to reintegrate it into the statically typed program. In
this way, new functionality (e.g., plug-ins) can be added to a running program in
a type safe way. This chapter stresses type safety and assumes that we can trust
the compiler.

The shell is called Esther (Extensible Shell with Type cHecking ExpeRiment),
and is capable of:

• reading an expression from the console, using Clean’s syntax for a basic,
but complete, functional language. It offers application, lambda abstraction,
recursive let, pattern matching, function definitions, and even overloading;

3.1: INTRODUCTION 37

• using compiled Clean programs as typed functions at the command line;
• defining new functions, which can be used by other compiled Clean pro-
grams (without using the shell or an interpreter);

• extracting type information (and indirectly, code) from dynamics on disk;
• type-checking the expression and resolving overloading, before evaluation;
• constructing a new dynamic containing the correct type and code of the
expression.

3.1.1 Esther Example: an Application Uses a Shell Function

Figure 3.1 shows a sequence of screenshots of a calculator program written in
Clean. Initially, the calculator has no function buttons. Instead, it has buttons to
add and remove function buttons. These will be loaded dynamically after adding
dynamics that contain tuples of String and Real Real→ Real.

Figure 3.1: A combined screenshot of the calculator and Esther in action.

38 A FUNCTIONAL SHELL

The lower half of Fig. 3.1 shows a command line in the Esther shell that
writes such a tuple as a dynamic named “2a-b2.u.dyn” to disk. Its button name is
2*a-bˆ2 and the function is λa b→ 2.0*a - b*b. Pressing the Add button on
the calculator opens a file selection dialog, shown at the bottom of Fig. 3.1. After
selecting the dynamic named “2a-2b.u.dyn”, it becomes available in the calculator
as the button 2*a-bˆ2, and it is applied to 8 and 3 yielding 7.

The calculator itself is a separately compiled Clean executable that runs with-
out using Esther. Alternatively, one can write the calculator, which has the type
[(String, Real Real→ Real)] *World→ *World, as a dynamic to disk. The
calculator can then be started from Esther, either in the current shell or as a
separate process.

3.1.2 Overview

First, we introduce the static/dynamic hybrid type system and dynamic I/O of
Clean in Sect. 3.2. The type-checking and combining of compile code features
of Esther are directly derived from Clean’s dynamic implementation. In Sect.
3.3, we give an overview of the expressive power of the shell command language
using tiny examples of commands that can be given. In Sect. 3.4 we show how
to construct a dynamic for each kind of sub-expression such that it has the correct
semantics and type, and how to compose them in a type checked way. Related
work is discussed in Sect. 3.5 and we conclude and mention future research in
Sect. 3.6. We assume that reader is familiar with Haskell, and will indicate
syntactic difference with Clean in footnotes. The implementation has been done
in Clean because it has more support for (de)serializing dynamics than Haskell.
Unfortunately, Clean’s dynamic linker, which is required for Esther, has only been
implemented for Microsoft Windows. The implementation, which is reasonably
stable but always under development, can be downloaded from the author’s web
site1.

3.2 Dynamics in Clean

The reader is kindly referred to Sect. 2.2 of the previous chapter.

3.3 Overview of the Shell

Like any other shell, our Esther shell enables users to start pre-compiled programs,
provides simple ways to combine multiple programs, e.g., pipelining and concur-

1http://www.cs.ru.nl/A.vanWeelden/

http://www.cs.ru.nl/A.vanWeelden/

3.3: OVERVIEW OF THE SHELL 39

rent execution, and supports execution-flow controls, e.g., if-then-else constructs.
It provides a way to interact with the underlying operating system and the file
system, using a textual command line/console interface.

A special feature of the Esther shell is that it offers a complete typed functional
programming language with which programs can be constructed. The shell type
checks a command line before performing any actions. Traditional shells provide
very limited error checking before executing the given command line. This is
mainly because the applications mentioned at the command line are practically
untyped because they work on, and produce, streams of characters. The intended
meaning of these streams of characters varies from one program to the other. The
choice to make our shell language typed also has consequences for the underlying
operating system and file system: they should be able to deal with types as well.

In this section, we give a brief overview of the functionality of the Esther shell
and the underlying operating system and file system it relies on.

3.3.1 Famke: a Type Safe Micro Kernel

A shell has to be able to start applications and to provide a way to connect
applications (e.g., by creating a pipeline) such that they can communicate. Since
our shell is typed, process communication should be type safe as well. The
Windows Operating System that we use does not provide such a facility. We
therefore have created a micro kernel on top of Windows. Our micro-kernel,
Famke, provides Clean programs with ways to start new (possibly distributed
running) processes, and the ability to communicate any value in a type safe way.
It should be no surprise that Famke uses dynamics for this purpose. Dynamics
can be sent between applications as strings (see [VP03]), which makes it possible
to use conventional interprocess communication system such as TCP/IP for the
actual communication.

3.3.2 A Typed File System

A shell works on applications and data stored on disk. Our shell is typed; it can
only work if all files it operates on are typed as well. We therefore assume that all
files have a proper type.

For applications written in Clean this can be easily realized. Any data value,
function, or even any large complete Clean application (which is a function as
well) can be written as dynamic to disk, thus forming a rudimentary typed file
system.

Applications written in other languages are usually untyped. We can in prin-
ciple incorporate such an application into in our typed file system, by writing a
properly typed Clean wrapper application around it, which is then stored again

40 A FUNCTIONAL SHELL

as dynamic on disk. We could also wrap them automatically, or via a function,
and give them the type String String→ String (commandline, stdin → std-
out). Obviously, this type does not really help type-checking and is therefore not
implemented in this prototype that promotes type-checking.

We assume that all documents and compiled applications are stored in a dy-
namic of appropriate type. Applications in our file system are just dynamics that
contain a function type. This typed file system makes it possible for the shell to
ensure (given an ideal world where all programs are stored as dynamics) that it is
type safe to apply a printing program (print :: WordDocument→ PostScript)
to a document (myDocument :: WordDocument). The Clean dynamic type system
will ensure that the types will indeed fit. This is, of course, not a very realistic
example, and it is for illustration purposes only.

Normal directory manipulation operations aside, one no longer reads bytes
from a file. Instead, one reads whole files (only conceptually, the dynamic linker
reads it lazily), and one can pattern match on the dynamic to check the type.
This removes the need for explicit (de)serialization, as data structures are stored
directly as graphs in dynamics. Serialization, parsing, and printing are often sig-
nificant parts of existing software (up to thirty percent), which may be reduces by
providing these operations in the programming language and/or operating system.

The shell contains no built-in commands. The commands it knows are de-
termined by the files (dynamics) stored on disk. To find a command, the shell
searches its directories in a specific order as defined in its search paths, looking
for a file with that name.

The shell is therefore useless unless a collection of useful dynamics has been
stored. When the system is initialized, a standard file system is created (see Fig.
3.2) in a Windows folder. It contains:

• almost all functions from the Clean standard environment2, such as +, -,
map, and foldr (stored as dynamic on disk);

• common commands to manipulated the file system (mkdir, rmdir, and the
like);

• commands to create processes directly based on the functionality offered by
Famke (famkeNewProcess, and the like).

All folders are common Window folders, all files contain dynamics created by
Clean applications using the writeDynamic-function. The implementation of dy-
namics on disk is organized in such a way ([VP03]) that a user can safely rename,
copy or delete files, either using the Esther shell or directly using Windows.

2Similar to Haskell’s Prelude.

3.3: OVERVIEW OF THE SHELL 41

Figure 3.2: A screenshot of the typed file system; implemented as dynamic on
disk.

3.3.3 Esther: a Type-Checking Shell

The last example of Sect. 3.2 shows how one can store and retrieve values, ex-
pressions, and functions of any type to and from the file system. It also shows that
the dynamicApply function can be used to type check an application at run-time
using the static types stored in dynamics. Combining both in an interactive ‘read
expression – apply dynamics – evaluate and show result’ loop gives a very simple
shell that already supports the type checked run-time application of programs
to documents. For maximum flexibility, the shell contains almost no built-in
functions. Any Clean function can be saved to disk using dynamics, and can
thus be used by Esther.

Esther performs the following steps in a loop:

• it reads a string from the console and parses it like a Clean expression. It
supports Clean’s basic and predefined types, application, infix operators,

42 A FUNCTIONAL SHELL

lambda abstraction, functions, overloading, let(rec), and case expressions;

• identifiers that are not bound by a lambda abstraction, a let(rec), or a case
pattern are assumed to be names of dynamics on disk, and they are read
from disk;

• type checks the expression using dynamic run-time unification and type
pattern matching, which also infers types;

• if the command expression does not contain type errors, Esther displays
the result of the expression and the inferred type. Esther will automatically
be extended with any code necessary to display the result (which requires
evaluation) by the dynamic linker.

For instance, if the user types in the following expression:

> map ((+) 1) [1..10]

the shell reacts as follows:

[2,3,4,5,6,7,8,9,10,11] :: [Int]

Roughly, the following happens. The shell parses the expression. The expression
consists of typical Clean-like syntactical constructs (such as (,), and [..]),
constants (such as 1 and 10), and identifiers (such as map and +).

The names map and + are unbound (do not appear in the left hand side of a
let, case, lambda expression, or function definition) in this example, and the shell
therefore assumes that they are names of dynamics on disk. They are read from
disk (with help of readDynamic), practically extending its functionality with these
functions, and inspects the types of the dynamics. It uses the types of map (let us
assume that the file map contains the type that we expect: (a→ b) [a]→ [b]),
+ (for simplicity, let us assume: Int Int→ Int) and the list comprehension
(which has type: [Int]) to type-check the command line. If this succeeds, which
it should given the types above, the shell applies the partial application of + with
the integer one to the list of integers from one to ten, using the map function. The
application of one dynamic to another is done using the dynamicApply function
from Sect. 3.2, extended with better error reporting. How this is done exactly, is
explained in more detail in Sect. 3.4. With the help of the dynamicApply function,
the shell constructs a new function that performs the computation map ((+) 1)
[1..10]. This function uses the compiled code of map, +, and [..], which is
implemented as a generator function called _from_to in Clean.

Our shell can therefore be regarded as a hybrid interpreter/compiler, where the
command line is interpreted/compiled to a function that is almost as efficient as the

3.3: OVERVIEW OF THE SHELL 43

same function written directly in Clean and compiled to native code. If functions,
such as map and +, are used in other commands later on, the dynamic linker will
notice that they are already have been used and linked in, and it will reuse their
code. Consequently, the shell will react even quicker, because no dynamic linking
is required anymore in such a case. For more details on Clean’s dynamic linker,
we refer to Vervoort and Plasmeijer [VP03].

3.3.4 The Esther Command Language

Here follow some command line examples with an explanation of how they are
handled by the shell. Figure 3.3 show two example sessions with Esther. The right
Esther window in Fig. 3.3 shows the same directory as theWindows Explorer win-
dow in Fig. 3.2. We explain Esther’s syntax by example below. Like a common
UNIX shell, the Esther shell prompts the user with something like 1:/home> for
typing in a new command. For readability we use only > in the examples below.

Figure 3.3: A combined screenshot of the two concurrent sessions with Esther.

Expressions

Here are some more examples of expressions that speak for themselves. Applica-
tion:

> map
map :: (a -> b) [a] -> [b]

44 A FUNCTIONAL SHELL

Expressions that contain type errors:

> 40 + "5"
*** cannot apply + 40 :: Int -> Int to "5" :: {#Char} ***

Saving Expressions to Disk

Expressions can be stored as dynamics on disk using >>:

> 2 >> two
2 :: Int
> two
2 :: Int

> (+) 1 >> inc
+ 1 :: Int -> Int
> inc 41
42 :: Int

The >> operator is introduced mostly for convenience. Most expressions of the
form expr >> name can be written as:

writeDynamic ”name” (dynamic expr) world

Unfortunately, it does not work to specify the >> operator as

(>>) expr name = writeDynamic ”name” (dynamic expr)

because this can require a rank-2 type that neither Esther, nor the Clean’s com-
piler, can infer. Furthermore, >> uses writeDynamic, which is a function with
side-effects and therefore it has type *World→ (Bool, *World). Functions of
this type must be treated specially by Esther, which must pass them the world
environment3. By defining the >> operator at the syntax level, we circumvent
these problems.

Overloading

Esther resolves overloading in almost the same way as Clean. It is currently not
possible to define new classes at the command line, but they can be introduced
using a simple Clean program that stores the class as an overloaded function. It
is also not possible to save overloaded command-line expressions using the >>
described above. Arithmetic operations are overloaded in Esther, just as they are
in Clean:

3Execute them in the IO monad.

3.3: OVERVIEW OF THE SHELL 45

> +
+ :: a a -> a | + a

> one
one :: a | one a

> (+) one
(+) one :: a -> a | + a & one a

Function Definitions

One can define new functions at the command line:

> dec x = x - 1
dec :: Int -> Int

This defines a new function with the name dec. This function is written to disk in
a file with the same name (”dec”) such that from now on it can be used in other
expressions.

> fac n = if (n < 2) 1 (n * fac (dec n))
S (C‘ IF (C‘ < I 2) 1) (S‘ * I (B (S .+. .+.) (C‘ .+. .+. .+.))
) :: Int -> Int

The factorial function is constructed by Esther using combinators (see Sect. 3.4),
which explains why Esther responds in this way. The internals of the function
shown by Esther proved useful while debugging Esther itself, but this may change
in the future.

Functions cannot only be reused within the shell itself, but also used by any
other Clean program. Such a function is a dynamic and can be used (read in,
dynamically linked, copied, renamed, communicated across a network) as usual.

Notice that dynamics are read in before executing the command line, so it is
not possible to change the meaning of a part of the command line by overwriting
a dynamic.

Lambda Expressions

It is possible to define lambda expressions, just as in Clean.

> (\f x -> f (f x)) ((+) 1) 0
2 :: Int

> (\x x -> x) "first-x" "second-x"
"second-x" :: String

46 A FUNCTIONAL SHELL

Esther parses the example above as: λx→ (λx→ x). This is not standard, and
may change in the future.

Let Expressions

To introduce sharing and to construct both cyclic and infinite data structures, one
can use let expressions.

> let x = 4 * 11 in x + x
88 :: Int

> let ones = [1:ones] in take 10 ones
[1,1,1,1,1,1,1,1,1,1] :: [Int]

Case Expressions

It is possible to do a simple pattern match using case expressions. Nested patterns
are not yet supported, but one can always nest case expressions by hand. An
exception Pattern mismatch in case is raised if a case fails.

> hd list = case list of [x:xs] -> x
B‘ (\ (B K I)) mismatch I :: [a] -> a

> hd [1..]
1 :: Int

> hd []
*** Pattern mismatch in case ***

> sum l = case l of [x:xs] -> x + sum xs; [] -> 0
B‘ (\ (C‘ (B‘ .+.) I (B .+. .+.))) (\ 0 mismatch) I
:: [Int] -> Int

The interpreter understands Clean denotations for basic types like Int, Real,
Char, String, Bool, tuples, and lists. How can one perform a pattern match
on a user-defined constructor defined in some application? It is not (yet) possible
to define new types in the shell itself. However, one can define the types in any
Clean module, and construct an application writing the constructors as dynamic
to disk.

module IntroduceNewType

3.3: OVERVIEW OF THE SHELL 47

:: Tree a = Node (Tree a) (Tree a) | Leaf a

Start world
(ok, world) = writeDynamic ”Node”

(dynamic Node :: ∀a: (Tree a) (Tree a)→ Tree a) world
(ok, world) = writeDynamic ”Leaf”

(dynamic Leaf :: ∀a: a→ Tree a) world
(ok, world) = writeDynamic ”myTree”

(dynamic Node (Leaf 1) (Leaf 2)) world
= world

These constructors can then be used by the shell to pattern match on a value of
that type.

> leftmost tree = case tree of Leaf x -> x; Node l r ->
leftmost l
leftmost :: (Tree a) -> a

> leftmost (Node (Node myTree myTree) myTree)
1 :: Int

Typical Shell Commands

Esther’s search path also contains a directory with common shell commands, such
a file system operations:

> mkdir "foo"
UNIT :: UNIT

Esther displays UNIT because mkdir has type World→ World, i.e., has a side
effect, but no result. Functions that operate on the Clean’s World state are applied
to the world by Esther.

More operations on the file system:

> cd "foo"
UNIT :: UNIT

> 42 >> bar
42 :: Int

> ls ""
" bar " :: {#Char}

48 A FUNCTIONAL SHELL

Processes

Examples of process handling commands:

> famkeNewProcess "localhost" Esther
{FamkeId "131.174.32.197" 2} :: FamkeId

This starts a new, concurrent, incarnation of Esther at the same computer. IP
addresses can be used to start processes on other computers. famkeNewProcess
yields a new process id (of type FamkeId). It is necessary to have the Famke
kernel running on the other computer, e.g., by starting a shell there, to be able
to start a process on another machine. Starting Esther on another machine does
not give remote access. However, the console of the new incarnation of Esther is
displayed and accessible on the other machine.

3.4 Implementation of Esther Using Dynamics

In this section, we explain how one can use the type unification of Clean’s dy-
namic run-time system to type check a shell command, and we show how the
corresponding Clean expression is translated effectively using combinations of
already existing compiled code.

Obviously, we could have implemented type-checking ourselves using one of
the common algorithms involving building and solving a list of type equations.
Another option would be to use the Clean compiler to do the type-checking and
compilation of the command line expressions. Instead, we decided to use Clean’s
dynamic run-time unification, because we want to show the power of Clean’s
dynamics, and because this has several advantages:

• Clean’s dynamics allow us to do type safe and lazy I/O of expressions;
• we do not need to convert between the (hidden) type representation used by
dynamics and the type representation used by our type-checking algorithm;

• it shows whether Clean’s current dynamics interface is powerful enough to
implement basic type inference and type-checking;

• we get future improvements of Clean’s dynamics interface for free, e.g.,
uniqueness attributes or overloading.

The parsing of a shell command line is trivial and we will assume here that the
string has already been successfully parsed.

In order to support a basic, but complete, functional language in our shell we
need to support function definitions, lambda, let(rec), and case expressions.

3.4: IMPLEMENTATION OF ESTHER USING DYNAMICS 49

We will introduce the syntax tree constructors piecewise and show for each
kind of expression how to construct a dynamic that contains the corresponding
Clean expression and the type for that expression. Names occurring free in the
command line are read from disk as dynamics before type-checking. The expres-
sion can contain references other dynamics, and therefore references the compiled
code of functions, which will be automatically linked by Clean’s run-time system.

3.4.1 Application

Suppose we have a syntax tree for constant values and function applications that
looks like:

:: Expr = (@) infixl 94 Expr Expr / / 5 Application
| Value Dynamic / / Constant or dynamic value from disk

We introduce a function compose, which constructs the dynamic containing a
value with the correct type that, when evaluated, will yield the result of the given
expression.

compose :: Expr→ Dynamic
compose (Value d) = d
compose (f @ x) = case (compose f, compose x) of

(f :: a→ b, x :: a)→ dynamic f x :: b
(df, dx) → raise6 (”Cannot apply ” +++ typeOf df

+++ ” to ” +++ typeOf dx)
typeOf :: Dynamic→ String
typeOf dyn = toString (typecodeOfDynamic dyn) / / pretty print type

Composing a constant value, contained in a dynamic, is trivial. Composing an
application of one expression to another is a lot like the dynamicApply function of
Sect. 3.2. Most importantly, we added error reporting using the typeOf function
for pretty printing the type of a value inside a dynamic.

In an application, both dynamic arguments contain references to compiled
code. If we write the resulting dynamic (f x) to disk, it contains references
to the compiled code of f and x. Furthermore, we added a reference to the
code of Clean’s application. The resulting dynamic is self-contained in the sense
that the shell is not required to execute the code inside the dynamic. When the
resulting dynamic is used in another Clean program, the referenced code is linked
into the running program. In essence, we have combined existing code to form

4This defines an infix constructor with priority 9 that is left associative.
5This a Clean comment to end–of–line, like Haskell’s --.
6For easier error reporting, we implemented imprecise user-defined exceptions à la Haskell

[PRH+99]. We used dynamics to make the set of exceptions extensible.

50 A FUNCTIONAL SHELL

the new code of the resulting expression. This shows that the resulting code
is not interpreted, but actually compiled via Clean’s dynamics, even if not all
conversions to dynamics (more are presented later) are as efficient one expects
from a real compiler.

3.4.2 Lambda Expressions

Next, we extend the syntax tree with lambda expressions and variables.

:: Expr = · · · / / Previous def.
| (∼>) infixr 0 Expr Expr / / Lambda abstraction: λ .. → ..
| Var String / / Variable
| S | K | I / / Combinators

At first sight, it looks as if we could simply replace a∼> constructor in the syntax
tree with a dynamic containing a lambda expression in Clean:

compose (Var x ∼> e) = dynamic (λy→ composeLambda x y e :: ?)

The problem with this approach is that we have to specify the type of the lambda
expression before the evaluation of composeLambda. Furthermore, the application
of composeLambda will not be evaluated until the lambda expression is applied to
an argument. This problem is unavoidable because we cannot get ‘around’ the
lambda. Fortunately, bracket abstraction [Sch24, CF58] solves both problems.

Applications and constant values are composed to dynamics in the usual way.
We translate each lambda expression to a sequence of combinators (S, K, and I)
and applications, with the help of the function ski.

compose · · · / / Previous def.
compose (x ∼> e) = compose (ski x e)
compose I = dynamic λx→ x
compose K = dynamic λx y→ x
compose S = dynamic λf g x→ f x (g x)

ski :: Expr Expr→ Expr / / common bracket abstraction
ski x (y ∼> e) = ski x (ski y e)
ski (Var x) (Var y) |7 x == y = I
ski x (f @ y) = S @ ski x f @ ski x y
ski x e = K @ e

Composing lambda expressions uses ski to eliminate the ∼> and Var syntax
constructors, leaving only applications, dynamic values, and combinators. Com-

7If this guard fails, we end up in the last function alternative.

3.4: IMPLEMENTATION OF ESTHER USING DYNAMICS 51

posing a combinator simply wraps its corresponding definition and type as a
lambda expression into a dynamic.

Special combinators and combinator optimization rules are often used to im-
prove the speed of the generated combinator code by reducing the number of
combinators [CF58]. One has to be careful not to optimize the generated combi-
nator expressions in such a way that the resulting type becomes too general. In an
untyped world, this is allowed because they preserve the intended semantics when
generating untyped (abstract) code. However, our generated code is contained
within a dynamic and is therefore typed. This makes it essential that we preserve
the principal type of the expression during bracket abstraction. Adding common
η-reduction, for example, results in a too general type for Var ” f”∼> Var ”x”
∼> f x: a→ a, instead of: (a→ b)→ a→ b. Such optimizations might prevent
us from getting the principal type for an expression. Simple bracket abstraction
using S, K, and I, as performed by ski, does preserve the principal type [HS86].

Code combined by Esther in this way, is not as fast as code generated by the
Clean compiler. Combinators introduced by bracket abstraction are the main rea-
son for this slowdown. Additionally, all applications are lazy and not specialized
for basic types. However, these disadvantages only hold for the small (lambda)
functions written at the command line, which are mostly used for plumbing. If
faster execution is required, one can always copy-paste the command line into a
Clean module that writes a dynamic to disk and running the compiler.

In order to reduce the number of combinators in the generated expression, our
current implementation uses Diller’s algorithm C [Dil88] without η-conversion
in order to preserve the principal type, while reducing the number of generated
combinators from exponential to quadratic. Our current implementation seems
to be fast enough, so we did not explore further optimizations by other bracket-
abstraction algorithms.

3.4.3 Irrefutable Patterns

Here we introduce irrefutable patterns, e.g., (nested) tuples, in lambda expres-
sions. This is a preparation for the upcoming let(rec) expressions.

:: Expr = · · · / / Previous def.
| Tuple Int / / Tuple constructor

tupleConstr :: Int→ Dynamic
tupleConstr 2 = dynamic λx y→ (x, y)
tupleConstr 3 = dynamic λx y z→ (x, y, z)
tupleConstr · · · / / and so on...8

8...until 32. Clean does not support functions or data types with arity above 32.

52 A FUNCTIONAL SHELL

compose · · · / / Previous def.
compose (Tuple n) = tupleConstr n

ski :: Expr Expr→ Expr
ski (f @ x) e = ski f (x ∼> e)
ski (Tuple n) e = Value (matchTuple n) @ e
ski · · · / / previous def.

matchTuple :: Int→ Dynamic
matchTuple 2 = dynamic λf t→ f (fst t) (snd t)
matchTuple 3 = dynamic λf t→ f (fst3 t) (snd3 t) (thd3 t)
matchTuple · · · / / and so on...

We extend the syntax tree with Tuple n constructors (where n is the number of
elements in the tuple). This makes expressions like

Tuple 2 @ Var ”x” @ Var ”y” ∼> Tuple 2 @ Var ”y” @ Var ”x”

valid expressions. This example corresponds with the Clean lambda expression
λ(x, y)→ (y, x).

When the ski function reaches an application in the left-hand side of the
lambda abstraction, it processes both sub-patterns recursively. When the ski
function reaches a Tuple constructor it replaces it with a call to the matchTuple
function. Note that the right-hand side of the lambda expression has already been
transformed into lambda abstractions, which expect each component of the tuple
as a separate argument. We then use the matchTuple function to extract each
component of the tuple separately. It uses lazy tuple selections (using fst and
snd, because Clean tuple patterns are always eager) to prevent non-termination of
recursive let(rec)s in the next section.

3.4.4 Let(rec) Expressions

Now we are ready to add irrefutable let(rec) expressions. Refutable let(rec) ex-
pressions must be written as cases, which will be introduced in next section.

:: Expr = · · · / / Previous def.
| Letrec [Def] Expr / / let(rec) .. in ..
| Y / / Combinator

:: Def =
(:=:) infix 0 Expr Expr / / .. = ..

3.4: IMPLEMENTATION OF ESTHER USING DYNAMICS 53

compose · · · / / Previous def.
compose (Letrec ds e) = compose (letRecToLambda ds e)
compose Y = dynamic let y = f y

in y :: ∀a: (a→ a)→ a

letRecToLambda :: [Def] Expr→ Expr
letRecToLambda ds e = let (p :=: d) = combine ds

in ski p e @ (Y @ ski p d)

combine :: [Def]→ Def
combine [p :=: e] = p :=: e
combine [p1 :=: e1:ds] = let (p2 :=: e2) = combine ds in

Tuple 2 @ p1 @ p2 :=: Tuple 2 @ e1 @ e2

When compose encounters a let(rec) expression it uses letRecToLambda to con-
vert it into a lambda expression. The letRecToLambda function combines all
(possibly mutually recursive) definitions by pairing definitions into a single (pos-
sibly recursive) irrefutable tuple pattern. This leaves us with just a single definition
that letRecToLambda converts to a lambda expression in the usual way [Pey87].

3.4.5 Case Expressions

Composing a case expression is done by transforming each alternative into a
lambda Expression that takes the expression to match as an argument. This yields
a function that, once composed, results in a dynamics that contains a functions that
expects a value to match to. If the expression matches the pattern, the right-hand
side of the alternative is taken. When it does not match, the lambda expression
corresponding to the next alternative is applied to the expression, forming a cas-
cade ofif-then-else constructs. This will result in a single lambda expression that
implements the case construct, and we apply it to the expression that we wanted
to match against.

:: Expr = · · · / / Previous def.
| Case Expr [Alt] / / case .. of ..

:: Alt = (:>) infix 0 Expr Expr / / .. → ..

compose · · · / / Previous def.
compose (Case e as) = compose (altsToLambda as @ e)

We translate the alternatives into lambda expressions using altsToLambda, as
shown below. If the pattern consists of an application, we do bracket abstrac-
tion for each argument, just as we did for lambda expressions, in order to deal

54 A FUNCTIONAL SHELL

with each subpattern recursively. Matching against an irrefutable pattern, such as
variables of tuples, always succeeds and we reuse the code of ski that does the
matching for lambda expressions. Matching basic values is done using ifEqual
that uses Clean’s built-in equalities for each basic type. We always add a default
alternative using the mismatch function, which informs the user that none of the
patterns matched the expression.

altsToLambda :: [Alt]→ Expr
altsToLambda [] = Value mismatch
altsToLambda [f @ x :> e:as] = altsToLambda [f :> ski x e:as]
altsToLambda [Var x :> e:_] = Var x ∼> e
altsToLambda [Tuple n :> e:_] = Tuple n ∼> e
altsToLambda [Value dyn :> th:as] = case dyn of

(i :: Int) → Value (ifEqual i) @ th @ el
(c :: Char)→ Value (ifEqual c) @ th @ el
· · · / / for all basic types

where
el = altsToLambda as

ifEqual :: a→ Dynamic | TC a & Eq a
ifEqual x = dynamic λth el y→ if (x == y) th (el y)

:: ∀b: b (aˆ→ b) aˆ→ b

mismatch = dynamic raise ”Pattern mismatch” :: ∀a: a

Matching against a constructor contained in a dynamic takes more work. For
example, if we put Clean’s list constructor [:] in a dynamic we find that it has type
a→ [a]→ [a], which is a function type. In Clean, one cannot match closures or
functions against constructors. Therefore, using the function makeNode below, we
construct a node that contains the right constructor by adding dummy arguments
until it has no function type anymore. The function ifMatch uses some low-
level code to match two nodes to see if the constructor of the pattern matches
the outermost constructor of the expression. If it matches, we need to extract the
arguments from the node. This is done by the applyTo function, which decides
how many arguments need to be extracted (and what their types are) by inspection
of the type of the curried constructor. Again, we use some low-level auxiliary code
to extract each argument while preserving laziness.

Some low-level code is necessary, because selecting an arbitrary argument
of a node is not expressible in Clean. To keep the Clean language referential
transparent, this cannot be expressed in general. Since we know that the resulting
code and types are correct, we chose to write this in Clean’s machine independent
assembly code: ABC-code. Another option is to request destructors/machting

3.4: IMPLEMENTATION OF ESTHER USING DYNAMICS 55

function from the user. We chose to implement this hack using ABC-code because
all information is available, from the Clean run-time system and the data and heap
storage areas. We decided that the users convenience has priority over an elegant
implementation in this case.

altsToLambda [Value dyn :> th:as] = case dyn of
· · · / / previous definition for basic types
constr→ Value (ifMatch (makeNode constr))

@ (Value (applyTo dyn) @ th) @ el
where

el = altsToLambda as

ifMatch :: Dynamic→ Dynamic
ifMatch (x :: a) = dynamic λth el y→ if (matchNode x y) (th y)

(el y) :: ∀b: (a→ b) (a→ b) a→ b

makeNode :: Dynamic→ Dynamic
makeNode (f :: a→ b) = makeNode (dynamic f undef :: b)
makeNode (x :: a) = dynamic x :: a

applyTo :: Dynamic→ Dynamic
applyTo · · · / / and so on, most specific type first...
applyTo (_ :: a b→ c) = dynamic λf x→ f (arg1of2 x)(arg2of2 x)

:: ∀d: (a b→ d) c→ d
applyTo (_ :: a→ b) = dynamic λf x→ f (arg1of1 x)

:: ∀c: (a→ c) b→ c
applyTo (_ :: a) = dynamic λf x→ f :: ∀b: b a→ b

matchNode :: a a→ Bool / / low-level code; compares two nodes.

argiofn :: a→ b / / low-level code; selects ith argument of an n-ary node

Pattern matching against user-defined constructors requires that the constructors
are available from, i.e., stored in, the file system. Esther currently does not support
type definitions at the command line, and the Clean compiler must be used to
introduce new types and constructors into the file system. For an example of this,
we refer to the description of the use of case expressions in Sect. 3.3.4.

3.4.6 Overloading

Support for overloaded expressions within dynamics in Clean is not yet imple-
mented (e.g., one cannot write dynamic (==) :: ∀a: a a→ Bool | Eq a). If

56 A FUNCTIONAL SHELL

a future dynamics implementation would support overloading, it cannot be used in
a way that suits Esther. We want to solve overloading using instances/dictionaries
from the file system, which may change over time, and which is something we
cannot expect from Clean’s dynamic run-time system out of the box.

Below is the Clean version of the overloaded functions == and one. We will
use these two functions as a running example.

class Eq a where (==) infix 4 :: a a→ Bool
class one a where one :: a

instance Eq Int where (==) x y = · · · / / low-level comparison code
instance one Int where one = 1

To mimic Clean’s overloading, we introduce the type Overloaded to differentiate
between ‘overloaded’ dynamics and ‘normal’ dynamics. This type as shown
below, has three type variables that represent: the dictionary type d, the ‘original’
type of the expression t, and the type of the structure representing the context
restrictions of the overloaded function o, which also contains the variable the
expression is overloaded in. Values of the type Overloaded consists of a infix
constructor ||| followed by the overloaded expression (of type d→ t), and the
context restrictions (of type o). A term Class c of type Context v is used for
a single context restriction of the class c on the type variable v. Multiple context
restrictions are combined in a tree of type Contexts.

:: Overloaded d t o = (|||) infix 1 (d→ t) o
:: Contexts a b = (&&&) infix 0 a b
:: Context v = Class String

(==) = dynamic id ||| Class ”Eq”
:: ∀a: Overloaded (a a→ Bool) (a a→ Bool) (Context a)

one = dynamic id ||| Class ”one”
:: ∀a: Overloaded a a (Context a)

instance_Eq_Int = dynamic λx y→ x == y :: Int Int→ Bool
instance_one_Int = dynamic 1 :: Int

The dynamic (==), in the example above, is Esther’s representation of Clean’s
overloaded function ==. The overloaded expression itself is the identity function
because the result of the expression is the dictionary. The name of the class is Eq.
The dynamic (==) is overloaded in a single variable a, the type of the dictionary
is a→ a→ Bool as expected, the ‘original’ type is the same, and the type of
the name is Context a. Likewise, the dynamic one is Esther’s representation of
Clean’s overloaded function one.

3.4: IMPLEMENTATION OF ESTHER USING DYNAMICS 57

By separating the different parts of the overloaded type (the expression, the
dictionary, and the variable), we obtain direct access to the variable in which
the expression is overloaded. This makes it easy to detect if the overloading
has been resolved: the variable no longer unifies with ∀a: a.a. By separating
the dictionary type and the ‘original’ type of the expression, it becomes easier to
check if the application of one overloaded dynamic to another is allowed. We can
check if a value of type Overloaded _ (a→ b) _ can be applied to a value of
type Overloaded _ a _).

To apply one overloaded dynamic to another, we combine the overloading
information using the Contexts type in the way shown below in the function
applyOverloaded.

applyOverloaded :: Dynamic Dynamic→ Dynamic
applyOverloaded (f ||| of :: Overloaded df (a→ b) cf) (x :: a)

= dynamic (λd_f→ f d_f x) ||| of :: Overloaded df b cf
applyOverloaded (f :: a→ b) (x ||| ox :: Overloaded dx a cx)

= dynamic (λd_x→ f (x d_x)) ||| ox :: Overloaded dx b cx
applyOverloaded (f ||| of :: Overloaded df (a→ b) cf)

(x ||| ox :: Overloaded dx a cx)
= dynamic (λ(d_f, d_x)→ f d_f (x d_x)) ||| of &&& ox
:: Overloaded (df, dx) b (Contexts cf cx)

applyOverloaded applies an overloaded function to a value, a function to an
overloaded value, or an overloaded function to an overloaded value. The compose
function from the beginning of this section is extended in the same way to handle
‘overloaded dynamics’.

We use the (private) data type Contexts instead of tuples because this allows
us to differentiate between a pair of two context restrictions and a single variable
that has been unified with a tuple.

Applying applyOverloaded to (==) and one yields an expression semanti-
cally equal to isOne below. The overloaded expression isOne needs a pair of
dictionaries to build the expression (==) one and has two context restrictions on
the same variable. The ‘original’ type is a→ Bool, and it is overloaded in Eq and
one. Esther will pretty print this as: isOne :: a→ Bool | Eq a & one a.

isOne = dynamic (λ(d_Eq, d_one)→ id d_Eq (id d_one))
||| Class ”Eq” &&& Class ”one”

:: ∀a: Overloaded ((a a→ Bool, a) (a→ Bool))
(Contexts (Context a) (Context a)

Applying isOne to the integer 42 will bind the variable a to Int. Esther is now
able to choose the right instance for both Eq and one. It searches the file system
for the files named “instance Eq Int” and “instance one Int”, and applies the code

58 A FUNCTIONAL SHELL

of isOne to the dictionaries after applying the overloaded expression to 42. The
result will look like isOne42 in the example below, where all overloading has
been removed from the type.

isOne42 = dynamic (λ(d_Eq, d_one)→ id d_Eq (id d_one) 42)
(instance_Eq_Int, instance_one_Int) :: Bool

Although overloading is resolved in the example above, the plumbing/dictionary
passing code is still present. This will increase evaluation time, and it is not clear
yet how this can be prevented.

