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ABSTRACT

A new approach, called the Hierarchical Classes Analysis (HCA) approach, is introduced as a 
policy instrument in a group technology (GT) context, in which machine cells have to be formed. 
As opposed to cluster analysis (CA) approaches, the HCA approach is concerned with finding 
a hierarchical representation of the machine (class) and part (class) structure simultaneously. 
The application of the HCA approach is applicable in the event that mutually exclusive ma
chine cells exist or if bottleneck machines (and/or exceptional parts) prohibit the formation of 
mutually exclusive machine cells. The alternatives offer various ways of either duplicating one 
or more machines or allowing for intercellular part transfer. The decision maker chooses the 
best solution according to a specified objective. The procedure is illustrated with an optimiza
tion problem: minimize intercellular part transfer, given a budget constraint for duplicating 
machines.

KEYWORDS: Group technology, machine cell formation, cellular manufacturing system, 
hierarchical classes analysis.

I. INTRODUCTION

Group technology (GT) is aimed at decomposing a manufacturing system into 
subsystems that are easier to manage than the entire system. Its introduction 
has led to a number o f advantages, such as reduction in production lead time, 
work in progress, labor, tooling, rework, scrap material, set up time, and order 
time delivery.1

In the design process, the Cell Formation Problem (also called the Group 
Technology problem) is mentioned as one of the major problems.2 The G T 
problem considers the grouping of parts into part families and machines into
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machine cells, and the assignment of part families to machines cells. In an ideal 
cell configuration, products are completely manufactured within one cell and 
are then transported to an assembly cell to be assembled with other parts. In 
this ideal case, no intercell transfers of parts are required. Intercell movements 
can be reduced at any time by duplicating machines, at an increased cost. Re
search into quantitative methods helping the solution of the G T problem deals 
mostly with one of two types of objective functions: either (1) minimize a mea
sure of intercell transfer volume, or (2) maximize a measure o f machine uti
lization.

The greatest potential for the application of GT lies in batch-type manu
facturing, i.e., many different products produced in small lot sizes. The volume 
for any particular part is not high enough to require a dedicated production 
line, but the volume of a family of parts is high enough to efficiently utilize a cell.

Kusiak1-̂  considers two basic methods for solving the G T problem: classifi
cation and cluster analysis (CA). The former is used to group parts into part 
families based on their design features, e.g., by visual recognition of similarity 
of the geometric shape, or by assigning a code to each part on basis of features 
such as geometric shape, dimensions, type of material, or required accuracy. The 
latter method is more extensively discussed in the next section.

II. CLUSTER ANALYSIS APPROACHES FOR THE GT PROBLEM

CA (especially 1-dimensional CA approaches) focuses on the formation of ma
chine cells, based on the calculation of a similarity coefficient (or a distance mea
sure) between different groups of machines. From a G T perspective, 1-dimen
sional CA is able to focus on either the formation of machine cells or the 
formation o f part families. In practice, however, there is an a priori basis for pre
ferring the formation o f machine cells over the formation of part families. If the 
implicit assumption of (some) homogeneity within machine cells,1 is satisfied, 
CA is used to form a set of mutually independent machine cells, each able to 
process all operations of part families assigned to it. Only if a certain degree of 
mutual exclusiveness among machine cells exists can the different part families 
easily be derived from the CA solution.

In real-world applications, the assumption of mutual exclusiveness of either 
machine cells or part families is often violated. Not all components of a part 
family can always be processed in a single machine cell. The parts having oper
ations in more than one cell are called exceptional parts, and the machines that 
process these operations are called bottleneck machines. These machines require 
either intercellular movements of the parts to be processed or duplication of the
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bottleneck machines in the appropriate cells. The total number of intercellular 
movements and/or duplicated bottleneck machines should be minimized for 
practical and economic reasons.

W ithin the CA approach, three formulations of the G T problem are pro
posed: the matrix formulation, the mathematical programming formulation, 
and the graph formulation.1-3 We will use the matrix formulation approach. In 
the matrix formulation, a part—machine incidence matrix A = [a^ is constructed. 
The 2-dimensional matrix consists o f binary a^-entries, where an entry 1 (0) in
dicates that machine i is used (not used) to process part ƒ

Heuristic formulations of the CFP typically are based on a part-machine in
cidence matrix, including which part is to be processed by which machine. For
mulations based on the part-incidence matrix rely on assumptions that are open 
to criticism, e.g., they assume that each part requires an identical capacity re
quirement on each machine upon which it requires processing. Major deficiencies 
in using these methods have been observed in obtaining efficient cells in prac
tical situations. Some options for improvement of the methods are: production 
volumes and capacity constraints should be included; tooling constraints should 
be considered; cell size constraints, sequence, and durations of operations should 
be accounted for.4-6

Whatever method the practitioner will use, it has to satisfy two requirements: 
it has to detect mutually separable machine cells, if they exist, and it has to de
termine the bottleneck machines (or the exceptional parts). The way in which 
mutually separable machine cells are identified depends on the clustering algo
rithm. Miltenburg and Zhang7 evaluate 9 algorithms developed to solve the cell 
formation problem and compare them for their ability to produce good solu
tions to large problems (25-50 machines, 35-50 parts, and 10-20%  entries in 
the incidence matrix having value 1).

