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Role of vitamin D in the maintenance
of Ca

21
balance

Calcium (Ca2þ) is undoubtedly one of the most
tightly regulated ions in plasma of higher animals.
Ca2þ is involved in the normal functioning of a wide
variety of tissues and physiological processes which
include bone formation, muscle contraction, blood
clotting, nerve transmission and as a second messenger
regulating the actions of many hormones. The homeo-
stasis of Ca2þ is complex because the gastrointestinal
tract, the bones and the kidneys all affect the Ca2þ

balance. Furthermore, the vitamin D endocrine system
is critical for the proper development and maintenance
of this Ca2þ homeostatic system. Once vitamin D is
absorbed from the diet or made in the skin by the
action of sunlight, it is metabolized in the liver to
25-hydroxyvitamin D and then the kidney serves as
the endocrine gland to produce the biologically active
form of vitamin D. This active form of vitamin D,
1a,25-dihydroxyvitamin D3 [1,25(OH)2D3], is synthe-
sized in the proximal tubule by the renal cytochrome
P450 enzyme 25-hydroxyvitamin D3-1a-hydroxylase
(1a-OHase) [1]. The importance of this enzyme is
underlined by severe disorders in Ca2þ homeostasis
caused by mutations in the 1a-OHase gene, including
vitamin D-dependent rickets type I (VDDR-I).
1,25(OH)2D3 remains the most potent active form of
vitamin D known to date. The intestine and kidney
are the main target organs for the action of this
hormone. The biological effects of 1,25(OH)2D3 on
these target organs are mediated by both genomic
and rapid post-transcriptional mechanisms [1]. 1a,25
(OH)2D3 transcriptionally controls the expression of
a particular set of target genes mediated through a
nuclear vitamin D receptor (VDR) acting as a ligand-
inducible factor. Upon binding 1,25(OH)2D3, the VDR
undergoes a conformational change and forms a
complex with a retinoid X receptor (RXR). This
VDR–RXR complex binds to DNA elements in the
promoter regions of target genes described as
vitamin D response elements (VDREs). Binding to
these VDREs controls the rate of gene transcription.
The rapid response presumably utilizes another signal
transduction pathway that is probably linked to puta-
tive plasma membrane receptors for 1,25(OH)2D3, but
its physiological role is not well understood.

Vitamin D-deficient knockout mice models

Targeted deletion of genes encoding 1a-OHase [2,3]
and of the nuclear VDR [4,5] have provided useful mice
models of inherited human diseases such as VDDR-I

(also known as pseudovitamin D-deficiency rickets;
PDDR) and VDDR-II. Mice in which the 1a-OHase
gene was inactivated presented the same clinical
phenotype as patients with PDDR, including undetect-
able levels of 1,25(OH)2D3, rickets and secondary
hyperparathyroidism [2,3]. On a normal diet,
1a-OHase knockout mice have an average life span of
12± 2 weeks [3,6]. Previous studies indicated that daily
injections of 1,25(OH)2D3 completely rescued these 1a-
OHase knockout mice [7]. Bone histology and
histomorphometry confirmed that the rickets and
osteomalacia were cured by this 1,25(OH)2D3 supple-
mentation. Blood biochemistry analysis revealed that
the rescue treatment corrected the hypocalcaemia and
secondary hyperparathyroidism. Interestingly, these
1a-OHase knockout mice were also rescued by a Ca
enriched diet (2% w/w) [8]. Dietary Ca normalized
the hypocalcaemia, secondary hyperparathyroidism
and the biomechanical properties of the bone tissue.
Comparable results were obtained in VDR knock-
out mice from which the bone phenotype could be
completely rescued by feeding the animals an enriched
Ca2þ, phosphorus and lactose diet, suggesting that
vitamin D deficiencies can be rescued by dietary Ca in
a vitamin D-independent manner [4]. Other studies
have however indicated that exogenous Ca may not
entirely compensate for 1,25(OH)2D3 deficiency in mice
and piglets [9,10]. In humans, beneficial effects of Ca
infusions were reported in a child with hereditary resis-
tance to 1,25(OH)2D3 and alopecia [11]. Ca infusions
may be an efficient alternative for the management
of patients with this condition who are unresponsive
to large doses of vitamin D derivatives. However,
it is not completely clear whether dietary Ca is
effective in humans, and studies are needed in which
vitamin D-deficient subjects are treated with Ca
enriched diets.