3.5 Related Work

We have not yet seen an interpreter or shell that equals Esther’s ability to use pre-
compiled code, and to store expressions as compiled code, which can be used in
other already compiled programs, in a type safe way.

Es [HR93] is a shell that supports higher-order functions and allows the user
to construct new functions at the command line. A UNIX shell in Haskell [Mat]
by Jim Mattson is an interactive program that also launches executables, and
provides pipelining and redirections. Tcl [Ous90] is a popular tool to combine
programs, and to provide communications between them. None of these programs
provides a way to read and write typed objects, other than strings, from and to disk.
Therefore, they cannot provide our level of type safety.

A functional interpreter with a file-system manipulation library can also pro-
vide functional expressiveness and either static or dynamic type-checking of part
of the command line. For example, the Scheme Shell (ScSh) [Shi94] integrates
common shell operations with the Scheme language to enable the user to use
the full expressiveness of Scheme at the command line. Interpreters for stati-
cally typed functional languages, such as Hugs [JR02], even provide static type-
checking in advance. Although they do type check source code, they cannot type
check the application of binary executables to documents/data structures because
they work on untyped executables.

The BeanShell [Nie] is an embeddable Java source interpreter with object
scripting language features, written in Java. It is capable of inferring types for
variables and to combine shell scripts with existing Java programs. While Esther
generates compiled code via dynamics, the BeanShell interpreter is invoked each
time a script is called from a normal Java program.

Run-time code generation in order to specialize code at run-time to certain
parameters is not related to Esther. Esther only combines existing code into new
code, by adding code for function application and combinators in between, using
Clean’s dynamic I/O system.

3.6: CONCLUSIONS 59

There are concurrent versions of both Haskell and Clean. Concurrent Haskell
[PGF96] offers lightweight threads in a single UNIX process and provides M-Vars
as the means of communication between threads. Concurrent Clean [NSvEP91] is
only available on multiprocessor Transputers and on a network of single-processor
AppleMacintosh computers. Concurrent Clean provides support for native threads
on Transputer systems. On a network of Apple computers, it runs the same Clean
program on each processor, providing a virtual multiprocessor system. Concurrent
Clean provided lazy graph copying as the primary communication mechanism.
Neither concurrent system can easily provide type safety between different pro-
grams or between multiple incarnations of a single program.

Both Lin [Lin98] and Cooper and Morrisett [CM90] have extended Standard
ML with threads (implemented as continuations using call/CC) to form a small
functional operating system. Both systems implement the basics needed for a
stand-alone operating system. However, none of them support the type-safe com-
munication of any value between different computers.

Erlang [AVWW96] is a functional language specifically designed for the de-
velopment of concurrent processes. It is completely dynamically typed and pri-
marily uses interpreted byte-code, while Famke is mostly statically typed and
executes native code generated by the Clean compiler. A simple spelling error in
a token used during communication between two processes is often not detected
by Erlang’s dynamic type system, sometimes causing deadlock.

Back et al. [BTS+98] built two prototypes of a Java operating system. Al-
though they show that Java’s extensibility, portable byte code and static/dynamic
type system provides a way to build an operating system where multiple Java pro-
grams can safely run concurrently, Java does not support dynamic type unification,
higher-order functions, and closures in the comfortable way that our functional
approach does.

3.6 Conclusions

We have shown how to build a shell that provides a simple, but powerful strongly
typed functional programming language. We were able to do this using only
Clean’s support for run-time type unification and dynamic linking, albeit syntax
transformations and a few low-level functions were necessary. The shell named
Esther supports type-checking and type inference before evaluation. It offers
application, lambda abstraction, recursive let, pattern matching, and function def-
initions: the basics of any functional language. Additionally, infix operators and
support for overloading make the shell easy to use.

By combining code from compiled functions/programs, Esther allows the use
of any pre-compiled program as a function in the shell. Because Esther stores

60 A FUNCTIONAL SHELL

functions/expressions constructed at the command line as a Clean dynamic, it
supports writing compiled programs at the command line. Furthermore, these
expressions written at the command line can be used in any pre-compiled Clean
program. The evaluation of expressions using recombined compiled code is not
as fast as using the Clean compiler. Speed can be improved by introducing fewer
combinators during bracket abstraction, but it seams unfeasible to make Esther
perform the same optimizations as the Clean compiler. In practice, we find Esther
responsive enough, and more optimizations do not appear worth the effort at this
stage. One can always construct a Clean module using the same syntax and use
the compiler to generate a dynamic that contains more efficient code.

CHAPTER 4

Bracket Abstraction Preserves Typability
A formal proof of Diller–algorithm–C in PVS

SJAAK SMETSERS
ARJEN VAN WEELDEN

4.1 Introduction

Pioneer functional programming languages used combinators [CF58], such as S,
K, and I, originally developed by Schönfinkel [Sch24], to define the semantics
of expressions. The function definitions are translated via lambda expressions
to combinators, this last step has become known as bracket abstraction. The
first implementations of interpreters and compilers, e.g., SASL [Tur76], also used
combinators to evaluate or compile untyped functional programs. Designing the
‘best’ set of combinators has temporarily been a competitive sport. The race to
construct the fastest evaluators has spawned dozens of additional combinators and
complex bracket-abstraction algorithms, e.g., Abdali [Kam76], Turner [Tur79],
Diller [Dil88], and Bunder [Bun90]. Super combinators, cf. Peyton Jones [Pey87],
were later introduced and program optimizations were defined using extensible
super combinators instead of a fixed set of combinators. Eventually, combinators
were discarded in favor of generating efficient native machine code. Nowadays,
compilers for strongly typed functional languages generate code comparable in
efficiency to C.

61

62 BRACKET ABSTRACTION PRESERVES TYPABILITY

Using the strongly typed functional programming language Clean [PvE02],
the authors have written an interactive shell [PvW04] that can type check func-
tional command-line expressions before executing them. The translation of com-
mand-line expressions, which support all basic functional language constructions,
uses a variant of bracket abstraction. We wanted to show that this is possible using
merely Dynamics with their apparently limited set of operations. This forced
us to do the type inference after bracket abstraction. We are convinced that the
algorithm used is sound with respect to the operational semantics, since it has
been used innumerably as an implementation of functional languages. However,
to our knowledge, nobody has ever shown that this variant of bracket abstraction
preserves the principal type.

In this chapter, we present a formal proof, using the theorem prover PVS
[OSRS01], which indicates that Diller–algorithm–C [Dil88] without η-conversion
preserves typability. One would never attempt such a proof entirely by hand
as it contains too many cases, while its reasonable complexity allows it to be
rigorously specified in a formal way. All the proofs presented in this chapter can
be downloaded from the following website1.

Further on in this chapter, we proceed to explain a few things about Dynamics
(Sect. 4.2), the translation from functional expressions to combinators (Sect. 4.3),
and the theorem prover PVS (Sect. 4.4). We also share some interesting issues of
the proof itself (Sect. 4.5). Related work is discussed in Sect. 4.6, and we conclude
and mention future work in Sect. 4.7.

4.2 Dynamics and the Shell Written in Clean

Clean [PvE02] is a strongly typed, pure, and lazy functional programming lan-
guage, much like Haskell [Pey03], and not entirely unlike strict functional lan-
guages. Such languages are based on the concept of functions and consist of
expressions (usually without side effects), function definitions, algebraic data type
definitions, pattern matching, and (data) recursion. They usually feature complex
static type systems and checkers, including type inference.

Clean features a hybrid type system, where run-time type-checking is inte-
grated into the static (compile-time) type system. The system is based on the
theories of Abadi [ACPP91] and Pil [Pil99]. Any expressions can be wrapped,
together with their static (polymorphic) type, into an object with the static type
Dynamic. As usual, those expressions are compiled and statically type-checked
with respect to the functions and types of the program that defines them. The

1http://www.cs.ru.nl/A.vanWeelden/bracket/

http://www.cs.ru.nl/A.vanWeelden/bracket/

4.2: DYNAMICS AND THE SHELL WRITTEN IN CLEAN 63

example below shows the definition of the factorial function, which is wrapped in
a dynamic and extracted again using a type pattern match.

fac 0 = 1 / / factorial function
fac n = fac (n - 1) * n

dynamicFac = dynamic fac :: Int→ Int / / wrap in a dynamic

matchDynamic (f :: Int→ Int) = f / / unwrap by matching

example = matchDynamic dynamicFac 10 / / apply; yields 3628800

Dynamics can be serialized (written to disk or over a network) while preserving
sharing and cycles. The expressions inside those dynamics contain data and
code, i.e., functions and closures. Therefore, their serialization will often contain
references to the compiled code of the defining program. Dynamics can also
be deserialized (read from disk) in other programs. Any necessary code will
be automatically and lazily linked into the reading program as implemented by
Vervoort [VP03]. Once the Dynamic object exists inside a running program, the
program can pattern match on the original static type of the expression contained
within the Dynamic.

dynamicApply dynf dynx = case (dynf, dynx) of
(f :: a→ b, x :: a)→ dynamic f x :: b
(g, y)→ abort ”Cannot unify formal and actual argument”

In the example above, we show a more complex example where we apply one
Dynamic to another at run-time in a type-safe way. The type checker can stat-
ically check the usage of type pattern variables a and b in the application of a
function that matches the type pattern a→ b on an argument that matches type a.
Obviously, this results in something that matches some type b. At run-time, an
attempt is made to unify the type of the argument of f (from the first Dynamic)
with the type of x (from the second Dynamic). If it succeeds, the substitution
required for that unification is also applied to the type of the result of f, which is
used as the resulting type of the application. The result after application can only
be stored in a Dynamic again, since the actual type at run-time is unknown to the
static type checker.

Using Dynamics to type only applications, in the manner done in the examples
above, our shell [PvW04] is capable of type-checking/inferring any expression of
a simple functional language. This is enabled by existing translation schemes, cf.
Peyton Jones [Pey87], which can transform any language construct in a functional
programming language to lambda expressions with explicit letrec-sharing, cf.

64 BRACKET ABSTRACTION PRESERVES TYPABILITY

Hindley [HS86]. Threfore, the source language used throughout this chapter
contains only applications, lambda expressions, variables and letrec expressions.

Expr ::= Expr Expr | λ Var . Expr | Var | letrec Var = Expr in Expr
Var ::= x | y | z | · · ·
Using a syntax tree, we can infer the types of applications and constants:

:: Expr = Con Dynamic | App Expr Expr | Lam Var Expr | Var Var
:: Var = Identifier String

type (Con dyn) = dyn
type (App e1 e2) = case (type e1, type e2) of

(f :: a→ b, x :: a)→ dynamic f x :: b
type (Lam v b) = case type b of (e :: a)→ dynamic λx.e :: ?
type (Var v) = abort ”cannot type a single variable ”

However, static type inference of lambda expressions is problematic. The type
of the body of the lambda expression (b in the code above) cannot be inferred
because it is an open expression (contains the variable v). To infer the type using
Dynamics, we need the run-time value of the variable, which is not available at
compile time. We solved this problem using bracket abstraction, which removes
all variables from an expression. This forced us to do type inference after bracket
abstraction.

4.3 From Expression to Combinators

The combinators used in our target language, both in this chapter and in the
shell, are from the algorithm–C by Diller [Dil88] and are shown in Fig. 4.1. The
target language consists of variables, applications, and constants, which are the
combinators and Dynamics. Of course, bracket abstraction should remove all
variables from a closed expression. The implementation of the shell uses only
Dynamics as constants. The combinators can easily be expressed using lambda
expressions2 and be put in a Dynamics with their static types. In contrast, the
algorithm used in the proof does not use Dynamics as constants. This does not
influence typability because Dynamics are already typed and not altered in any
way by bracket abstraction. One could easily add any Dynamic to the set of
combinator constants, much like the super-combinator approach.

Translation from the source language to combinators uses lambda expressions
as an intermediate step. The translation [[e]] of an expression e in the source

2The shell written in Clean actually implements the fixed point combinator Y by the recursive
binding let x = f x in x to construct efficient cycles.

4.3: FROM EXPRESSION TO COMBINATORS 65

I x⇒ x : α→ α
K x y⇒ x : α→ β→ α

S f g x⇒ f x (g x) : (α→ β→ γ)→ (α→ β)→ α→ γ
B f g x⇒ f (g x) : (α→ β)→ (γ→ α)→ γ→ β
C f g x⇒ f x g : (α→ β→ γ)→ β→ α→ γ

S′ h f g x⇒ h (f x) (g x) : (α→ β→ γ)→ (δ→ α)→ (δ→ β)→ δ→ γ
B′ h f g x⇒ h f (g x) : (α→ β→ γ)→ α→ (δ→ β)→ δ→ γ
C′ h f g x⇒ h (f x) g : (α→ β→ γ)→ (δ→ α)→ β→ δ→ γ

Y f ⇒ f (Y f) : (α→ α)→ α

Figure 4.1: Combinator reduction rules and their types.

language is shown in Fig. 4.2. We show translations for both non-recursive let and
recursive letrecs, for which there is a monomorphic and a polymorphic variant.
The shell implements the monomorphic letrec and it writes polymorphic function
definitions to disk using Dynamics. By reading them back in when they are used
in other expression, it achieves the same effect as the polymorphic letrec. The
expression inside a Dynamic is shared, not substituted, but the (polymorphic) type
can be instantiated multiple times.

[[e1 e2]] = [[e1]][[e2]] (application)
[[λx.e]] = [[[[e]]]]x (abstraction)

[[x]] = x (variable)
[[let x= e1 in e2]] = [[λx.e2]] [[e1]] (non-recursive let)

[[letrec x= e1 in e2]] = [[λx.e2]] (Y [[λx.e1]]) (monomorphic let)
[[letrec x= e1 in e2]] = [[e2]][Y [[λx.e1]]/x] (polymorphic let)

Figure 4.2: Translation from expressions to combinators via lambda expressions.

The bracket-abstraction algorithm [[·]]x, over a variable x used in the shell and
throughout this chapter is defined in Fig. 4.3. It is almost the same as algorithm–C
and very similar to Abs/Dash/4 by Joy et al. [JRB85], who show that it produces
good code and that improvements are hard and yield little effect. In contrast to
algorithm–C, we do not use η-conversion because it obviously does not preserve
the principal type, as indicated by the following example:

λx.(λy.xy) : (α→ β)→ α→ β�η λx.x : α→ α�[[]] I : α→ α.

66 BRACKET ABSTRACTION PRESERVES TYPABILITY

[[x]]x = I
[[e]]x = K e if x /∈ FV (e)

[[(e1 e2) e3]]x = B′ e1 e2 [[e3]]x if x /∈ FV (e1)∧ x /∈ FV (e2)
[[(e1 e2) e3]]x = C′ e1 [[e2]]x e3 if x /∈ FV (e1)∧ x /∈ FV (e3)
[[(e1 e2) e3]]x = S′ e1 [[e2]]x [[e3]]x if x /∈ FV (e1)

[[e1 e2]]x = B e1 [[e2]]x if x /∈ FV (e1)
[[e1 e2]]x = C [[e1]]x e2 if x /∈ FV (e2)
[[e1 e2]]x = S [[e1]]x [[e2]]x

Figure 4.3: Our variant of bracket abstraction, based on priority from the top
down.

4.4 The Theorem Provers PVS

As a short introduction to PVS, we will briefly recall the basics (c.f. [OSRS01]).
PVS (Prototype Verification Systems) offers an interactive environment for the
development and analysis of formal specifications. The system consists of a
specification language and a theorem prover. The specification language of PVS
is based on classical, typed higher-order logic. Both the use of basic types, like in-
tegers, booleans and reals, and compound types (built with type constructors such
as records, tuples, and function types) are permitted. New, possibly recursive,
data types can be introduced via algebraic data type definitions. As an example
of a user-defined data type, consider the following parameterized definition of a
binary tree:

BinTree[V : TYPE] : DATATYPE BEGIN

leaf : leaf?
node(el:V , left , right: BinTree) : node?

END BinTree

The data type has two constructors, leaf and node, with which trees can be
built. Additionally, two recognizers leaf? and node? are defined (observe that
PVS allows question marks as constituents of identifiers), which can be used
as predicates to test whether or not a tree object starts with the corresponding
constructor. The field names el, left and right can be used as accessors to
extract these components from a node. However, for extraction purposes, it is
often more convenient to use the built-in pattern matching via CASES expressions.
Consider, for example, the following function tree2List that collects all elements
of a tree and places them in a list.

tree2List(t:BinTree) : RECURSIVE list[V] =
CASES t OF

leaf: null ,

4.4: THE THEOREM PROVERS PVS 67

node(e ,l ,r): append(tree2List(l) ,cons(e ,tree2List(r)))
ENDCASES

MEASURE size(t)

The MEASURE specification is mandatory when defining a recursive function, such
as the tree2List function shown above. In PVS, it is required that all functions are
total. This measure is used to show that the function terminates. This is realized
by generating a proof obligation (a so-called TCC, Type Correctness Condition)
indicating that the measure strictly decreases at each recursive call. Obviously, in
this case the size of the tree fulfills this property. How can an appropriate measure
be given for the function size itself? A solution is to have data type definitions,
which cause PVS to generate a number of functions and axioms, which can be
used freely in a theory importing that data type. Among them, one example is
the ordering<< on trees indicating whether the first argument tree is a subtree of
second one. In a measure specification,<<can be used as follows:

size(t:BinTree) : RECURSIVE int =
CASES t OF

leaf: 0 ,
node(e ,l ,r): size(l) + size (r) + 1

ENDCASES

MEASURE t BY <<

PVS specifications are organized into parameterized theories that may contain
declarations of functions, axioms, theorems, etc.. The PVS language provides
the customary arithmetic and logical operators, function application, lambda ab-
straction, and quantifiers. Names may be overloaded, including those of built-in
operators such as < and +.

Higher-order logic forms the base for the theorem prover of PVS, i.e., PVS
admits to quantify over predicates. For example, consider the following lemma
that enables the use of course–of–values induction on the size of trees in a proof.

tree_size_induction : LEMMA

(∀ (p:pred[BinTree]): (∀ (g:BinTree): (∀ (s:BinTree):
size(s) < size(g) ⇒ p(s)) ⇒ p(g)) ⇒ (∀ (c:BinTree): p(c)))

This can be proven with the predefined induction principle NAT_induction. In
order to facilitate the development of proofs, PVS provides a collection of proof
commands and predefined combinations of proof commands, so-called proof stra-
tegies. During the construction of a proof, PVS constructs and maintains a proof
tree. The goal of a proof is to apply proof commands/strategies such that all the
leaves of the proof tree are recognized as true. Therefore, the proof itself is just
a sequence of proof strategies that converts the initial proof tree into a complete
one. Such proof sequences are available in textual form making them easy to edit

68 BRACKET ABSTRACTION PRESERVES TYPABILITY

or display, or even to rerun. Usually, they are kept in a separate proof file and can
be inspected at any time during a proof session.

4.5 The Proof in PVS

In this section, we will use PVS to prove that bracket abstraction preserves typa-
bility. We will first concentrate on the monomorphic case.

4.5.1 Bracket Abstraction

We start the description of the proof by introducing two data types to represent
the source language FUNC and destination language COMB of our translation.

Our source language is essentially the lambda calculus enriched with a letr
construct to specify single recursive definitions. The addition of multiple re-
cursion and pattern matching is straightforward, but is left out for reasons of
simplicity.

FUNC [V : TYPE] : DATATYPE BEGIN

vari (id:V) : vari?
appl (fun , arg:FUNC) : appl?
lamb (l_var:V , l_body:FUNC) : lamb?
letr (b_var:V , b_def , b_body:FUNC): letr?

END FUNC

The destination language consists of combinator expressions. Our representation
is parametric in both variables and combinators.

COMB[V : TYPE , C : TYPE] : DATATYPE BEGIN

c_var (v_id: V) : c_var?
c_const (c_id: C) : c_const?
c_appl (c_fun , c_arg: COMB) : c_appl?

END COMB

The concrete combinators are introduced via an enumeration type (see Fig. 4.1).

SKI: TYPE = {S ,K ,I ,Y ,B ,C ,S1 ,B1 ,C1}
We shall now present the bracket-abstraction algorithm lam2Ski (see Fig. 4.2):

lam2Ski(e:FUNC) : RECURSIVE COMB =
CASES e OF

vari(v) : c_var(v) ,
appl(f , a) : c_appl(lam2Ski(f) ,lam2Ski(a)) ,
lamb(v ,e) : abstr(lam2Ski(e) ,v) ,
letr (v ,d ,e) : c_appl(abstr(lam2Ski(e) ,v) ,

4.5: THE PROOF IN PVS 69

c_appl(c_const(Y) ,abstr(lam2Ski(d) ,v)))
ENDCASES

MEASURE e BY <<

where abstr is a recursive function that builds up the combinator expression for
the distribution of a parameter v (see Fig. 4.3). CAppl2 and CAppl3 are just helper
functions introduced to improve readability.

CAppl2(c:SKI , a1 ,a2: COMB): COMB = c_appl(c_appl(c_const(c) ,a1) ,a2)
CAppl3(c:SKI , a1 ,a2 ,a3: COMB): COMB = c_appl(CAppl2(c ,a1 ,a2) ,a3)

abstr(e:COMB ,v:V) : RECURSIVE COMB =
IF fvs(e) (v)
THEN CASES e OF

c_var(w) : c_const(I) ,
c_appl(f ,a) :

IF c_appl?(f) ∧ ¬ fvs(c_fun(f)) (v)
THEN LET g = c_fun(f) , b = c_arg(f) IN

IF ¬ fvs(b) (v)
THEN CAppl3 (B1 , g , b , abstr(a ,v))
ELSIF ¬ fvs(a) (v)
THEN CAppl3 (C1 , g , abstr(b ,v) , a)
ELSE CAppl3 (S1 , g , abstr(b ,v) , abstr(a ,v))
ENDIF

ELSIF ¬ fvs(f) (v)
THEN CAppl2 (B , f , abstr(a ,v))
ELSIF ¬ fvs(a) (v)
THEN CAppl2 (C , abstr(f ,v) , a)
ELSE CAppl2 (S , abstr(f ,v) , abstr(a ,v))
ENDIF

ENDCASES

ELSE c_appl(c_const(K) ,e)
ENDIF

MEASURE e BY <<

The standard subterm order of FUNC and COMB are used as measures in lam2Ski and
in abstr, respectively. In both cases, these orders are denoted by<<. The predicate
fvs indicates whether a given variable freely occurs in an expression. It is defined
using the reduce function for the COMB data type. This (fold-like) operation is
internally generated by PVS and can often be used as a substitute for recursion.

fvs:[COMB → PRED[V]] = reduce(singleton , λ(c:C): /0 , ∪)
The equivalence between lam2Ski and abstr and the specifications of these trans-
formations in Sect. 4.3, is self-evident.

70 BRACKET ABSTRACTION PRESERVES TYPABILITY

4.5.2 Typing

In order to represent types for both combinators and lambda expressions, we
introduce the following data type.

TYPES[V : TYPE]: DATATYPE BEGIN

t_var (t_var:V) : t_var?
t_arr (t_arg , t_res:TYPES) : t_arr?

END TYPES

This definition is self-explanatory, as well as the definitions of substitution and
(substitution) instance. The latter is denoted as a binary predicate≤on types. Here
subst is the customary lifting of substitutions to types. It can be easily expressed
in terms of reduce.

Substitution : TYPE = [V → TYPES]
subst(s:Substitution): [TYPES → TYPES] = reduce(s ,t_arr) ;

t1 , t2: VAR TYPES
≤(t1 , t2) : bool = ∃(s:Substitution) : t2 = subst(s) (t1)

The type system for FUNC terms is a straightforward extension of simple Curry
typing. We make use of the possibility in PVS to define inductive predicates. The
expression typableE(b) (e ,t) should be read as “In the context of a base b, the
expression e has type t”.

BASE : TYPE = [X → TYPES] typableE(b:BASE) (e:FUNC , tr:TYPES) :
INDUCTIVE bool =

CASES e OF

vari(v) : b(v) = tr ,
appl(f , a) : ∃(ta:TYPES): typableE(b) (f ,t_arr(ta ,tr)) ∧

typableE(b) (a ,ta) ,
lamb(v ,e) : t_arr?(tr) ∧

typableE(b WITH [v := t_arg(tr)]) (e ,t_res(tr)) ,
letr (v ,d ,e): ∃(ft:TYPES): LET nb = b WITH [v := ft] IN

typableE(nb) (d ,ft) ∧ typableE(nb) (e ,tr)
ENDCASES

Observe that the type system is monomorphic: in the term letr (v ,d ,e), all
occurrences of v in e should have identical types. In Sect. 4.5.3 we describe how
to extend the system with polymorphic letr constructs.

For typing COMB expressions, we assume that combinator symbols are supplied
with a type (or actually a type scheme) by a so-called type environment. The type
system is defined as a PVS theory parameterized with that environment.

typingCOMB [V , X , C:TYPE , %type and term variables, and combinator symbols
(IMPORTING TYPES[V]) env:[C → TYPES[V]]]: THEORY %type environment

4.5: THE PROOF IN PVS 71

BEGIN

typableC(b:BASE) (e:COMB , t:TYPES) : INDUCTIVE bool =
CASES e OF

c_var(w) : b(w) = t ,
c_const(c) : env(c) ≤ t ,
c_appl(f , a) : ∃(t1:TYPES):

typableC(b) (f ,t_arr(t1 ,t)) ∧ typableC(b) (a ,t1)
ENDCASES

END typingCOMB

We can now formulate our main theorem that relates the typing of FUNC to the
typing of COMB.

type_preserving : THEOREM ∀(e:FUNC ,b:BASE ,t:TYPES):
typableE(b) (e ,t) ⇔ typableC(b) (lam2Ski(e) ,t)

In order to be able to prove this theorem, it is necessary to have a concrete type
environment for SKI. We simply choose natural numbers as names for the type
variables appearing in the type schemes.

alp : TYPES = t_var(0)
bet : TYPES = t_var(1)
gam : TYPES = t_var(2)
del : TYPES = t_var(3)

TArr2(t1 ,t2 ,t3: TYPES) : TYPES = t_arr(t1 ,t_arr(t2 ,t3))
TArr3(t1 ,t2 ,t3 ,t4: TYPES) : TYPES = t_arr(t1 ,t_TArr2(t2 ,t3 ,t4))
TArr4(t1 ,t2 ,t3 ,t4 ,t5: TYPES) : TYPES = t_arr(t1 ,t_TArr3(t2 ,t3 ,t4 ,t5))

env_ski(c:SKI): TYPES =
CASES c OF

I : t_arr(alp ,alp) ,
K : TArr2(alp ,bet ,alp) ,
S : TArr3(t_arr(alp ,t_arr(bet ,gam)) ,t_arr(alp ,bet) ,gam ,bet) ,
Y : t_arr(t_arr(alp ,alp) ,alp) ,
B : TArr3(t_arr(alp ,bet) ,t_arr(gam ,alp) ,gam ,bet) ,
C : TArr3(t_arr(alp ,t_arr(bet ,gam)) ,bet ,alp ,gam) ,
S1: TArr4(t_arr(alp ,t_arr(bet ,gam)) ,t_arr(del ,alp) ,

t_arr(del ,bet) ,del ,gam) ,
B1: TArr4(t_arr(alp ,t_arr(bet ,gam)) ,alp ,t_arr(del ,bet) ,del ,gam) ,
C1: TArr4(t_arr(alp ,t_arr(bet ,gam)) ,t_arr(del ,alp) ,bet ,del ,gam)

ENDCASES

It is not difficult to show that each combinator written as a lambda expression is
typable according to the typableE predicate, using an arbitrary base and the type

72 BRACKET ABSTRACTION PRESERVES TYPABILITY

given by env_ski. For example, the following properties can be proven in merely
a few steps.

kterm: FUNC = lamb(0 ,lamb(1 ,vari (0)))
yterm: FUNC = lamb(0 ,letr(1 ,appl(vari(0) ,vari (1)))) ,vari(1))
K_typable: LEMMA ∀(bas:Base): typableE(bas) (kterm ,env_ski(K))
Y_typable: LEMMA ∀(bas:Base): typableE(bas) (yterm ,env_ski(Y))

The proof of our main theorem takes more effort. It requires the following prop-
erty concerning the typing of abstractions.

type_abstr : LEMMA ∀(e:COMB ,b:BASE ,ta ,tr:TYPES ,v:V):
typableC(b WITH [v:=ta]) (e ,tr) ⇔ typableC(b) (abstr(e ,v) ,t_arr(ta ,tr))

This lemma is proven by course–of–values induction on the size of e. The proof
itself is actually not difficult, but its size is quite extensive. It requires approxi-
mately 500 proof steps, as can be seen in the PVS proof files. This example also
clearly shows that it is almost impossible to perform such a proof without the
assistance of a theorem prover.

4.5.3 A Polymorphic Type System

In order to express letr polymorphism we need quantified types, also known as
type schemes. These type schemes are of the form ∀α1, . . . ,αn : σ in which the
αi are type variables and σ is a type. Instead of formalizing a type scheme as
a pair consisting of a set of type variables and a type, we use a more explicit
representation as for instance can be found in Naraschewski and Nipkow [NN99].
As such, the type scheme is formalized as an algebraic data type containing
separate constructors for free and bound variables.

SCHEME[V : TYPE]: DATATYPE BEGIN

ts_bv (bv:V): ts_bv?
ts_fv (fv:V): ts_fv?
ts_arr (arg , res:SCHEME): ts_arr?

END SCHEME

discard(x:V): PRED[V] = /0

bvs:[SCHEME → PRED[V]] = reduce(singleton ,discard ,∪)
fvs:[SCHEME → PRED[V]] = reduce(discard ,singleton ,∪)
The predicates bvs and fvs determine the set of bound and free type variables for
a given scheme, respectively. We will use several conversions between types and
type schemes. A type can be obtained from a scheme by means of instantiation.
This operation replaces the bound variables of a scheme with types and leaves the
free variables unaltered.

4.5: THE PROOF IN PVS 73

inst(s:Substitution): [SCHEME → TYPES] =
reduce(s ,λ(v:V):t_var(v) ,t_arr)

A type can be converted into a scheme via generalization. The result of a gen-
eralization step depends on the context in which this operation is performed, in
particular on the type variables appearing in the used base: only type variables
not appearing free in a base can be universally quantified. Observe that in the
polymorphic case a base associates term variables with schemes rather than with
types.

BASE : TYPE = [X → SCHEME]

fvs(b:BASE): PRED[V] = { v:V | ∃(x:X) : fvs(b(x)) (v) }
gen(b:BASE): [TYPES → SCHEME] =

reduce(λ(v:V):IF fvs(b) (v)THEN ts_fv(v) ELSE ts_bv(v) ENDIF ,ts_arr)

The adjustment of the typableE predicate leads to a type system almost equivalent
to the system presented by Naraschewski and Nipkow [NN99]. There is only
one small difference: in the term letr(v ,b ,e) we distinguish between two cases
depending on whether or not v occurs in e. If v is present in e then the whole term
is treated as usual. If not, the subterm b is ignored. It does not matter whether b is
typable or not if it is not used in e. We will explain the reason for this refinement
later. The test for the presence of v in e is done via fvs.

fvs:[FUNC → PRED[V]] = reduce(singleton , ∪ , remove ,
λ(v:V ,b ,e:PRED[V]):IF e(v) THEN remove(v ,∪(b ,e)) ELSE e ENDIF)

type2Scheme: [TYPES → SCHEME] = reduce(ts_fv ,ts_arr)

typableE(b:BASE) (e:FUNC , tr:TYPES) : INDUCTIVE bool =
CASES e OF

vari(v) : ∃(s:Substitution): inst(s) (b(v)) = tr ,
appl(f , a) : ∃(ta:TYPES): typableE(b) (f ,t_arr(ta ,tr)) ∧

typableE(b) (a ,ta) ,
lamb(v ,e) : t_arr?(tr) ∧ typableE(b

WITH [v := type2Scheme(t_arg(tr))]) (e ,t_res(tr)) ,
letr(v ,d ,e): IF fvs(e) (v)

THEN ∃(t:TYPES) :
typableE(b WITH [v := type2Scheme(t)]) (d ,t) ∧
typableE(b WITH [v := gen(b) (t)]) (e ,tr)

ELSE typableE(b) (e ,tr)
ENDIF

ENDCASES

The operation type2Scheme converts a type into a fully monomorphic scheme, i.e.,
a scheme with no bound variables.

74 BRACKET ABSTRACTION PRESERVES TYPABILITY

The question remains of how to change the type system for combinators such
that it can handle multiple occurrences of a recursive function introduced by a
letr. Normally, (the combinator version of) this function is distributed over the
corresponding expression via the S combinator. However, the polymorphic usage
of arguments requires polymorphism of a higher rank. Observe that the schemes
we have introduced are essentially of rank 1, as well as the types provided by the
type environment, which is used for assigned types to combinators. Instead of
allowing universal quantifiers at arbitrary levels, we adjust the transformation rule
for letr expressions in the following way:

lam2Ski(e:FUNC) : RECURSIVE COMB =
CASES e OF

vari(v) : c_var(v) ,
appl(f , a) : c_appl(lam2Ski(f) ,lam2Ski(a)) ,
lamb(v ,e) : abstr(lam2Ski(e) ,v) ,
letr(v ,d ,e): subst(single(v ,c_appl(c_const(Y) ,

abstr(lam2Ski(d) ,v)))) (lam2Ski(e))
ENDCASES

MEASURE e BY <<

single(v:V ,e:COMB) : [V → COMB] =
λ(w:V): IF v = w THEN e ELSE c_var(v) ENDIF

subst(s:[V → COMB]) : [COMB → COMB] = reduce(s ,c_const ,c_appl)

Here single and subst are substitutions on combinator terms. The disadvantage
of the transformation is of course, that if the function is used more than once, it
will be duplicated.

If the function is not used at all, it will disappear due to the substitution. For
this reason, we made the case distinction in typableE for the letr construct. In
this way, we are able to preserve typability in all cases and are not obliged to make
an exception for cases that probably rarely occur.

The only part of the type system for combinators, typableC, that needs to be
adjusted is the rule for variables. Instead of using the base type of the variable, we
now allow instantiation of the scheme provided by the base. Since this adjustment
is self-evident, we do not show it here.

The main goal of this section is to prove the following theorem again:

type_preserving : THEOREM ∀(e:FUNC ,b:BASE ,t:TYPES):
typableE(b) (e ,t) ⇔ typableC(b) (lam2Ski(e) ,t)

At first sight, the extension of our system with type schemes seems to have low
impact. However, as already has been noticed by Naraschewski and Nipkow
[NN99], reasoning about type schemes is much more subtle than reasoning about

4.6: RELATED WORK 75

(monomorphic) types. The proof of the theorem depends on the following two
properties concerning term substitutions:

type_subst1 : LEMMA ∀(e1 ,e2:COMB ,b:BASE ,t1 ,t2:TYPES , v:V):
typableC(b) (e1 ,t1) ∧ typableC(b WITH [v := gen(b) (t1)]) (e2 , t2)

⇒ typableC(b) (subst(single(v ,e1)) (e2) ,t2)

type_subst2 : CONJECTURE

∀(e1 ,e2:COMB ,b:BASE ,t2:TYPES ,v:(fvs(e2))):
typableC(b) (subst(single(v ,e1)) (e2) ,t2) ⇒

∃(t1:TYPES): typableC(b) (e1 ,t1) ∧
typableC(b WITH [v := gen(b) (t1)]) (e2 , t2)

The first one is used to prove the⇒ part of the theorem; the second one to prove
the⇐ part. Momentarily, we have finished the proof of type_subst1. This proof
is performed by induction on the structure of the term e2, see the proof files.
Currently we are working on a full formal proof of type_subst2.

4.6 Related Work

In his book, Hindley [Hin97] writes about strong type-invariance and shows that
certain sets of combinators form a typable basis. He informally proves that a set
of lambda expressions imitating combinators preserves typability. This is done by
construction, using small variations on common bracket-abstraction algorithms.
This approach is not unlike ours. However, we use a larger set, a more complex
algorithm, and Hindley’s proof is neither formal nor are all the details shown.