One of the most popular CA methods is (agglomerative) hierarchical CA. Be
cause of the hierarchical way in which clusters are formed, solutions are not at 
all unique. A solution for k machine cells can also be obtained from the solution 
of k + 1 machine cells when 2 machine cells are combined. The choice of the 2 
machine cells to be combined depends on the defined criterion (e.g., the 2 ma
chine cells with the largest similarity coefficient in King and Nakornchai8).

The use of hierarchical 1-dimensional CA to solve the G T problem is sub
ject to some criticism. The 1-dimensional approach forces the aggregating 
process to be limited to the aggregation of either machines or parts. Because ex
ceptional parts obstruct the formation of mutually exclusive machine cells, the 
part families cannot be derived from the different machine cells. Consequently, 
possible interrelationships between machine cells and groups o f parts (or part 
families) cannot be discovered by means of these 1 -dimensional CA approaches.
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A partial solution to this problem is offered by 2-dimensional (hierarchical) 
CA approaches, the aim of which is to build a common categorical representa
tion of the (similarity) structure of both sets of objects (e.g., machines) and sets 
of features (e.g., parts).9 This common representation of both machines and 
parts enables the decision maker to detect mutually exclusive submatrices within 
the incidence matrix.

Recently, some models and algorithms have been developed to construct 
the common categorical representation of both objects and features. Objects 
and features, for our purposes, are instantiated as machines and parts. Exam
ples are Arabie and Hubert’s10 revision of the Bond Energy Algorithm origi
nally proposed by McCormick et al.11 and Eckes and Orlik’s12 centroid effect 
method. All hierarchical (agglomerative) CA methods provide at most only 1 
machine cell configuration for a given number of machine cells. Furthermore, 
these methods do not allow selection of the “best” solution (according to a 
“goodness” measure) among 2 or more solutions with an unequal number of 
machine cells.

In evaluating alternative machine cell configurations with equal or unequal 
number of machine cells, it is necessary to have more appropriate information 
concerning the strength of the interrelations or associations between, for ex
ample, a bottleneck machine and the part family to which exceptional parts be
long. This kind of information is valuable whenever one has to decide on du
plication of bottleneck machines or intercell transfers.

In the remainder of the paper, a new approach is introduced to cope with 
the above-mentioned criticisms. In Section III, the basic concepts of the hier
archical classes analysis (HCA) approach are presented. In Section IV, the HCA 
approach is illustrated with an example of mutually exclusive machine cells. In 
Section V, the HCA approach is illustrated with an example of overlapping ma
chines and bottleneck parts. Finally, the decision support aspect is illustrated 
using an optimizing strategy.

III. THE HIERARCHICAL CLASSES ANALYSIS (HCA) APPROACH TO THE 
GT PROBLEM

III.A. Concepts and Basic Ideas

The HCA approach covers two requirements: (1) a common categorical repre
sentation of both sets of machines (machine cells) and sets of parts, and (2) in
formation about the strength of the associations between a machine (or a ma
chine cell) and a part (or a part family).
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In HCA, a distinction is made between 2 types of classes: part classes and 
machine classes. A part class consists of parts processed on the same set of ma
chines. Similarly, a set of machines used to process a common set of parts is 
called a machine class. The hierarchical approach is aimed at identifying sub
classes in both part classes and machine classes, affording a variety of possible 
cell formations to the decision maker. An algorithm, called HICLAS (acronym 
for Hierarchical CLASses), is used to recover such an underlying deterministic 
hierarchical structure starting from the incidence matrix.

The basic data are stored as binary values in a 2-dimensional incidence ma
trix. The algorithm alternates between the rows (machines) and the columns 
(parts) of the incidence matrix to find the best-fitting row classes (sets of ma
chines) and column classes (sets of parts) and their hierarchical relations, using 
an iterative Boolean regression technique.13 In practice, the underlying (set-the
oretical) structure of the actual incidence matrix is not completely determinis
tic. By allowing discrepancies between the actual incidence matrix and the re
covered or modeled incidence matrix, the algorithm  accounts for some 
measurement error. This approximation is done by minimizing the total num
ber of discrepancies between both data matrices. The minimization process is 
discussed more extensively in later paragraphs. The set-theoretical relations in 
the HICLAS model are the best possible approximation of the relations that 
exist in reality.