Gene products involved in high dietary Ca
rescue of 1a-OHase knockout mice

The kidney has a predominant role in maintaining
the Ca2þ balance because it determines the final excre-
tion of Ca2þ in the urine. Active Ca2þ reabsorption in
the distal convoluted and connecting tubule comprises
a sequence of processes involving apical Ca2þ entry
via transient receptor potential channel V5 (TRPV5),
translocation of Ca2þ through the cytosol by calbin-
dins and extrusion over the basolateral membrane by
the Naþ/Ca2þ exchanger (NCX1) and plasma mem-
brane Ca2þ ATPase (PMCA1b) [12] (Figure 1).
Recently, it was demonstrated that the expression of
these renal Ca2þ transport proteins, with the exception
of PMCA1b, is significantly downregulated in kidneys
of 1a-OHase knockout mice, which is in line with
a diminished Ca2þ reabsorption capacity contributing
to the development of the observed hypocalcaemia [6].
Intriguingly, high dietary Ca intake restored the
decreased expression of the Ca2þ transport proteins
independently from 1,25(OH)2D3 [6]. In order to
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identify gene products in the kidney that are regu-
lated by high dietary Ca and/or 1,25(OH)2D3, cDNA
microarray analysis (15 000 cDNAs) was performed on
kidney samples from 1,25(OH)2D3- and high dietary
Ca-treated 1a-OHase knockout mice. In this study,
1,25(OH)2D3 induced a significant regulation of �1000
genes, whereas dietary Ca supplementation of the
1a-OHase knockout mice revealed �2000 controlled
genes as indicated in the Venn diagram (Figure 2) [13].
Interestingly, �600 transcripts were regulated in both
situations, suggesting the involvement in the dietary
Ca-mediated rescue mechanism of these vitamin D-
deficient mice (Figure 2; for overview data sheets,
please see: http://www.genomics.med.uu.nl/pub/bb/
kidney/). Conspicuous regulated genes encoded ion
channels, channel-interacting proteins, kinases and
other signalling molecules, and importantly Ca2þ-
transporting proteins including the NCX1, calbindin-
D28K and the Ca2þ sensor calmodulin. Dietary Ca
supplementation in the 1a-OHase knockout mice had a
maximum effect on NCX1 expression, suggesting that
this basolateral protein is an important extrusion
mechanism in the process of transcellular Ca2þ reab-
sorption. Interestingly, several transcripts, previously
not known to be involved in Ca2þ homeostasis,
were significantly regulated. An intriguing question is
how dietary Ca can regulate gene transcription. First,
an increased dietary Ca load might increase the
intracellular Ca2þ concentration in Ca2þ-transporting
kidney cells. Previous studies already indicated Ca2þ-
responsive elements in the promoter of calbindin-
D28K and calmodulin [14]. Second, other reports point

to a role for the Ca2þ-sensing receptor in the kidney
that senses the ambient Ca2þ concentration and
transduces signals into the cell at the level of gene
transcription (Figure 1) [15,16]. Functional analysis
should reveal the regulatory pathways of the Ca2þ-
sensitive proteins with respect to dietary Ca-mediated
rescue of the disturbed Ca2þ balance in vitamin
D-deficient animals. The emerging tools of genomics
and proteomics are enabling the in-depth study of
relationships between diet, genetics and function.

Fig. 1. Cellular model of renal epithelial Ca2þ transport. Active and transcellular Ca2þ transport is carried out as a three-step process.
Following entry of Ca2þ through the epithelial Ca2þ channels, TRPV5 and TRPV6, Ca2þ bound to calbindin diffuses to the basolateral
membrane. At the basolateral membrane, Ca2þ is extruded via an ATP-dependent Ca2þ-ATPase (PMCA1b) and an Naþ–Ca2þ exchanger
(NCX1). In this way, there is net Ca2þ absorption from the luminal space to the extracellular compartment. Dietary Ca and the active
form of vitamin D, 1,25(OH)2D3, stimulate the individual steps of transcellular Ca2þ transport by increasing the expression levels of
the luminal Ca2þ channels, calbindins and the extrusion systems. The extracellular Ca2þ concentration is sensed by the calcium-sensing
receptor (CaR) that might be involved in the intracellular signalling to regulate Ca2þ-responsive genes.

Fig. 2. Venn diagram depicting the number of regulated genes in
1a-OHase mice during dietary treatment. The number of genes
regulated when comparing the three conditions 1a-OHase knock-
out mice vs 1a-OHase control mice (left), 1a-OHase knockout mice
vs 1a-OHase knockout mice supplemented with dietary Ca (middle),
and 1a-OHase control mice vs Ca2þ-supplemented 1a-OHase con-
trol mice (right). The number of total regulated genes on the DNA
chip is depicted. Genes are shown in the overlapping regions that
are regulated in two conditions.
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Is vitamin D indispensable?

Several studies supported the notion that vitamin D
and Ca supplementation may prevent osteoporotic
fractures in people known to be vitamin D deficient
[17]. Osteoporosis, a systemic skeletal disease charac-
terized by a low bone mass, is a major public health
problem [18]. Nutritional deficiencies have a signifi-
cant influence on the cause of osteoporosis. Previous
studies indicated that a reduced supply of Ca2þ is asso-
ciated with decreased bone mass and osteoporosis,
whereas a chronic and severe vitamin D deficiency
leads to osteomalacia, a metabolic bone disease char-
acterized by a decreased mineralization of bone [18].
Results of various clinical trials suggested that Ca2þ

supplementation may prevent vertebral fractures in
the elderly. As outlined above, Ca supplementation
in vitamin D-deficient mice models normalized the
hypocalcaemia and restored the biomechanical pro-
perties of bone [3,4,8]. This treatment, however, does
not appear as effective as 1,25(OH)2D3 replacement
therapy, since bone growth remained impaired [8].
Hendy and co-workers demonstrated in 1a-OHase
and/or VDR knockout mice that optimal dietary
Ca absorption requires 1,25(OH)2D3/VDR, whereas
skeletal mineralization was dependent on adequate
ambient Ca2þ and did not require the 1,25(OH)2D3/
VDR system [19]. Together, these studies indicate that
Ca2þ cannot entirely substitute vitamin D in mineral
and skeletal homeostasis, but the two agents have
discrete and complementary functions.

In various clinical conditions associated with a
disturbed Ca homeostasis, vitamin D analogues
are administered. For instance, the treatment of choice
for PDDR and for patients with chronic renal failure
is long-term replacement therapy with 1,25(OH)2D3.
Notably, the currently applied strategy of vitamin D
and Ca2þ supplementation to patients with chronic
renal failure has been associated with adverse effects,
such as vascular calcification and calciphylaxis. It
would be interesting to compare the effectiveness of Ca
supplementation with the treatment with vitamin D
analogues in these patient groups. Based on present
evidence, chelated Ca2þ may be safely and effectively
ingested by most people at doses generally recom-
mended for treatment or prevention of Ca2þ-related
disorders [20]. Further studies on potential dietary Ca-
sensitive targets will provide insight into the molecular
rescue mechanisms of dietary Ca supplementation.
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