The type inference algorithm W by Damas and Milner [DM82] has been
proven formally and mechanically by Nazareth and Nipkow [NN96] (monomor-
phic), Naraschewski and Nipkow [NN99] (polymorphic), using Isabelle/HOL,
and by Dubois and Ménissier-Morain [DM99] (polymorphic) using Coq. Al-
though we prove equivalence of type inference before and after bracket abstraction
in PVS instead of type inference itself, the process of proving has a lot in common.
Everybody runs into issues with alpha conversion. Furthermore, using a proof
assistant/checker forces one to formalize everything explicitly and prove every
minute detail, where one may adversely use hand waving to sweep it under the
rug in an informal proof.

Hindley [Hin69] and, almost simultaneously, Curry [Cur69] showed that one
can derive a principal type inference algorithm on a system of combinators, using
reduction on type combinators. This already shows that one can do type infer-
ence using only application, since the combinators can be imitated using lambda
calculus. Their (informal) proof is based on the S and K combinator, while we

76 BRACKET ABSTRACTION PRESERVES TYPABILITY

needed proof that it works for algorithm-C and that it infers the exact same types
as functional languages usually do (using variants of algorithmW).

4.7 Conclusions

We have shown how to specify type derivation and complex bracket abstraction
in a rigorously formal way using PVS, at least for the monomorphic case. This
enabled us to formally prove that Diller–algorithm–C without η-conversion pre-
serves typability. Our approach to derive types after bracket abstraction in a type-
checking command-line shell, requires this property. This proof also confirms that
we were correct to assume that a type checker/inferrer can really be constructed
using merely Dynamics of the functional programming language Clean. We now
conclude that the seemingly limited interface of Dynamics is powerful enough for
type inference such as done by our shell.

For future aspirations, it rests to complete the the⇐ part of the proof for the
polymorphic case.

CHAPTER 5

Automatic Generation of Editors for
Higher-Order Data Structures

PETER ACHTEN
MARKO VAN EEKELEN
RINUS PLASMEIJER
ARJEN VAN WEELDEN

5.1 Introduction

In the last decade, Graphical User Interfaces (GUIs) have become the standard for
user interaction. Programming these interfaces can be done without much effort
when the interface is rather static, and for many of these situations excellent tools
are available. However, when there is more dynamic interaction between interface
and application logic, such applications require tedious manual programming in
any programming language. Programmers need to be skilled in the use of a large
programming toolkit.

The goal of the Graphical Editor project is to obtain a concise programming
toolkit that is abstract, compositional, and type-directed. Abstraction is required
to reduce the size of the toolkit, compositionality reduces the effort of putting
together (or altering) GUI code, and type-directed automatic creation of GUIs
allows the programmer to focus on the data model. In contrast to visual program-
ming environments, programming toolkits can provide ultimate flexibility, type
safety, and dynamic behavior within a single framework. We use a pure func-

77

78 EDITORS FOR HIGHER-ORDER DATA STRUCTURES

tional programming language (Clean [PvE02]) because functional programming
languages have proven to be very suited for creating abstraction layers on top of
each other. Additionally, they have strong support for type definitions and type
safety.

Our programming toolkit utilizes the Graphical Editor Component (GEC)
[AvEP04b] as universal building block for constructing GUIs. A GECt is a
graphical editor for values of any monomorphic first-order type t. This type-
directed creation of GECs has been obtained by generic programming techniques
[AP03, HP01, Hin00b]. Generic programming is extremely beneficial when ap-
plied to composite custom types. With generic programming, one defines a fam-
ily of functions that depend on the structure of types. Although one structural
element is the function type constructor (→), it is fundamentally impossible to
define a generic function that edits these higher-order values directly, because
pure functional programs cannot look inside functions without losing referential-
transparency (for instance by distinguishing λx→ x+1 from λx→ 1+x).

In this chapter, we extend the GEC toolkit in two ways, such that it can
construct higher-order value editors. The first extension uses run-time dynamic
typing [ACP+92, Pil99], which allows us to include them in the GEC toolkit,
but this does not allow type-directed GUI creation. It does, however, enable
the toolkit to use polymorphic higher-order functions and data structures. The
second extension uses compile-time static typing, in order to gain monomorphic
higher-order type-directed GUI creation of abstract types. It uses the abstraction
mechanism of the GEC toolkit [AvEP04a].

Both extensions require a means of using functional expressions, entered by
the user, as functional values. Instead of writing our own parser/interpreter/type-
inference system, we use the functional Esther shell [PvW04] (Chap. 3), which
provides type-checking at the command line and can use compiled functions from
disk. These functions can have arbitrary size and complexity, and even inter-
face with the imperative world. Esther makes extensive use of dynamic types.
Dynamic types turn arbitrary (polymorphic, higher-order) data structures (for in-
stance of type [Int→ Int] or (Tree a)→ a) into a first-order data structure of
type Dynamic without losing the original type.

Contributions of this chapter are:

• We provide type-safe expression editors, which are needed for higher-order
value editors.

We obtain, as a bonus, the ability to edit first-order values using expressions.

Another bonus: within these expressions, one can use compiled functions
from disk, incorporating real world functionality.

5.2: THE GEC PROGRAMMING TOOLKIT 79

• The programming toolkit can now create polymorphic dynamically typed,
and monomorphic statically typed, higher-order value editors.

• The programming toolkit is type-safe and type-directed.

This chapter is structured as follows. Section 5.2 contains an overview of the
first-order GEC toolkit. In Sect. 5.3 we present the first extension, in which we
explain how Esther incorporates expressions as functional values using dynamic
types. We present in Sect. 5.4 the second extension, and explain how we obtain
higher-order type-directed GUI creation using the abstraction mechanism of the
GEC toolkit. Section 5.5 gives examples of the new system that illustrate its
expressive power. We discuss related work in Sect. 5.6 and conclude in Sect. 5.7.

Finally, a note on the implementation and the examples in this chapter. The
project has been realized in Clean. Familiarity with Haskell [Pey03] is assumed,
relevant differences between Haskell and Clean are explained in footnotes. The
GUI code is mapped to Object I/O [AP98], which is Clean’s library for GUIs.
Given sufficient support for dynamic types, the results of this project can be trans-
ferred to Generic Haskell [CL03], using the Haskell port of Object I/O [AP01].
The complete code of all examples (including the complete GEC implementation
in Clean) can be downloaded from the GEC toolkit website1.

5.2 The GEC Programming Toolkit

With the GEC programming toolkit [AvEP04b], one constructs GUI applications
in a compositionalway using a high level of abstraction. The basic building block
is the Graphical Editor Component (GEC). It is generated by a generic function,
which makes the approach type-directed.

Before explaining GECs in more detail, we need to point out that Clean uses
an explicit multiple environment passing style [Ach96] for I/O programming. As
GECs are integrated with Clean Object I/O, the I/O functions that are presented
in this chapter are state transition functions on the program state (PSt ps). The
program state represents the external world of an interactive program, tailored
for GUI operations. In this chapter, the identifier env is a value of this type.
The uniqueness type system [BS99] of Clean ensures single threaded use of the
environment. To improve the readability, uniqueness type attributes that actually
appear in the type signatures are not shown. Furthermore, the code has been
slightly simplified, leaving out a few details that are irrelevant for this chapter.

1http://clean.cs.ru.nl/gec

http://clean.cs.ru.nl/gec

80 EDITORS FOR HIGHER-ORDER DATA STRUCTURES

Graphical Editor Components

A GECt is an editor for values of type t. It is generated with a generic function
[Hin00b, AP03]. A generic function is a meta-function that works on a description
of the structure of types. For any concrete type t, the compiler is able to automati-
cally derive an instance function of this generic function for the type t. The power
of a generic scheme is that we obtain an editor for free for any monomorphic data
type. This makes the approach particularly suited for rapid prototyping.

The generic function gGEC creates GECs. It takes a definition (GECDef t env)
of a GECt and creates the GECt object in the environment. It returns an interface
(GECInterface t env) to that GECt object. The environment env is in this case
(PSt ps), since gGEC uses Object I/O.

generic2 gGEC t :: (GECDef t (PSt ps)) (PSt ps)

→ (GECInterface t (PSt ps), PSt ps)3

The (GECDef t env) consists of three elements. The first is a string that identifies
the top-level Object I/O element (window or dialog) in which the editor must be
created. The second is the initial value of type t of the editor. The third is a
callback function of type t→ env→ env. This callback function tells the editor
which parts of the program need to be informed of user actions. The editor uses
this function to respond to changes to the value of the editor.

::4 GECDef t env :==5 (String,t,CallBackFunction t env)
:: CallBackFunction t env :== t→ env→ env

The (GECInterface t env) is a record that contains all methods of the newly
created GECt.

:: GECInterface t env = { gecGetValue :: env→ (t,env)

, gecSetValue :: t→ env→ env }6

The gecGetValue method returns the current value, and gecSetValue sets the
current value of the associated GECt object. Programs can be constructed com-
bining editors by tying together the various gecSetValues and gecGetValues.
We are working on an arrow combinator library that abstracts from the necessary
plumbing [AvEPvW04a]. For the examples in this chapter, it is sufficient to use
the following tying function:

2generic f t :: T (t) introduces a generic function f with type scheme T (t). Keywords are
type-set in bold.

3Clean separates function arguments by whitespace, instead of ->.
4Type definitions are preceded by ::.
5:== introduces a synonym type.
6{ f0 :: t0, . . ., fn :: tn} denotes a record with field names fi and types ti.

5.2: THE GEC PROGRAMMING TOOLKIT 81

selfGEC :: String (t→ t) t (PSt ps)→ (PSt ps) |7 gGEC{|*|} t
selfGEC s f v env = env1 where ({gecSetValue},env1) = gGEC{|*|}

(s,f v,λx→ gecSetValue(f x)) env

Given an f of type t→ t on the data model of type t and an initial value v of type
t, selfGEC gui f v creates the associated GECt using gGEC (hence the context
restriction). selfGEC creates a feedback loop that sends every edited output value
back as an input to the same editor, after applying the function f.

Example 1:

The standard appearance of a GEC is given by the following program that creates
an editor for a self-balancing binary tree:

module Editor import StdEnv, StdIO, StdGEC

Start :: *World→ *World
Start world = startIO MDI Void

myEditor world

myEditor :: (PSt ps)→ (PSt ps)
myEditor = selfGEC ”Tree” balance

(Node Leaf 1 Leaf)

:: Tree a = Node (Tree a) a (Tree a) | Leaf

In this example, we create a GECTree Int which displays the indicated initial
value Node Leaf 1 Leaf (upper screen shot). The user can manipulate this value
in any desired order, producing new values of type Tree Int (e.g., turning the
upper Leaf into a Node with the pull-down menu). Each time a new value is
created or edited, the feedback function balance is applied. balance takes a
argument of type Tree a and returns the tree after balancing it. The shape and
layout of the tree being displayed adjusts itself automatically. Default values are
generated by the editor when needed.

Note that the only things that need to be specified by the programmer are
the initial value of the desired type, and the feedback function. In all remaining
examples, we only modify myEditor and the type for which an instance of gGEC
is derived.

The tree example shows that a GECt explicitly reflects the structure of type t.
For the creation of GUI applications, we need to model both specific GUI elements
(such as buttons) and layout control (such as horizontal, vertical layout). This

7In a function type, | introduces all overloading class restrictions.

82 EDITORS FOR HIGHER-ORDER DATA STRUCTURES

has been done by specializing gGEC [AvEP04b] for a number of types that either
represent GUI elements or layout. Here are the types and their gGEC specialization
that are used in the examples in this chapter:

:: Display a = Display a / / a non-editable GUI: e.g., .
:: Hide a = Hide a / / an invisible GUI, useful for state.
:: UpDown = UpPressed | DownPressed | Neutral / / a spin button: .

5.3 Dynamically Typed Higher-order GECs

In this section, we show how to extend GECs with the ability to deal with func-
tions and expressions. Because functions are opaque, the solution requires a
means of interpreting functional expressions as functional values. Instead of
writing our own parser/interpreter/type-inference system, we use the Esther shell
[PvW04] (c.f. Sect. 5.3 and Chap. 3).

Esther enables the user to enter expressions (using a subset of Clean) that
are dynamically typed, and transformed into values and functions using compiled
code. It is also possible to reuse earlier created functions, which are stored on disk.
Its implementation relies on the dynamic type system [ACP+92, Pil99, VP03] of
Clean.

The shell uses a text-based interface, and hence it makes sense to create a spe-
cial string-editor (Sect. 5.3.2), which converts any string into the corresponding
dynamically typed value. This special editor has the same power as the Esther
command interpreter and can deliver any dynamic value, including higher-order
polymorphic functions.

5.3.1 Dynamics in Clean

A dynamic is a value of static type Dynamic, which contains an expression as well
as a representation of its static type, e.g., dynamic 42 :: Int, dynamic map fst
:: ∀a b: [(a, b)]→ [a]. Basically, dynamic types turn every (first and higher-
order) data structure into a first-order structure, while providing run-time access
to the original type and value.

Function alternatives and case patterns can match on values of type Dynamic.
Such a pattern match consists of a value pattern and a type pattern, e.g., [4, 2]
:: [Int]. The compiler translates a pattern match on a type into a run-time type-
unification. If the unification is successful, type variables in a type pattern are
bound to the offered type. Applying dynamics at run-time will be used to create
an editor that changes according to the type of entered expressions (Sect. 5.3.2,
Example 2).

5.3: DYNAMICALLY TYPED HIGHER-ORDER GECS 83

dynamicApply :: Dynamic Dynamic→ Dynamic
dynamicApply (f :: a→ b) (x :: a) = dynamic f x :: b
dynamicApply df dx = dynamic ”Error” :: String

dynamicApply tests whether the argument type of the function f, inside its first
argument, can be unified with the type of the value x, inside the second argument.
dynamicApply can safely apply f to x, if the type pattern match succeeds. It
yields a value of the type that is bound to the type variable b by unification,
wrapped in a dynamic. If the match fails, it yields a string in a dynamic.

Type variables in type patterns can also relate to type variables in the static
type of a function. A ˆ behind a variable in a pattern associates it with the same
type variable in the static type of the function.

matchDynamic :: Dynamic→ t | TC t
matchDynamic (x :: tˆ) = x

The static type variable t, in the example above, is determined by the static context
in which it is used, and imposes a restriction on the actual type that is accepted at
run-time by matchDynamic. The function becomes overloaded in the predefined
TC (type code) class. This makes it a type dependent function [Pil99].

The dynamic run-time system of Clean supports writing dynamics to disk and
reading them back again, possibly in another program or during another execution
of the same program. This provides a means of type safe communication, the
ability to use compiled plug-ins in a type safe way, and a rudimentary basis for
mobile code. The dynamic is read in lazily after a successful run-time unification.
The amount of data and code that the dynamic linker links is therefore determined
by the evaluation of the value inside the dynamic.

writeDynamic :: String Dynamic env→ (Bool,env) | FileSystem env
readDynamic :: String env→ (Bool,Dynamic,env) | FileSystem env

Applying dynamics at run-time will be used to create an editor that changes
according to the type of entered expressions (Sect. 5.3.2, Example 2).

Programs, stored as dynamics, have Clean types and can be regarded as a
typed file system. We have shown that dynamicApply can be used to type check
any function application at run-time using the static types stored in dynamics.
Combining both in an interactive ‘read expression – apply dynamics – evaluate
and show result’ loop, already gives a simple shell that supports the type checked
run-time application of programs to documents. The composeDynamic function
below, taken from the Esther shell, applies dynamics and infers the type of an
expression.

composeDynamic :: String env→ (Dynamic,env) | FileSystem env
showValueDynamic :: Dynamic→ String

84 EDITORS FOR HIGHER-ORDER DATA STRUCTURES

Applying composeDynamic to expr env parses expr. Unbound identifiers in expr
are resolved by reading them from the file system. Additionally, overloading is re-
solved. Using the parse tree of expr and the resolved identifiers, the dynamicApply
function is used to construct the (functional) value v and its type τ. These are
packed in a dynamic v :: τ and returned by composeDynamic. In other words,
if env � expr :: τ and [[expr]]env = v then composeDynamic expr env = (v :: τ,
env). The showValueDynamic function yields a string representation of the value
inside a dynamic.

5.3.2 Creating a GEC for the type Dynamic

With the composeDynamic function, an editor for dynamics can easily be con-
structed. This function needs an appropriate environment to access the dynamic
values and functions (plug-ins) that are stored on disk. The standard (PSt ps)
environment used by the generic gGEC function (Sect. 5.2) is such an environment.
This means that we can simply use composeDynamic in a specialized editor to
offer the same functionality as the command line interpreter. Instead of Esther’s
console, we use a String editor as interface to the application user. Additionally,
we need to convert the provided string into the corresponding dynamic. We
therefore define a composite data type DynString and a specialized gGEC-editor
for this type (a GECDynString) that performs the required conversions.

:: DynString = DynStr Dynamic String

The choice of the composite data type is motivated mainly by simplicity and
convenience: the string can be used by the application user for typing in the
expression. It also stores the original user input, which cannot be extracted from
the dynamic when it contains a function.

Now we specialize gGEC for this type DynString. The complete definition of
gGEC{|DynString|} is given below.
gGEC{|DynString|} (gui,DynStr _ expr,dynStringUpdate) env

#8(stringGEC,env) = gGEC{|*|} (gui,expr,stringUpdate
dynStringUpdate) env

= ({ gecSetValue = dynSetValue stringGEC.gecSetValue
, gecGetValue = dynGetValue stringGEC.gecGetValue }, env)

where
dynSetValue stringSetValue (DynStr _ expr) env

= stringSetValue expr env
dynGetValue stringGetValue env

(nexpr,env) = stringGetValue env

8This is Clean’s ‘do-notation’ for environment passing.

5.3: DYNAMICALLY TYPED HIGHER-ORDER GECS 85

(ndyn, env) = composeDynamic nexpr env
= (DynStr ndyn nexpr,env)

stringUpdate dynStringUpdate nexpr env
(ndyn,env) = composeDynamic nexpr env
= dynStringUpdate (DynStr ndyn nexpr) env

The created GECDynString displays a box for entering a string by calling the
standard generic gGEC{|*|} function for the value expr of type String, yield-
ing a stringGEC. The DynString-editor is completely defined in terms of this
String-editor. It only has to take care of the conversions between a String and a
DynString. This means that its gecSetValue method dynSetValue simply sets
the string component of a new DynString in the underlying String-editor. Its
gecGetValue method dynGetValue retrieves the string from the String-editor,
converts it to the corresponding Dynamic by applying composeDynamic, and
combines these two values in a DynString-value. When a new string is created
by the application user, the callback function stringUpdate is evaluated, which
invokes the callback function dynStringUpdate (provided as an argument upon
creation of the DynString-editor), after converting the String to a DynString.

It is convenient to define a constructor function mkDynStr that converts any
input expr, which has value v of type τ, into a value of type DynString guaran-
teeing that if v :: τ and [[expr]] = v, then (DynStr (v::τ) expr) :: DynString.

mkDynStr :: a→ DynString | TC a
mkDynStr x = let dx = dynamic x

in DynStr dx (showValueDynamic dx)

Example 2:

We construct an interactive editor that can be used to test functions. It can be
a newly defined function, say λx→ xˆ2, or any existing function stored on disk
as a Dynamic. Hence, the tested function can vary from a small function, say
factorial, to a large complete application.

86 EDITORS FOR HIGHER-ORDER DATA STRUCTURES

:: MyRecord = { function :: DynString
, argument :: DynString
, result :: DynString }

myEditor = selfGEC ” t e s t ” guiApply (initval id 0)
where

initval f v = { function = mkDynStr f
, argument = mkDynStr v
, result = mkDynStr (f v) }

guiApply r=:9{ function = DynStr (f::a→ b) _
, argument = DynStr (v::a) _ }

= {r &10 result = mkDynStr (f v)}
guiApply r = r

The type MyRecord is a record with three fields, function, argument, and
result, all of type DynString. The user can use this editor to enter a function
definition and its argument. The selfGEC function will ensure that each time a
new string is created with the editor test, the function guiApply is applied that
provides a new value of type MyRecord to the editor. The function guiApply tests,
in a similar way as the function dynamicApply (see Sect. 5.3.1), whether the type
of the supplied function and argument match. If so, a new result is calculated. If
not, nothing happens.

This editor can only be used to test functions with one argument. What
happens if we edit the function and the argument in such a way that the result
is not a plain value but a function itself? Take, e.g., as function the twice func-
tion λf x→ f (f x), and as argument the increment function ((+) 1). Then
the result is also a function λx→ ((+) 1) ((+) 1 x). The editor displays
<function> as result. There is no way to pass an argument to the resulting
function.

With an editor like the one above, the user can enter expressions that are
automatically converted into the corresponding Dynamic value. As in the shell,
unbound names are expected to be dynamics on disk. Illegal expressions result in
a Dynamic containing an error message.

To have a properly higher-order dynamic application example, one needs an
editor in which the user can type in functions of arbitrary arity, and subsequently
enter arguments for this function. The result is then treated such that, if it is a
function, editors are added dynamically for the appropriate number of arguments.
This is explained in the following example.

8x =:e binds x to e.
10{r & f0=v0,..., fn=vn} is a record equal to r, except that fields fi have value vi.

5.4: STATICALLY TYPED HIGHER-ORDER GECS 87

Example 3:

We construct a test program that accepts arbitrary expressions and adds the proper
number of argument editors, which again can be arbitrary expressions. The num-
ber of arguments cannot be statically determined and has to be recalculated each
time a new value is provided. Instead of an editor for a record, we therefore create
an editor for a list of tuples. Each tuple consists of a string used to prompt to the
user, and a DynString-value. The tuple elements are displayed below each other
using the predefined list editor vertlistAGEC and access operator ˆˆ, which will
be presented in Sect. 5.4.1. The selfGEC function is used to ensure that each
change made with the editor is tested with the guiApply function and the result
is shown in the editor.

myEditor = selfGEC ” t e s t ” (guiApply o (ˆˆ))
(vertlistAGEC [show ”expression ” 0])

where
guiApply [f=:(_,(DynStr d _)):args]
= vertlistAGEC [f:check (fromDynStr d) args]
where

check (f::a→ b) [arg=:(_,DynStr (x::a) _):args]
= [arg : check (dynamic f x) args]

check (f::a→ b) _ = [show ”argument ” ”??”]
check (x::a) _ = [show ” resu l t ” x]

show s v = (Display s,mkDynStr v)

The key part of this example is formed by the function check, which calls
itself recursively on the result of the dynamic application. As long as function and
argument match, and the resulting type is still a function, it will require another
argument, which will be checked for type consistency. If function and argument
do not match, ?? is displayed, and the user can try again. As soon as the resulting
type is a plain value, it is evaluated and shown using the data constructor Display,
which creates a non-editable editor that just displays its value. With this editor,
any higher-order polymorphic function can be entered and tested.

5.4 Statically Typed Higher-order GECs

The editors presented in the previous section are flexible because they deliver a
Dynamic (packed into the type DynString). They have the disadvantage that the
programmer has to program a check, such as the check function in the previous
example, on the type consistency of the resulting Dynamics.

88 EDITORS FOR HIGHER-ORDER DATA STRUCTURES

In many applications, it is statically knownwhat the type of a supplied function
must be. In this section, we show how the run-time type check can be replaced
by a compile-time check, using the abstraction mechanism for GECs. This gives
us a second solution for higher-order data structures that is statically typed, which
allows therefore type-directed generic GUI creation.

5.4.1 Abstract Graphical Editor Components

The generic function gGEC derives a GUI for its instance type. Because it is a
function, the appearance of the GUI is completely determined by that type. This
is in some cases much to rigid. One cannot use different visual appearances of the
same type within a program. For this purpose abstract GECs (AGEC) [AvEP04a]
have been introduced. An instance of gGEC for AGEC has been defined. There-
fore, an AGECd can be used as a GECd, i.e., it behaves as an editor for values
of a certain domain, say of type d. However, an AGECd never displays nor edits
values of type d, but rather a view on values of this type, say of type v. Values of
type v are shown and edited, and internally converted to the values of domain d.
The view is again generated automatically as a GECv. To makes this possible, the
ViewGEC d v record is used to define the relation between the domain d and the
view v.

:: ViewGEC d v
= { d_val :: d / / initial domain value

, d_oldv_to_v :: d→(Maybe v)→ v / / convert domain value to view value
, update_v :: v→ v / / correct view value
, v_to_d :: v→ d } / / convert view value to domain value

It should be noted that the programmer does not need to be knowledgeable about
Object I/O programming to construct an AGECd with a view of type v. The
specification is only in terms of the involved data domains. The complete interface
to AGECs is given below.

:: AGEC d / / abstract data type
mkAGEC :: (ViewGEC d v)→ AGEC d | gGEC{|*|} v
(ˆˆ) :: (AGEC d)→ d / / Read current domain value
(=̂) infixl :: (AGEC d) d→ AGEC d / / Set new domain value

The ViewGEC record can be converted to the abstract type AGEC, using the function
mkAGEC above. Because AGEC is an abstract data type we need access functions
to read (ˆˆ) and write (ˆ=) its current value. AGECs allow us to define arbitrarily
many editors geci :: AGECd that have a private implementation of type GECvi .
Because AGEC is abstract, code that has been written for editors that manipulates
some type containing AGECd, does not change when the value of type AGECd

5.4: STATICALLY TYPED HIGHER-ORDER GECS 89

is exchanged for another AGECd. This facilitates experimenting with various
designs for an interface without changing any other code.

We built a collection of functions creating abstract editors for various pur-
poses. Below, we summarize only those functions of the collection that are used
in the examples in this chapter:

vertlistAGEC :: [a]→ AGEC [a] | gGEC{|*|} a / / all elements in a column
counterAGEC :: a → AGEC a | gGEC{|*|}, IncDec a / / a counter
hidAGEC :: a → AGEC a / / identity, no editor
displayAGEC :: a → AGEC a | gGEC{|*|} a / / identity, non-editable

The counter editor below is a typical member of this library.

Example 4:

counterAGEC :: a→ AGEC a | gGEC{|*|}, IncDec a
counterAGEC j = mkAGEC { d_val=j,d_oldv_to_v=λi _→ (i,Neutral)

, update_v=updateCounter,v_to_d=fst }
where updateCounter (n,UpPressed) = (n+one,Neutral)

updateCounter (n,DownPressed) = (n-one,Neutral)
updateCounter (n,Neutral) = (n ,Neutral)

A programmer can use the counter editor as an integer editor, but because of its
internal representation it presents the application user with an edit field combined
with an up-down, or spin, button. The updateCounter function is used to syn-
chronize the spin button and the integer edit field. The right part of the tuple is of
type UpDown (Sect. 5.2), which is used to create the spin button.

5.4.2 Adding Static Type Constraints to Dynamic GECs

The abstraction mechanism provided by AGECs is used to build type-directed
editors for higher-order data structures, which check the type of the entered ex-
pressions dynamically. These statically typed higher-order editors are created
using the function dynamicAGEC. The full definition of this function is specified
and explained below.

dynamicAGEC :: d→ AGEC d | TC d
dynamicAGEC x = mkAGEC {d_val=x ,d_oldv_to_v=toView

,update_v=updView x,v_to_d=fromView x }
where

toView newx Nothing = let dx = mkDynStr newx
in (dx,hidAGEC dx)

toView _ (Just oldx) = oldx

90 EDITORS FOR HIGHER-ORDER DATA STRUCTURES

fromView :: d (DynString,AGEC DynString)→ d | TC d
fromView _ (_,oldx) = case ˆˆoldx of DynStr (x::dˆ) _→ x

updView :: d (DynString,AGEC DynString)
→ (DynString,AGEC DynString) | TC d

updView _ (newx=:(DynStr (x::dˆ) _),_) = (newx,hidAGEC newx)
updView _ (_,oldx) = (ˆˆoldx,oldx)

The abstract Dynamic editor, which is the result of the function dynamicAGEC
initially takes a value of some statically determined type d. It converts this value
into a value of type DynString, such that it can be edited by the application user as
explained in Sect. 5.3.2. The application user can enter an expression of arbitrary
type, but now it is ensured that only expressions of type d are approved.

The function updView, which is called in the abstract editor after any edit
action, checks, using a type pattern match, whether the newly created dynamic
can be unified with the type d of the initial value (using the ˆ-notation in the
pattern match as explained in Sect. 5.3.1). If the type of the entered expression
is different, it is rejected11 and the previous value is restored and shown. To
do this, the abstract editor has to remember the previously accepted correctly
typed value. Clearly, we do not want to show this part of the internal state to
the application user. This is achieved using the abstract editor hidAGEC (Sect.
5.4.1), which creates an invisible editor, i.e., a store, for any type.

Example 5:

Consider the following variation of Example 2:

:: MyRecord a b = { function :: AGEC (a→ b)
, argument :: AGEC a
, result :: AGEC b }

myEditor = selfGEC ” t e s t ” guiApply (initval ((+) 1.0) 0.0)
where

initval f v = { function = dynamicAGEC f
, argument = dynamicAGEC v
, result = displayAGEC (f v) }

guiApply myrec=:{ function = af, argument = av }
= {myrec & result = displayAGEC ((ˆˆaf) (ˆˆav))}

The editor above can be used to test functions of a certain statically determined
type. Due to the particular choice of the initial values ((+) 1.0 :: Real→ Real

11There is currently no feedback on why the type is rejected. Generating good error messages
as in [HJSA02] certainly improves the user interface.

5.5: APPLICATIONS OF HIGHER-ORDER GECS 91

and 0.0 :: Real), the editor can only be used to test functions of type Real→ Real
applied to arguments of type Real. Notice that it is now statically guaranteed
that the provided dynamics are correctly typed. The dynamicAGEC-editors take
care of the required checks at run-time and they reject ill-typed expressions. The
programmer therefore does not have to perform any checks anymore. The abstract
dynamicAGEC-editor delivers a value of the proper type just like any other abstract
editor.

The code in the above example is not only simple and elegant, but it is also
very flexible. The dynamicAGEC abstract editor can be replaced by any other
abstract editor, provided that the statically derived type constraints (concerning f
and v) are met. This is illustrated by the next example.

Example 6:

If one prefers a counter as input editor for the argument value, one only has to
replace dynamicAGEC by counterAGEC in the definition of initval:

initval f v = { function = dynamicAGEC f
, argument = counterAGEC v
, result = displayAGEC (f v) }

The dynamicAGEC is typically used when expression editors are preferred
over value editors of a type, and when application users need to be able to enter
functions of a statically fixed monomorphic type.

One can create an editor for any higher-order data structure τ, even if it con-
tains polymorphic functions. It is required that all higher-order parts of τ are
abstracted, by wrapping them with an AGEC type. Basically, this means that each
part of τ of the form a→ bmust be changed into AGEC (a→ b). For the resulting
type τ′ an edit dialog can be automatically created, e.g., by applying selfGEC.
However, the initial value that is passed to selfGEC must be monomorphic, as
usual for any instantiation of a generic function. Therefore, editors for poly-
morphic types cannot be created automatically using this statically typed generic
technique. As explained in Sect. 5.3.2 polymorphic types can be handled with
dynamic type-checking.

5.5 Applications of higher-order GECs

The ability to generate editors for higher-order data structures greatly enhances
the applicability of GECs. Firstly, it becomes possible to create applications in
which functions can be edited as part of a complex data structure. Secondly, these
functions can be composed dynamically from earlier created compiled functions

92 EDITORS FOR HIGHER-ORDER DATA STRUCTURES

on disk. Both are particular useful for rapid prototyping purposes, as they can add
real-life functionality.

In this section, we discuss one small and one somewhat larger application.
Even the code for the latter application is still rather small (just a few pages). The
code is omitted in this chapter due to space limitations, but it can be found at the
GEC Toolkit website12. Screen shots of the running applications are given in Sect.
5.8.

An Adaptable Calculator.

In the first example, we use GEC to create a ‘more or less’ standard calculator.
The default look of the calculator was adapted using the aforementioned AGEC
customization techniques. Special about this calculator is that its functionality
can be easily extended at run-time: the application user can add his or her own
buttons with a user-defined functionality. In addition to the calculator editor, a
GEC editor is created, which enables the application user to maintain a list of
button definitions consisting of button names with corresponding functions. Since
the type of the calculator functions are statically known, a statically typed higher-
order GEC is used in this example. The user can enter a new function definition
using a lambda expression, but it is also possible to open and use an earlier created
function from disk. Each time the list is changed with the list editor, the calculator
editor is updated and adjusted accordingly. For a typical screen shot see Fig. 5.1.

A Form Editor.

In the previous example, we have shown that one can use one editor to change
the look and functionality of another. This principle is also used in a more serious
example: the form editor. The form editor is an editor with which electronic forms
can be defined and changed. This is achieved using a meta-description of a form.
This meta-description is itself a data structure, and therefore, we can generate an
editor for it. One can regard a form as a dedicated spreadsheet, and with the form
editor, one can define the actual shape and functionality of such a spreadsheet.
With the form editor, one can create and edit fields. Each field can be used for
a certain purpose. It can be used to show a string, it can be used as editor for a
value of a certain basic type, it can be used to display a field in a certain way by
assigning an abstract editor to it (e.g., a counter or a calculator), and it can be used
to calculate and show new values depending on the contents of other fields. For
this purpose, the application user has to be able to define functions that have the
contents of other fields as arguments. The form editor uses a mixed mode strategy.
The contents of some fields can be statically determined (e.g., a field for editing

12http://clean.cs.ru.nl/gec

http://clean.cs.ru.nl/gec

5.6: RELATED WORK 93

an integer value). However, the form editor can only dynamically check whether
the argument fields of a specified function are indeed of the right type. The output
of the form editor is used to create the actual form in another editor, which is
part of the same application. By filling in the form fields with the actual value,
the application user can test whether the corresponding form behaves as intended.
For a typical screen shot see Fig. 5.2.

5.6 Related Work

In the previous sections we have shown that we can create editors that can deal
with higher order data structures. We can create dynamically typed higher-order
editors, which have the advantages that we can deal with polymorphic higher order
data structures and overloading. This has the disadvantage that the programmer
has to check type safety in the editor. The compiler can ensure type correctness
of higher-order data structures in statically typed editors, but they can only edit
monomorphic types. Related work can be sought in three areas:

Grammars instead of types:

Taking a different perspective on the type-directed nature of our approach, one
can argue that it is also possible to obtained editors by starting from a grammar
specification instead of a type. Such toolkits require a grammar as input and yield
an editor GUI as result. Projects in this flavor are for instance the recent Proxima
project [Sch04], which relies on XML and its DTD (Document Type Definition
language), and the Asf+Sdf Meta-Environment [vdBvDH+01] which uses an Asf
syntax specification and Sdf semantics specification. The major difference with
such an approach is that these systems need both a grammar and some kind of
interpreter. In our system higher-order elements are immediately available as a
functional value that can be applied and passed to other components.

GUI programming toolkits:

From the abstract nature of the GEC toolkit, it is clear that we need to look at GUI
toolkits that also offer a high level of abstraction. Most GUI toolkits are concerned
with the low-level management of widgets in an imperative style. One well-known
example of an abstract, compositional GUI toolkit based on a combinator library
is Fudgets [CH93]. These combinators are required for plumbing when building
complex GUI structures from simpler ones. In our system far less plumbing is
needed. Most work is done automatically by the generic function gGEC. The only
plumbing needed in our system is for combining the GEC-editors themselves.

94 EDITORS FOR HIGHER-ORDER DATA STRUCTURES

Furthermore, the Fudget system does not provide support for editing function
values or expressions.

Because a GECt is a t-stateful object, it makes sense to have a look at object-
oriented approaches. The power of abstraction and composition in our functional
framework is similar to mixins [FKF98] in object-oriented languages. One can
imagine an OO GUI library based on compositional and abstract mixins in order
to obtain a similar toolkit. Still, such a system lacks higher-order data structures.

Visual programming languages:

Due to the extension of the GEC programming toolkit with higher-order data
structures, visual programming languages have come within reach as application
domain. One interesting example is the Vital system [Han02] in which Haskell-
like scripts can be edited. Both systems allow direct manipulation of expressions
and custom types, allow customization of views, and have guarded data types (like
the selfGEC function). In contrast with the Vital system, which is a dedicated
system and has been implemented in Java, our system is a general purpose toolkit.
We could use our toolkit to construct a visual environment in the spirit of Vital.

5.7 Conclusions

With the original GEC-toolkit one can construct GUI applications without much
programming effort. This is done on a high level of abstraction, in a fully composi-
tional manner, and type-directed. It can be used for any monomorphic first-order
data type. In this chapter, we have shown how the programming toolkit can be
extended in such a way that GECs can be created for higher-order data structures.
We have presented two methods, each with its own advantage and disadvantage.