In Section II.B, we focus on the possible set-theoretical relations among ma
chines and parts. The Boolean decomposition and the set-theoretical decom
position will be discussed in Section V.

III.B. The Set-Theoretical Relations

Three set-theoretical relations are of importance in our HCA approach: the equiv
alence relation, the association relation, and the order relation. These relations 
will be discussed by means of an illustrative example.

Assume the following hypothetical machine-part incidence matrix A. The 
matrix is restructured in such a way that the relations are easily recognized.

The equivalence relation
Machines (mi, i = 1, ..., 8) are considered equivalent if and only if they per
form operations on identical sets of parts (pj, j = 1, ..., 7). Likewise, parts are 
considered equivalent if and only if they share identical sets of machines in their 
routings. Sets of equivalent machines (parts) are called machine (part) classes. 
In Matrix 1, we can see that there are 4 machine classes {ml}, {m2,m3,m4},
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MATRIX 1. M achine-part incidence matrix.
P1 p2 p3 p4 p5 p6 P7

m l 1 1 1 1 1 1 1
m2 1 1 1 0 0 0 0
m3 1 1 1 0 0 0 0
m4 1 1 1 0 0 0 0
m5 0 0 0 1 1 1 0
m6 0 0 0 1 1 1 0
ml 0 0 0 1 1 1 0
m8 0 0 0 0 0 0 1

{m5,m6,m7}, and {m8} and 3 part classes {pl,p2,p3}, {p4,p5,p6}, and {p7}. 
Note that machine (part) classes can consist of a single machine (part), e.g., 
{ml}, {m8}, and {p7}.

The association relation
A machine class M^ is associated to a part class Pi if and only if the parts in the 
part class P| are processed on the machines in Mk- Likewise, a part class Pj is 
also associated to a machine class Mic if and only if the machines in the machine 
class M k are used to process the parts in P[. For instance, the machine class 
{m2,m3,m4} is associated to the part class {pl,p2,p3}, and vice versa.

The order relation
A machine class M; is lower ordered than another machine class Mj if and only 
if its associated part class(es) is (are) a proper subset of the part classes associ
ated with M j. The machine classes {m2,m3,m4} and {m5,m6,m7} are lower or
dered than machine class {ml} because their associated part classes ({pl,p2,p3} 
and {p4,p5,p6}, respectively) form a subset of the part classes associated to {ml} 
({pl,p2,p3}, {p4,p5,p6}, and {p7}).

By introducing the order relation, the machine cells and part classes can both 
be partially ordered hierarchically. In Matrix 1, machine class {ml} is higher or
dered than machine classes {m2,m3,m4} and {m5,m6,m7}, because the single 
machine m l in the higher-ordered machine class {ml} is used to process all parts 
in the part classes associated with the lower-ordered machine classes {m2,m3,m4} 
and {m5,m6,m7}, in particular, {pl,p2,p3,p4,p5} and {p6}.

None of the machine classes {m2,m3,m4}, {m5,m6,m7}, and {m8} are higher 
ordered than any other machine class. They are called bottom machine classes. 
Also, none of the part classes {pl,p2,p3}, {p4,p5,p6}, and {p7,p8} are higher or
dered than another part class, and they are called bottom part classes. Machine
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(part) classes that are higher ordered than one or more other machine (part) 
classes are called dominant machine (part) classes. Each machine (part) class is 
either a bottom or a dominant machine (part) class.

IV. THE HCA APPROACH IN MUTUALLY EXCLUSIVE MACHINE CELLS

IV.A. Mutually Exclusive Machine Cells

A machine-part technology system consists of mutually exclusive machine cells 
if

1. All machines mj 6  M  belong to a machine class M j in such a way that

U j M j = M  A  M j n  M k = 4) ( Vj *  k) ;

2. All parts p, G P belong to a part class Pj in such a way that

U j Pj = P  A  Pj n  P k = 0  ( Vj *  k) ;

3. Each part/machine combination belongs to one and only one part class/ma- 
chine class combination

Vg.k.i ( p; e  Mj A  mk G Pj ) : — 13  F *  j, g *  1 : p; G M r v  mk G Pg .

Any clustering algorithm should be able to find a set of mutually exclusive ma
chine cells within the machine-part incidence matrix. This simplified case is 
presented in order to explain our HCA approach.

In order to illustrate the use of the earlier-defined relations in a hierarchical 
way, we use an example represented by Matrix 2. The matrix is restructured in 
such a way that the reader easily can identify the machine cells.