We can create an editor for higher-order data structures using dynamic typing,
which has as advantage that it can deal with polymorphism and overloading, but
with as disadvantage that the programmer has to ensure type safety at run-time.
We can create a editor for higher-order data structures using the static typing such
that type correctness of entered expressions or functions is guaranteed at compile-
time. In that case, we can only cope with monomorphic types, but we can generate
type-directed GUIs automatically.

As a result, applications constructed with this toolkit can manipulate the same
set of data types as modern functional programming languages can. The system
is type-directed and type safe, as well as the GUI applications that are constructed
with it.

5.8: SCREEN SHOTS OF EXAMPLE APPLICATIONS 95

5.8 Screen Shots of Example Applications

Figure 5.1: A screen shot of the adaptable calculator. Left the editor for defining
button names with the corresponding function definitions. Right the resulting
calculator editor.

Figure 5.2: A screen shot of the form editor. The form editor itself is shown in
the upper left window; the corresponding editable spreadsheet-like form is shown
in the other.

CHAPTER 6

Polytypic Syntax Tree Operations

ARJEN VAN WEELDEN

SJAAK SMETSERS
RINUS PLASMEIJER

6.1 Introduction

The construction of complex software often starts by designing suitable data types
to which functionality is added. Some functionality is data type specific, other
functionality only depends on the structure of the data type. Polytypic program-
ming is considered an important technique to specify such generic functionality. It
enables the specification of functions on the structure of data types, and therefore,
it is characterized as type dependent (type indexed) programming. The requested
overall functionality is obtained by designing your data types such that they reflect
the separation of specific and generic functionality. By overruling the polytypic
instantiation mechanism for those parts of the data type that correspond to specific
functionality, one obtains the desired overall behavior. In essence, a programmer
only has to program the exception and a small polytypic scheme, since polytypic
functions automatically work for the major part of the data types. Examples of
such generic operations are equality, traversals, pretty-printing, and serialization.

The number of such generic operations in a specific program can be quite
small, and hence the applicability of polytypic programming seems limited. Poly-
typic functions that are data specific only make sense if the involved data types
themselves are complex or very big. Otherwise, the definition of the polytypic

97

98 POLYTYPIC SYNTAX TREE OPERATIONS

version of an operation requires more effort than defining this operation directly.
Moreover, the data-dependent functionality should be restricted to only a small
portion of the data type, while the rest can be treated generically.

This chapter investigates the suitability of polytypic programming as a general
programming tool, by applying it to (a part of) compiler construction. Compilers
involve both rich data structures and many, more or less complex, operations on
those data structures. We focus on the front-end of compilers: parsing, post-
parsing, and type inference operations on the syntax tree. There exist many spe-
cial tools, e.g., parser generators and compiler compilers, which can be used for
constructing such a front-end. We show that polytypic programming techniques
can be used to elegantly specify parsers. This has the advantage that the polytypic
functional compiler can generate most of the code. Another advantage is that one
can specify everything in the functional language itself, without synchronization
issues between the syntax tree type and an external grammar definition.

We have implemented polytypic parsers in both Generic Haskell [LCJ03] (a
preprocessor for Haskell [Pey03]) and Clean [AP03]. We use (Generic) Haskell
to present our implementation in this chapter; the Clean code is very similar. The
polytypic parser we use in this chapter differs from those commonly described in
papers on polytypic programming [JJ99, JJ02a]. Our parser is based on the types–
as–grammars approach: the context-free syntax of the language to parse is spec-
ified via appropriate data type definitions. The types–as-grammar approach was
previously used to construct a new version of the Esther shell originally described
in Weelden and Plasmeijer [vWP03]. The shell uses polytypic programming to
specify the parser and post-parsing operations on expressions the size of a single
command-line. This chapter tackles larger inputs and grammars, including the
Haskell syntax.

Apart from its expressiveness, a programming technique is not very useful if
the performance of the generated code is inadequate. The basic code generation
schema used in the current implementations of polytypic systems produces ineffi-
cient code. We asses the efficiency of both the Generic Haskell and the Clean im-
plementations and compare them with the code generated by an optimization tool
by Alimarine and Smetsers [AS05]. This tool takes a polytypic Clean program as
input and produces a Haskell/Clean-like output without the polytypic overhead.

To summarize, the main contributions of this chapter are:

• We show that polytypic programming, introduced in Sect. 6.2, is not only
suited for defining more or less inherently generic operations, but also for
specifying data specific functionality.

• We describe a technique that allows us to derive a parser for context-free
languages automatically from the definition of a syntax tree in Sect. 6.3. The
technique is based on the idea to interpret types as grammar specifications.

6.2: POLYTYPIC PROGRAMMING 99

• We show that the same technique applies to several related syntax tree
operations in Sect. 6.4. As operations become more data specific, we gain
less from using polytypic programming. However, we show that it is not
totally unsuitable for non-generic algorithms.

• As most polytypic programmers know, polytypic programs (including our
parsers) have serious performance problems. Fortunately, we show in Sect.
6.5 that an appropriate optimization tool recovers a lot of efficiency, and that
our parsers can approach the speed of parsers generated by external tools.

Related work is discussed in Sect. 6.6, and we conclude in Sect. 6.7.

6.2 Polytypic Programming

Specifying polytypic functions is a lot like defining a type class and its instances.
The main difference is that a polytypic compiler can derive most of the instances
automatically, given a minimal fixed set of instances for three or four (generic)
types. The programmer can always overrule the derived instance for a certain
type by specifying the instance manually. This powerful derivation scheme even
extends to kinds (the types of types), which we will neither use nor explain in this
chapter.

The fact that polytypic functions can be derived for most types is based on
the observation that any (user-defined) algebraic data type can be expressed in
terms of eithers, pairs, and units. This generic representation developed by Hinze
[Hin00a]. It is encoded in Generic Haskell by the following Haskell types:

data Sum a b = Inl a | Inr b −− either/choice between (In)left and (In)right
data Prod a b = a :∗: b −−pair/product of two types, left associative
data Unit = Unit −− the unit type
A data type and its generic representation are isomorphic. The corresponding
isomorphism can be specified as a pair of conversion functions. E.g., for lists the
generic representation and automatically generated associated conversion func-
tions are as follows.

type GenericList a = Sum (Prod a [a]) Unit

fromList :: [a]→ GenericList a toList :: GenericList a→ [a]
fromList (x:xs) = Inl (x :∗: xs) toList (Inl (x :∗: xs)) = x:xs
fromList [] = Inr Unit toList (Inr Unit) = []

Note that the generic representation type GenericList is not recursive and still
contains the original list type. A polytypic function instance for the list type can be

100 POLYTYPIC SYNTAX TREE OPERATIONS

constructed by the polytypic system using the generic representation. The derived
instance for the list type uses the given instances for Sum, Prod, Unit, and once
again the currently deriving instance for lists. This provides the recursive call,
which one would expect for a recursive type such as lists.

To define a polytypic function, the programmer has to specify its function
type, similar to a type class, and only the instances for the generic types (Prod,
Sum, and Unit) and non-algebraic types (like Int and Double). The polytypic
instances for other types that are actually used inside a program are automatically
derived. Polytypic functions are therefore most useful if a large collection of
(large) data types is involved, or if the types change a lot during development.

To illustrate polytypic programming we use the following syntax tree excerpt:

data Expr = Apply Expr Expr | Lambda Pattern Expr
| Case Expr [(Pattern, Expr)] | Variable String
| If Expr Expr Expr | · · ·

data Pattern = Var String | Constructor String [Pattern] | · · ·

data · · ·
We define a Generic Haskell function print of type a→ String that is polytypic
in the type variable a, similar to Haskell’s show :: Show a⇒ a→ String that is
overloaded in a. Instead of instances for the Show class, we define type instances
for print using the special parentheses {||}.
print{|a|} :: a→ String

print{|Int|} i = show i −−basic type instance

print{|Unit|} Unit = ”” −−unit instance

print{|Sum a b|} (Inl l) = print{|a|} l −− left either instance
print{|Sum a b|} (Inr r) = print{|b|} r −− right either instance

print{|Prod a b|} (l :∗: r) −−pair instance
= print{|a|} l ++ ” ” ++ print{|b|} r

print{|Con d a|} (Con x) −− instance for constructors
= ” (” ++ conName d ++ ” ” print{|a|} x ++ ”)”

To print the parameterized type Sum and Prod, print requires printing func-
tions for the parameter types a and b. These are automatically passed under
the hood by Generic Haskell, similar to dictionaries in the case of overloading.

6.2: POLYTYPIC PROGRAMMING 101

print{|Sum a b|} can refer to these hidden dictionary functions using print{|a|}
and print{|b|}. Furthermore, the type Con, used in this example, was added to
the set of generic types in Generic Haskell as well as in Clean. Run-time access
to some information about the original data constructors is especially convenient
when writing trace functions, such as print, for debugging purposes.

data Con a = Con a; data ConDescr = { conName :: String, · · · }

When used in Generic Haskell, Con appears to get an additional argument d. This
is not a type argument but a denotation that allows the programmer to access
information about the constructor, which is of type ConDescr. In the example
print{|Con d a|} applies conName to d to retrieve the name of the constructor.

Observe that this polytypic print function does not depend on the structure
of the syntax tree type. If this type definition changes during development, the
underlying systemwill automatically generate a proper version of print. This im-
plementation of print is quite minimal, with superfluous parentheses and spaces.
It is easy to adjust the definition to handle these situations correctly, see for
example Jansson and Jeuring [JJ99].

It is not difficult to specify the polytypic inverse of the print function. Us-
ing a monadic parser library, with some utility functions such as symbol(s) and
parseInt that take care for low-level token recognition, one could specify a
polytypic parse function (similar to Haskell’s read) as follows:

type Parser a = · · · −− some monadic parser type

parse{|a|} :: Parser a

parse{|Unit|} = return Unit

parse{|Sum a b|} = mplus (parse{|a|} >>= return . Inl)
(parse{|b|} >>= return . Inr)

parse{|Prod a b|} = do l← parse{|a|}
r← parse{|b|}
return (l :∗: r)

parse{|Con d a|} = do symbol ’(’
symbols (conName d)
symbol ’ ’
x← parse{|a|}
symbol ’)’
return (Con x)

parse{|Int|} = parseInt

102 POLYTYPIC SYNTAX TREE OPERATIONS

Such a simple parser follows the print definition very closely and is easy to under-
stand. parse is obviously print’s inverse, and it can only parse input generated
by the print function, including redundant spaces and parentheses.

6.3 Polytypic Parsing of Programming Languages

This section introduces the types–as–grammar approach to polytypically derive
a parser. This parser builds on a small layer of monadic parser combinators, to
abstract from the lower level token recognition machinery. We use very naive
parser combinators (shown below) because they are easy to use and explain. To
abstract from the parsing issues at the lexical level, we assume a separated scan-
ner/lexer and that the parser will work on a list of tokens. Later in Sect. 6.5,
we will test the efficiency of the polytypic parser using also a set of continuation
parser combinators that improve the error messages. The naive monadic parser,
using the Maybe monad, is implemented as follows.

newtype Parser a = Parser {parser :: [Token]→ Maybe (a,[Token])}

data Token = IdentToken String
| LambdaToken | ArrowToken
| IfToken | ThenToken | ElseToken
| · · · −− all tokens

token :: Token→ Parser Token
token tok = Parser (λts→ case ts of

(t:ts’) | t == tok→ Just (t, ts’)
_ → Nothing

instance Monad Parser where
return x = Parser (λts→ Just (x, ts)) −− success parser
l >>= r = Parser (λts→ case parser l ts of −− sequence parser

Just (x, ts’)→ parser (r x) ts’
Nothing → Nothing)

instance MonadPlus Parser where
mzero = Parser (λts→ Nothing) −− fail parser
mplus l r = Parser (λts→ case parser l ts of −− choice parser

Just (x, ts’)→ Just (x, ts’)
Nothing → parser r ts)

6.3: POLYTYPIC PARSING OF PROGRAMMING LANGUAGES 103

The mplus instance above defines a deterministic (exclusive) choice parser: if the
left argument of mplus parses successfully, the right argument is never tried. This
is done out of speed considerations and, if the parsers are written in the right way,
it does not matter for deterministic grammars. Algebraic data constructors have
unique names, which makes the grammar deterministic. This is also reflected in
the Parser type, i.e., the parser returns a Maybe result, which shows that it returns
at most one result.

To parse real programming languages we should not parse the constructor
names that occur in the syntax tree type. Instead, we should parse all kinds of
tokens such as if, λ, and→. This requires writing most of the instances for the
polytypic function parse by hand. Another option is adding these tokens to the
abstract syntax tree, which becomes a non-abstract, or rich, syntax tree. Since we
instruct the polytypic parser using types, we cannot reuse the (constructors of the)
Token data type. Instead, we specify each token as a separate data type. This
gives us the ability to parse our own tokens, without the constructors getting in
the way. We can now define, for example, a nicer parser for lists that uses the []
and _:_ notation.

data List a = Cons a ColonToken (List a)
| Nil EmptyListToken

data ColonToken = ColonToken
data EmptyListToken = EmptyListToken

parse{|ColonToken|} = symbol ’:’ >> return ColonToken
parse{|EmptyListToken|} = symbols ” [] ” >> return EmptyListToken

parse{|Con d a|} = parser{|a|} >>= return . Con

intListParser = parse{|List Int|} −− automatically derived by the system

We partly reuse the parse definition from Sect. 6.2. We do not want to parse the
constructor names. Therefore, we replace the Parse{|Con d a|} alternative from
Sect. 6.2 with the one shown above. Not parsing constructor names means that
the order of alternatives is important. Since parse{|Sum a b|} uses the exclusive
mplus, it gives priority to the Inl(eft) alternative over the Inr(ight) alternative.
Therefore, the textual order of the constructors of an algebraic data type deter-
mines the order of parsing, which is similar to function definitions with multiple
alternatives in Haskell and Clean.

One can parse any context-free syntax by specifying the grammar using alge-
braic data types. The grammar below is an excerpt of a small functional program-

104 POLYTYPIC SYNTAX TREE OPERATIONS

ming language. It uses the convention that Ntype represents the non-terminal type
and Ttype represents a terminal symbol type.

data Nexpression = Apply Nexpression Nexpression
| Lambda Tlambda Nvariable Tarrow Nexpression
| If Tif Nexpression Tthen Nexpression

Telse Nexpression
| Variable Nvariable
| Value Nvalue

data Nvariable = Variable String

data Nvalue = Integer Int | Boolean Bool

data Tlambda = Tlambda; data Tarrow = Tarrow
data Tif = Tif; data Tthen = Tthen; data Telse = Telse

parse{|Con d a|} = parse{|a|} >>= return . Con
parse{|String|} = identifierToken >>= λ(IdentToken s)→ return s

parse{|Tlambda|} = token LambdaToken >> return Tlambda
parse{|Tarrow|} = token ArrowToken >> return Tarrow
parse{|Tif|} = token IfToken >> return Tif
parse{|Tthen|} = token ThenToken >> return Tthen
parse{|Telse|} = token ElseToken >> return Telse

If we remove all constructors from the type definitions above, we end up with
something that looks very similar to the following grammar description in BNF
notation:

<expression> ::= <expression> <expression>
| ”λ” <variable> ”→” <expression>
| ” i f ” <expression> ”then” <expression>

”else ” <expression>
| <variable>
| <value>

<variable> ::= String

<value> ::= Int | Bool

It is also easy to support extended BNF (EBNF) notation by introducing some
auxiliary data types: Plus to mimic (· · ·)+, Option to mimic [· · ·], and Star to

6.3: POLYTYPIC PARSING OF PROGRAMMING LANGUAGES 105

mimic (· · ·)�. The parsers for all of them can be derived automatically.
data Plus a = Plus a (Plus a) | One a
type Star a = Option (Plus a)
type Option a = Maybe a

data Nexpression = · · ·
| Lambda Tlambda (Plus Nvariable) Tarrow Nexpression
| · · ·

The use of parameterized data types, such as Plus, can make the definition of
the syntax tree type very concise. It is similar to two-level or van Wijngaarden
grammars [vW65]. We can now specify a lambda expression with multiple ar-
guments using Plus as shown above. Clearly, this corresponds to the following
EBNF grammar:

<expression> ::= · · ·
| ”λ” <variable>+ ”→” <expression>
| · · ·

An issue with this types–as–grammar approach is left-recursive type definitions.
Most parser combinator libraries do not support left-recursive parser definitions
and run out of heap or stack space. Recently, Baars and Swierstra developed parser
combinators [BS04] that detect and remove left-recursion automatically . Our
current solution is manually removing the (few occurrences of) left-recursion by
splitting the left-recursive type, as shown below. Only Nexpression is (mutually)
left-recursive because it has no argument of type Ttoken before the Nexpression
arguments. We write a small parser for the left-recursive part, making sure that
most of the parser is still derived automatically.

data Nexpression = Apply Nexpression Nexpression
| Term Nterm −− separate non-recursive part

data Nterm = Lambda Tlambda (Plus Nvariable) Tarrow Nexpression
| · · ·

parse{|Nexpression|} = parse{|Plus Nterm|} >>= return . app
where

app (One t) = Term t
app (Plus t ts) = app’ (Term t) ts
app’ acc (One t) = Apply acc t
app’ acc (Plus t ts) = app’ (Apply acc t) ts

106 POLYTYPIC SYNTAX TREE OPERATIONS

We extended this example to a basic functional language grammar, to test our
generated parser. Moreover, as a larger test, we converted Haskell’s grammar to
types and derived a parser for it. The results of those tests appear in Sect. 6.5.

6.4 Other Polytypic Syntax Tree Operations

Polytypic parsing and several other polytypic syntax tree operations are used in
the current version of the Esther shell [vWP03], which is written using Clean’s
generics. The Esther shell offers a basic lazy functional language as shell syntax.
Its grammar is specified as a type, using the approach of Sect. 6.3. This section
uses excerpts from the Esther shell to give an impression about how data specific
syntax tree operations, written using polytypic programming techniques, improve
conciseness, modularity, and allow easy changes to the syntax by adding and
rearranging types.

6.4.1 Restructuring Infix Expressions

A common syntax tree operation is re-parsing expressions that contain user-defined
infix operators. Because they are user defined, they cannot be correctly parsed
during the first parse. The usual solution is to restructure the syntax tree after
parsing, once the precedence and associativity information is available.

data FixityInfo = · · · −−precedence and associativity information

fixInfix{|a | m|} :: (Functor m, Monad m)⇒ a→ FixityInfo→ m a

fixInfix{|Int|} i ops = return i
fixInfix{|Unit|} Unit ops = return Unit
fixInfix{|Sum a b|} (Inl l) ops = do l’← fixInfix{|a|} l ops

return (Inl l’)
fixInfix{|Sum a b|} (Inr r) ops = do r’← fixInfix{|b|} r ops

return (Inr r’)
fixInfix{|Prod a b|} (l :∗: r) ops = do l’← fixInfix{|a|} l ops

r’← fixInfix{|b|} r ops
return (l’ :∗: r’)

fixInfix{|Nexpression|} (Term t) ops = do
t’← fixInfix{|Nterm|} t ops
return (Nterm t)

fixInfix{|Nexpression|} (Apply e1 e2) ops = · · ·−− rebuild expression tree

6.4: OTHER POLYTYPIC SYNTAX TREE OPERATIONS 107

We overloaded fixInfix with the Monad class because this operation can fail due
to conflicting priorities. Generic Haskell requires mentioning this type variable
m at the left side of the function type definition. The polytypic restructuring
fixInfix function can be derived for all types except Nexpression, which is
where we intervene to restructure the syntax tree. Note that manually removing
the left-recursion and splitting the Nexpression type, allows us to override the
polytypic function derivation at exactly the right spot. We lack the space to show
exactly how to restructure the expression tree. This can be found in the current
version of the Esther shell [vWP03].

The traversal code in the instances for the generic representation types is
a common occurring pattern. This shows that we can elegantly and concisely
specify a syntax tree operation that operates on a very specific part of the tree.
There is no need to specify traversal code for any other type in the syntax tree,
these are all automatically derived.

6.4.2 Adding Local Variable Scopes

Another common operation is checking variable declarations in the context of
local scope. Scope can easily be added into the syntax tree using polytypic
programming. We simply define the Scope data type below and inject it into
the syntax tree where appropriate.

data Scope a = Scope a

data Nterm = LambdaWithScope (Scope Nlambda)
| · · ·

data Nlambda = Lambda Tlambda (Plus Npattern) Tarrow Nexpression
data Ncase = Case Tcase Nexpression Tof

(Plus (Scope Nalt, Tsemicolon))
data Nalt = Alternative (Plus Npattern) Tarrow Nexpression
data Npattern= · · ·

| VariablePattern Nvariable

We overrule the derived polytypic code for chkVars at the following positions in
the syntax tree types: Nvariable is an applied occurrence, except for occurrences
after a VariablePattern constructor (part of the Npattern type), where it is a
defining occurrence. Furthermore, we override the polytypic instance for Scope,
which ends a variable scope after lambda expressions and case alternatives.

chkVars{|a | m|} :: (Functor m,Monad m)⇒ a→ [String]→ m [String]

chkVars{|Unit|} _ vs = return vs
chkVars{|Int|} _ vs = return vs

108 POLYTYPIC SYNTAX TREE OPERATIONS

chkVars{|Prod a b|} (l :∗: r) vs = chkVars{|a|} l vs >>= chkVars{|b|} r
chkVars{|Sum a b|} (Inl l) vs = chkVars{|a|} l vs
chkVars{|Sum a b|} (Inr r) vs = chkVars{|b|} r vs

chkVars{|Nvariable|} (Variable v) vs
| v ‘elem‘ vs = return vs
| otherwise = fail (”unbound variable : ” ++ v)

chkVars{|case VariablePattern|} (VariablePattern (Variable v)) vs
= return (v:vs) −−polytypic instance for a single constructor

chkVars{|Scope a|} (Scope x) vs = chkVars{|a|} x vs >> return vs

We make use of a Generic Haskell feature in the chkVars example above, which
is not found in Clean: overriding the generic scheme at the constructor level.
Instead of writing code for all constructors of the Npattern type, we only specify
the semantics for the VariablePattern (hence the use of thecase keyword) and
let Generic Haskell derive the code for the other alternatives of the type.

6.4.3 Type Inference

As the compilation process proceeds, syntax tree operations tend to be less generic
and more data specific. Program transformations and code generation, but also
type-checking, usually require writing polymorphic instances for almost all types,
since each type must be treated differently. At first sight, it seems as if polytypic
programming is no longer useful to implement such operations. In this section,
we will show that even for more data specific functions a polytypic definition
improves modularity because it splits the specification per type, even if there is
little profit from the automatic derivation mechanism. As an example, we specify
a type inference algorithm in a polytypic way. Type inference is much more
data specific than any other example in this chapter, nevertheless, it illustrates the
way to polytypically specify syntax operations that occur later in the compilation
process.

The algorithm is based on the idea of strictly separating type inference into
the generation of constraints (in the form of type equations), and solving these
constraints by standard unification. We restrict ourselves to the generation part,
which is usually done by traversing the syntax tree and collecting constraints
corresponding to each syntactical construct. Such an algorithm not only takes the
syntax tree as input but also an environment containing type declarations for func-
tions, constructors, and variables. Moreover, during the generation process we
sometimes need fresh type variables, e.g., to instantiate a function’s type scheme

6.4: OTHER POLYTYPIC SYNTAX TREE OPERATIONS 109

or to create local type variables used to express dependencies between derivations.
Therefore, we supply the generation function with a heap data structure and we
use an accumulator to collect type equations. This leads to the following polytypic
function type and auxiliary type definitions.

data Type = TVar String | TBasic TBasic | TApp String [Type]
| TTVar VHeap | TArr Type Type | TAll [String] Type

data TBasic = TBool | TInt
data Equ = Equ Type Type

type TypeState a = State (VHeap, [Equ]) a −− a state monad

gtype{|t|} :: t→ Envs→ TypeState Type

The VHeap is used to allocate fresh type variables. Mostly it suffices to gener-
ate unique integers to distinguish different type variables. These fresh variables
are represented by the TTVar-alternative in the definition of Type. The other
alternatives are used to represent type variables, basic types, type constructor
applications, arrow types, and type schemes, respectively.

The type equations are represented as a list of Equ elements. Together with
the VHeap, they form the state of the polytypic function. For convenience, the
implementation of the polytypic gtype function is based on the standard State
monad. For creating fresh variables and for extending the list of type equations,
we introduce the following functions.

freshVar :: TypeState VHeap
freshVar = State {runState = λ(vh, eqs)→ (vh, (vh+1, eqs))}

newEqu :: Type→ Type→ TypeState ()
newEqu dt ot

= State {runState = λ(vh, eqs)→ ((), (vh, Equ dt ot:eqs))}

The polytypic instance declarations are straightforward. We chose to interpret a
Prod of two terms as an application of the first to the second. The advantage is
that we can derive the instance for the type Nexpression automatically.

gtype{|Sum a b|} (Inl l) env = gtype{|a|} l env
gtype{|Sum a b|} (Inr r) env = gtype{|b|} r env
gtype{|Prod a b|} (x :∗: y) env = do tx← gtype{|a|} x env

ty← gtype{|b|} y env
fv← freshVar
newEqu (TArr ty (TTVar fv)) tx
return (TTVar fv)

110 POLYTYPIC SYNTAX TREE OPERATIONS

Clearly, there are not many other types for which we use the polytypic version;
most of the instances have to be given explicitly. E.g., for TfunctionId we can
use the following definition:

gtype{|TfunctionId|} (FunctionId name) env
= freshType name (fun_env env)

The overall environment has three separate environments: for functions, for con-
structors, and for type variables.

type Env = String→ Type
data Envs = Envs {fun_env :: Env, cons_env :: Env, var_env :: Env}

The function freshType takes care of the instantiation of the environment type. It
can be defined easily, using the freshVar function, for type variables introduced
by a TAll type. Another example is the alternative for Nif. Again, its definition
is straightforward.

gtype{|Nif|} (If Tif c Tthen t Telse e) env = do
tc← gtype{|Nterm|} c env
newEqu tc (TBasic TBool)
tt← gtype{|Nterm|} t env
te← gtype{|Nterm|} e env
newEqu tt te
return tt

Although we have to specify many instances explicitly, it is not inconvenient to
use a polytypic specification: it splits the implementation into compact polytypic
instances, which are easy to write while the resulting structure of the algorithm
remains clear.

Concluding this section, we want to remark that polytypic programming al-
lowed easy changes to the syntax by adding and rearranging types. Usually,
this was done by adding types and instances to polytypic functions, instead of
rewriting existing instances.

6.5 Performance of Polytypic Parsers

In this section, we investigate the efficiency of the generated parsers for two dif-
ferent grammars/languages. Our elegant types–as-grammar technique is of little
practical use if the resulting programs perform poorly because of the automatically
derived code by the polytypic system. Who cares about the advantage of not
having to use an external tool, when the polytypic parsers perform an order of
magnitude worse than parser generator based parsers.

6.5: PERFORMANCE OF POLYTYPIC PARSERS 111

6.5.1 A Basic Functional Language Parser

The first example is the derived parser for the basic functional language from
Sect. 6.3. Since we are not interested in lexical analysis, we have tokenized the
test input for the parser manually resulting in a list of 663 tokens representing 45
small functions in this language. The programs under test copy the input list of
tokens 100 times and parse the resulting list 100 times. The results are shown in
Table 6.1. For Haskell we used Generic Haskell (GH) 1.42, which requires the
GHC 6.2.2 compiler. For Clean we used the Clean 2.1.1 distribution.

Execution Garbage Total Total heap
time (s) collection (s) time (s) allocation (MB)

GH+GHC 27.2 1.4 28.6 3,500
Clean 45.0 6.7 51.8 11,600

Table 6.1: Performance figures for the derived basic functional language parser,
using Maybe parsers.

All programs were run with a heap size of 256MB. It is remarkable to see
that the Haskell version used only a quarter of the heap allocated by the Clean
version. At first glance, it might not be clear that the generated executables
are very slow and consume huge amounts of memory. Both Generic Haskell
and Clean have some built-in specific optimization techniques to improve the
performance of the derived functions. Moreover, these derived functions also
benefit from standard optimizations, such as dictionary elimination, higher-order
removal, etc. However, it appears that this is insufficient to obtain any acceptable
performance.

6.5.2 Improving the Automatically Derived Code

In [AS05] Alimarine and Smetsers present an optimization technique, called fu-
sion, of which they claim that it removes all the overhead introduced by the
compilation scheme for polytypic functions (developed by Hinze [Hin00a]) that
is used both in Generic Haskell and in Clean. Like deforestation, fusion aims
at removing intermediate data used for passing information between function
calls. This is done by combining nested pairs of consumer and producer calls
into a single function application, making the construction of intermediate data
structures from the producer to the consumer superfluous.

Fusion is not implemented in the Clean compiler, but incorporated in a sepa-
rate source–to–source translator. The input language for this translator is a basic
functional language extended with syntactical constructs for specifying polytypic

112 POLYTYPIC SYNTAX TREE OPERATIONS

functions. The translator first converts polytypic definitions into ordinary function
definitions and optimizes these generated functions, by eliminating data conver-
sions that are necessary to convert each object from and to its generic representa-
tion. The optimized output is both Clean and Haskell syntax compatible, so it was
easy to include performance figures using both compilers as a back–end. These
figures are shown in Table 6.2.

Execution Garbage Total Total heap
time (s) collection (s) time (s) allocation (MB)

Fusion+GHC 4.3 0.03 4.5 340
Fusion+Clean 6.3 0.4 6.7 1,500

Table 6.2: Execution times for the optimized basic functional language parser,
using Maybe parsers.

The programs ran under the same circumstances as those shown in Table 6.1.
Each test yields a syntax tree consisting of approximately 300,000 constructors
per iteration. In the optimized Haskell version, this leads to an allocation of 12
bytes per node. Representing a similar syntax tree in an imperative language
would require approximately the same number of bytes per node.

6.5.3 Using Continuation-based Parser Combinators

A nice aspect of our approach, is that the polytypic specification of the parser
in Sect. 6.3 and the underlying parser combinator library are independent: we
are free to choose different combinators, e.g., combinators that produce better
error messages, without having to adjust the polytypic definitions. To illustrate
this, we replaced the simple Maybe-combinators, by a set of continuation-based
parser combinators, which collect erroneous parsings. These are similar to the
combinators by, e.g., Koopman [KP02] or Leijen and Meijer [LM01]. Although
the error reporting technique itself is simple, it appears that the results are already
quite accurate. Of course, one can fine-tune these underlying combinators or even
switch to an existing set of advanced combinators, e.g., Parsec [LM01], without
having to change the polytypic parser definition itself.

We have tested the unoptimized as well as the optimized version of the con-
tinuation based parser, see Table 6.3. This time, the figures are more difficult to
explain, in particular if you compare themwith the execution times from the previ-
ous tables. In the literature, continuation passing parsers are often presented as an
efficient alternative for the naive combinators. However, our measurements do not
confirm this. The polytypic, as well as the optimized versions, are much slower

6.5: PERFORMANCE OF POLYTYPIC PARSERS 113

Execution Garbage Total
time (s) collection (s) time (s)

GH+GHC 137.9 10.2 148.2
Clean 77.3 20.0 97.3
Fusion+GHC 18.6 0.41 19.0
Fusion+Clean 55.5 8.74 64.2

Table 6.3: Execution times for the derived and optimized basic functional
language parser, using continuation based parsers.

than the corresponding parser from the first test set, up to a factor of ten. One
might believe that the additional error information causes this overhead. However,
the loss in efficiency is almost the same when this information is not included.
Apparently, the gain that is obtained by avoiding explicit constructors and pattern
matching is completely undone by the use of continuations and therefore higher-
order applications.

6.5.4 A Haskell 98 Parser

As a second test, we have implemented a (nearly) complete Haskell parser, simply
by deriving polytypic parser instances for the Haskell syntax specified as a collec-
tion of algebraic data types. These data types were obtained by a direct conversion
of the Haskell syntax specification as given in section 9.5 of the Haskell 98 Report
[Pey03]. Again, we have compared the results for Generic Haskell and Clean for
both the Maybe and the continuation passing combinators. We also optimized the
generic code and compared the performance of all different versions. The results
are shown in Table 6.4. The parsers were run on an example input consisting of
approximately 500 again manually tokenized lines of Haskell code, 2637 tokens

An optimization that replaces update-frames with indirections was added to
the Clean run-time system, reducing both heap and stack usage enough too com-
plete the tests on a 1.5Ghz 512MB Windows PC.

GH+GHC (s) Clean (s) Fusion+GHC (s) Fusion+Clean (s)
Maybe 20.6 17.6 0.03 2.30
CPS 182 15.2 1.12 5.40

Table 6.4: Performance figures for the derived and optimized Haskell 98 parser,
using both Maybe and continuation bases parsers.

114 POLYTYPIC SYNTAX TREE OPERATIONS

These execution times are quite revealing. We can conclude that Generic
Haskell and Clean generate extremely inefficient polytypic code. It is doubtful
whether these polytypic language extensions are really useful for building serious
applications. However, the optimization tool changes this completely, at least for
Haskell. The performance gain for the Maybe-parsers is even a factor of 700. This
test indicates once more that the continuation passing parsers are less efficient. It
is strange to see that for Haskell the difference is much bigger than for Clean: a
factor of 35 and 2, respectively. We do not have an explanation for the factor of
75 between GHC and Clean for the optimized Maybe-parsers.

We have also compared the efficiency of the optimized parsers with a Haskell
parser generated with the Happy tool [GM01]. This parser is included in the
libraries of the GHC Haskell compiler we used. The result is surprising: its
execution time is the same as our Fusion+GHC Maybe-parser! To get more signif-
icant results we ran both with 100 times the input (50,000 lines of Haskell code,
using a 4MB heap). Our parser is five percent faster, but does not have a lexer
or decent error messages. Nonetheless, we believe that this shows that fusion is
really needed and that fusion works for polytypic parsers.

6.6 Related Work

Parsers are standard examples for polytypic programming (see Jansson and Jeur-
ing [JJ99], Hinze [HP01]). However, the common definition gives a parser that
can only recognize expressions that can be defined in the corresponding pro-
gramming language itself. This is very natural because the type definitions in
a programming language can be regarded as a kind of grammar defining legal
expressions in the corresponding programming language. We have shown that
this also works for any context-free grammar.

It has also been shown how a parser for another language can be constructed
from a grammar description. Atanassow, Clarke, and Jeuring [FAJ03] construct
parsers for XML from the corresponding DTD description. To the best of our
knowledge, this chapter is the first that describes the use of algebraic data type
definitions as a grammar for deriving polytypic parsers for arbitrary languages.

There exist other (lazy, functional) parser generator tools and combinator li-
braries [GM01, Hut92, BS04, KP02, LM01], which may generate better parsers
than our approach, due to grammar analysis or handwritten optimizations. What
makes our approach appealing is that the tool used to generate the parser is part
of the language. This removes the need to keep your syntax tree data structures
synchronized with an external tool: one can do it within the polytypic functional
language, and efficiently too, using extended fusion.

6.7: CONCLUSIONS 115

6.7 Conclusions

With this chapter, we have illustrated that polytypic programming techniques, as
offered by the Generic Haskell preprocessor and the Clean compiler, can effec-
tively be used for compiler construction. Additionally, we hope to have illustrated
that the technique is interesting for programming in general.

Polytypic functions are type driven, it is therefore important to know what can
be expressed in a type. In this chapter, we have shown that context-free grammars
can be encoded in a straightforward way using algebraic data types. We have
defined a polytypic parser using a types–as–grammar approach. Using such a
polytypic definition, a parser for an arbitrary context-free language can be derived
automatically. The polytypic function is defined in terms of parser combinators,
and one can easily switch from one library to another.

Moreover, we have shown how other convenient polytypic post-parsing op-
erations on the resulting rich syntax tree can be defined, even if not all syntax
tree operations gain much from the polytypic programming style. It gives you the
flexibility of moving data types within larger type structures, mostly by adding
polytypic instances without having to change (much of) the existing code.

Finally, we have shown that optimizations that remove the polytypic overhead
are absolutely necessary to make polytypic programs usable. Currently, poly-
typic programming, in either Generic Haskell or Clean, may be suitable for toy
examples and rapid prototyping but the derived code is definitely not efficient
enough for larger programs. Using the extended fusion optimization technique,
the parser’s efficiency came close to a parser generated by Happy. We believe that
fusion makes polytypic programming for real-world applications possible.

CHAPTER 7

There and Back Again∗

Arrows for Invertible Programming

ARTEM ALIMARINE
SJAAK SMETSERS
ARJEN VAN WEELDEN

MARKO VAN EEKELEN
RINUS PLASMEIJER

7.1 Introduction

Arrows [Hug00] are a generalization of monads [Wad93]. Just as monads, arrows
provide a set of combinators. They make it possible to combine functions in
a very general way. In principle, the combinators assume very little about the
functions to combine. In fact, these functions may even comprise side-effects.
The main application areas of arrows are in the field of interactive programming
and data conversion. More specifically, extensive applications have been made in
the areas of user interfaces [CE01], reactive programming [HCNP03], and parser
combinators [JJ02a].

For the general area of data conversion, it may be important to prove invertibil-
ity of a specified algorithm. This is, for instance, directly the case in encryption,
serialization, marshalling, compression, and parsing, but more indirectly in the
area of database transactions where rollbacks may have to be performed.

∗Title shamelessly stolen from the Lord of the Rings (the book, not the movie).

117

118 ARROWS FOR INVERTIBLE PROGRAMMING

The goal of our work is to set up an arrow-based framework for the specifica-
tion of invertible algorithms. We start with extending the monotypic unidirectional
framework of arrows to a monotypic bidirectional framework of bidirectional
arrows, bi-arrows.

In particular, we represent a pair of conversion functions as a single arrow,
such that we can specify both conversion functions by one definition. The advan-
tage of such a single definition is that it reduces the amount of code needed for
each conversion pair, because more code can be reused from the arrow library.
Basically, one specifies the conversion in one direction (usually the more involved
case) and one gets the inverse conversion almost for free. For instance, by specify-
ing a parser one also specifies the pretty printer. The price to pay is that specifying
the parser becomes a bit more complicated.

The advantages of programming with arrows and inversion are exploited best
in a polytypic or generic framework. Therefore, we extend our monotypic bidi-
rectional framework to the polytypic context. In this context, we show how to
define several essential combinators and bi-arrow transformers. We give several
smaller polytypic examples including invertible (de)serialization. We also discuss
how this can be done for the larger example of parsers and pretty-printers.

More specifically, the contributions of this chapter are the following.

• We extend the framework of arrows to support bidirectional arrows.
• Our approach explicitly uses embedding-projection arrows.
• Our approach is suitable for monotypic and polytypic conversion functions.
• We show how to define pairs of conversion functions together in one sin-
gle definition. We show that specifying one direction of conversion also
specifies the other direction. We present several monotypic and polytypic
examples of such definitions.

We use the pure lazy functional language Haskell [Pey03] in our examples.
Polytypic examples use Generic Haskell [LCJ03], the generic programming ex-
tension for Haskell. The code can be downloaded from the author’s web site1. The
work can just as easily be expressed in Clean [PvE02] using its built-in generics
[AP03]. We assume general knowledge of arrows and polytypic programming,
and we will only briefly recall relevant definitions and techniques.

The next section (Sect. 7.2) introduces bidirectional arrow combinators. A
small monotypic invertible program example is given in Sect. 7.3. This is done by
using embedding-projection arrows, which are also introduced in that section.

1http://www.cs.ru.nl/A.vanWeelden/bi-arrows/

http://www.cs.ru.nl/A.vanWeelden/bi-arrows/

7.2: FROM ARROWS TO BIDIRECTIONAL ARROWS 119

In Sect. 7.4 the framework is used in a polytypic context and we introduce
invertible arrows with state. We present polytypic traversals (mappings) on bi-
arrows and state arrows. These state arrows are used in Sect. 7.5 to create a some-
what larger example performing (de)serialization of data, based on the structure
of a type.

Section 7.6 introduces monadic programming with bi-arrows. Ways to deal
with failure in bi-arrows are introduced and a method to lift monads to bi-arrows
is given. An application of bi-arrows, consisting of a parser and a pretty-printer,
is created in Sect. 7.7. The example uses a combination of state, monadic, and
embedding-projection arrows.

Finally, Sect. 7.8 discusses related work and Sect. 7.9 concludes and mentions
prospects for future work.

7.2 From arrows to bidirectional arrows

This section introduces a bidirectional framework that consists of a set of re-
versible arrow combinators. These combinators are based on the arrow combi-
nators defined by Hughes [Hug00].

First, we will recall shortly the standard arrow framework (Sect. 7.2.1). Then
we show how these laws have to be adapted for our dyadic bi-arrows framework
(Sect. 7.2.2). Finally, we give specific inversion laws for bi-arrows (Sect. 7.2.4).
In Sect. 7.3 we show how bidirectional arrows are constructed using a small
motivating example.

7.2.1 Arrows

We briefly recall Hughes’s definitions expressed in Haskell as a type constructor
class.

class Arrow arr where
arr :: (a→ b)→ arr a b −−pure
(≫) :: arr a b→ arr b c→ arr a c −− infixr 1
first :: arr a b→ arr (a, c) (b, c)
second :: arr a b→ arr (c, a) (c, b)
(∗∗∗) :: arr a c→ arr b d→ arr (a, c) (b, d) −− infixr 3

As usual, the definition of ∗∗∗ and second can be expressed in terms of first
(corresponding to Haskell’s default definition of ∗∗∗ and second):
f ∗∗∗ g = first f≫ second g
second f = arr swap≫ first f≫ arr swap

120 ARROWS FOR INVERTIBLE PROGRAMMING

swap = snd ‘split‘ fst
split f g = λt→ (f t, g t)

To allow case distinction Hughes shows that a new combinator is needed. There-
fore, he introduces the choice arrow:

class Arrow arr⇒ ArrowChoice arr where
left :: arr a b→ arr (Either a c) (Either b c)
right :: arr b c→ arr (Either d b) (Either d c)
(+++) :: arr a c→ arr b d→

arr (Either a c) (Either b d) −− infixr 2

As with ∗∗∗ and second, +++ and right can be expressed in terms of left, and
Haskell’s prelude function either:

f +++ g = left f≫ right g
right f = arr mirror≫ left f≫ arr mirror

mirror = Right ‘either‘ Left

By instantiating the arrow class for→we can use ordinary functions as arrows.
instance Arrow (→) where

arr f = f
f≫ g = g . f
first f = f <*> id

instance ArrowChoice (→) where
left f = f <+> id

Here <*> and <+> are the usual product and sum operations for functions:

(<*>) :: (a→ b)→ (c→ d)→ (a, c)→ (b, d)
f <*> g = (f . fst) ‘split‘ (g . snd)

(<+>) :: (a→ b)→ (c→ d)→ Either a c→ Either b d
f <+> g = (Left . f) ‘either‘ (Right . g)

In literature [Hug00, Pat01, Pat03], one can find several other combinators and
some derived combinators that make programming with arrows easier, such as:

(≪) :: Arrow arr⇒ arr c b→ arr b a→ arr c a −− infixl 1
f≪ g = g≫ f

Here, we refrain from giving an exhaustive overview.

7.2: FROM ARROWS TO BIDIRECTIONAL ARROWS 121

7.2.2 Bidirectional arrows

To support invertibility, we extend the arrows with two new combinators: ↔
(biarr/bipure) and inv (inverse).

The first one,↔, is similar to the standard arr but instead of a single function
it takes two functions and lifts them into a bidirectional arrow (bi-arrow) creating
a structure that contains them both. The intention is that these functions are each
other’s inverse. The second one, inv, reverses the direction of computation,
yielding the inverse of a bi-arrow, which will boil down to swapping the two
comprised functions.

class Arrow arr⇒ BiArrow arr where
(↔) :: (a→ b)→ (b→ a)→ arr a b −− infix 8
inv :: arr a b→ arr b a

We define BiArrow on top of the Arrow class because conceptually bi-arrows form
an extension of the arrow class. Moreover, it allows us to use bi-arrows as normal
arrows. Since the derived combinators second and right use the arr constructor
to build the adapters swapA and mirrorA we have to redefine them using ↔ to
make these combinators invertible. Therefore, we introduce:

secondA f = swapA≫ first f≫ swapA
where swapA = swap ↔ swap

rightA f = mirrorA≫ left f≫ mirrorA
where mirrorA = mirror ↔ mirror

arrA f = f ↔ const (error ” arr has no inverse”)

where swap and mirror are defined as above.

7.2.3 Arrow laws for bi-arrows

To reason about programs containing arrow combinators we can use properties
that are specific to arrows, the so-called arrow laws. The collection of arrow laws
is not uniquely defined. The laws we have taken are a subset of the ones postulated
by Hughes [Hug00].

We need some adaptation of the laws for our framework. The occurrences of
arr f are replaced with the corresponding dyadic operator for bi-arrows: f ↔ g
where g is intended to be the inverse of f.

122 ARROWS FOR INVERTIBLE PROGRAMMING

Definition 1 (Composition Laws)

f≫ (g≫ h) = (f≫ g)≫ h
f1↔ g2≫ g1↔ f2 = (f1≫ g1)↔ (f2≫ g2)

idA≫ f = f = f≫ idA
where
idA= id↔ id

Definition 2 (Pair Laws)

first (f≫ g) = first f≫ first g
first (f ↔ g) = (f � id)↔ (g� id)

first h≫(id� f)↔(id�g) = (id� f)↔(id�g)≫first h
first (first f)≫ assocPA = assocPA≫ first f
where

assocPA = assoc↔ cossa
assoc ((x,y),z) = (x,(y,z))
cossa (x,(y,z)) = ((x,y),z)

In categorial terms, the product type is the dual of the sum type. In general,
if a property holds for products, the dual property is valid for sums. The dual is
obtained by systematically replacing split by either, Left/Right by fst/snd, first by
left,≫ by≪, and f◦g by g◦f . For example, taking the dual of the last product
law leads to the following sum law

left (left f)≪ assocSA= assocSA≪ left f

To obtain the dual assocSA of assocPA we first express assoc and cossa in terms
of split, fst and snd.

assoc = (fst◦fst) ’split’ ((snd◦fst) ’split’ snd)
cossa = (fst ’split’ (fst◦snd)) ’split’ (snd◦snd)

Now the transformation leads to assocSA= assocS↔ cossaS, where

assocS=(Left◦Left) ’either’ ((Left◦Right) ’either’ Right)
cossaS=(Left ’either’ (Right◦Left)) ’either’ (Right◦Right)

Note that right is also the dual of second, since mirror is the dual of swap.
Using the laws above several properties can be proven easily. For example,

first idA = idA = second idA is proven by substituting the definitions for first
and second taken from Sect. 7.2.1 and applying the appropriate laws for first and
≫.

7.3: MONOTYPIC PROGRAMMING WITH BI-ARROWS 123

7.2.4 Inversion Laws

Most importantly, implementations of bi-arrows are proper if they satisfy some
additional inversion laws.

Definition 3 (Inversion Laws)

inv (inv f) = f
inv (f≫ g) = inv g≫ inv f
inv (f ↔ g) = g↔ f
inv (first f) = first (inv f)
inv (left f) = left (inv f)

The last two rules are only appropriate for arrows that are pure functions. In
a more general case, where arrows can have side-effects (e.g., when monads with
internal side effects are lifted to bi-arrows), it is required that, instead of first and
left, cofirst and coleft respectively are used. These ‘inverse combinators’ are the
categorical duals of first and left. They are needed to revert possible side-effects
of first and left. Throughout the rest of this chapter all arrows will be pure. Hence,
we will use the rules above since they are sufficient for this chapter. Nevertheless,
for the rest of the framework no assumptions will be made on the absence of side-
effects.

Of course, when introducing a new instance for one of the arrow classes
defined above we have to guarantee that all the corresponding laws hold. We
say that f is a bi-arrow if the composition, pair and inverse laws hold. Let f be a
bi-arrow. Then f is invertible if

inv f≫ f = idA= f≫ inv f

The essence of our framework is that invertibility is preserved by our (bi-
)arrow combinators. We are working on finishing the details of the formal proof
of this property, using the various bi-arrow laws. It will be presented in a separate
paper. The emphasis of this chapter will be on introducing the framework and on
its applications.

7.3 Monotypic programming with bi-arrows

The idea of using bi-arrows is that after specifying an operation in one direction
one gets the inverse of this operation (in the opposite direction).

In this section, we first discuss how to create an invertible definition using
the bi-arrow definitions (Sect. 7.3.1). Then, we discuss the inherent differences
between functions and bi-arrows (Sect. 7.3.2). This motivates why we introduce

124 ARROWS FOR INVERTIBLE PROGRAMMING

a structure that contains both functions (Sect. 7.3.3). Finally, we discuss some
problems with the use of Paterson notation for bi-arrows (Sect. 7.3.4).

7.3.1 A motivating example

How easy or difficult is it to define functions by means of the arrow constructors?
In this section, we will give an example. Of course, one has to keep in mind that
some functions are not easily invertible. Take, for instance, a simple function like
++ (append), which concatenates two lists. It is clear that the inverse cannot be a
function with the same type, since in general there are many ways to split a list
into two parts.

An example of a function that does have an (obvious) inverse is reverse. We
take the standard definition as starting point to get an arrow-based version. We
could have lifted reverse to a bi-arrow using reverse ↔ reverse, but this
does not illustrate the concerns of bidirectional programming.

reverse :: [a]→ [a]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

Case distinction, using arrows, is done by using left and right, which means
that we first have to tag the input with Left or Right, indicating the empty and
non-empty list respectively. Tagging and untagging are done by applying the
following bi-arrow, which forms an isomorphic mapping from lists to Eithers.

list2EitherA :: BiArrow arr⇒ arr [a] (Either () (a, [a]))
list2EitherA = list_either ↔ either_list

where
list_either [] = Left ()
list_either (x:xs) = Right (x, xs)

either_list (Left ()) = []
either_list (Right (x, xs)) = x:xs

Now we can give the arrow version of reverse: reverseA.

reverseA :: (ArrowChoice arr, BiArrow arr)⇒ arr [a] [a]
reverseA = list2EitherA

≫ right (second reverseA≫ appElemA)
≫ inv list2EitherA

Here appElemA is an adjusted version of append that takes one element and
attaches it to the end of a list. If one specifies invertible arrows it appears to
convenient to use ‘symmetrical’ versions, i.e., arrows that handle the argument

7.3: MONOTYPIC PROGRAMMING WITH BI-ARROWS 125

and the result symmetrically. This leads to the following definition of appElemA.
We will give an example of its usage later in this section.

appElemA :: (ArrowChoice arr,BiArrow arr)⇒ arr (a,[a]) (a,[a])
appElemA = second list2EitherA≫ liftRSA

≫ right (swapXYA≫ second appElemA)
≫ inv (second list2EitherA≫ liftRSA)

The auxiliary arrow liftRSA converts a product–of–sum into a sum–of–product,
and swapXYA exchanges the x and y field of a nested pair. The last one is defined
in terms of assocPA and swapA introduced in Sect. 7.2.

liftRSA :: BiArrow arr⇒ arr (a, Either b c) (Either (a,b) (a,c))
liftRSA = liftr ↔ rtfil

where
liftr (x, Left y) = Left (x, y)
liftr (x, Right y) = Right (x, y)

rtfil (Left (x, y)) = (x, Left y)
rtfil (Right (x, y)) = (x, Right y)

swapXYA :: BiArrow arr⇒ arr (a, (b, c)) (b, (a, c))
swapXYA = inv assocPA≫ first swapA≫ assocPA

7.3.2 Functions are not bi-arrows

Although reverseA is constructed to be invertible, we cannot use the inverse of
reverse using the→ instance for arrows. This means that the following will not
work:

(inv reverseA) [1, 2, 3] −− this is a compile time error
This is caused by an absence of an instance of BiArrow for→. Since ReverseA
itself depends on the BiArrow class, we even cannot write

reverseA [1, 2, 3] −− this is also a compile time error
There is no sensible way to define an instance of BiArrow for→. Of course, one
could define ↔ for functions by dropping the second argument, however, this
instance only works in one direction. For the last two examples, this would mean
that we would not get a compile-time error anymore. Instead, we would get the
correct result for the latter expression, but evaluation of the first one would result
in a run-time error.

126 ARROWS FOR INVERTIBLE PROGRAMMING

7.3.3 The embedding-projection bi-arrow transformer

We can circumvent this problem by handling inversion explicitly via embedding-
projection (EP) pairs. See, for instance, [HP01]. We generalize embedding-
projections from pairs of functions to pairs of arrows. This makes EpT an arrow
transformer, i.e., it enables us to construct bi-arrows on top of existing arrows
(particularly functions). Therefore, our type for embedding projections is param-
eterized with an arrow:

data EpT arr a b = Ep {toEp :: arr a b, fromEp :: arr b a}

The instances of the (bi-)arrow classes can be defined straightforwardly.

instance Arrow arr⇒ Arrow (EpT arr) where
arr = arrA
f≫ g = Ep (toEp f≫ toEp g) (fromEp g≫ fromEp f)
first f = Ep (first (toEp f)) (first (fromEp f))
second = secondA

instance ArrowChoice arr⇒ ArrowChoice (EpT arr) where
left f = Ep (left (toEp f)) (left (fromEp f))
right = rightA

instance Arrow arr⇒ BiArrow (EpT arr) where
f ↔ g = Ep (arr f) (arr g)
inv f = Ep (fromEp f) (toEp f)

To ensure the invertibility preserving property of the EpT bi-arrow transformer,
one should not use the arr because an arrow constructed with arr has no inverse.
We still define the arr function for EpT, in terms of the ↔ and error (using
arrA from the previous section) to give a more informative run-time error and to
support normal arrow operations.

By adding toEp to the example, we can force the use of the instance for the
(EpT→) arrow:
toEp reverseA [1, 2, 3] −−yields [3, 2, 1]
toEp (inv reverseA) [1, 2, 3] −−yields [3, 2, 1]

In the same way, we can show an example of appElemA.

toEp appElemA (4, [1, 2, 3]) −−yields (1, [2, 3, 4])

7.3.4 Paterson notation

The example from the previous section clearly shows that, without any support,
programming with arrow combinators can be quite complicated.

7.4: POLYTYPIC PROGRAMMING WITH BI-ARROWS 127

The notation for arrows as proposed by Paterson [Pat01] can be helpful be-
cause it relieves the programmer from defining many small adaptor arrows. For
example, the definition of appElemA using this arrow notion becomes:

appElemA = proc (e, xs)→ case xs of
[] → returnA −≺ (e, [])
(x:xs)→ do

(h, t)← appElemA −≺ (e, xs)
returnA −≺ (x, h:t)

where returnA = arr id

Unfortunately, this syntactic sugar for arrows does not support invertibility. The
translation scheme, as described in [Pat01], uses unidirectional adaptors that can-
not easily be made bidirectional. The (internal) adaptors are unidirectional, since
they are defined using arr instead of ↔. This is similar to the problem we
encountered defining bi-arrows as an extension of the original arrow class (the
default second also uses arr, hence the introduction of secondA and the like).

7.4 Polytypic programming with bi-arrows

In the following sections our framework is used in a polytypic context. First, in
Sect. 7.4.1 we present polytypic traversals (generalized mappings). We show how
to define the right–to–left traversals in terms of the left–to–right using duality.
Secondly (Sect. 7.4.2), we introduce a state arrow transformer, i.e., an arrow
implementation with which arbitrary arrows can be lifted to an arrow supporting
invertible computations on states.

7.4.1 Polytypic traversals

Polytypic traversals are generalizations of polytypic mappings. They are intro-
duced in Jansson and Jeuring [JJ02a]. Polytypic mappings operate on functions,
whereas polytypic traversals operate on abstract arrows. Thus, mapping is just a
special case of traversal.

However, unlike for mapping, the order of traversal of a data structure now
becomes important, due to possible side effects within the arrow.

We specify the traversal operation using the polytypic programming extension
of Haskell: Generic Haskell [LCJ03]. Every type, except certain predefined/basic
types as Int, has a generic representation using only sums, products, and units.
The Generic Haskell preprocessor can derivethe code for a polytypic function, as
long as we define the polytypic function for the base instances: Sum, Prod, and
Unit.

128 ARROWS FOR INVERTIBLE PROGRAMMING

mapl{|a, b|arr|} :: (ArrowChoice arr, BiArrow arr, mapl{|a, b|arr|})
⇒ arr a b

mapl{|Unit|} = idA
mapl{|Prod a b|} = inv prodA≫ mapl{|a|} ∗∗∗ mapl{|b|}≫ prodA
mapl{|Sum a b|} = inv sumA≫ mapl{|a|} +++ mapl{|b|}≫ sumA

prodA :: BiArrow arr⇒ arr (a, b) (Prod a b)
prodA = fst ‘splt‘ snd ↔ exl ‘split‘ exr

sumA :: BiArrow arr⇒ arr (Either a b) (Sum a b)
sumA = Inl ‘either‘ Inr ↔ Left ‘junc‘ Right

Some remarks about mapl:

• There is a context restriction on the monotypic type variable arr. Generic
Haskell expects such type variables to be declared after the polytypic type
variables, separated by a |.

• Besides the usual context restrictions on arr, there is also a context restric-
tion over mapl itself. This is because the mapl is polytypic. Usually, these
are derived automatically by Generic Haskell and can be omitted.

• The adaptors prodA and sumA would be superfluous if the definitions of
Prod and Sum would coincide with (,) and Either. The splt and junc
functions are the Prod and Sum counterparts of split and either for tuples
and Eithers, respectively.

• For clarity reasons we have omitted the cases for constructor information
(i.e., instances for Con and Label) as they are not essential for the examples
in this chapter.

Generic Haskell can derive a specific traversal function for any data type using
the schematic representation of that type. In the present chapter, we will not need
derived instances other than for types of kind � → �. Unfortunately, Generic
Haskell does not yet support the use of generic functions in the context restrictions
of type classes and instances. We simulate this by introducing a dummy class, for
which define the necessary instances in the obvious way. For types of kind �→ �
this leads to the class Gmapl.

class Gmapl t where
gmapl :: (ArrowChoice arr, BiArrow arr)⇒

arr a b→ arr (t a) (t b)

7.4: POLYTYPIC PROGRAMMING WITH BI-ARROWS 129

For instance, we can use polytypic traversal to map the increment function to a
tree of integers, using the following data type definition for Tree, and instance
definition of Gmapl

data Tree a = Leaf a | Node (Tree a) (Tree a)

instance Gmapl Tree where
gmapl = mapl{|Tree|}

Now we can write, again forcing the use of the (EpT→) bi-arrow:
toEp (gmapl ((λx→ x + 1) ↔ (λx→ x - 1)))

(Leaf 1 ‘Node‘ Leaf 2 ‘Node‘ Leaf 3)
−−yields Leaf 2 ‘Node‘ Leaf 3 ‘Node‘ Leaf 4

The way the ∗∗∗ and+++ are defined determines the traversal order. Basically, the
order is left–to–right because ∗∗∗ and+++ give preference to first end left re-
spectively. Analogously, one can define the traversals using right–to–left variants
of our basic combinators.

Jansson and Jeuring [JJ02a] show that such left–to–right and right–to–left
traversals (e.g., mapl and mapr) form a pair of data conversion functions, which
are each other’s inverse. We want to show here that instead of defining both
traversals separately, we can define one of them as the inverse of the other, using
bi-arrows. We define the mapr (the right–to–left traversal) as the dual of the left–
to–right traversal.

mapr :: (Gmapl t, ArrowChoice arr, BiArrow arr)⇒
arr a b→ arr (t a) (t b)

mapr f = inv (gmapl (inv f))

toEp (gmapr ((λx→ x + 1) ↔ (λx→ x - 1)))
(Leaf 1 ‘Node‘ Leaf 2 ‘Node‘ Leaf 3)

−− also yields Leaf 2 ‘Node‘ Leaf 3 ‘Node‘ Leaf 4,
−−because the order does not matter in this example

7.4.2 The state bi-arrow transformer

Like monads, arrows can be used to specify computations with side effects on
a state. We will show how to define a state arrow in our bi-arrow framework.
This state arrow will be used later in an example to define an invertible pair of
conversion functions that: separate a functor into its shape and its contents and
combine the shape and the contents back.

Consider the following arrow transformer, which adds a state to a given arrow:

130 ARROWS FOR INVERTIBLE PROGRAMMING

newtype StT s arr a b = St {unSt :: arr (a,s) (b,s)}

The corresponding instances of Arrow and BiArrow are defined below. This arrow
transformer also occurs in [Hug00]. The instances below can be obtained directly
from [Hug00] by replacing the unidirectional adapters (defined by means of arr)
by bidirectional adapters using↔.
instance BiArrow arr⇒ Arrow (StT s arr) where

arr = arrA
f≫ g = St (unSt f≫ unSt g)
first f = St (swapYZA≫ first (unSt f)≫ swapYZA)
second = secondA

instance (ArrowChoice arr, BiArrow arr)⇒
ArrowChoice (StT s arr) where

left f = St (liftLSA≫ left (unSt f)≫ inv liftLSA)
right = rightA

instance BiArrow arr⇒ BiArrow (StT s arr) where
f ↔ g = St (first (f ↔ g))
inv f = St (inv (unSt f))

liftLSA :: (ArrowChoice arr, BiArrow arr)⇒
arr (Either a b, c) (Either (a, c) (b, c))

liftLSA = swapA≫ liftRSA≫ swapA +++ swapA

swapYZA :: BiArrow arr⇒ arr ((a, b), c) ((a, c), b)
swapYZA = assocPA≫ second swapA≫ inv assocPA

The method ↔ of the state arrow is implemented using first and ↔ of the
underlying arrow. The composition of state arrows just composes the underlying
arrows.

The instance of StT for the choice arrow is defined with help of distributivity
of the product type over the sum type. As usual, such a property is specified
by constructing an appropriate bi-arrow, in this case liftLSA, a transformation
of liftRSA from Sect. 7.3. Again, only minor modifications of the instance
declarations given in [Hug00] were necessary.

7.4.3 Polytypic shape

We use the state arrow of the previous section to define polytypically an invertible
pair of conversion functions that separate a functor into its shape and its contents

7.5: POLYTYPIC (DE)SERIALIZATION 131

and combine the shape and the contents back. Expressed as ordinary functions the
type signatures of these two functions are:

separate :: Functor f⇒ f a→ [a]→ (f (), [a])
combine :: Functor f⇒ f ()→ [a]→ (f a, [a])

Instead of defining these functions as primitives, we will use the invertible state
arrow. The data stored in/retrieved from the functor is passed as a state. For list
states, we introduce the getputA arrow. The getputA arrow operates on this state
and it is used to get an input element from or to add an element to the state.

getputA :: BiArrow arr⇒ StT [a] arr () a
getputA = St (get ↔ put)

where
get ((), x:xs) = (x, xs)
put (x, xs) = ((), x:xs)

Since our shape operations are each other’s inverse, we only have to specify one of
them explicitly. We choose to define the combine function by using the polytypic
traversals introduced in Sect. 7.4.1.

combine :: (Gmapl t, ArrowChoice arr, BiArrow arr)⇒
StT [a] arr (t ()) (t a)

combine = gmapl getputA

separate :: (Gmapl t, ArrowChoice arr, BiArrow arr)⇒
StT [a] arr (t a) (t ())

separate = inv combine

The following example illustrates how we can use combine to fill an empty tree
structure with integers.

(toEp . unSt) combine
(Leaf () ‘Node‘ Leaf () ‘Node‘ Leaf (), [3, 4, 5])

−−yields Leaf 3 ‘Node‘ Leaf 4 ‘Node‘ Leaf 5

(toEp . unSt) separate (Leaf 3 ‘Node‘ Leaf 4 ‘Node‘ Leaf 5)
−−yields (Leaf () ‘Node‘ Leaf () ‘Node‘ Leaf (),
−−[3, 4, 5])

7.5 Polytypic (de)serialization

In this section, we present an example of encode-decode pair of functions that
implement structure-based encoding and decoding of data.

132 ARROWS FOR INVERTIBLE PROGRAMMING

The packing function takes data and converts it into a list of bits (Booleans),
whereas the unpacking function recovers data from a list of bits. The bit represen-
tation directly represents the structure of data using only static information (the
type of the data), not dynamic information (the value stored in a data structure),
like some other compression methods do.

The choice which conversion should be specified is again arbitrary. We pick
the decoder, which reads the bits from the input, and produces the original data
structure. To obtain such a decoder for any data type, we will give a polytypic
specification.

Basic types, like Char and Int, are encoded with a fixed number of bits. Al-
though we could specify this primitive operation by means of arrow combinators,
it appears to be easier to define it as a pure function, and to lift it to an arrow.

int2KBitsA :: BiArrow arr⇒ Int→ arr Int [Bool]
int2KBitsA k = int2bits k ↔ bits2int k

where
int2bits 0 n = []
int2bits k n = odd n:int2bits (k-1) (n ‘div‘ 2)

bits2int 0 bs = 0
bits2int k (True:bs) = 1+bits2int (k-1) bs*2
bits2int k (False:bs) = bits2int (k-1) bs*2

Now, the decoder for integers can be defined. It expects a list of bits, which has
to be taken from the state. This is done by first producing the shape of the list and
then by filling this list using the combine arrow of the previous section.

decodeInt :: (ArrowChoice arr, BiArrow arr)⇒
Int→ StT [Bool] arr () Int

decodeInt k = createShapeA k≫ combine≫ inv (int2KBitsA k)

createShapeA :: BiArrow arr⇒ Int→ arr () [()]
createShapeA size = create ↔ etaerc

where
create () = replicate size ()
etaerc l | length l == size = ()

The encoder for integers is the dual of the decoder for integers:

encodeInt :: (ArrowChoice arr, BiArrow arr)⇒
Int→ StT [Bool] arr Int ()

encodeInt k = inv (decodeInt k)

The decoder defined as a polytypic function is:

7.5: POLYTYPIC (DE)SERIALIZATION 133

decode{|t|arr|} :: (ArrowChoice arr, BiArrow arr,
decode{|t|arr|})⇒ StT [Bool] arr () t

decode{|Unit|} = voidUnitA
decode{|Int|} = decodeInt 32
decode{|Char|} = decodeInt 8≫ toEnum ↔ fromEnum
decode{|Bool|} = getputA
decode{|Prod a b|} = dupVoidA

≫ decode{|a|} ∗∗∗ decode{|b|}
≫ prodA

decode{|Sum a b|} = getputA≫ bool2EitherA
≫ decode{|a|} +++ decode{|b|}
≫ sumA

voidUnitA is the conversion between () and Unit, dupVoidA duplicates the input
(), and bool2eitherA is the isomorphism between the boolean type and the co-
product of voids.

voidUnitA :: BiArrow arr⇒ arr () Unit
voidUnitA = (λ()→ Unit) ↔ (λUnit→ ())

dupVoidA :: BiArrow arr⇒ arr () ((), ())
dupVoidA = (λ()→ ((), ())) ↔ (λ((), ())→ ())

bool2EitherA :: BiArrow arr⇒ arr Bool (Either () ())
bool2EitherA = bool2either ↔ either2bool

where
bool2either b = if b then Right () else Left ()
either2bool (Left ()) = False
either2bool (Right ()) = True

Since Unit can be encoded with zero bits, the decoder for Units just returns Unit.
Booleans require just one bit and hence a single get. 32-bit integers are decoded
with help of the integer decoder defined before. For characters, the decoder reads
an 8-bit integer and converts into a character. Pairs are decoded by first makes
two units out of one, and then applying the decoding componentwise. Finally, the
case for the sum type first reads one bit to determine whether the left of the right
branch should be decoded next.

Using duality, we get the encoder for free from the definition of the decoder.

encode{|t|arr|} :: (ArrowChoice arr, BiArrow arr,
decode{|t|arr|})⇒ StT [Bool] arr t ()

encode{|t|} = inv decode{|t|}

134 ARROWS FOR INVERTIBLE PROGRAMMING

For example, to encode a tree containing the integers 1, 2, and 3 we simply write:

(toEp . unSt) encode{|Tree Int|}
(Leaf 1 ‘Node‘ Leaf 2 ‘Node‘ Leaf 3, [])

The output consists of 101 bits: 96 for the integers and 5 bits for the nodes and
leaves of the tree structure.

7.6 Monadic programming with bi-arrows

Up to now, our examples did not have to deal with failure. Of course, the decoding
algorithm will not terminate properly if the input data does not correspond to a
value, e.g., if some of the bits are missing. For expressing the algorithm, this was
not essential, but in a real application, such an decoding function is not acceptable
because it might lead to uncontrolled termination. On the other hand, it is much
harder to preserve invertibility if functions are able to fail.

In this section, we present appropriate techniques to handle failure without
losing invertibility completely. We first introduce bi-arrow definitions for poly-
typic zipping/unzipping (Sect. 7.6.1). Then, we define the class ArrowZero (Sect.
7.6.2) and show how in certain cases it can be used for the zipping example. To
obtain a useful implementation of this new class, Sect. 7.6.3 adds a monadic arrow
transformer to our arsenal. As a short example, this monadic bi-arrow is applied
to the Maybe monad, which adds support for graceful failure to the polytypic zip
function. In Sect. 7.7 we will extend our collection of arrow classes further with
a combinator that, when applied to two arrows, will choose the second one if the
first one fails.

7.6.1 Partial polytypic zipping

First, we introduce a polytypic function that is closely related to the polytypic
traversals of Sect. 7.4.1: polytypic zipping/unzipping. It cannot deal with failure,
which we will fix later on.

A binary zipping takes two structures of the same shape and combines them
into a single structure. Unzipping does the opposite. In our bidirectional frame-
work, we get unzipping for free if we define zipping as a bi-arrow. This can be
done as follows:

zip{|a, b, c|arr|} :: (ArrowChoice arr, BiArrow arr,
zip{|a, b, c|arr|})⇒ arr (a, b) c

zip{|Unit|} = inv dupUnitA
zip{|Prod a b|} = unprod2A≫ zip{|a|} ∗∗∗ zip{|b|}≫ prodA

7.6: MONADIC PROGRAMMING WITH BI-ARROWS 135

zip{|Sum a b|} = unsum2A≫ zip{|a|} +++ zip{|b|}≫ sumA

dupUnitA :: BiArrow arr⇒ arr Unit (Unit, Unit)
dupUnitA = (λUnit→ (Unit, Unit)) ↔ (λ(Unit, Unit)→ Unit)

unprod2A :: BiArrow arr⇒
arr (Prod a b, Prod c d) ((a, c), (b, d))

unprod2A = dorp ↔ prod
where

dorp (x1:∗:x2, y1:∗:y2) = ((x1, y1), (x2, y2))
prod ((x1, y1), (x2, y2)) = (x1:∗:x2, y1:∗:y2)

unsum2A :: BiArrow arr⇒
arr (Sum a b, Sum c d) (Either (a, c) (b, d))

unsum2A = mus ↔ sum
where

mus (Inl l1, Inl l2) = Left (l1, l2)
mus (Inr r1, Inr r2) = Right (r1, r2)

sum (Left (l1, l2)) = (Inl l1, Inl l2)
sum (Right (r1, r2)) = (Inr r1, Inr r2)

Just as encode is the inverse of decode, we define unzip as the inverse of zip.

unzip{|t|arr|} :: (ArrowChoice arr, BiArrow arr, zip{|t|})
⇒ arr c (a, b)→ arr (t c) (t a, t b)

unzip{|t|} f = inv (zip{|t|} (inv f))

Note that this definition for zip is partial: when two structures do not have the
same shape the result of zipping these structures is undefined. Obviously, the
inverse of zipping is a total function.

toEp (unzip{|Tree|} idA) (Leaf (1, ’a’) ‘Node‘ Leaf (2, ’b’))
−−yields
−−Leaf 1 ‘Node Leaf 2, Leaf ’a’ ‘Node‘ Leaf ’b’

Sometimes it is necessary that zipping itself is total, i.e., it should check whether
the input structures match and handle it gracefully if not. This is usually done by
returning a Maybe value in which Nothing indicates that the structures were not
of the same shape/size.

However, in this case the inverse, unzipping, becomes partial: if zipping
returns Nothing it is in general impossible to reconstruct the non-matching ar-
gument structures.