Using the definition o f equivalence, machine classes in this matrix are: 
{ml,m3,m4}, {m2}, {m5,m6}, {m7}, {m8,m9}, and {mlO}. Part classes are 
{pl,p3}, {p2}, {p4}, {p5,p6}, {p7}, and {p8}.

A number of associations can be found among the identified machine and 
part classes, as shown in Table 1. The left side shows the associations from a ma
chine viewpoint; the right side from a part viewpoint. The total amount o f in
formation on both sides is the same as the association relation is a symmetric 
relation.
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MATRIX 2. Restructured incidence matrix.
P1 P2 P3 p4 P5 p6 p7 p8

ml 1 1 1 0 0 0 0 0
m2 1 0 1 0 0 0 0 0
m3 1 1 1 0 0 0 0 0
m4 1 1 1 0 0 0 0 0
m5 0 0 0 1 1 1 0 0
m6 0 0 0 1 1 1 0 0
m7 0 0 0 0 1 1 0 0
m8 0 0 0 0 0 0 1 1
m9 0 0 0 0 0 0 1 1
m10 0 0 0 0 0 0 0 1

Table 1 contains the required information to identify a hierarchy of classes. 
Based on the definition o f order relation, the pairs which can be relatively or
dered to each other are shown in Tables 2 and 3. Both hierarchies in Tables 2 
and 3 can be represented simultaneously by making use of a symmetric associ
ation relation between machine classes and part classes. W hen a machine (part) 
class is associated to a given part (machine) class, it is also associated to all its 
superordinate part (machine) classes.

In Figure 1, the minimal set of association relations is indicated by slashed lines.
Most real incidence matrices require a complex model to cover all associa

tions. A simpler model implies relaxation o f the types of relations in the data. 
If one allows for a minimum of discrepancies between the modeled incidence

Table 1. The Existing Associations (Matrix 2)

PART
CLASS

MACH INE
CLASS(ES)

M ACH INE
CLASS

PAKT
CLASS(ES)

is associated to is associated to

{pl.p3> {ml,m3,m4} {ml,m3,m4) {pl,p3}

{m2} {p2}

{p2} {m l, in 3, ms)} {m2} <pl.p3}

<p4} {m5,m6} {m5,m6} {P4>

{p5,p6} {m5,m6) {pS,p6}

{m7} {m7} {p5,p6}

(P?) {m8,m9} {m8,m9} {p7}

(P8> {m8,m9} (P«}

{mlOJ {mIO} {P8}
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Table 2. Hierarchy of Machine Classes (Figure 2)

{ml,m3,m4} {m5,m6} {m8,m9}
is higher 

ordered than
1 1 4

{m2) <m7} (mipi

Table 3. Hierarchy of Part Classes (Figure 2)

(pl,p3) {p5,p6} <P8}
is higher 4 4- 1

ordered than

{p2} {p4! (P7)

matrix and the actual incidence matrix, much simpler models can be consid
ered. Such simpler models will be constructed based on the HCA analyses.

The practitioner will easily find a simpler model for the matrix A. By ignor
ing the inefficiencies {m2,p2}, {m7,p4}, and jml0,p7}, 3 independent cells are 
easily recognized: {ml ,m2,m3,m4}, {m5,m6,m7}, and {m8,m9,mlO}.The ma
trix M corresponding to the simpler model is shown in Matrix 3.

Three independent part classes can be recognized: {pl,p2,p3}, {p4,p5,p6}, 
and {p8,p9,pl0}. Association relations exist between {m l,m2,m 3,m4} and

FIGURE 1.
Minimal set of association relations
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MATRIX 3. Simplified incidence matrix.
P1 p2 P3 p4 P5 P6 P7 P8

ml 1 1 1 0 0 0 0 0
m2 1 1 1 0 0 0 0 0
m3 1 1 1 0 0 0 0 0
m4 1 1 1 0 0 0 0 0
m5 0 0 0 1 1 1 0 0
m6 0 0 0 1 1 1 0 0
m7 0 0 0 1 1 1 0 0
m8 0 0 0 0 0 0 1 1
m9 0 0 0 0 0 0 1 1
m10 0 0 0 0 0 0 1 1

{pl,p2,p3}, between {m5,m6,m7} and Jp4,p5,p6}, and between {m8,m9,mlO} 
and {p7,p8}. No order relationship exists among the machine classes or part 
classes. In earlier defined terms, this means that all classes are bottom classes.

In cases where mutually exclusive cells do not exist or are not identified eas
ily, a formal procedure is required. In the next section, the HCA approach to 
find a deterministic structure in the incidence matrix is formalized.