136 ARROWS FOR INVERTIBLE PROGRAMMING

7.6.2 Bi-arrows with zero

To deal with operations that can fail we use the ArrowZero class.

class Arrow arr⇒ ArrowZero arr where
zeroArrow :: arr a b

The arrow zeroArrow is the multiplicative zero for composition with pure (bi-
)arrows, i.e.,

f≫ zeroArrow= zeroArrow= zeroArrow≫ f

Clearly, this law excludes that zeroArrow has an inverse. However, this does
not imply that we completely lose invertibility when zeroArrow is used: in many
cases the left inverse of a failing operation still exists. More formally, an arrow f
if left-invertible if inv f≫ f = idA

The following derived combinator ‖> (left-fanin), which is a bidirectional vari-
ant of the ||| (fanin) arrow combinator, appears to be convenient in combination
with zeroA.

(‖>) :: (ArrowChoice arr, BiArrow arr) −− infixr 4
⇒ arr a c→ arr b c→ arr (Either a b) c

f ‖> g = f +++ g≫ untagRA

untagRA :: BiArrow arr⇒ arr (Either a a) a
untagRA = id ‘either‘ id ↔ Right

From this definition we cannot conclude directly that it is invertible, because
id ‘either‘ id is not the inverse of Right and, therefore, the occurrence of
↔ in untagRA is not invertible. We call this combinator right-biased because, in
the reverse direction, it always yields Right. Nevertheless, we can show that the
‖> combinator preserves left-invertibility. More specifically, it can be shown that
the arrow f ‖> g is left-invertible if g is left-invertible. Analogously, it follows
that left-biased combinators preserve right-invertibility.

We can use the new combinator ‖> with zeroA to extend zip with explicit
failure. In fact, the only polytypic instance that changes is the one for Sum, see
below. Additionally, we must add the ArrowZero class as a context restriction to
the type of zip.

zip{|a, b, c|arr|} :: (ArrowZero arr, ArrowChoice arr,
BiArrow arr, zip{|a, b, c|arr|})⇒
arr (a,b) c

zip{|Sum a b|} = unsum2FA
≫ zeroArrow ‖> (zip{|a|} +++ zip{|b|})

7.6: MONADIC PROGRAMMING WITH BI-ARROWS 137

≫ sumA
unsum2FA = mus ↔ sum
where

mus (Inl l1, Inl l2) = Right (Left (l1, l2))
mus (Inr r1, Inr r2) = Right (Right (r1, r2))
mus (s1, s2) = Left (s1, s2)

sum (Right (Left (l1, l2))) = (Inl l1, Inl l2)
sum (Right (Right (r1, r2))) = (Inr r1, Inr r2)
sum (Left (s1, s2)) = (s1, s2)

Now the adaptor unsum2FA tags the result with an additional sum constructor to
indicate whether the constructors matched. In particular, it uses Right in case
both constructors were identical, and Left if they were different. In the latter
case the zeroArrow branch of ‖> is chosen, whereas in the first case the ‘normal’
zip{|a|} +++ zip{|b|} is performed.

7.6.3 Lifting monads to bi-arrows

To be able to apply zip to concrete data structures we need appropriate instances
for our arrow classes, including ArrowZero.

A convenient and flexible way to manage failures, but also to implement
other concepts such as non-determinism and states, is obtained by using monads.
Monadic arrows are arrows that represent monadic computations.

The goal of this section is twofold: to show how we deal with monadic arrows
in the bidirectional arrow framework and to provide the basis for handling failures.

We use the same classes for monads that can be found in Haskell [HPF99].
The basic monad is defined with the return and bind operations:

class Monad m
where

return :: a→ m a
(>>=) :: m a→ (a→ m b)→ m b

The plus monad will be used to support failures of monadic arrows, and to imple-
ment choices as well.

class Monad m⇒ MonadPlus m where
mzero :: m a
mplus :: m a→ m a→ m a

Usually, the Kleisli arrow transformer is used to represent monadic computations
[Hug00, JJ02a], which is defined on a monad m as follows:

newtype K m arr a b = K {unK :: arr a (m b)}

138 ARROWS FOR INVERTIBLE PROGRAMMING

However, this arrow is not suitable for our purposes, because it is not possible to
define an instance of inv on it: it handles the argument and result asymmetrically.
As symmetrical version of the Kleisli transformer can be obtained by adjusting
the argument type in the definition of K as follows:

newtype MoT m arr a b = Mo {unMo :: arr (m a) (m b)}

The instances of Arrow, BiArrow and ArrowChoice on MoT require that we are
able to traverse the underlying monad. This will be done by using the polytypic
mapping Gmapl from Sect. 7.4.1.

However, this limits the choice for m to data types, because it is impossible
to instantiate Gmapl for function types. In the instance definitions, we use the
auxiliary arrows firstMA and leftMA based on the monadic join and return
operations.

instance (Gmapl m, Monad m, ArrowChoice arr,
BiArrow arr)⇒ Arrow (MoT m arr) where

arr = arrA
f≫ g = Mo (unMo f≫ unMo g)
first f = Mo (inv firstMA≫

gmapl (first (unMo f))
≫ firstMA)

second = secondA

instance (Monad m, ArrowChoice arr, BiArrow arr,
Gmapl m)⇒ ArrowChoice (MoT m arr) where

left f = Mo (inv leftMA≫
gmapl (left (unMo f))
≫ leftMA)

right = rightA

instance (Gmapl m, Monad m, ArrowChoice arr,
BiArrow arr)⇒ BiArrow (MoT m arr) where

f ↔ g = Mo (liftM f ↔ liftM g)
inv f = Mo (inv (unMo f))

with

firstMA :: (Monad m, BiArrow arr)⇒ arr (m (m a, b)) (m (a, b))
firstMA = joinP ↔ splitP

where
joinP = (=<<) (λ(mx, y)→ mx >>= λx→ return (x, y))
splitP = (=<<) (λ(x, y)→ return (return x, y))

7.7: PARSING AND PRETTY-PRINTING 139

leftMA :: (Monad m, BiArrow arr)⇒
arr (m (Either (m a) b)) (m (Either a b))

leftMA = joinS ↔ splitS
where

joinS = (=<<) ((=<<) (return . Left)
‘either‘ (return . Right))

splitS = (=<<) ((return . Left . return)
‘either‘ (return . Right))

liftM :: Monad m⇒ (a→ b)→ m a→ m b
liftM f m = m >>= λx→ return (f x)

Here we should mention that invertibility of firstMA and leftMA depends on the
underlying monad. E.g., for the Maybe monad it can be shown that both firstMA
and leftMA are invertible; for the list monad this does not hold.

One of the purposes of the monadic arrows is to handle failures. The zero
monadic arrow is defined with help of mzero.

instance (Gmapl m, MonadPlus m, ArrowChoice arr,
BiArrow arr)⇒ ArrowZero (MoT m arr) where

zeroArrow = Mo (const mzero ↔ const mzero)

To illustrate the use of the monadic arrow we return to our generic zipping func-
tion. For example, combining the information of two trees is successful:

(toEp . unM) (zip{|Tree|} idA)
(Just (Leaf 1 ‘Node‘ Leaf 3, Leaf 2 ‘Node‘ Leaf 4))
−−yields Just (Leaf (1,2) ‘Node‘ Leaf (3,4))

And if we try to combine two trees with different shape, it yields the mzero:

(toEp . unMo) (zip{|Tree|} idA)
(Just (Leaf 1 ‘Node‘ Leaf 3, Leaf 2))

−−yields Nothing

7.7 Parsing and pretty-printing

In this section, we show how to define a parser based on our reversible arrow
combinators. Again, we will get the inverse, a pretty-printer, for free.

We give an example of a parser for a very simple functional language, specified
by the following grammar in BNF notation.

<Expression> ::= <Expression> <Expression>
| ” (” <Expression> ”)”

140 ARROWS FOR INVERTIBLE PROGRAMMING

| ”λ” <Variable> ”→” <Expression>
| <Variable>
| <Constructor>

<Variable> ::= <String>
<Constructor> ::= <String>

The main difference between the decoder of Sect. 7.5 and a parser is that the
decoder does not have to choose between alternatives, since its action for the sum
type is solely depends on the next input bit. The parser presented in this section
will try alternatives to see, which of them succeeds.

Another difference is that the parser is not completely determined by the type
of the term it parses. It is because it needs to parse extra spaces, parentheses
etc. Consequently, we cannot expect that the resulting parser is (left and right)
invertible, because different input sentences, may lead to the same result.

Analogously to encode-decode, we define the parser and derive the corre-
sponding pretty-printer. Therefore, the programmer does not need to write the
complete pretty-printer code.

7.7.1 The plus arrow

Failure of parsers is handled by the ArrowZero. What we still need is a combina-
tor that, when applied to two parsers, will choose the second in case the first one
fails.

We therefore introduce one further arrow class, comparable to the MonadPlus
class of monadic parser combinators.

class ArrowZero arr⇒ ArrowPlus arr where
(<|>) :: arr a b→ arr a c→ arr a (Either b c)

In contrast to the Haskell’s arrow plus combinator <+>, our combinator tags its
result so we can still see which parser has been chosen.

As said before, if possible the <|> chooses a non-failing computation. This is
expressed by the law

zeroArrow<|> f = f = f <|> zeroArrow

The implementations of ArrowZero and ArrowPlus for the state arrow are
straightforward (liftLSA has been defined in Sect. 7.4.2).

instance (ArrowZero arr, BiArrow arr)⇒
ArrowZero (StT s arr) where

zeroArrow = St (first zeroArrow)

7.7: PARSING AND PRETTY-PRINTING 141

instance (ArrowPlus arr, ArrowChoice arr,
BiArrow arr)⇒ ArrowPlus (StT s arr) where

f <|> g = St (unSt f <|> unSt g≫ inv liftLSA)

Instantiating ArrowPlus for the monadic arrow is much more complex. We defer
its definition until the end of this section.

7.7.2 A concrete parser

As in the previous sections, we will use a combination of the state and monadic
arrows to build a concrete example parser. The resulting syntax tree is represented
by the data structure.

data Expression = App Expression Expression
| Nested Expression
| Lambda String Expression
| Variable String
| Constructor String

Observe that the syntax tree explicitly stores whether an expression was enclosed
by brackets. This is done to ensure that, when printing a parsed expression,
brackets are displayed correctly.

To abstract from the parsing issues at the lexical level, we assume a separated
scanner/lexer and that the parser will work on a list of tokens. This leads to:

data Token = Id_T String | Lambda_T | Open_T
| Close_T | Arrow_T | EOF_T deriving Eq

type Parser arr t = StT [Token] arr () t
type Printer arr t = StT [Token] arr t ()

7.7.3 Parsing keywords

Before defining a parser for expressions, we introduce two auxiliary parsers to
examine the input tokens.

The first one, parseKeyword, tries to read a given token from the input stream.
If it succeeds, this token is delivered as result; if not, the parser fails. As with the
zip example of Sect. 7.6.3 we use ‖> in combination with zeroArrow to handle
failure.

parseKeyword token = getputA≫ tagTokenA
≫ zeroArrow ‖> idA

where

142 ARROWS FOR INVERTIBLE PROGRAMMING

tagTokenA = test ↔ id ‘either‘ id
test t = if t == token then Right t

else Left t

The second one examines the input list to see whether the next token is an iden-
tifier. Moreover, to distinguish variables (starting with a lower case char) from
constructors (starting with a upper case char) this parser is parameterized with a
predicate. The parser succeeds in case of an identifier token fulfilling the predi-
cate. Then the identifier itself is returned, otherwise the parser fails.

parseIdentifier p = getputA≫ tagIDA p
≫ zeroArrow ‖> idA

where
tagIDA p = tagID p ↔ id ‘either‘ Id_T

tagID p (Id_T name) | p name = Right name
tagID _ token = Left token

7.7.4 Parsing expressions

The grammar of our input language is left-recursive, and hence cannot be directly
translated into a parser. We introduce an intermediate function for parsing expres-
sions (called terms) which are no applications.

parseTerm = parseNested
<|> parseLambda
<|> parseVariable
<|> parseConstructor
≫ toExp ↔ fromExp

where
toExp = Nested ‘either‘ (uncurry Lambda

‘either‘ (Variable ‘either‘ Constructor))

fromExp (Lambda var exp) = Right (Left (var, exp))
fromExp (Variable var) = Right (Right (Left var))
fromExp (Constructor c) = Right (Right (Right c))
fromExp (Nested nested) = Left nested

parseTerm combines parsers for all expression kinds by using the arrow plus
combinator. The result, tagged with various Lefts and Rights, is converted by
the adapter to_expr ↔ from_expr into the corresponding part of the syntax
tree.

7.7: PARSING AND PRETTY-PRINTING 143

For parsing consecutive elements, we use a helper combinator based on ∗∗∗
and the dupVoidA arrow defined in Sect. 7.5.

(<&>) :: BiArrow arr⇒ −− infixl 6
arr () a→ arr () b→ arr () (a, b)

f <&> g = dupVoidA≫ f ∗∗∗ g

parseLambda = parseKeyword Lambda_T
<&> parseVariable
<&> parseKeyword Arrow_T
<&> parseExpression
≫ toLambda ↔ fromLambda

where
toLambda (((_, v), _), e) = (v, e)
fromLambda = const Lambda_T ‘split‘ fst

‘split‘ const Arrow_T ‘split‘ snd

parseNested = parseKeyword Open_T
<&> parseExpression
<&> parseKeyword Close_T
≫ toExp ↔ fromExp

where
toExp ((_, e), _) = e
fromExp e = ((Open_T, e), Close_T)

parseVariable = parseIdentifier (isLower . head)
parseConstructor = parseIdentifier (isUpper . head)

The parser for applications takes some more doing. It first reads a list of terms
and converts this into a tree of binary applications.

We introduce a function parseOneOrMore to parse a list of elements that,
when applied to a parser p, tries to parse one or more p-elements.

parseOneOrMore p = p <&> parseOneOrMore p <|> p
≫ untag ↔ tag

where
untag (Left (x, (y, l))) = (x, y:l)
untag (Right x) = (x, [])

tag (x, y:l) = Left (x, (y, l))
tag (x, []) = Right x

144 ARROWS FOR INVERTIBLE PROGRAMMING

Note that this parseOneOrMore will try to find the longest list. The parser for
expressions can now be expressed easily.

parseExpression = parseOneOrMore parseTerm
≫ uncurry to_apply ↔ from_apply []

where
to_apply app [] = app
to_apply app (x:xs) = to_apply (App app x) xs

from_apply l (App f a) = from_apply (a:l) f
from_apply l t = (t, l)

Finally, the pretty-printer for expressions is obtained by taking the inverse of the
parser.

parse :: (ArrowPlus arr, ArrowChoice arr,
BiArrow arr)⇒ Parser arr Expression

parse = parseExpression <&> parseKeyword EOF_T≫ eofA
where

eofA = fst ↔ (λx→ (x, EOF_T))

print :: (ArrowPlus arr, ArrowChoice arr, BiArrow arr)
⇒ Printer arr Expression

print = inv parse

7.7.5 A monadic plus arrow

Before we can really use our parser we have to provide an appropriate implemen-
tation of the plus arrow.

More specifically, we need an instance of ArrowPlus for the monadic arrow
transformer M. Of course, this instance will be based on the mplus of the underly-
ing monad.

instance (Gmapl m, MonadPlus m, ArrowChoice arr, BiArrow arr)
⇒ ArrowPlus (MoT m arr) where

l <|> r = Mo (dupMA≫
(unMo l≫ inlMA) ∗∗∗ (unMo r≫ inrMA)
≫ inv dupMA)

The adapter arrows dupMA, inlMA and inrMA are defined as follows.

dupMA :: (MonadPlus m, BiArrow arr)⇒ arr (m a) (m a, m a)
dupMA = (λx→ (x, x)) ↔ uncurry mplus

7.7: PARSING AND PRETTY-PRINTING 145

inlMA :: (MonadPlus m, BiArrow arr)⇒ arr (m a) (m (Either a b))
inlMA = inlM ↔ uninlM

where
inlM = (=<<) (return . Left)
uninlM = (=<<) (return ‘either‘ const mzero)

inrMA :: (MonadPlus m, BiArrow arr)⇒ arr (m a) (m (Either b a))
inrMA = inrM ↔ uninrM

where
inrM = (=<<) (return . Right)
uninrM = (=<<) (const mzero ‘either‘ return)

The adapter dupMA is in general not invertible, because the arguments of ↔ are
obviously not each other’s inverse. This means that the instance of <|> is also not
invertible, because it defined in terms of dupMA and inv dupMA.

Consequently, when defining an operation using this instance of <|> one does
not get invertibility for free, i.e., it is no longer sufficient to prove that all pairs of
pure functions lifted with↔ are each other’s inverse. To show correctness, global
reasoning is required.

In practice, this may imply that the inverse of the operation needs to be fine-
tuned in order to produce the expected result. In particular, this holds for our
parser example. The Nested constructor was added to the syntax tree to be able
to reconstruct the brackets that were used to disambiguate expressions.

7.7.6 Parser/printer examples

Suppose we have the following list of input tokens:

tokens = [Open_T, Lambda_T, Id_T ”x”, Arrow_T,
Id_T ”x”, Close_T, Lambda_T, Id_T ”y”,
Arrow_T, Id_T ”y”, EOF_T]

To parse this and convert it into an expression, we write:

(toEp . unMo . unSt) parse (return ((), tokens))
:: Maybe (Expression, [Token])

And if we want to print the expression:

expr = App (Nested (Lambda ”x” (Variable ”x”)))
(Lambda ”y” (Variable ”y”))

we simply write:

(toEp . unMo . unSt) print (return (expr, []))
:: Maybe ((), [Token])

146 ARROWS FOR INVERTIBLE PROGRAMMING

The Maybe-monad does not reveal that the expression parser is ambiguous.
Suppose we leave out the Nested constructor in the last example expression.

Printing this expression will lead to a list of tokens not containing the open and
close brackets anymore. Our parser will still be able to parse this list but it will not
produce the same expression we have started with: the App will occur inside the
first lambda expression. The reason is that our parser only delivers one successful
parse.

However, in our framework it is very easy to change the parser in such a way
that it delvers all successful parses, namely, by using the list monad instead of the
maybe monad. This list monad is a standard implementation of the monad class.
Therefore, the only thing we have to change for our example is the type!

(toEp . unMo . unSt) parse (return ((), tokens))
:: [(Expression, [Token])]

Running this expression with the following list of tokens

tokens = [Lambda_T, Id_T ”x”, Arrow_T, Id_T ”x”,
Lambda_T, Id_T ”y”, Arrow_T, Id_T ”y”,
EOF_T]

will now yield two expressions:

App (Lambda ”x” (Variable ”x”)) (Lambda ”y” (Variable ”y”))

and

Lambda ”x” (App (Variable ”x”) (Lambda ”y” (Variable ”y”)))

7.8 Related Work

This work is inspired by Jansson and Jeuring [JJ02a, JJ99] who define poly-
typic functions for parsing and pretty-printing and then prove invertibility. They
maintain invertibility using pairs of separate definitions, leading to many proof
obligations for the programmer. In contrast, we use one single definition for both
conversion directions using invertibility-preserving combinators. As a result, we
only have to prove invertibility for the primitives that are used. Furthermore, our
approach is neither limited to the example of parsing nor to the use of polytypic
functions.

Invertibility is an important practical property used in many algorithms. For
instance, it plays an important role in the database world where one has to en-
sure that any change in a view domain leads to a corresponding change in the
underlying data domain.

7.9: CONCLUSIONS AND FUTURE WORK 147

To ensure this property, Foster et al. [FGM+05] present a domain-specific pro-
gramming language in which all expressions denote bi-directional transformations
on trees. They use two functions, a get function for extracting an abstract view
from a concrete one, and a put function that creates an updated concrete view
given the original concrete view and the updated abstract view. Using the proper
get and put functions, invertibility is guaranteed.

For similar purposes, Mu et al. [MT04] define a programming language in
which only injective functions can be defined, thus guaranteeing invertibility.
Again put and get functions are defined, but the crux here is to do some book-
keeping when doing a get such that a put can always be made invertible.

A different approach is taken by Robert Glück and Masahiko Kawabe [GK04,
GK05]. They try to construct the inverse function from the original one automat-
ically. They use a symmetrical representation for functions such that the inverse
function can be constructed by interpreting the original function backwards. Our
arrow combinators have a representation with this same property. The main dif-
ference with our work is we obtain the inverse function by construction while they
try to automatically generate an inverse function from the original one. They use
LR-parsing techniques and administrative bookkeeping to invert choices made by
conditional branches in the original function.

There is much literature about inverting existing programs, both functional and
imperative, see for example: Dijkstra [Dij79], Chen [CU90], and Ross [Ros97].
Our approach is more hands-on and focusses on constructing (parts of) programs
in an invertible way.

7.9 Conclusions and Future Work

We feel that we have provided an interesting framework in the area of invertible
programming.

We have extended arrows to bidirectional arrows, bi-arrows, which preserve
invertibility properties. We have presented several invertible bi-arrow transform-
ers. Bi-arrows were used in a monotypic and in a polytypic context. We intro-
duced ways to deal with state and with monads. A concrete parser/pretty printer
example was presented with a discussion of its properties.

For future work we want to provide full formal proof that the framework
preserves invertibility properly. Furthermore, we will investigate whether the
approach scales up to real world practical examples where invertibility properties
are a requirement. Among other things, this will require creating a translation
scheme similar to Paterson notation in such a way that the required properties are
preserved, and programs are easier to read and write.

CHAPTER 8

On–the–Fly Formal Testing of a Smart Card Applet

ARJEN VAN WEELDEN

MARTIJN OOSTDIJK
LARS FRANTZEN
PIETER KOOPMAN
JAN TRETMANS

8.1 Introduction

Smart devices are often used in critical application domains, such as electronic
banking and identity determination. This implies that their quality, such as their
safety, security, and interoperability, is very important. Such devices commonly
implement a Java Card virtual machine, which is able to execute Java Card applets.
Each application is then implemented as a separate applet.

One way to increase the quality of applets is the use of formal methods.
Such applets are sufficiently small to make a complete formal treatment with
current day formal technology feasible. Systematic testing is another method,
predominantly used to check the quality of smart devices in an experimental way.

In this chapter, we combine testing and formal methods: we test a Java Card
applet, in a black-box setting, based on a formal specification of its required
behavior. Compared with formal verification, testing has the advantage that it
examines the real, complete system consisting of applet, platform and hardware
together, whereas formal verification is usually restricted to a model of the ap-
plet only. Compared with traditional, manual testing, formal testing has as first

149

150 ON–THE–FLY FORMAL TESTING

advantage that the formality reduces the ambiguities and misinterpretations in
the specification so that it is clearer what should be tested. Secondly, formal
specifications allow completely automation of the testing process: test cases are
algorithmically generated from the formal specification, and test results can au-
tomatically be analyzed. This makes it possible to generate and execute large
quantities of large tests in a short time. It is mainly this second advantage that we
will pursue in this chapter.

Our investigation of formal testing is conducted using a case study. The applet
that we test is a simple electronic purse application, implemented as a Java Card
applet, with a limited set of methods like asking the value on the card, debiting,
crediting, etc. The formal specification of the electronic purse applet is given as a
State-chart [Gro]. The case and its formal specification are described in Sect. 8.2.

Automatic test generation, test execution, and test result analysis are per-
formed in an on–the–fly fashion, using the test tool GAST [KP04]. The test tool
GAST is described in Sect. 8.3; Section 8.4 describes how the State-chart spec-
ification is transformed into Clean [PvE02], a functional programming language
used as the input language for GAST. How GAST, the applet under test, and the
platform are connected is described in the test architecture, which is given in Sect.
8.5.

We constructed one (assumed to be) correct applet implementation. From this
implementation, we derived 22 mutants by inserting subtle bugs to see whether
such bugs would be detected by our automated, formal testing method. A sum-
mary of the performed tests is given in Sect. 8.6. Finally, Sect. 8.7 and 8.8 discuss
related work, conclusions, and possible future extensions.

8.2 Case Study

We demonstrate our testing methodology by applying it to a simple electronic
purse application as a case study. The basic events, which the electronic purse can
receive, are:
• set an initial value n via setValue(n)
• query the actual value via getValue()
• pay an amount of n via debit(n)
• authenticate with a pin (personal identification number) via
authenticate(pin) before charging the card
• charge the card with an amount of n via credit(n)
• reset the card using a puk (personal unlocking key) via reset(puk)

All these events are input events for the card, because they are sent from the Card
Accepting Device (CAD, also called terminal) to the card. To every input event,
the card answers with a corresponding output event:

8.2: CASE STUDY 151

• acknowledge an operation via ackOK or ack(n)
• report an error via error(n)
Figure 8.1 shows the specification of the purse, modelled as a State-chart.

Authenticated

Invalid

Uninitialized

Initialized
credit(n) [n <= MAXVALUE−value]
/ value += n; tries := 0; ackOK

reset(puk) [ok(puk)]
/ ackOK

credit(n) [value+n > MAXVALUE]
/ error(INV_PARAM)

debit(n) [value−n >= 0]
/ value −= n; ackOK

/ ack(value)
getValue()

debit(n) [value−n < 0]
/ error(INV_PARAM)

setValue(n) [n <= MAXVALUE]
/ ackOK; value := n; tries := 0

authenticate(pin) [tries >= 5]
/ error(INV_ID);

setValue(n) [n > MAXVALUE]
/ error(INV_PARAM)

reset(puk) [wrong(puk)]
/ error(INV_ID)

authenticate(pin) [ok(pin) && tries < 5]
/ ackOK

authenticate(pin) [wrong(pin) && tries < 5]
/ tries++; error(INV_ID)

Figure 8.1: State-chart model of the purse applet.

The transition labels between two states s1 and s2 are of the form:

s1
i [g] / act−−−−−→ s2

with i being an input event, g being a guard, and act representing a sequence
of actions. We exemplify the semantics with this transition:

Authenticated
credit(n) [n≤MAXVALUE−value]/value+=n; tries:=0;ackOK−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Initialized

The input event (i) is credit(n). The argument n represents the amount of
money to be added to the card. The applet uses signed 16-bit shorts and it gives
an error(INV_PARAM) on negative values. We abstract from that in the State-
chart to keep it concise. The actual value of the card is saved in the variable
value. A transition can only fire when the corresponding guard g holds. In this
example, one can only increase the value of the card by n, when n does not exceed
the MAXVALUE-value. If the transition is taken, the actions (act) are performed. In
this case, the variable value is incremented by n, the tries variable is reset to
zero, and the acknowledgment ackOK is sent to the terminal.

Intuitively, the purse works as follows. First, the card is in the Uninitialized
state. It then is initialized by the credit institution, which issues the card to the
customer by putting a certain amount n of money on it via the setValue(n)
event.

152 ON–THE–FLY FORMAL TESTING

In the Initialized state the customer can query the actual value via the
getValue() event, or pay with the card via the debit(n) event. To increase the
value, one must first authenticate at a terminal with a card-specific pin, leading
to the Authenticated state. Being in that state, one can add money via the
credit(n) event, leading back to the Initialized state. The card checks that
its value does not exceed the MAXVALUE.

Furthermore, there is a maximum of five tries to enter the pin. After the fifth
wrong attempt, one can no longer credit the card. If the credit institution enters
the reset code (called puk) correctly, the card goes back to the Uninitialized
state and can be re-initialized via the setValue(n) event. If the puk is entered
wrongly, the card goes to the Invalid state and cannot be used anymore.

Two kinds of erroneous events can be sent to the card. Firstly, a syntactically
correct input event that is not specified for the actual state may occur, e.g., a
credit(n) when the card is in the Initialized state. Such an unspecified input
event is called an inopportune event, and the response of the applet should be an
error message error(INV_CMD), whereas the applet remains in its actual state.
Secondly, a syntactically incorrect event may occur, e.g., a command-APDU with
a non-existing event-code. This is also implicitly assumed to lead to an error
message, while the card stays in its current state.

8.3 The Test Tool GAST in a Nutshell

The test tool GAST is designed to be open and extendable. For this reason,
it is implemented as a library rather than a stand-alone tool. The functional
programming language Clean is chosen as host language due to its expressiveness.

GAST can handle two kind of properties. It can test properties stated in logic
about (combinations of) functions. GAST can also test the behavior of reactive
systems based on an Extended (Finite) State Machines (E(F)SM). Here we will
only discuss the ability to test reactive systems.

An ESM as used by GAST comes quite close to the State-chart of Fig. 8.1.
It consists of states with labelled transitions between them. A transition is of the

form s
i/o−→ t, where s, t are states, i is an input which triggers the transition, and

o is a, possibly empty, list of outputs. The domains of the inputs, outputs, and
states can be given by arbitrarily complex recursive Algebraic Data Types (ADT).
This constitutes the main difference with traditional testing with FSM’s where
the testing algorithms can only handle finite domains and deterministic systems
[LY96].

A transition s
i/o−→ t is represented by the tuple (s, i, t,o). A relation based

specification δr is a set of these tuples: δr ⊆ S×I×S×O∗. The transition function

8.3: THE TEST TOOL GAST IN A NUTSHELL 153

δ f is defined by δ f (s, i) = {(t,o)|(s, i, t,o) ∈ δr}. Hence, s i/o−→ t is equivalent
to (t,o) ∈ δ f (s, i). A specification is partial if for some state s and input i we
have δ f (s, i) = /0. A specification is deterministic if for all states and inputs the
size of the set of targets contains at most one element: #δ f (s, i) ≤ 1. A trace
σ is a sequence of inputs and associated outputs from a given state. Traces are
defined inductively: the empty trace connects a state to itself: s

ε⇒ s. We can

combine a trace s
σ⇒ t and a transition t

i/o−→ u form the target state t, to trace

s
σ;i/o
=⇒ u. We define s

i/o−→ ≡ ∃t.s i/o−→ t and s
σ⇒ ≡ ∃t.s σ⇒ t. All traces from state

s are: traces(s)≡ {σ|s σ⇒}. The inputs allowed in a state s are given by init(s) =

{i|∃o.s i/o
=⇒}. The states after trace σ in state s are given by safterσ≡ {t|s σ⇒ t}.

We overload traces, init, and after for sets of states instead of a single state by
taking the union of the individual results.. When the transition function, δ f , to be
used is not clear from the context, we will add it as subscript.

The basic assumption for our formal testing is that the Implementation Under
Test (IUT), iut, is also a state machine. Since we do black box testing, the state
of the iut is invisible. The iut is assumed to be total: any input can be applied in
any state. Conformance of the iut to the specification spec is defined as (s0 is the
initial state of spec, and t0 of iut):

iut conf spec ≡ ∀σ ∈ tracesspec(s0),∀i ∈ init(s0 afterspecσ),∀o ∈ O∗.
(t0 afteriutσ)

i/o−→⇒ (s0 afterspecσ)
i/o−→

Intuitively: if the specification allows input i after trace σ, the observed output of
the iut should be allowed by the specification. If spec does not specify a transition
for the current state and input, anything is allowed. This notion of conformance
is very similar to the ioco relation [Tre96] for Labelled Transition Systems (LTS).
In an LTS each input and output is modelled by a separate transition. In our
approach, an input and all induced outputs up to quiescence are modelled by a
single transition. Quiescence characterizes a state of the iut that will not produce
any output before a new input is provided, i.e., a quiescent system waits for input
and cannot do anything else.

In order to test conformance, a collection of input sequences is needed. At the
beginning of each input sequence GAST resets the iut and the spec their initial
state. By applying the inputs of a sequence one by one, GAST investigates if it
can be transformed to a trace of spec. The previous inputs and observed responses
are remembered in trace σ. If δspec(s, i) �= /0 for the current input i and some state

s reachable from the initial state, s0, by trace σ (i.e., s0
σ⇒ s), the input is applied

to the iut, and the observed output is checked by spec.
GAST has several algorithms for input generation, e.g.:

154 ON–THE–FLY FORMAL TESTING

• Systematic generation of sequences based on the input type.
• Sequences that cover all transitions in a finite state machine.
• Pseudo random walk through the transitions of a specification.
• User-defined sequences.

In this chapter, we will only use the third algorithm to generate input sequences.
Testing is on–the–fly, which means that input generation, execution, and result
analysis are performed in lockstep, so that only the inputs actually needed will be
generated. The lazy evaluation of Clean used for the implementation of GAST
makes this easy.

Within the test tool GAST, the mathematical state transition function, δ f ,
specifying the desired behavior is represented by a function in the functional
programming language Clean. Functional languages allow very concise specifica-
tions of functions and have well understood semantics. Using an existing language
as notation for the specification prevents the need to design, implement and learn
a new language. The rich data types and available libraries enable compact and
elegant specifications. The advanced type system of functional languages enforces
consistency constraints on the specification, and hence prevents inconsistencies in
the specification. Since the specification is a function in a functional programming
language, it can be executed. This is convenient when one wants to validate the
specification by observation of its behavior. Any Clean type can be used to model
the state, the input and the output of the function specifying δ f , including user-
defined data types. GAST uses generic programming techniques for generating,
comparing, and printing of these types. This implies that default implementation
of these operations can be derived without any effort for the test engineer. When-
ever desired, these operations can be tailored using the full power of the functional
programming language.

8.4 The Purse Specification for GAST

The specification given in the State-chart is transformed to the functional language
Clean in order to let GAST execute and manipulate it. This section gives some
details about the representation in Clean of the electronic purse from Fig. 8.1. Due
to space limitations, we will show only snapshots of the (executable) specification.
A parameterized enumeration type represents the state of the purse.

:: PurseState = Uninitialized | Initialized Short Short
| Authenticated Short | Invalid

We use one constructor for each state from the State-chart in Fig. 8.1. The argu-
ments of the constructor Initialized represent the tries counter and the value.

8.5: TESTING JAVA CARDS WITH GAST 155

The type Short represents signed 16-bit integers. This implies that there are actu-
ally 2×216 = 217 different initialized states, of which some are not reachable.
There are similar types for input and output.

A transition function purse similar to δ f in Sect. 8.3 models the transitions.
The only difference with the mathematical specification is that the result is a
list of tuples instead of a set of tuples. Some function alternatives specifying
characteristic transitions are:

purse :: PurseState PurseInput→ [(PurseState, [PurseOutput])]
purse Uninitialized (SetValue n)

= if (n ≥ 0 && n ≤ MAXVALUE)
/∗ then∗/ [(Initialized 0 n, [AckOK])]
/∗ else ∗/ [(Uninitialized, [Error INV_PARAM])]

purse (Initialized tries value) Reset
= [(Uninitialized, [AckOK])]

purse (Initialized tries value) GetValue
= [(Initialized tries value, [Ack value])]

· · ·
purse state any = [(state, [Error INV_CMD])]

The first alternative models both transitions for the input SetValue n from the
state Uninitialized. The second and third alternative show two transitions form
the state Initialized. The last alternative captures the informal requirement that
inopportune events should cause no state transition and an error message as output.
Since state and input any are variables, this alternative covers any combination
not listed above. Since exactly one transition is defined for each combination of
state and input, the specification is total and deterministic.

This specification is an ordinary definition in the functional programming
language Clean. It is checked by the compiler before it is used by GAST. This
guarantees well-defined identifiers and type correctness.

8.5 Testing Java Cards with GAST

The tests, which will be described in Sect. 8.6, have been executed using the test
architecture of Fig. 8.2.

The IUT is the Java Card applet implementing our simple electronic purse. To
make testing easier and more flexible, we used a simulation platform to execute
the applet. The simulation environment is the C-language Java Card Runtime
Environment (CREF), which comes with the Java Card Development Kit. CREF
simulates a Java Card technology-compliant smart card in a card reader. It further

156 ON–THE–FLY FORMAL TESTING

Data Data
Generation Analysis

GAST

IUT
Java Card Applet

Virtual Machine

ISO 7816

TLP 224 TLP PDUs

APDUs ISO 7816

TLP 224

Adapter

TCP / IP

CREF

Specification

Figure 8.2: The general testing framework.

consists of a Java Card Virtual Machine, and communication protocol entities to
allow communication between the applet and the outside world.

To communicate with the applet under test, GAST was enhanced to be able
to deal with these typical smart card communication protocols ISO–7816–4 and
TLP–224 over TCP/IP. On top of these protocol entities an adapter (glue code),
was implemented. The adapter transforms the high level inputs, generated by
GAST, and represented as Clean data values, into the low-level APDUs, coded
as appropriate byte codes, and then sent according to the ISO–7816–4 protocol.
Vice versa, the adapter decodes the APDUs received from the applet under test to
Clean data values, which are then analyzed and checked by GAST.

For data generation and analysis, GAST uses the Clean EFSM specification,
which was presented in Sect. 8.4. Except for the access to TCP/IP, the right-hand
side of Fig. 8.2 was implemented in Clean.