V. CELL FORMATION USING THE HCA APPROACH

Cell formation using the HCA approach is a 2-step procedure:

1. If A has no deterministic structure, then a best approximative matrix M = 
[m;j], having a deterministic structure, has to be obtained. The matrix M is 
called the recovered incidence matrix.

2. Among the set of Boolean decompositions of M, the choice is based on which 
is compatible with the specified set-theoretical relations.

In practice, cases have to be considered in which the hierarchical class model 
does not represent the data perfectly. In such a case, an approximative model is 
chosen. For this purpose, the HICLAS algorithm12 is chosen. It tackles the prob
lem by means of a minimization algorithm, which looks for the best fitting model, 
given a fixed number of bottom classes (called the rank of the model).14’15 This 
minimization algorithm performs the 2-step procedure iteratively. Both steps 
are explained below.
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Step 1: Determine the best approximative deterministic structure o f  A
HCA assumes that the set-theoretical relations of the underlying binary (inci
dence) matrix are supposed to be deterministic. If this assumption is violated, 
HCA finds the incidence matrix M that is the best possible deterministic ap
proximation of the matrix A. The matrix M contains a minimal number of en
tries that are dissimilar with the recovered entries in A. As a result,

A = M + E or [a;j] = [m^] + [e;j]

where

0 if (ajj = 1 A  m;j = 1) v  (ajj = 0 A  m̂ - = 0) [similarity] 
eij = +1 if (aij = 1 A  m;j = 0) [positive dissimilarity]

-1  il (ajj = 0 A  mjj = 1) [negative dissimilarity] 
with Zj I ejj I = minimal

E is called the discrepancy matrix (or the error matrix). De Boeck and Rosen
berg14 state that an enumerative method cannot be used to find the best ap
proximation of A. Instead, an iterative (Boolean) least squares regression pro
cedure is used as a heuristic.13

To illustrate the iterative procedure, we introduce the concept of a Boolean 
decomposition of the (approximated) machine-part incidence matrix M, which 
consists of 2 matrices S and P, such that:

M =  S * P
(m xn) (m*r) (r*n)

with r the Schein2 rank o f M. [The Schein rank is the smallest integer value 
such that the product of S and P ' yields M.]

For example, consider the following decomposition of a (4 X 4) matrix M.
P1 P2 P3 P4 mB1 mB2

ml 1 1 1 1 ml 1 1 P1 P2 P3 P4
m2 1 1 1 1 = m2 1 1 * pB1 1 1 1 1
m3 0 0 1 1 m3 0 1 pB2 0 0 1 1
m4 0 0 1 1 m4 0 1

M = S * P
(4*4 ) (4 *2) (2*4)

Each column of S and P is called a bundle of machines or parts, respectively. In 
the matrices the bundles are indicated as mBi (i = 1,2) and pBj (j = 1,2). Often
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more than 1 decomposition o f M exists. In the illustrated matrix, 2 other de
compositions exist:

S P' S P'
or

10 1110 01 0011

01 0011 01 1111

01 10

01 10

The iterative least squares approach alternates between the rows and the columns 
of the A matrix to find the best fitting machine and part classes and their hier
archical relations.14 Given an initial estimate of S or P, the corresponding P or 
S is estimated. The procedure alternates between the estimation o f P and the 
estimation of S. The matrix product S * Pr serves as an estimate of M. The pro
cedure stops when an estimated M is found with a minimal (weighted) num
ber of discrepancies between A and M. Finally, the recovered incidence matrix 
M is determined.

Before we proceed with step 2, consider the example of mutually exclusive 
machine cells (Example 2, Matrix 2), the relation between the actual incidence 
matrix A and its recovered structure M is given by the following equation:

k j] = [mjj] + [ejj] 
or

p1 p2 p3 p4 p5 p6 p7 p8 p1 p2 p3 p4 p5 p6 p7 p8 p1 p2 p3 p4 p5 p6 p7 p8

ml  1 1 1 0 0 0 0 0  ml  1 1 1 0 0 0 0 0  ml  0 0 0 0 0 0 0 0

m2 1 0 1 0 0 0 0 0  m2  1 1 1 0 0 0 0 0 m2  0 -1 0 0 0 0 0 0

m3 1 1 1 0 0 0 0 0  m3  1 1 1 0 0 0 0 0  m3  0 0 0 0 0 0 0 0

m4  1 1 1 0 0 0 0 0 m4  1 1 1 0 0 0 0 0 m4  0 0 0 0 0 0 0 0

m5 0 0 0 1 1 1 0 0  = m5  0 0 0 1  1 1 0 0  + m5  0 0 0 0 0 0 0 0

m6 0 0 0 1 1 1 0 0  m6  0 0 0 1 1 1 0 0 m6  0 0 0 0 0 0 0 0
m7  0 0 0 0 1 1 0 0 m7  0 0 0 1 1 1 0 0 m7  0 0 0  -1 0 0 0 0

m8 0 0 0 0 0 0 1  1 m8  0 0 0 0 0 0 1 1 m8 0 0 0 0 0 0 0 0

m9  0 0 0 0 0 0 1  1 m9  0 0 0 0 0 0 1  1 m9  0 0 0 0 0 0 0 0

m10 0 0 0 0 0 0 0 1 m10 0 0 0 0 0 0 1 1 m10 0 0 0 0 0 0 -1 0

The discrepancy matrix contains only 0 entries (similarities) and negative dis
crepancies (-1 entries). It happens that a part is associated to a given machine 
class, although it is not processed by all machines which belong to this machine 
class. For example, p2 is not processed on m2, although m2 belongs to the ma
chine class {ml,m2,m3,m4}. The same is true for p4 and m7, and for p7 and 
mlO. These kind of inefficiencies are represented in the discrepancy matrix as 
negative dissimilarities. Another type of discrepancy concerns all existing over
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lap between different machine classes or part families. This situation occurs when 
parts that are not associated to a given machine class are processed on at least 
one machine belonging to this machine class. The existence of overlap between 
different machine or part classes is one of the possible indicators of the existence 
of bottleneck machines or exceptional parts. Overlap corresponds to positive 
dissimilarities between A and M.

Because the error matrix E in Example 2 contains only negative discrepan
cies, the machine—cell configuration, which is suggested by the optimal HCA 
solution (see Matrix 3), contains only inefficiencies, and no bottleneck machines 
or exceptional parts.

For the formation of machine cells, inefficiencies within machine classes are 
considered to be less problematical than bottleneck machines or exceptional parts. 
Therefore, both types of discrepancies should be treated differently in the HCA 
analyses.

Step 2: The choice o f  a set-theoretical decomposition
Given the recovered incidence matrix M, a Boolean decomposition has to be 
found that reflects the 3 set-theoretical relations of equivalence, order, and as
sociation. Storms et al.15 state that the 3 relations are in fact restrictions on the 
Boolean decomposition. In this step it has to be determined which decompo
sition represents the set-theoretical structure. De Boeck and Resenberg14 proved 
that at least one such decomposition exists.

To test whether a Boolean decomposition is compatible with the 3 relations 
in M, 2 additional matrices U and V are defined.

U =[uij] and V=[vjj]

with
1 if, in M, machine i is ordered on the same or a higher level than machine j

u ij =
0 elsewhere,

and
1 if, in P, part i is ordered on the same or a higher level than part j

vij =
0 elsewhere.

De Boeck and Rosenberg14 have shown that

M = [U*S] * [V*P]'
(m *n) (m*r) (r*n)
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Only the matrices S and P that are compatible with the set-theoretical relations 
expressed in the U and V matrices can be used in the final HCA model.

In the 4 x 4  example, the extended decomposition looks like
p1 p2 p3 p4 ml m2 m3 m4 mB1mB2 p1 p2 p3 p4

m11 1 1 1 ml 1 1 1 1  ml  1 1 p1 p2 p3 p4 p 1 1 1 1

m21 1 1 1 = m2 1 1 1 1 * m2 1 1 pB1 1 1 1 1 * p 1 1 1 1

m30 0 1 1 m3 0 0 1 1 m3 0 1 pB2 0 0 1 1 p 0 0 1 1

m40 0 1 1  m4 0 0 1 1  m4 0 1  p 0 0 1 1

or

M  = [U * S] * [P' *V’]

The set-theoretical decomposition of M contains both the product terms [U*S] 
and [V*P], The partial order among machine classes and part classes in M is de
termined by the matrix product [U*S] and [V*P], respectively . In the exam
ple, only 1 Boolean decomposition (out o f 3) is compatible with the set-theo- 
retical relations in M.

From the matrix U specified in the extended decomposition, it can be de
rived that machine class {m l,m2} is higher ordered than the bottom machine 
class {m3,m4}. On the other hand, it is also shown that the part class {pl,p2} 
is higher ordered than the bottom part class {p3,p4}.

Let S and P be written as a vector of bundles Si and Pj:

S = [Si S2 ... S; ... S„] and 
P = [ P ,  P 2 . . .  Pj . . .  P m]

with:
mi = identification of machine i (i= 1,... ,n) 
pj = identification of part j (j= l,...,m )
Mi = identification o f machine class i 
Pj = identification of part class j 
M = set of machines 
P = set of parts.