The use of a simulation platform for testing is not a restriction with respect
to testing of real smart cards. Since only standardized protocols are used, GAST
cannot see the difference between testing on a simulator, or testing a real smart
card. The test architecture could easily be adapted to test real cards by swapping
CREF with a real card and its reader. The use of a simulation platform does
facilitate easy switching between different applets, and saving and restoring applet
state.

8.6: RESULTS 157

8.6 Results

The State-chart in Fig. 8.1 and its implementation as an applet were developed
in an incremental way. GAST appears to spot differences between the specified
and actual behavior very rapidly. Once the specification and implementation were
finished, the testing power of the GAST system was determined in a systematic
way using mutants. Starting from the ideal (assumed to be correct) applet we
injected typical programming errors into the applet, and analyzed how long it
took for GAST to find errors by generating, executing, and analyzing tests.

no. paths trans- time counter comments
itions (sec) exam.

1 1 25 0.49 25 6 tries allowed in this mutant
2 2 66 0.09 31 incorrect overflow during credit
3 1 9 0.47 9 negative balance allowed in mutant
4 5 247 0.71 41 tries not reset after authenticate
5 8 406 0.38 51 tries not reset after reset
6 1 1 0.05 1 credit allowed without authenticate
7 1 1 0.52 1 setvalue(0) not allowed
8 1 4 0.06 4 credit with negative amount
9 1 2 0.50 2 debit with negative amount
10 11 542 0.48 23 no check for locked flag
11 7 327 0.80 26 not locked after 5 attempts
12 1 13 0.06 13 stays authenticated
13 21 1020 1.28 21 not unlocked after reset
14 1 16 0.09 16 MAXVALUE too low
15 1 24 0.07 24 authenticate does not authenticate
16 1 33 0.52 33 reset does not make it uninitialized
17 94 4757 3.82 29 tries ≤ 5 instead of tries < 5
18 4 207 0.26 23 fresh card has nonzero balance
19 1 6 0.30 6 setValue allowed in initialized state
20 3 145 0.18 44 setValue does not initialized/unlock
21 1 4 0.50 4 MAXVALUE too high
22 5 206 0.67 2 MAXVALUE balance not allowed

7.8 366.4 0.56 19.5 averages
100 5081 4.20 n/a original applet, no counter example

Table 8.1: Overview of test results.

The mutants are obtained by subtle changes like omitting checks or updates
to the state of the applet. The test result of the 22 mutants used are listed in

158 ON–THE–FLY FORMAL TESTING

Table 8.1. For instance, mutant 17 differs from the ideal applet by testing whether
the number of remaining authentication tries is less than or equal to five rather
than less than five before setting a flag indicating that the applet should no longer
accept authentication attempts. This mutant was found after executing 94 paths,
within 3.82 seconds, containing 4757 transitions in total. This mutant showed an
invalid output after an input sequence of length 29 in path 94. To identify the
error, the trace of inputs and associated responses are written to a file.

GAST was able to identify the 22 incorrect implementations without any help,
using a minimum path length of 50 transitions and a maximum of 100 paths.
It took an average of 0.56 seconds to generate and execute, on average, 366
transitions on a 1.4GHz Windows computer. This shows that GAST is an efficient
test tool.

8.7 Related Work

Two approaches are closely related to ours because both rely on tools which
implement variants of the ioco testing relation [Tre96]. Du Bousquet and Martin
[Md01] use UML specifications, which are translated into Labelled Transition
Systems to serve as input for the TGV tool [JJ02b]. Instead of an on–the–fly
execution, TGV uses additional test purposes to generate test cases. The authors
created a tool to automate the generation of test purposes based on common
testing strategies. The generated test cases are finally translated into Java code
that communicates with the applet and executes the test. TGV does not treat
data symbolically, which can easily lead to a state space explosion when dealing
with large data domains. Because we generate test cases on–the–fly based on the
(symbolic) EFSM, this problem does not occur.

To support symbolic treatment of data, Clarck et al. [CJRZ01] use Input/Out-
put Symbolic Transition Systems. The basic approach is similar to TGV, hence
also here test purposes are needed. The test automation is done via a translation
to C++ code that is linked with the implementation. This restricts the IUT to be a
C++ class with a compatible interface.

Rather than testing properties of the IUT, its implementation (i.e., the Java
Card applet) can also be formally verified. Testing and verification are comple-
mentary techniques to check the correctness of systems, as explained in Sect.
8.1. A common technique used for verifying Java Card applets is to prove their
correctness with respect to a specification in the Java Modelling Language (JML).
State-based specifications similar to the one in Fig. 8.1 can uniformly be translated
to JML specifications as shown by Hubbers, Oostdijk, and Poll [HOP03]. The
resulting annotated Java Card applet can then be verified using one of the many
JML tools [BCC+03], for instance, the ESCJava2 static analyzer [CK05]. Most

8.8: CONCLUSIONS AND FUTURE WORK 159

Java Card applets are small enough to even attempt a formal correctness-proof
using the Loop tool, as demonstrated by Jacobs, Oostdijk, and Warnier [JOW04].

8.8 Conclusions and Future Work

We have presented an approach to automate the testing of Java Card applets using
the test tool GAST. The test case derivation is based on a State-chart specifica-
tion of the applet under test. The specification can directly be translated into a
corresponding GAST specification. Tests were completely automatically derived,
executed, and analyzed. Discrepancies between the formal specification and its
Java Card implementation were successfully detected, which shows the feasibility
of this approach.

The direct translation from the State-chart model to the GAST specification,
and the on–the–fly execution of the test cases enable the developer to start with
automatic testing of the applet in the early stages of development. The simulta-
neous development of the formal model and the implementation, and the facility
to do automatic tests, has shown to be very useful. Both the code and the speci-
fication have evolved simultaneously, vastly improving the quality of the applet,
and leading to a complete and reliable specification. Such a specification delivers
insight on how to specify similar cases, and can serve as a pattern for these.

The tested mutants, representing typical programming errors, have increased
our confidence in the error detecting power of the GAST algorithm. We are plan-
ning to compare this with other test tools, e.g., the ioco-based tool TorX [TB03],
to test more complex applets, testing applets on real cards, and testing advanced
aspects like the integration, interference, and feature interaction between different
applets on one card.

Finally, we will compare the testing approach with the formal verification
approach, e.g., using JML, to see how far we can get in unifying verification
and testing techniques into one common framework, and to investigate the precise
shape of their complementarity.

CHAPTER 9

General Conclusions

This thesis presented a functional (language) approach to several software issues,
such as communicating processes, command-line interfaces, automatic parser gen-
eration, reversible program construction, and testing. Wemade use of the strengths
of functional programming languages such as abstraction, explicit state, and strong
types. We also used, and explored the limits of, two emerging techniques to pre-
vent errors in software. We catch errors using the advanced type system provided
by functional languages to warn the programmer early in the development of the
software. Where we could not statically apply type-checking, we applied type-
checking at run-time. Another way to prevent errors is to automatically generate
large parts of programs.

The first technique is Clean’s hybrid static/dynamic type system, which we use
to provide type safe communication of any value between processes and a type-
checking command-line shell that uses a typed file system. The second technique
is polytypic function definitions, provided by both Clean and (Generic) Haskell.
We show that the type-safe and type-directed generation of functions is applicable
to more than simple problems and that it decreases the amount of code that needs
to be written and maintained.

We will now mention some related work and some new work that spawned
from this research. This is presented per chapter in Sect. 9.1. Furthermore, we
look at what ‘future work’ from each chapter remains. We conclude this thesis in
Sect. 9.2 after reflecting on the conclusions of each chapter and their contributions
to improving software quality during construction.

161

162 GENERAL CONCLUSIONS

9.1 Old Future Work and New Related Work

Each chapter of this thesis has been peer-reviewed and published. Besides inform-
ing others about our research results, it has provided us with feedback on our ideas
and the incentive to further develop this line of research. Because this work spans
a relative long time in computer science, new related work has appeared and we
can investigate which parts of this research have inspired others.

Chapters 2 and 3:

Other people have investigated the use of functional programming techniques
related to operating systems. House [HJLT05] is a small operating system writ-
ten almost completely in Haskell. It builds on the hOp [CB04] project. The
main difference between our proof–of–concept with type-safe communication and
House, is that House has been implemented on bare hardware. In that sense,
House is more of a real operating system and it is used as a research vehicle to
try functional language programming approaches to implementing the core of an
operating system. In contrast to our shell, which provides type safety for the user,
House uses advanced functional techniques to provide type safety for developers
of the operating system and other components, such as hardware drivers.

As the developments towards a mobile Haskell [RTL05] shows, there is an
interest in using pure and lazy functional languages for distributed computing.
Until the development of hs-plugins [PSSC04], Clean was the only system that
supported moving functional expressions from one program to another (in a type-
safe way). It makes perfect sense to require plug-ins (or other untrusted code) to
be written in a pure and lazy language, since dangerous operations, such as I/O,
must show up in the static type of expressions. Of course, one would need trusted
compilers and/or (byte)code verification to prevent attackers from by-passing the
type checker.

Chapter 4:

It is still not exactly proven that the Esther shell correctly infers all types. The
proof given in Sect. 4.5 is limited to the lambda-calculus with letrec-sharing to
combinators part of the translation of a command line. To be sure, we would need
to extend the proof to incorporate all parts of the translation including syntactic
sugar, case expressions, etc. We chose not to model this in Chap. 4 to keep the
model and proof manageable. Proving such a relatively small program as the
entire shell is already practically intractable.

By proving type preservation of Diller–algorithm–C, we tried to keep the
results interesting for a more general audience. We see no serious problems in

9.1: OLD FUTURE WORK AND NEW RELATED WORK 163

extending the proof to encompass the entire translation; it is just a lot of work.
Recently, we completed the proof of the conjecture used in this chapter. The
completeness proof builds on a principle types proof done by Smetsers, which we
intend to publish separately.

Chapter 5:

The functional Graphical Editor Component system has been redesigned, ex-
tended, re-implemented for the web, and renamed iData [PA06]. Polytypic tech-
niques are used for (de)serialization of state on either client- or server-side, HTML
code generation, storage of (typed) information (of any structure) in relational
databases. There is also ongoing work on a semantical framework for type di-
rected automatically generated graphical editors.

Chapter 6:

Since our publication about automatically generating parsers from (rich) syntax
trees, new parser combinators have appeared that could be very useful for im-
plementing the types–as–grammar approach. In Sect. 6.3 we mentioned parser
combinators by Baars and Swierstra that can, in principle, be used in combina-
tion with our technique to eliminate left-recursion. Recently, Baars [BS07] has
presented yet unpublished work on automatic left-recursion removal with Gener-
alized Algebraic Data Types (GADTs), which can do grammar transformations
while preserving the original types. Especially this last feature has our interest,
since we use types to derive our parsers. Unfortunately, polytypic programming
and GADTs cannot be used together at the moment.

There have been little further developments on the fusion technique to im-
prove the efficiency of the automatically generated code for polytypic instances.
Although we have shown that Clean’s fusion prototype works very well for parser
generators, fusion is not yet commonplace in languages that provide polytypic
functions. Therefore, polytypic functions will continue to choke on large inputs
until this situation improves.

However, we have seen that recent tuning of the Clean compiler and the run-
time system can improve the performance of polytypic programs by generating
better code for unknown higher-order function calls. Although these improve-
ments do nothing to remove the actual polytypic overhead as fusion does, they
can greatly reduce the penalty for using polytypic functions.

164 GENERAL CONCLUSIONS

Chapter 7:

We have not gotten around to complete and publishing the proofs about the in-
vertibility preserving bi-arrow combinators. Besides sparking theoretical works
about arrows by Heunen and Jacobs [HJ06] and by Jacobs and Hasuo [JH06], this
approach has not been used in practice. This is likely due to the inability to use the
special arrow syntax, which makes arrow programs readable. Furthermore, most
common computations are, in their usual form, simply not invertible. Nonetheless,
it was interesting to see how far we could take the ideas of abstraction over
function application and type directed automatic derivation, and to apply them
to invertible program construction.

Chapter 8:

We have extended the generic test system described in Chap. 8 with a Java Card
adaptor with the intention of testing the new Dutch electronic passport. Unfor-
tunately, we were unable to finish the formal specification in Clean while we
had access to the specimens. Nonetheless, we feel that we could contribute to
the testing of the passport in formalizing an executable specification as well as
automatic testing of the applet. Such an executable specification in Clean would
allow us to test properties on that specification using the polytypic test system.
This is possible because the GAST approach is very flexible. The specification
can also function as an implementation because it is once again executable. These
layers can be stacked upon each other until any desired level of abstraction is
reached. The producer of the passport applet has shown an interest in a formal
model of the specification in combination with automated tests.

9.2: FINAL CONCLUSIONS 165

9.2 Final Conclusions

We applied hybrid static/dynamic typing in a proof–of–concept operating system
and command-line shell. In this thesis, we presented and implemented a very
minimal operating system kernel (Chap. 2) and shell (Chap. 3). We successfully
applied typing at run-time to make interprocess communications type safe. We
found it very useful and elegant that we could leave (de)serialization of functions
and data with preservation of sharing to Clean’s run-time system. The implemen-
tation (and the formal proofs of Chap. 4) of the shell shows that Clean’s Dynamics
are expressive enough to do type inference on a functional language. As an exam-
ple, we provided the command-line user with early warnings in case of type errors.
Besides the hybrid static/dynamic typing, the hybrid interpretation/compilation is
interesting. Clean’s Dynamics are not only used for type-checking but also to
compose new functions from existing code interactively, which can be used (in a
type safe way) by any other compiled Clean program. We think that the vision of
a strongly typed operating and file system is still attractive to anyone who is fond
of strong typing.

Both polytypic programming and hybrid static/dynamic typing are used in
Chap. 5. The shell from Chap. 3 is reused as a library to parse and type-check
text from automatically generated graphical user interfaces. This line of research,
deriving GUIs in a type directed manner, is still ongoing.

By applying polytypic programming to the area of syntax tree operations, we
showed that it could be used for more than just the usual generic operations,
such as equality and data structure traversal. This is important because type
directed program generation is limited by the expressiveness of types in functional
languages. The types–as–grammar approach presented in Chap. 6 shows that
context free grammars could easily be encoded in algebraic data types. Moreover,
we believe to have shown that this approach yields concise, elegant, and easy
to maintain programs, even with large collections of (mutually recursive) types
that change during the development of software. The side-effect freeness and
automatic generation of functions reduced the complexity of making changes to
(the choice of) the data structures of a program during its development. Using
recent advanced fusion techniques, we were even able to optimize the generated
code to a level were it was actually usable for larger texts. Another benefit
therefore, is that we no longer need external parser generators, which protects
us from forgetting to synchronize the grammar and syntax-tree data types with
other tools.

Polytypic programming can significantly reduce the amount of code that needs
to be written by the programmer. We applied it to the field of invertible program-
ming using powerful abstraction mechanisms such as arrows. In combination with
bi-arrow combinators, which construct the inverse of a computation that is only

166 GENERAL CONCLUSIONS

specified in one direction, we tried to minimize the required manually written code
in Chap. 7 in an extreme way. Not only the inverse is constructed for free, it is also
generalized to all types. Unfortunately, it turns out to be hard and clumsy to write
larger programs in this style, which is also because many basic computations, such
as the logical and and or, are not invertible in their common form. We believe that
the polytypic approach works very well in Chap. 7 (except for the occasional
bug we encountered, which shows that polytypic language extensions are still in
development). Still, programming with such a high abstraction as arrows is not
easy, not even for experienced functional programmers. The good part of arrows,
or other well thought-out combinator sets, is that they form a nice abstraction layer
for proving program correctness, which we did both formally and informally, and
defining operational properties of the underlying implementation. Apparently,
the arrow abstraction, which is a very general abstraction over application, is a
double-edged sword and should be wielded carefully.

Deriving (complicated) test cases automatically using polytypic programming,
worked like a charm in Chap. 8. Writing the specification of a Java Card applet
in a functional language gave us the benefit of a concise, clearly correct, and
executable specification. After the weary part of interfacing the GAST test system
with the Java Card simulator, we have the pleasure of writing both the specifica-
tion and parts of the implementation/adaptor using the full expressiveness of a
functional programming language. This allows us to use higher-order abstraction
and composition, for example. The effectiveness of the GAST test system allowed
for a tight program–test–adjust development cycle.

From the research presented in this thesis, we conclude that Clean’s Dynamics
provides us with additional protection against run-time errors by tagging values
with their static types. Furthermore, it provides us with a way to store and retrieve
any functional expression, even between different programs. Polytypic program-
ming also keeps us from making mistakes in (tediously) writing similar code
for many data types. Because the automatic derivation/instantiating of polytypic
functions is both type directed and type safe (it cannot introduce type errors), there
is less room for programming errors.

We conclude this thesis with the idea that we put types to good use: both at
compile-time for type-directed program generation and at run-time for type-safe
communications.

Bibliography

[Ach96] Peter Achten. Interactive Functional Programs - Models, Meth-
ods, and Implementations. PhD thesis, University of Nijmegen,
1996.

[ACP+92] Martı́n Abadi, Luca Cardelli, Benjamin C. Pierce, Gordon
Plotkin, and Didier Rèmy. Dynamic typing in polymorphic
languages. In Proceedings of the ACM SIGPLAN Workshop on
MAL and its Applications, 1992.

[ACPP91] Martı́n Abadi, Luca Cardelli, Benjamin C. Pierce, and Gor-
don Plotkin. Dynamic typing in a statically typed language.
TOPLAS’91: ACM Transactions on Programming Languages and
Systems, 13(2):237–268, 1991.

[AP98] Peter Achten and Rinus Plasmeijer. Interactive Functional Objects
in Clean. In Chris Clack, Kevin Hammond, and Antony J.T.
Davie, editors, IFL’97: Selected papers of the ninth International
Workshop on the Implementation of Functional Languages, vol-
ume 1467 of Lecture Notes in Computer Science, pages 304–321.
Springer, 1998.

[AP01] Peter Achten and Simon Peyton Jones. Porting the Clean Object
I/O library to Haskell. In Markus Mohnen and Pieter Koopman,
editors, IFL’00: Selected papers of the twelfth International
Workshop on the Implementation of Functional Languages, vol-
ume 2011 of Lecture Notes in Computer Science, pages 194–213.
Springer, 2001.

167

168 BIBLIOGRAPHY

[AP03] Artem Alimarine and Rinus Plasmeijer. A generic programming
extension for Clean. In Thomas Arts and Markus Mohnen,
editors, IFL’02: Selected Papers of the thirteenth International
Workshop on Implementation of Functional Languages, volume
2312 of Lecture Notes In Computer Science, pages 168–185.
Springer, 2003.

[AS05] Artem Alimarine and Sjaak Smetsers. Improved fusion for
optimizing generics. In Manuel V. Hermenegildo and Daniel
Cabeza, editors, PADL’05: Proceedings of the seventh Interna-
tional Symposium on Practical Aspects of Declarative Languages,
volume 3350 of Lecture Notes in Computer Science, pages 203–
218. Springer, 2005.

[AvEP04a] Peter Achten, Marko van Eekelen, and Rinus Plasmeijer. Com-
positional model-views with generic graphical user interfaces.
In PADL’04: Practical Aspects of Declarative Programming,
volume 3057 of Lecture Notes in Computer Science, pages 39–
55. Springer, 2004.

[AvEP04b] Peter Achten, Marko van Eekelen, and Rinus Plasmeijer. Generic
graphical user interfaces. In Greg Michaelson and Phil Trinder,
editors, IFL’03: Selected Papers of the fifteenth International
Workshop on the Implementation of Functional Languages, vol-
ume 3145 of Lecture Notes in Computer Science. Springer, 2004.

[AvEPvW04a] Peter Achten, Marko van Eekelen, Rinus Plasmeijer, and Arjen
van Weelden. Arrows for generic graphical editor components.
Technical Report NIII-R0416, Radboud University Nijmegen,
2004.

[AvEPvW04b] Peter Achten, Marko van Eekelen, Rinus Plasmeijer, and Arjen
van Weelden. Automatic generation of editors for higher-order
data structures. In Wei-Ngan Chin, editor, APLAS’04: Proceed-
ings of the second Asian symposium on Programming Languages
and Systems, volume 3302 of Lecture Notes in Computer Science,
pages 262–279. Springer, 2004.

[AvEPvW04c] Peter Achten, Marko van Eekelen, Rinus Plasmeijer, and Arjen
van Weelden. GEC: a toolkit for generic rapid prototyping of type
safe interactive applications. In Varmo Vene and Tarmo Uustalu,
editors, AFP’04: Revised Lectures of the fifth International
Summer School on Advanced Functional Programming, volume

BIBLIOGRAPHY 169

3622 of Lecture Notes in Computer Science, pages 210–244.
Springer, 2004.

[AVWW96] Joe Armstrong, Robert Virding, Claes Wikström, and Mike
Williams. Concurrent Programming in Erlang. Prentice-Hall,
second edition, 1996.

[BCC+03] Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe
Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An
overview of JML tools and applications. In Thomas Arts andWan
Fokkink, editors, FMICS: Proceedings of the eighth International
Workshop on Formal Methods for Industrial Critical Systems,
volume 80 of Electronic Notes in Theoretical Computer Science.
Elsevier, 2003.

[Blu91] B.I. Blum. Some very famous statistics. The Software Practi-
tioner, 1991.

[BS99] Erik Barendsen and Sjaak Smetsers. Graph Rewriting Aspects
of Functional Programming, chapter 2, pages 63–102. World
scientific, 1999.

[BS04] Arthur I. Baars and S. Doaitse Swierstra. Type-safe, self inspect-
ing code. InHaskell’04: Proceedings of the 2004 ACM SIGPLAN
workshop on Haskell, pages 69–79. ACM Press, 2004.

[BS07] Arthur I. Baars and S. Doaitse Swierstra. Removing left-recursion
using left-corner transformation. Presented at the Dutch func-
tional programming day1, 2007.

[BTS+98] Godmar Back, Patrick Tullmann, Leigh Stoller, Wilson C. Hsieh,
and Jay Lepreau. Java operating systems: design and implementa-
tion. Technical Report UUCS-98-015, University of Utah, 1998.

[Bun90] Martin W. Bunder. Some improvements to Turner’s algorithm for
bracket abstraction. Journal of Symbolic Logic, 55(2):656–669,
1990.

[CB04] S. Carlier and J. Bobbio. hOp. The hOp website2, 2004.

1http://fpdag2007.hypernation.net/publications/FPDag2007-Baars.pdf
2http://www.macs.hw.ac.uk/˜sebc/hOp/

http://fpdag2007.hypernation.net/publications/FPDag2007-Baars.pdf
http://www.macs.hw.ac.uk/~sebc/hOp/

170 BIBLIOGRAPHY

[CE01] Antony Courtney and Conal Elliott. Genuinely functional user
interfaces. In Ralf Hinze, editor, Haskell’01: Proceedings of
the ACM SIGPLAN 2001 Haskell Workshop, pages 41–69. ACM
Press, 2001.

[CF58] Haskell B. Curry and Robert Feys. Combinatory Logic. North
Holland, 1958.

[CH93] Magnus Carlsson and Thomas Hallgren. Fudgets – a graphical
user interface in a lazy functional language. In FPCA’93:
Proceedings of the ACM Conference on Functional Programming
and Computer Architecture, 1993.

[CJRZ01] Duncan Clarke, Thierry Jéron, Vlad Rusu, and Elena Zinovieva.
Automated test and oracle generation for smart-card applications.
In Isabelle Attali and Thomas Jensen, editors, E-SMART’01:
Proceedings of the International Conference on Research in
Smart Cards, volume 2140 of Lecture Notes In Computer Science,
pages 58–70. Springer, 2001.

[CK05] David Cok and Joe Kiniry. ESC/Java2: Uniting ESC/Java
and JML. In Gilles Barthe, Lilian Burdy, Marieke Huisman,
Jean-Louis Lanet, and Traian Muntean, editors, CASSIS’04:
Proceedings of the International Workshop on the Construction
and Analysis of Safe, Secure, and Interoperable Smart Devices,
volume 3362 of Lecture Notes in Computer Science, pages 108–
128. Springer, 2005.

[CL03] Dave Clarke and Andres Löh. Generic Haskell, Specifically. In
Jeremy Gibbons and Johan Jeuring, editors, Proceedings of the
IFIP TC2 Working Conference on Generic Programming, pages
21–48. Kluwer Academic Publishers, 2003.

[Cla99] Koen Claessen. A poor man’s concurrency monad. Journal of
Functional Programming, 9(3):313–323, 1999.

[CM90] Erik Cooper and J. Greg Morrisett. Adding threads to Standard
ML. Technical Report CMU-CS-90-186, Carnegie Mellon Uni-
versity, 1990.

[CU90] Wei Chen and Jan Tijmen Udding. Program inversion: more than
fun! Science of Computer Programming, 15(1):1–13, 1990.

BIBLIOGRAPHY 171

[Cur69] Haskell B. Curry. Modified basic functionality in combinatory
logic. Dialectica, 23:83–92, 1969.

[Dij72] Edsger W. Dijkstra. The humble programmer. Communications
of the ACM, 15(10):859–866, 1972.

[Dij79] Edsger W. Dijkstra. Program inversion. In Friedrich L. Bauer and
Manfred Broy, editors, Proceedings of the Marktoberdorf Inter-
national Summer School on Program Construction, volume 69 of
Lecture Notes in Computer Science, pages 54–57. Springer, 1979.

[Dil88] Antoni Diller. Compiling Functional Languages. John Wiley &
Sons, 1988.

[DM82] Luis Damas and Robin Milner. Principal type-schemes for
functional programs. In POPL’82: Proceedings of the ninth ACM
SIGPLAN-SIGACT symposium on Principles of Programming
Languages, pages 207–212. ACM Press, 1982.

[DM99] Catherine Dubois and Valérie Ménissier-Morain. Certification of
a type inference tool for ML: Damas–Milner within Coq. Journal
of Automated Reasoning, 23:319–346, 1999.

[Doc06] Robert Dockins. The GHC type-checker is turing-complete. On
the Haskell mailing-list3, 2006.

[FAJ03] Dave Clarke Frank Atanassow and Johan Jeuring. Scripting XML
with Generic Haskell. Technical Report CS-2003-023, University
of Utrecht, 2003.

[FGM+05] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore,
Benjamin C. Pierce, and Alan Schmitt. Combinators for bi-
directional tree transformations: a linguistic approach to the
view update problem. In POPL’05: Proceedings of the thirty-
second ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 233–246. ACM Press, 2005.

[FKF98] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen.
Classes and mixins. In POPL’98: The twenty-fifth ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 171–183. ACM Press, 1998.

3http://article.gmane.org/gmane.comp.lang.haskell.general/14088

http://article.gmane.org/gmane.comp.lang.haskell.general/14088

172 BIBLIOGRAPHY

[GK04] Robert Glück and Masahiko Kawabe. Derivation of deterministic
inverse programs based on lr parsing. In Yukiyoshi Kameyama
and Peter J. Stuckey, editors, Proceedings of Fuji International
Symposium on Functional and Logic Programming (FLOPS),
volume 2998 of Lecture Notes in Computer Science, pages 291–
306. Springer, 2004.

[GK05] Robert Glück and Masahiko Kawabe. Revisiting an automatic
program inverter for LISP. TOPPS SIGPLAN Notices, 40(5):8–
17, 2005.

[Gla98] Robert L. Glass. Is there really a software crisis? Computing
Trends (Inaugural column), 15(1):104–105, 1998.

[Gla00] Robert L. Glass. Talk about a software crisis — not! Journal of
Systems and Software (Editor’s corner), 55(1):1–2, 2000.

[Gla06] Robert L. Glass. The Standish report: does it really describe
a software crisis? Communications of the ACM (Practical
Programmer), 49(8):15–16, 2006.

[GM01] Andy Gill and Simon Marlow. Happy: The parser generator for
Haskell. Online web site, 2001. The Happy web site4.

[Gro] Object Management Group. Unified modeling language. UML
Resource Page. The UML web site5.

[Han02] Keith Hanna. Interactive visual functional programming. In
Simon Peyton Jones, editor, Proceedings of the International
Conference on Functional Programming, pages 100–112. ACM
Press, 2002.

[HCNP03] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peter-
son. Arrows, robots, and functional reactive programming. In
Johan Jeuring and Simon Peyton Jones, editors, AFP’02: Revised
Lectures of the fourth International School on Advanced Func-
tional Programming, volume 2638 of Lecture Notes in Computer
Science, pages 159–187. Springer, 2003.

[Hin69] J. Roger Hindley. The principal type-scheme of an object in
combinatory logic. Transaction of the American Mathematical
Society, 146:29–60, 1969.

4http://www.haskell.org/happy/
5http://www.uml.org/

http://www.haskell.org/happy/
http://www.uml.org/

BIBLIOGRAPHY 173

[Hin97] J. Roger Hindley. Basic Simple Type Theory, volume 42 of
Cambridge tracts in theoretical computer science. Cambridge
University Press, 1997.

[Hin00a] Ralf Hinze. Generic Programs and Proofs. Habilitationsschrift,
Universität Bonn, 2000.

[Hin00b] Ralf Hinze. A new approach to generic functional programming.
In The twenty-seventh Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages 119–132,
2000.

[HJ06] Chris Heunen and Bart Jacobs. Arrows, like monads, are
monoids. In MFPS XXVI: Proceedings of the twenty-second
Annual Conference on Mathematical Foundations of Program-
ming Semantics, volume 158 of Electronic Notes in Theoretical
Computer Science, pages 219–236, 2006.

[HJLT05] Thomas Hallgren, Mark P. Jones, Rebekah Leslie, and Andrew
Tolmach. A principled approach to operating system construction
in Haskell. In ICFP’05: The 10th ACM SIGPLAN International
Conference on Functional Programming, 2005. The HOUSE
website6.

[HJSA02] Bastiaan Heeren, Johan Jeuring, S. Doaitse Swierstra, and Pablo
Azero Alcocer. Improving type-error messages in functional lan-
guages. Technical Report UU-CS-2002-009, Utrecht University,
2002.

[HN01] Frank Huch and Ulrich Norbisrath. Distributed programming in
Haskell with ports. In Markus Mohnen and Pieter Koopman, ed-
itors, IFL’00: Selected Papers of the twenty-fourth International
Workshop on Implementation of Functional Languages, volume
2011 of Lecture Notes in Computer Science, pages 107–121.
Springer, 2001.

[HOP03] Engelbert Hubbers, Martijn Oostdijk, and Erik Poll. From
finite state machines to provably correct java card applets. In
Dimitris Gritzalis, Sabrina De Capitani di Vimercati, Pierangela
Samarati, and Sokratis K. Katsikas, editors, Security and Privacy
in the Age of Uncertainty, IFIP TC11 eighteenth International

6http://programatica.cs.pdx.edu/House/

http://programatica.cs.pdx.edu/House/

174 BIBLIOGRAPHY

Conference on Information Security (SEC2003), volume 250 of
IFIP Conference Proceedings, pages 465–470. Kluwer, 2003.

[HP01] Ralf Hinze and Simon Peyton Jones. Derivable type classes.
In Graham Hutton, editor, Haskell’00: Proceedings of the 2000
ACM SIGPLANHaskell Workshop, volume 41 of Electronic Notes
in Theoretical Computer Science. Elsevier Science, 2001.

[HPF99] Paul Hudak, John Peterson, and Joseph Fasel. A gentle introduc-
tion to Haskell 98. Online tutorial, 1999. The Haskell 98 tutorial7.

[HR93] Paul Haahr and Byron Rakitzis. Es: a shell with higher-order
functions. In Proceedings of the USENIX Winter 1993 Technical
Conference, pages 51–60, 1993.

[HS86] J. Roger Hindley and Jonathan P. Seldin. Introduction to Com-
binators and Lambda-Calculus. London Mathematical Society
Student Texts. Cambridge University Press, 1986.

[Hug00] John Hughes. Generalising monads to arrows. Science of
Computer Programming, 37(1-3):67–111, 2000.

[Hut92] Graham Hutton. Higher-order functions for parsing. Journal of
Functional Programming, 2(3):323–343, 1992.

[JH06] Bart Jacobs and Ichiro Hasuo. Freyd is Kleisli, for Arrows. In
Conor McBride and Tarmo Uustalu, editors, MSFP’06: Proceed-
ings of the Workshop on Mathematically Structured Functional
Programming, eWiC. BCS, 2006.

[JJ97] Patrik Jansson and Johan Jeuring. PolyP – a polytypic program-
ming language extension. In POPL’97: The twenty-fourth ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 470–482. ACM Press, 1997.

[JJ99] Patrik Jansson and Johan Jeuring. Polytypic compact printing and
parsing. In S. Doaitse Swierstra, editor, ESOP’99: Proceedings
of the eighth European Symposium on Programming Languages
and Systems, volume 1576 of Lecture Notes in Computer Science,
pages 273–287. Springer, 1999.

7http://www.haskell.org/tutorial/

http://www.haskell.org/tutorial/

BIBLIOGRAPHY 175

[JJ02a] Patrik Jansson and Johan Jeuring. Polytypic data conversion
programs. Science of Computer Programming, 43(1):35–75,
2002.

[JJ02b] Claude Jard and Thierry Jéron. Tgv: Theory, principles and algo-
rithms. In IDPT’02: The Sixth World Conference on Integrated
Design & Process Technology. Society for Design and Process
Science, 2002.

[JOW04] Bart Jacobs, Martijn Oostdijk, and Martijn Warnier. Source code
verification of a secure payment applet. Journal of Logic and
Algebraic Programming, 58(1-2):107–120, 2004.

[JR02] Mark P. Jones and Alastair Reid. The Hugs 98 User Manual.
The Yale Haskell Group and the OGI School of Science and
Engineering at OHSU, 2002. The Hugs web site8.

[JRB85] Michael S. Joy, Vic J. Rayward-Smith, and F. Warren Burton.
Efficient combinator code. Journal of Computer Languages,
10(3/4):211–224, 1985.

[Kam76] S. Kamal Abdali. An abstraction algorithm for combinatory logic.
Journal of Symbolic Logic, 41:222–224, 1976.

[KP02] Pieter Koopman and Rinus Plasmeijer. Layered combinator
parsers with a unique state. In Thomas Arts and Markus Mohnen,
editors, IFL’01: Proceedings of the thirteenth International Work-
shop on the Implementation of Functional Languages, volume
2312 of Lecture Notes in Computer Science, pages 157–172.
Springer, 2002.

[KP04] Pieter Koopman and Rinus Plasmeijer. Testing reactive systems
with gast. In Stephen Gilmore, editor, TFP’03: Proceedings of the
Fourth Symposium on Trends in Functional Programming, pages
111–129, 2004.

[LCJ03] Andres Löh, Dave Clarke, and Johan Jeuring. Dependency-style
Generic Haskell. In ICFP’03: Proceedings of the eighth ACM
SIGPLAN International Conference on Functional programming,
pages 141–152. ACM Press, 2003. The Generic Haskell web
site9.

8http://www.haskell.org/hugs/
9http://www.generic-haskell.org/

http://www.haskell.org/hugs/
http://www.generic-haskell.org/

176 BIBLIOGRAPHY

[Lin98] Albert Lin. Implementing concurrency for an ML-based operat-
ing system. Master’s thesis, Massachusetts Institute of Technol-
ogy, 1998.

[LM01] Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser
combinators for the real world. Technical Report UU-CS 2001-
35, University of Utrecht, 2001. The Parsec web site10.

[LY96] David Lee and Mihalis Yannakakis. Principles and methods of
testing finite state machines – a survey. Proceedings of the IEEE,
84(8):1090–1126, 1996.

[Mat] JimMattson. The Haskell shell. Online source code. Ralf Hinze’s
web site11.

[Md01] Hugues Martin and Lydie du Bousquet. Automatic test generation
for java-card applets. In Isabelle Attali and Thomas Jensen,
editors, JavaCard’00: Revised Papers of the First International
Workshop on Java on Smart Cards: Programming and Security,
volume 2041 of Lecture Notes in Computer Science, pages 121–
136. Springer, 2001.

[MPMR01] Simon Marlow, Simon Peyton Jones, Andrew Moran, and John
Reppy. Asynchronous exceptions in Haskell. In PLDI’01:
Proceedings of the ACM SIGPLAN 2001 Conference on Pro-
gramming Language Design and Implementation, pages 274–
285. ACM Press, 2001.

[MT04] Shin-Cheng Mu and Masato Takeichi. An algebraic approach to
bi-directional updating. In Wei-Ngan Chin, editor, APLAS’04:
The Second Asian Symposium on Programming Language and
Systems, volume 3302 of Lecture Notes in Computer Science,
pages 2–18. Springer, 2004.