A bundle-specific machine class BM ; or part class BPj is defined as

BMi = { M x e  M I Vk e  M x : ski = 1 A  (skj = 0; i *  j ) }
BP; = { Pi e  P l V k e  P i : Pki= l  A (P kj = 0 ; i * j ) }

{m3,m4} is a bundle-specific machine class. {pl,p2} is a bundle-specific part 
class.
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There is a one-to-one correspondence between machine and part bundles in 
that all machines from a given machine bundle process all parts from the cor
responding part bundle. Bottom machine class {m3,m4} is associated to part 
class {p3,p4} (p3 and p4 entries in P have value 1 in the second bundle). Bot
tom part class {pl,p2} is associated to machine class {m l,m2} (ml and m2 en
tries in M have value 1 in the first bundle).

Through the order relation associations with lower-ordered classes, additional 
association relations between classes can be found. Therefore, machine class 
{m l,m2} is also associated to part class {p3,p4}.

So far, the 2-step procedure has been explained by means of a simple exam
ple. It should be stressed that the HCA algorithm considers only alternative 
models with a maximal number of bottom machine classes and/or bottom part 
classes. This maximum number is indicated by the number of bundles in S or 
P (i.e., the rank of the HCA model). In practice, however, the decision maker 
has to choose among a number of rank-specific optimal HCA solutions. This 
problem will be dealt with in the next section.

VI. HIERARCHICAL CLASSES ANALYSIS WITH OVERLAP BETWEEN 
MACHINE CELLS

Often, the formation of mutually exclusive machine cells is prohibited by the 
existence of bottleneck machines or exceptional parts. By means of an example 
machine-part incidence matrix (Matrix 4), taken from Sule,16 we illustrate the 
HCA approach in determining machine cells and part families concurrently.

HCA solutions can be obtained in different ranks by performing the algo
rithm described in Section II. The optimal solution in a given rank has a min
imal weighted number of discrepancies between A and M. To select the best so
lution out o f a set o f optimal solutions in different ranks, one needs a 
rank-independent goodness-of-fit measure. An adjusted version of the Jaccard 
similarity coefficient is proposed in which only positive discrepancies are taken 
into account, fable 4 illustrates the goodness-of-fit statistics for the optimal HCA 
solutions in ranks 1-5. The adjusted Jaccard similarity coefficient is defined as:

__________ £j £j 5 (Ajj = 1 )8  (Mjj = 1)__________
% 8 (A ij = 1) 5  (Mjj = 1) + Z ; E, 6  (Aij -  M ;j = 1)

where 5 (p) = 1 if the proposition p is true; and Ô (p) = 0 if the proposition p 
is false.

Note: To determine the optimal solution within a given rank, the weights
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MATRIX 4. The machine-part incidence matrix.
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20

ml 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1

m2 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0

m3 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1

m4 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1

m5 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0

m6 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0

m7 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 1 0

m8 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0

m9 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1

m10 1 1 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0

m11 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0

for a positive discrepancy is set equal to %, while the weight of a negative dis
crepancy is set equal to V3. Despite the fact that the weights are chosen some
what arbitrarily, the optimal HCA solution was found to be robust to moder
ate adjustments to these weights.

The optimal HCA solution in rank 3 has a better goodness-of-fit value than 
the optimal HCA solutions in ranks 3, 2, and 1. It is hardly worse than the op
timal HCA solution in rank 4. Therefore, the set-theoretical relations in this 
more parsimonious model is chosen as the best deterministic approximation of 
the real structure underlying the machine-part incidence matrix.

Table 4. Goodness-of-Fit Statistics of the HCA-Solutions in 
Different Ranks

(Optima! 
solution inj 
RANK

Number of 
Similarities

Number of

Positive
discrepancies

Number of

Negative
discrepancies

Adjusted Jaccard
Similarity
Coefficient

1 0 + 1 -1

1 35 129 36 20 0.493

2 57 123 14 26 0.803

3 68 129 3 20 0.958

4 70 131 1 18 0.986

5 71 135 0 14 1.000
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FIGURE 2.
The HCA graph of the optimal solution in rank 3.

The HCA graph for the optimal HCA model in rank three is presented in 
Figure 2.

The optimal HCA solution in rank 3 contains 5 machine classes and 4 part 
classes. Three of the machine classes— {m3,m4,m9}, {m 6,m 8,m ll} and 
{m 1 ,m2,m5}— are bottom machine classes . Both other machine classes are higher- 
ordered machine classes. Three of the part classes— {pi ,p2,p3,p7,p 11 ,p 15 ,p 16,p20}, 
{p4,p6,p9,p 10,p 14,p 17,p 18} and {p5,p8,p 13,p 19}— are bottom part classes. The 
graph shows one higher-ordered part class {pi2}. Machines m7 and mlO are 
bottleneck machines. Part p i 2 is an exceptional part.

Higher-ordered classes are connected to at least 1 bottom class by a straight 
line. A bottom part class associated to a bottom machine class is connected in 
the graph by a zig-zag line. The pattern of zig-zag lines and straight lines in the 
graph and two rules, to be defined, are used to form the cells. A first rule states 
that each bottom machine (part) class is associated not only to all parts (ma
chines) in the bottom class to which it is linked, but also to all parts (machines) 
belonging to any part (machine) class that subsume that class. For example, 
{ml,m2,m5} is associated to part class {p5,p8,p 13,p 19} and to part class {pl2}.

A second rule states that a machine in a higher-ordered class is used to process 
all parts associated to the bottom machine class to which the higher ordered one 
is linked, either directly or indirectly. Similar reasoning can be made for parts.14 
For example, m7 is used to process {p5,p8,p 13,p 19} and {p4,p6,p9,pl0,pl4,pl7,pl8}.

Based on the HCA model, alternative machine cell configurations can be ob~

273



tained. Making an abstraction of the trivial cell containing all machines, 2 al
ternatives remain.

A first machine cell configuration can be formed if both machine classes {m7} 
and {mlO} are taken as initial sets of 2 machine cells. To the set {m7}, the ma
chine classes {m3,m4,m9} and {ml,m2,m5} have to be added. To the set {mlO}, 
the machine classes {m6,m8,m 11} and {ml, m2,m5} have to be added. Machines 
m l, m2, and m5 are identified as bottleneck machines. Despite their duplica
tion, p i 2 remains an exceptional part.

A second machine cell configuration can be formed if the machines in the 
bottom classes are taken as initial sets of 3 machine cells. In this configuration, 
machines m7 and mlO have to be duplicated. The resulting machine cells are 
{ml,m2,m5,m7,ml0}, {m3,m4,m9,ml0}, and {m6,m8,m7,ml 1}. Also in this 
case p l2  is an exceptional part.

VII. HIERARCHICAL CLASSES ANALYSIS FEEDING A DECISION 
SUPPORT SYSTEM

HCA provides a set of feasible and good solutions in terms of goodness-of-fit 
o f a hierarchical model compared to the real situation. W ithin the set of feasi
ble configurations, a decision-maker (DM) has to choose the alternative that 
most suits his needs according to either a secondary objective or a subjective 
evaluation. If the DM  is able to specify a (set of) secondary objective(s), a dé
cision-support system, hiding an optimization mechanism, can be worth look
ing at. In such a case, the DM  can include additional information or subjective 
knowledge not available at the time o f performing the HCA analysis. We illus
trate this idea with a simple example.

The DM  is eager to define independent cells. However, he is limited in bud
get on the duplication o f machines. Therefore, he is confronted with the choice 
of a discrete number of duplications of machines so that the budget constraint 
is not violated and the number ol intercellular trips is minimized. For this par
ticular case, the DM  can include extra data on volumes to measure the inter
cellular traffic.

Starting from a configuration in which duplicating machines are assigned to 
the cell with the highest volume for the machine, an 0-1 integer programming 
optimization problem can be formulated to assign the machines in a most effi
cient way (i.e., by reducing the intercellular volume), considering the budget. 
This can be stated as:
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m a x £ 2 X x * 
i • t=l k=l subject to

Z Z C , X ik<TB
i=l k=l

where
Vik = volume of jobs the t1' duplicating machines serves in the assigned cell k 
Xik = 1 if machine i is selected in cell k; 0 otherwise 
Ci = investment cost of machine i 
TB = total available budget

In operations research terminology, this optimization is known as the knapsack 
problem, but in a décision-support system the analyst does not have to be aware 
of which problem it is or which solution method is being used.

VIII. CONCLUSION

The new Hierarchical Classes Analysis (HCA) approach is introduced as a de
cision-supporting instrument for the formation of machine cells.

The HCA approach consists of an iterative procedure to find a set-theoret- 
ical decomposition of a recovered machine-part incidence matrix. The optimal 
HCA solution can be graphically presented in an HCA graph, which consists 
of a simultaneous hierarchical representation of machine and part classes.

The HCA graph is very helpful in identifying the machines or parts that ob
struct the creation of mutually exclusive machine cells. In addition, it has been 
shown that alternative machine cell configurations can easily be derived from 
the HCA graph.

As opposed to cluster analysis (CA) approaches, the HCA approach is con
cerned with finding a hierarchical representation of the machine (class) and part 
(class) structure, simultaneously.
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