[Nie] Pat Niemeyer. Beanshell. Online web site. The Beanshell web
site12.

[NN96] Dieter Nazareth and Tobias Nipkow. Formal verification of algo-
rithm W : The monomorphic case. In J. von Wright, J. Grundy,
and J. Harrison, editors, TPHOL’96: Theorem Proving in Higher

10http://www.cs.uu.nl/˜daan/parsec.html
11http://www.informatik.uni-bonn.de/˜ralf/software/examples/Hsh.html
12http://www.beanshell.org/

http://www.cs.uu.nl/~daan/parsec.html
http://www.informatik.uni-bonn.de/~ralf/software/examples/Hsh.html
http://www.beanshell.org/

BIBLIOGRAPHY 177

Order Logics, volume 1125 of Lecture Notes in Computer Sci-
ence, pages 331–346. Springer, 1996.

[NN99] Wolfgang Naraschewski and Tobias Nipkow. Type inference
verified: Algorithm W in Isabelle/HOL. Journal of Automated
Reasoning, 23:299–318, 1999.

[NSvEP91] Eric Nocker, Sjaak Smetsers, Marko van Eekelen, and Rinus
Plasmeijer. Concurrent Clean. In Aarts, Leeuwen, and Rem,
editors, PARLE’91: Proceedings of the Parallel Architectures and
Languages Europe, volume 505 of Lecture Notes in Computer
Science, pages 202–219. Springer, 1991.

[OSRS01] S. Owre, N. Shankar, J.M. Rushby, and D.W.J. Stringer-Calvert.
PVS language reference (version 2.4). Technical report, Com-
puter Science Laboratory, SRI International, Menlo Park, CA,
2001.

[Ous90] John K. Ousterhout. Tcl: An embeddable command language. In
Proceedings of the USENIX Winter 1990 Technical Conference,
pages 133–146. USENIX Association, 1990.

[PA06] Rinus Plasmeijer and Peter Achten. iData for the world wide
web – programming interconnected web forms. In Ralf Hinze
and Andres Löh, editors, FLOPS’06: Proceedings of the eighth
International Symposium on Functional and Logic Programming,
volume 3945 of Lecture Notes in Computer Science, pages 242–
258. Springer, 2006.

[Pat01] Ross Paterson. A new notation for arrows. In ICFP’01: Pro-
ceedings of the sixth ACM SIGPLAN International Conference on
Functional programming, volume 36 of SIGPLAN Notices, pages
229–240. ACM Press, 2001.

[Pat03] Ross Paterson. Arrows and computation. In Jeremy Gibbons and
Oege de Moor, editors, The Fun of Programming, pages 201–222.
Palgrave, 2003.

[Pey87] Simon Peyton Jones. The Implementation of Functional Pro-
gramming Languages. International Series in Computer Science.
Prentice-Hall, 1987.

178 BIBLIOGRAPHY

[Pey03] Simon Peyton Jones. Haskell 98 Language and Libraries.
Cambridge University Press, 2003. The Haskell web site13.

[PGF96] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Con-
current Haskell. In POPL’96: Proceedings of the twenty-third
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 295–308. ACM Press, 1996.

[Pil97] Marco Pil. First class file I/O. In Werner Kluge, editor,
IFL’96: Selected Papers of the eighth International Workshop
on Implementation of Functional Languages, volume 1268 of
Lecture Notes in Computer Science, pages 233–246. Springer,
1997.

[Pil99] Marco Pil. Dynamic types and type dependent functions. In
Kevin Hammond, Antony J.T. Davie, and Chris Clack, editors,
IFL’98: Selected Papers of the tenth International Workshop
on Implementation of Functional Languages, volume 1595 of
Lecture Notes in Computer Science, pages 169–185. Springer,
1999.

[PRH+99] Simon Peyton Jones, Alastair Reid, Fergus Henderson, Tony
Hoare, and Simon Marlow. A semantics for imprecise exceptions.
SIGPLAN Conference on Programming Language Design and
Implementation, 34(5):25–36, 1999.

[PSSC04] André Pang, Don Stewart, Sean Seefried, and Manuel M.T.
Chakravarty. Plugging Haskell in. In Haskell’04: Proceedings
of the 2004 ACM SIGPLAN workshop on Haskell, pages 10–21.
ACM Press, 2004.

[PvE02] Rinus Plasmeijer and Marko van Eekelen. Concurrent Clean
Language Report (version 2.1). Radboud University Nijmegen,
2002. The Clean web site14.

[PvW04] Rinus Plasmeijer and Arjen van Weelden. A functional shell that
operates on typed and compiled applications. In Varmo Vene and
Tarmo Uustalu, editors, AFP’04: Revised Lectures of the fifth
International Summer School on Advanced Functional Program-
ming, volume 3622 of Lecture Notes in Computer Science, pages
245–272. Springer, 2004.

13http://www.haskell.org/
14http://clean.cs.ru.nl/

http://www.haskell.org/
http://clean.cs.ru.nl/

BIBLIOGRAPHY 179

[Ros97] Brian J. Ross. Running programs backwards: the logical inver-
sion of imperative computation. Formal Aspects of Computing,
9(3):331–348, 1997.

[Roy91] Winston Royce. Current problems. In Christine Anderson and
Merlin Dorfman, editors, Aerospace Software Engineering: A
Collection of Concepts. American Institute of Aeronautics, Inc.,
1991.

[RTL05] André Rauber Du Bois, Phil Trinder, and Hans-Wolfgang Loidl.
mHaskell: Mobile computation in a purely functional language.
Journal of Universal Computer Science, 11(7):1234–1254, 2005.

[Sch24] Moses Schönfinkel. Über die bausteine der mathematischen logik.
InMathematische Annalen, volume 92, pages 305–316. Springer,
1924.

[Sch04] M. Schrage. Proxima, a Presentation-Oriented Editor for Struc-
tured Documents. PhD thesis, University of Utrecht, 2004.

[SH01] Volker Stolz and Frank Huch. Implementation of port-based
distributed Haskell. The Distributed Haskell website15, 2001.

[Shi94] Olin Shivers. A Scheme shell - the design paper on the Scheme
shell scsh. Technical Report MIT/LCS/TR-635, MIT Laboratory
for Computer Science, 1994. The Scheme Shell FAQ16.

[Sta94] Standish Group International. The CHAOS report, 1994. The
on-line CHAOS report17.

[SvW06] Sjaak Smetsers and Arjen van Weelden. Bracket-abstraction
preserves typability: A formal proof of Diller-algorithm-C in
PVS. In Jordi Levy, editor, UNIF’06: Preliminary proceedings of
the twentieth International Workshop on Unification, pages 29–
43, 2006.

[TB03] Jan Tretmans and Ed Brinksma. Torx: Automated model-based
tesing. In A. Hartman and K. Dussa-Zieger, editors, First
European Conference on Model-Driven Software Engineering.
Imbuss, 2003.

15http://www-i2.informatik.rwth-aachen.de/Research/distributedHaskell/
16http://www.faqs.org/faqs/unix-faq/shell/scsh-faq/
17http://www.standishgroup.com/sample_research/chaos_1994_1.php

http://www-i2.informatik.rwth-aachen.de/Research/distributedHaskell/
http://www.faqs.org/faqs/unix-faq/shell/scsh-faq/
http://www.standishgroup.com/sample_research/chaos_1994_1.php

180 BIBLIOGRAPHY

[Tre96] Jan Tretmans. Test generation with inputs, outputs and repeti-
tive quiescence. Software—Concepts and Tools, 17(3):103–120,
1996.

[Tur76] David A. Turner. SASL Language Manual. St. Andrews Univer-
sity, 1976.

[Tur79] David A. Turner. Another algorithm for bracket abstraction.
Journal of Symbolic Logic, 44(2):267–270, 1979.

[vdBvDH+01] M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong,
M. de Jonge, T. Kuipers, P. Klint, L. Moonen, P.A. Olivier,
J. Scheerder, J.J. Vinju, E. Visser, and J. Visser. The Asf+Sdf
meta-environment: a component-based language development
environment. In R. Wilhelm, editor, Compiler Construction 2001,
pages 365–370. Springer, 2001.

[VP03] Martijn Vervoort and Rinus Plasmeijer. Lazy dynamic input/out-
put in the lazy functional language Clean. In Ricardo Peña
and Thomas Arts, editors, IFL’02: Selected Papers of the four-
teenth International Workshop on Implementation of Functional
Languages, volume 2670 of Lecture Notes in Computer Science,
pages 101–117. Springer, 2003.

[vW65] Adriaan van Wijngaarden. Orthogonal design and description
of a formal language. Technical Report MR 76, Mathematisch
Centrum, Amsterdam, 1965.

[vWOF+05] Arjen van Weelden, Martijn Oostdijk, Lars Frantzen, Pieter
Koopman, and Jan Tretmans. On–the–fly formal testing of a smart
card applet. In Ryoichi Sasaki, Sihan Qing, Eiji Okamoto, and
Hiroshi Yoshiura, editors, SEC’05: Proceedings of the twentieth
IFIP TC11 International Information Security Conference, pages
564–576. Springer, 2005.

[vWP02] Arjen van Weelden and Rinus Plasmeijer. Towards a strongly
typed functional operating system. In Thomas Arts and Ricardo
Pena, editors, IFL’02: Selected papers of the fourteenth Inter-
national Workshop on Implementation of Functional Languages,
volume 2670 of Lecture Notes in Computer Science, pages 215–
231. Springer, 2002.

[vWP03] Arjen van Weelden and Rinus Plasmeijer. A functional shell
that dynamically combines compiled code. In Philip Trinder,

BIBLIOGRAPHY 181

Greg Michaelson, and Ricardo Peña, editors, IFL’03: Selected
Papers of the 15th International Workshop on Implementation
of Functional Languages, volume 3145 of Lecture Notes in
Computer Science, pages 36–52. Springer, 2003.

[vWSP05] Arjen van Weelden, Sjaak Smetsers, and Rinus Plasmeijer. Poly-
typic syntax tree operations. In IFL’05: Selected papers of
the seventeenth International Workshop on Implementation and
Application of Functional Languages, volume 4015 of Lecture
Notes in Computer Science. Springer, 2005.

[Wad93] Philip Wadler. Monads for functional programming. In M. Broy,
editor, Proceedings of the Marktoberdorf International Summer
School on Program Design Calculi. Springer, 1993.

[Wan80] Mitchell Wand. Continuation-based multiprocessing. In LFP’80:
Proceedings of the 1980 ACM conference on LISP and functional
programming, pages 19–28. ACM Press, 1980.

[Wan98] Keith Wansbrough. Instance declarations are universal. Unpub-
lished note18, 1998.

18http://www.lochan.org/keith/publications/undec.html

http://www.lochan.org/keith/publications/undec.html

Summary

Writing correct software is still difficult due to its increasing complexity, which
requires many abstraction layers. We believe that functional programming lan-
guages might alleviate some of those difficulties at the source of software con-
struction. Pure and lazy languages, like Clean and Haskell, provide very good
support for abstraction, composition, and equational reasoning. They also feature
advanced type systems, which can be used to warn programmers about a certain
class of mistakes early.

This thesis investigates the usefulness of hybrid static/dynamic typing and
polytypic programming by applying these techniques to some common software
or programming problems. We show those two techniques “in action” to assess
applicability, performance, and expressiveness of the programming techniques
themselves, as well as their implementations in both Clean and (Generic) Haskell.
The hybrid static/dynamic typing is exciting in the way it extends the type safety
of a strongly typed functional language into the run-time world. The polytypic
programming approach to writing software is attractive in its promise to reduce the
amount of code that needs to be written, to enable better maintenance by adding
code instead of rewriting, and to elegantly describe abstract algorithms that work
for any data structure.

The first part of this thesis applies hybrid static/dynamic typing to software
issues on the design of an operating system and command-line shell. Using
strong dynamic type-checking at run-time, we provide type-safe communications
and type-safe execution of software components. Clean’s dynamic linker gives
us the ability to store and retrieve any (functional) expression to and from disk.
These typed ‘expressions on disk’ can be seen as a typed file system and we
implemented an interactive command-line shell that infers and checks the type of
the entered expression, using the types of files. Bracket abstraction has been used

183

184 Summary

for implementing a functional language; we use it for type inference/checking. We
formally prove that bracket abstraction preserves typability in order to increase our
confidence in our type inference using Clean’s hybrid static/dynamic typing. We
conclude this part by showing an application of the type-checking shell (used as a
library) by constructing type safe graphical editors automatically in the polytypic
GEC/iData system.

The second part of this thesis applies the polytypic/generic programming tech-
nique to a few software construction issues. We present the so-called types–as–
grammar approach, which uses parameterized algebraic data types to represent
context independent grammars. This is used to generate parsers automatically
that construct a rich syntax tree and other generic syntax tree operations. We ele-
gantly abstract over different kinds of parser combinators. Applying an advanced
optimization technique called fusion to the generated code yielded great speed-
ups, which makes the approach practically usable. We also use the high-level
functional abstraction technique called ‘arrows’ in combination with generating
programs in a polytypic way. We attempt to ease the construction of invertible
programs by automatically generating the inverse, and generalizing both direc-
tions of computation to all data types. We wrap this part up by presenting a case
study in testing Java Cards using a polytypic test system that can derive test cases
from a functional specification automatically.

We conclude, from the research presented, that Clean’s hybrid static/dynamic
typing provides us with additional protection against run-time errors by tagging
values with their static types. Furthermore, it provides us with a way to store and
retrieve any functional expression, even between different programs. Polytypic
programming also keeps us from making mistakes in (tediously) writing similar
code for many data types. Because the automatic derivation/instantiating of poly-
typic functions is both type directed and type safe (it cannot introduce type errors),
there is less room for programming errors.

Samenvatting

Het blijkt nog steeds moeilijk te zijn om correcte programmatuur te ontwikkelen.
Een van de problemen hierbij is de stijgende complexiteit die vele abstractielagen
vereist. Wij zijn ervan overtuigd dat functionele programmeertalen sommige van
die problemen al bij het bouwen van programmatuur zouden kunnen verminderen.
Met name de zuivere en luie (niet strikte) talen, zoals Clean en Haskell, bieden
zeer goede ondersteuning voor het samenstellen van programma’s uit eenvoudi-
gere onderdelen en het abstraheren en redeneren over programma’s. Dergelijke
talen bevatten ook geavanceerde typesystemen, die programmeurs vroegtijdig at-
tenderen op bepaalde programmeerfouten.

Dit proefschrift beschrijft een onderzoek naar het gebruik van hybride sta-
tische/dynamische typering en de generieke (polytypische) programmeertechniek.
Dit wordt gedaan aan de hand van een aantal bekende programmeerproblemen.
We bekijken de twee technieken “in actie” om de toepasbaarheid, prestatie en
expressiviteit van de programmeertechnieken zelf te beoordelen, alsmede hun
implementaties in zowel Clean als (Generic) Haskell. Het hybride typesysteem is
interessant omdat het de statische typeveiligheid van een sterk getypeerde functi-
onele taal uitbreidt naar de dynamische wereld tijdens het uitvoeren van program-
ma’s. De generieke programmeertechniek is aantrekkelijk omdat het in principe
de hoeveelheid code die moet worden geschreven verminderd, de code beter te on-
derhouden zou moeten zijn door code toe te voegen in plaats van te herschrijven en
het elegante abstracte algoritmen ondersteunt die werken op iedere datastructuur.

In het eerste deel van dit proefschrift wordt de hybride typering toegepast
bij het ontwerp van besturingssystemen en regelgebaseerde interactieve gebrui-
kersomgevingen (een shell). We laten zien dat sterke dynamische typecontrole
typeveilige communicatie en typeveilige uitvoering van programmacomponenten
oplevert. Clean’s dynamische linker geeft ons de mogelijkheid om willekeurige

185

186 Samenvatting

(functionele) expressies permanent te bewaren en weer in te lezen. Het geheel
van deze getypeerde ‘expressies op schijf’ kan gezien worden als een getypeerd
bestandssysteem. Wij presenteren een shell die het type van de ingegeven com-
mando’s controleert aan de hand van de types van de bestanden waarna gerefe-
reerd wordt. Bracket-abstractie, een vertaal techniek, is in het verleden gebruikt
voor de implementatie van een functionele taal na het controleren van types. Wij
gebruiken het echter vóór het controleren en afleiden van types. Om ons ervan te
overtuigen dat dit correct is, bewijzen we formeel dat bracket-abstractie typeer-
baarheid behoudt. Dit deel eindigt met het gebruik van de typecontrolerende shell
(als een bibliotheek) voor het construeren van typeveilige grafische invoervelden
in het polytypische GEC/iData-systeem.

Het tweede deel van dit proefschrift past de polytypische taaluitbeiding toe op
een aantal programeerproblemen. De zogenaamde types–als–grammatica bena-
dering wordt geı̈ntroduceerd die contextvrije grammatica’s kan beschrijven door
middel van algebraı̈sche datastructuren. Dit wordt gebruikt om automatisch syn-
tactische vertalers (parsers) te produceren die rijke (niet abstracte) syntaxbomen
oplevert. Ook worden er andere generieke operaties op syntaxbomen geconstru-
eerd. Hierbij abstraheren we op een elegante manier over verschillende soorten
van parsercombinatoren. Het toepassen van een optimalisatietechniek genaamd
fusie op de automatisch gegenereerde code levert een grote snelheidwinst op zo-
dat deze aanpak ook praktisch bruikbaar is. Daarnaast proberen we de bouw
van omkeerbare programma’s te vereenvoudigen door de omgekeerde berekening
automatisch te laten construeren én beide richtingen van de berekening te veral-
gemeniseren voor alle datastructuren. Hiervoor gebruiken we een zeer algemene
functionele abstractietechniek gebaseerd op zogenaamde “arrows” (pijlen), ge-
combineerd met het genereren van programma’s op een polytypische manier. Dit
deel wordt afgerond met een praktijkvoorbeeld over het testen van chipkaarten
(Java Cards) door middel van een polytypisch test– en rapportagesysteem, dat aan
de hand van een functionele specificatie automatisch steekproeven uitvoert.

Uit het onderzoek beschreven in dit proefschrift concluderen we dat Clean’s
hybride statische/dynamische typesysteem ons extra bescherming geeft tegen fou-
ten tijdens het uitvoeren van programma’s door actuele dynamische waarden te
voorzien van hun statische types. Verder hebben we op deze manier de moge-
lijkheid om praktisch iedere functionele expressie te bewaren of uit te wisselen,
zelfs tussen verschillende programma’s. Polytypisch programmeren helpt ook bij
het voorkomen van fouten in het (tot vervelends toe) schrijven van vergelijkbare
code voor verschillende datastructuren. Ook deze techniek kan dus het aantal fou-
ten in programmatuur verminderen. De automatische afleiding van polytypische
functies is namelijk zowel typegeleid als typeveilig.

Curriculum Vitae

1978 Born on October 21, Arnhem, the Netherlands
1990–1996 Highschool (VWO), van Lingen College, Arnhem
1996–2000 Part-time IT-supporter, SAB adviseurs voor ruimtelijke ordening,

Arnhem
1996–2001 Master’s computer science (doctoraal informatica), Katholieke

Universiteit Nijmegen∗
2001–2002 Additional researcher on STW project number NWI.4411: Clean:

A Software Development System for Safety Critical Systems,
Katholieke Universiteit Nijmegen∗

2002–2003 Researcher sponsored by InterNLnet, Katholieke Universiteit
Nijmegen∗

2003–2007 Junior researcher, Radboud Universiteit, Nijmegen∗

∗On September 1st , 2004, the Katholieke Universiteit Nijmegen changed its name to Radboud
Universiteit, Nijmegen.

187

Titles in the IPA Dissertation Series since 2002

M.C. van Wezel. Neural Networks
for Intelligent Data Analysis: theoret-
ical and experimental aspects. Faculty
of Mathematics and Natural Sciences,
UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal
Specification and Analysis of Indus-
trial Systems. Faculty of Mathematics
and Computer Science and Faculty of
Mechanical Engineering, TU/e. 2002-
02

T. Kuipers. Techniques for Un-
derstanding Legacy Software Systems.
Faculty of Natural Sciences, Mathe-
matics and Computer Science, UvA.
2002-03

S.P. Luttik. Choice Quantification in
Process Algebra. Faculty of Natural
Sciences, Mathematics, and Computer
Science, UvA. 2002-04

R.J. Willemen. School Timetable
Construction: Algorithms and Com-
plexity. Faculty of Mathematics and
Computer Science, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est:
Verification of Probabilistic, Real-
time and Parametric Systems. Faculty
of Science, Mathematics and Com-
puter Science, KUN. 2002-06

N. van Vugt. Models of Molecular
Computing. Faculty of Mathematics
and Natural Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius:
Guiding and Cost-Optimality in
Model Checking of Timed and Hybrid

Systems. Faculty of Science, Mathe-
matics and Computer Science, KUN.
2002-08

R. van Stee. On-line Scheduling and
Bin Packing. Faculty of Mathematics
and Natural Sciences, UL. 2002-09

D. Tauritz. Adaptive Information
Filtering: Concepts and Algorithms.
Faculty of Mathematics and Natural
Sciences, UL. 2002-10

M.B. van der Zwaag. Models and
Logics for Process Algebra. Faculty
of Natural Sciences, Mathematics, and
Computer Science, UvA. 2002-11

J.I. den Hartog. Probabilistic Exten-
sions of Semantical Models. Faculty
of Sciences, Division of Mathematics
and Computer Science, VUA. 2002-
12

L. Moonen. Exploring Software Sys-
tems. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2002-13

J.I. van Hemert. Applying Evolution-
ary Computation to Constraint Sat-
isfaction and Data Mining. Faculty
of Mathematics and Natural Sciences,
UL. 2002-14

S. Andova. Probabilistic Process Al-
gebra. Faculty of Mathematics and
Computer Science, TU/e. 2002-15

Y.S. Usenko. Linearization in μCRL.
Faculty of Mathematics and Computer
Science, TU/e. 2002-16

J.J.D. Aerts. Random Redundant
Storage for Video on Demand. Faculty

of Mathematics and Computer Sci-
ence, TU/e. 2003-01

M. de Jonge. To Reuse or To Be
Reused: Techniques for component
composition and construction. Fac-
ulty of Natural Sciences, Mathemat-
ics, and Computer Science, UvA.
2003-02

J.M.W. Visser. Generic Traversal
over Typed Source Code Representa-
tions. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2003-03

S.M. Bohte. Spiking Neural Net-
works. Faculty of Mathematics and
Natural Sciences, UL. 2003-04

T.A.C. Willemse. Semantics and
Verification in Process Algebras with
Data and Timing. Faculty of Mathe-
matics and Computer Science, TU/e.
2003-05

S.V. Nedea. Analysis and Simulations
of Catalytic Reactions. Faculty of
Mathematics and Computer Science,
TU/e. 2003-06

M.E.M. Lijding. Real-time Schedul-
ing of Tertiary Storage. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2003-07

H.P. Benz. Casual Multimedia Pro-
cess Annotation – CoMPAs. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2003-08

D. Distefano. On Modelchecking the
Dynamics of Object-based Software:
a Foundational Approach. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2003-09

M.H. ter Beek. Team Automata – A
Formal Approach to the Modeling of
Collaboration Between System Com-
ponents. Faculty of Mathematics and
Natural Sciences, UL. 2003-10

D.J.P. Leijen. The λ Abroad –
A Functional Approach to Software
Components. Faculty of Mathematics
and Computer Science, UU. 2003-11

W.P.A.J. Michiels. Performance Ra-
tios for the Differencing Method. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs and
Terms and Their Use in Interactive
Theorem Proving. Faculty of Mathe-
matics and Computer Science, TU/e.
2004-02

P. Frisco. Theory of Molecular Com-
puting – Splicing and Membrane sys-
tems. Faculty of Mathematics and
Natural Sciences, UL. 2004-03

S. Maneth. Models of Tree Trans-
lation. Faculty of Mathematics and
Natural Sciences, UL. 2004-04

Y. Qian. Data Synchronization and
Browsing for Home Environments.
Faculty of Mathematics and Computer
Science and Faculty of Industrial De-
sign, TU/e. 2004-05

F. Bartels. On Generalised Coin-
duction and Probabilistic Specifica-
tion Formats. Faculty of Sciences, Di-
vision of Mathematics and Computer
Science, VUA. 2004-06

L. Cruz-Filipe. Constructive Real
Analysis: a Type-Theoretical Formal-
ization and Applications. Faculty of

Science, Mathematics and Computer
Science, KUN. 2004-07

E.H. Gerding. Autonomous Agents
in Bargaining Games: An Evolution-
ary Investigation of Fundamentals,
Strategies, and Business Applications.
Faculty of Technology Management,
TU/e. 2004-08

N. Goga. Control and Selection Tech-
niques for the Automated Testing of
Reactive Systems. Faculty of Mathe-
matics and Computer Science, TU/e.
2004-09

M. Niqui. Formalising Exact Arith-
metic: Representations, Algorithms
and Proofs. Faculty of Science, Math-
ematics and Computer Science, RU.
2004-10

A. Löh. Exploring Generic Haskell.
Faculty of Mathematics and Computer
Science, UU. 2004-11

I.C.M. Flinsenberg. Route Planning
Algorithms for Car Navigation. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2004-12

R.J. Bril. Real-time Scheduling for
Media Processing Using Condition-
ally Guaranteed Budgets. Faculty of
Mathematics and Computer Science,
TU/e. 2004-13

J. Pang. Formal Verification of Dis-
tributed Systems. Faculty of Sciences,
Division of Mathematics and Com-
puter Science, VUA. 2004-14

F. Alkemade. Evolutionary Agent-
Based Economics. Faculty of Tech-
nology Management, TU/e. 2004-15

E.O. Dijk. Indoor Ultrasonic Posi-
tion Estimation Using a Single Base
Station. Faculty of Mathematics and
Computer Science, TU/e. 2004-16

S.M. Orzan. On Distributed Verifica-
tion and Verified Distribution. Faculty
of Sciences, Division of Mathematics
and Computer Science, VUA. 2004-
17

M.M. Schrage. Proxima - A
Presentation-oriented Editor for
Structured Documents. Faculty of
Mathematics and Computer Science,
UU. 2004-18

E. Eskenazi and A. Fyukov. Quanti-
tative Prediction of Quality Attributes
for Component-Based Software Archi-
tectures. Faculty of Mathematics and
Computer Science, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Al-
gebra. Faculty of Mathematics and
Computer Science, TU/e. 2004-20

N.J.M. van den Nieuwelaar. Super-
visory Machine Control by Predictive-
Reactive Scheduling. Faculty of Me-
chanical Engineering, TU/e. 2004-21

E. Ábrahám. An Assertional Proof
System for Multithreaded Java -
Theory and Tool Support- . Faculty
of Mathematics and Natural Sciences,
UL. 2005-01

R. Ruimerman. Modeling and Re-
modeling in Bone Tissue. Faculty of
Biomedical Engineering, TU/e. 2005-
02

C.N. Chong. Experiments in Rights
Control - Expression and Enforce-
ment. Faculty of Electrical Engineer-

ing, Mathematics & Computer Sci-
ence, UT. 2005-03

H. Gao. Design and Verification of
Lock-free Parallel Algorithms. Fac-
ulty of Mathematics and Computing
Sciences, RUG. 2005-04

H.M.A. van Beek. Specification
and Analysis of Internet Applications.
Faculty of Mathematics and Computer
Science, TU/e. 2005-05

M.T. Ionita. Scenario-Based System
Architecting - A Systematic Approach
to Developing Future-Proof System
Architectures. Faculty of Mathematics
and Computing Sciences, TU/e. 2005-
06

G. Lenzini. Integration of Analy-
sis Techniques in Security and Fault-
Tolerance. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2005-07

I. Kurtev. Adaptability of Model
Transformations. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Net-
work Reliability. Faculty of Science,
UU. 2005-09

O. Tveretina. Decision Procedures
for Equality Logic with Uninterpreted
Functions. Faculty of Mathematics
and Computer Science, TU/e. 2005-
10

A.M.L. Liekens. Evolution of Fi-
nite Populations in Dynamic Environ-
ments. Faculty of Biomedical Engi-
neering, TU/e. 2005-11

J. Eggermont. Data Mining using
Genetic Programming: Classification
and Symbolic Regression. Faculty
of Mathematics and Natural Sciences,
UL. 2005-12

B.J. Heeren. Top Quality Type Error
Messages. Faculty of Science, UU.
2005-13

G.F. Frehse. Compositional Verifica-
tion of Hybrid Systems using Simu-
lation Relations. Faculty of Science,
Mathematics and Computer Science,
RU. 2005-14

M.R. Mousavi. Structuring Struc-
tural Operational Semantics. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis
of Probabilistic Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2005-16

T. Gelsema. Effective Models for
the Structure of pi-Calculus Processes
with Replication. Faculty of Math-
ematics and Natural Sciences, UL.
2005-17

P. Zoeteweij. Composing Constraint
Solvers. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-18

J.J. Vinju. Analysis and Transfor-
mation of Source Code by Parsing
and Rewriting. Faculty of Natural
Sciences, Mathematics, and Computer
Science, UvA. 2005-19

M.Valero Espada. Modal Abstrac-
tion and Replication of Processes with
Data. Faculty of Sciences, Division of

Mathematics and Computer Science,
VUA. 2005-20

A. Dijkstra. Stepping through
Haskell. Faculty of Science, UU.
2005-21

Y.W. Law. Key management and
link-layer security of wireless sensor
networks: energy-efficient attack and
defense. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2005-22

E. Dolstra. The Purely Functional
Software Deployment Model. Faculty
of Science, UU. 2006-01

R.J. Corin. Analysis Models for Se-
curity Protocols. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2006-02

P.R.A. Verbaan. The Computational
Complexity of Evolving Systems. Fac-
ulty of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers.
Formal Specification and Analysis of
Hybrid Systems. Faculty of Math-
ematics and Computer Science and
Faculty of Mechanical Engineering,
TU/e. 2006-04

M. Kyas. Verifying OCL Specifi-
cations of UML Models: Tool Sup-
port and Compositionality. Faculty
of Mathematics and Natural Sciences,
UL. 2006-05

M. Hendriks. Model Checking Timed
Automata - Techniques and Applica-
tions. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2006-
06

J. Ketema. Böhm-Like Trees for
Rewriting. Faculty of Sciences, VUA.
2006-07

C.-B. Breunesse. On JML: topics in
tool-assisted verification of JML pro-
grams. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2006-
08

B. Markvoort. Towards Hybrid
Molecular Simulations. Faculty of
Biomedical Engineering, TU/e. 2006-
09

S.G.R. Nijssen. Mining Structured
Data. Faculty of Mathematics and
Natural Sciences, UL. 2006-10

G. Russello. Separation and Adap-
tation of Concerns in a Shared Data
Space. Faculty of Mathematics and
Computer Science, TU/e. 2006-11

L. Cheung. Reconciling Nondeter-
ministic and Probabilistic Choices.
Faculty of Science, Mathematics and
Computer Science, RU. 2006-12

B. Badban. Verification techniques
for Extensions of Equality Logic. Fac-
ulty of Sciences, Division of Mathe-
matics and Computer Science, VUA.
2006-13

A.J. Mooij. Constructive formal
methods and protocol standardization.
Faculty of Mathematics and Computer
Science, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for
Hybrid Systems. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2006-15

M.E. Warnier. Language Based Se-
curity for Java and JML. Faculty of

Science, Mathematics and Computer
Science, RU. 2006-16

V. Sundramoorthy. At Home In Ser-
vice Discovery. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2006-17

B. Gebremichael. Expressivity of
Timed Automata Models. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-18

L.C.M. van Gool. Formalising Inter-
face Specifications. Faculty of Math-
ematics and Computer Science, TU/e.
2006-19

C.J.F. Cremers. Scyther - Semantics
and Verification of Security Protocols.
Faculty of Mathematics and Computer
Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Chan-
nels for Exogenous Coordination of
Distributed Systems: Semantics, Im-
plementation and Composition. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2006-21

H.A. de Jong. Flexible Heteroge-
neous Software Systems. Faculty of
Natural Sciences, Mathematics, and
Computer Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time re-
configurable Network-on-Chip for
streaming DSP applications. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2007-02

M. van Veelen. Considerations on
Modeling for Early Detection of Ab-

normalities in Locally Autonomous
Distributed Systems. Faculty of Math-
ematics and Computing Sciences,
RUG. 2007-03

T.D. Vu. Semantics and Applica-
tions of Process and Program Alge-
bra. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2007-04

L. Brandán Briones. Theories for
Model-based Testing: Real-time and
Coverage. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2007-05

I. Loeb. Natural Deduction: Sharing
by Presentation. Faculty of Science,
Mathematics and Computer Science,
RU. 2007-06

M.W.A. Streppel. Multifunctional
Geometric Data Structures. Faculty of
Mathematics and Computer Science,
TU/e. 2007-07

N. Trčka. Silent Steps in Transition
Systems and Markov Chains. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2007-08

R. Brinkman. Searching in encrypted
data. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2007-09

A. van Weelden. Putting types to
good use. Faculty of Science, Math-
ematics and Computer Science, RU.
2007-10

	Title-page
	Preface
	Table of Contents (read this to learn more about recursion)
	Introduction
	The Complexity of Software
	Abstraction by Functional Programming
	Hybrid Static/Dynamic Typing
	Polytypic Programming
	Scope of the Research
	Contents of this Thesis

	A Functional Operating System
	Introduction
	Dynamics in Clean
	Threads in Famke
	Thread Implementation
	Exceptions and Signals

	Processes in Famke
	Process and Thread Communication
	Process Management

	Interacting with Famke: the Shell
	Related Work
	Conclusions and Future Work

	A Functional Shell
	Introduction
	Esther Example: an Application Uses a Shell Function
	Overview

	Dynamics in Clean
	Overview of the Shell
	Famke: a Type Safe Micro Kernel
	A Typed File System
	Esther: a Type-Checking Shell
	The Esther Command Language

	Implementation of Esther Using Dynamics
	Application
	Lambda Expressions
	Irrefutable Patterns
	Let(rec) Expressions
	Case Expressions
	Overloading

	Related Work
	Conclusions

	Bracket Abstraction Preserves Typability
	Introduction
	Dynamics and the Shell Written in Clean
	From Expression to Combinators
	The Theorem Provers PVS
	The Proof in PVS
	Bracket Abstraction
	Typing
	A Polymorphic Type System

	Related Work
	Conclusions

	Editors for Higher-Order Data Structures
	Introduction
	The GEC Programming Toolkit
	Dynamically Typed Higher-order GECs
	Dynamics in Clean
	Creating a GEC for the type Dynamic

	Statically Typed Higher-order GECs
	Abstract Graphical Editor Components
	Adding Static Type Constraints to Dynamic GECs

	Applications of higher-order GECs
	Related Work
	Conclusions
	Screen Shots of Example Applications

	Polytypic Syntax Tree Operations
	Introduction
	Polytypic Programming
	Polytypic Parsing of Programming Languages
	Other Polytypic Syntax Tree Operations
	Restructuring Infix Expressions
	Adding Local Variable Scopes
	Type Inference

	Performance of Polytypic Parsers
	A Basic Functional Language Parser
	Improving the Automatically Derived Code
	Using Continuation-based Parser Combinators
	A Haskell 98 Parser

	Related Work
	Conclusions

	Arrows for Invertible Programming
	Introduction
	From arrows to bidirectional arrows
	Arrows
	Bidirectional arrows
	Arrow laws for bi-arrows
	Inversion Laws

	Monotypic programming with bi-arrows
	A motivating example
	Functions are not bi-arrows
	The embedding-projection bi-arrow transformer
	Paterson notation

	Polytypic programming with bi-arrows
	Polytypic traversals
	The state bi-arrow transformer
	Polytypic shape

	Polytypic (de)serialization
	Monadic programming with bi-arrows
	Partial polytypic zipping
	Bi-arrows with zero
	Lifting monads to bi-arrows

	Parsing and pretty-printing
	The plus arrow
	A concrete parser
	Parsing keywords
	Parsing expressions
	A monadic plus arrow
	Parser/printer examples

	Related Work
	Conclusions and Future Work

	On--the--Fly Formal Testing
	Introduction
	Case Study
	The Test Tool GAST in a Nutshell
	The Purse Specification for GAST
	Testing Java Cards with GAST
	Results
	Related Work
	Conclusions and Future Work

	General Conclusions
	Old Future Work and New Related Work
	Final Conclusions

	Bibliography
	Summary
	Samenvatting
	Curriculum Vitae

